source: trunk/external-alma/atnf/pks/pks_maths.cc @ 3029

Last change on this file since 3029 was 3029, checked in by Kana Sugimoto, 9 years ago

New Development: Yes

JIRA Issue: Yes (CAS-6929)

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): asap as a whole

Description: committing Darrell's changes to make asap work with merged casacore.


File size: 9.9 KB
Line 
1//#---------------------------------------------------------------------------
2//# pks_maths.cc: Mathematical functions for Parkes single-dish data reduction
3//#---------------------------------------------------------------------------
4//# livedata - processing pipeline for single-dish, multibeam spectral data.
5//# Copyright (C) 2004-2009, Australia Telescope National Facility, CSIRO
6//#
7//# This file is part of livedata.
8//#
9//# livedata is free software: you can redistribute it and/or modify it under
10//# the terms of the GNU General Public License as published by the Free
11//# Software Foundation, either version 3 of the License, or (at your option)
12//# any later version.
13//#
14//# livedata is distributed in the hope that it will be useful, but WITHOUT
15//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17//# more details.
18//#
19//# You should have received a copy of the GNU General Public License along
20//# with livedata.  If not, see <http://www.gnu.org/licenses/>.
21//#
22//# Correspondence concerning livedata may be directed to:
23//#        Internet email: mcalabre@atnf.csiro.au
24//#        Postal address: Dr. Mark Calabretta
25//#                        Australia Telescope National Facility, CSIRO
26//#                        PO Box 76
27//#                        Epping NSW 1710
28//#                        AUSTRALIA
29//#
30//# http://www.atnf.csiro.au/computing/software/livedata.html
31//# $Id: pks_maths.cc,v 1.7 2009-09-29 07:45:02 cal103 Exp $
32//#---------------------------------------------------------------------------
33//# Original: 2004/07/16 Mark Calabretta
34//#---------------------------------------------------------------------------
35
36// AIPS++ includes.
37#include <complex>
38#include <casa/aips.h>
39#include <casa/math.h>
40#include <casa/Arrays/ArrayMath.h>
41#include <casa/Arrays/Vector.h>
42#include <casa/BasicSL/Constants.h>
43#include <casa/Utilities/GenSort.h>
44
45// Parkes includes.
46#include <atnf/pks/pks_maths.h>
47
48
49//----------------------------------------------------------------------- nint
50
51// Nearest integral value; halfway cases are rounded to the integral value
52// larger in value.  No check is made for integer overflow.
53
54Int nint(Double v)
55{
56  return Int(floor(v + 0.5));
57}
58
59//---------------------------------------------------------------------- anint
60
61// Nearest integral value; halfway cases are rounded to the integral value
62// larger in value.
63
64Double anint(Double v)
65{
66  return floor(v + 0.5);
67}
68
69//---------------------------------------------------------------------- round
70
71// Round value v to the nearest integral multiple of precision p.
72
73Double round(Double v, Double p)
74{
75  return p * floor(v/p + 0.5);
76}
77
78//--------------------------------------------------------------------- median
79
80// Compute the weighted median value of an array.
81
82Float median(const Vector<Float> &v, const Vector<Float> &wgt)
83{
84  uInt nElem = v.nelements();
85  if (nElem == 0) return 0.0f;
86
87  // Generate the sort index.
88  Vector<uInt> sortindex(nElem);
89  GenSortIndirect<Float>::sort(sortindex, v);
90
91  // Find the middle weight.
92  Float wgt_2 = sum(wgt)/2.0f;
93
94  // Find the corresponding vector element.
95  Float weight = 0.0f;
96  Float accwgt = 0.0f;
97  uInt j1 = 0;
98  uInt j2;
99  for (j2 = 0; j2 < nElem; j2++) {
100    weight = wgt(sortindex(j2));
101    if (weight == 0.0f) {
102      // Ignore zero-weight data;
103      continue;
104    }
105
106    // The accumulated weight.
107    accwgt += weight;
108
109    if (accwgt <= wgt_2) {
110      // Keep looping.
111      j1 = j2;
112    } else {
113      break;
114    }
115  }
116
117  // Compute weighted median.
118  Float v1 = v(sortindex(j1));
119  Float v2 = v(sortindex(j2));
120
121  // Compute pro-rata value from below.
122  Float dw = wgt_2 - (accwgt - weight);
123  v1 += (v2 - v1) * dw / weight;
124
125  // Find next non-zero-weight value.
126  for (j2++ ; j2 < nElem; j2++) {
127    weight = wgt(sortindex(j2));
128    if (weight != 0.0f) {
129      break;
130    }
131  }
132
133  if (j2 < nElem) {
134    // Compute pro-rata value from above.
135    Float v3 = v(sortindex(j2));
136
137    v2 += (v3 - v2) * dw / weight;
138  }
139
140  return (v1 + v2)/2.0f;
141}
142
143//---------------------------------------------------------------- angularDist
144
145// Determine the angular distance between two directions (angles in radians).
146
147Double angularDist(Double lng0, Double lat0, Double lng, Double lat)
148{
149  Double costheta = sin(lat0)*sin(lat) + cos(lat0)*cos(lat)*cos(lng0-lng);
150  return acos(costheta);
151}
152
153//--------------------------------------------------------------------- distPA
154
155void distPA(Double lng0, Double lat0, Double lng, Double lat, Double &dist,
156            Double &pa)
157
158// Determine the generalized position angle of the field point (lng,lat) from
159// the reference point (lng0,lat0) and the angular distance between them
160// (angles in radians).
161
162{
163  // Euler angles which rotate the coordinate frame so that (lng0,lat0) is
164  // at the pole of the new system, with the pole of the old system at zero
165  // longitude in the new.
166  Double phi0  =  C::pi_2 + lng0;
167  Double theta =  C::pi_2 - lat0;
168  Double phi   = -C::pi_2;
169
170  // Rotate the field point to the new system.
171  Double alpha, beta;
172  eulerx(lng, lat, phi0, theta, phi, alpha, beta);
173
174  dist = C::pi_2 - beta;
175  pa   = -alpha;
176  if (pa < -C::pi) pa = pa + C::_2pi;
177}
178
179//--------------------------------------------------------------------- eulerx
180
181void eulerx(Double lng0, Double lat0, Double phi0, Double theta, Double phi,
182            Double &lng1, Double &lat1)
183
184// Applies the Euler angle based transformation of spherical coordinates.
185//
186//     phi0  Longitude of the ascending node in the old system, radians.  The
187//           ascending node is the point of intersection of the equators of
188//           the two systems such that the equator of the new system crosses
189//           from south to north as viewed in the old system.
190//
191//    theta  Angle between the poles of the two systems, radians.  THETA is
192//           positive for a positive rotation about the ascending node.
193//
194//      phi  Longitude of the ascending node in the new system, radians.
195
196{
197  // Compute intermediaries.
198  Double lng0p  = lng0 - phi0;
199  Double slng0p = sin(lng0p);
200  Double clng0p = cos(lng0p);
201  Double slat0  = sin(lat0);
202  Double clat0  = cos(lat0);
203  Double ctheta = cos(theta);
204  Double stheta = sin(theta);
205
206  Double x = clat0*clng0p;
207  Double y = clat0*slng0p*ctheta + slat0*stheta;
208
209  // Longitude in the new system.
210  if (x != 0.0 || y != 0.0) {
211    lng1 = phi + atan2(y, x);
212  } else {
213    // Longitude at the poles in the new system is consistent with that
214    // specified in the old system.
215    lng1 = phi + lng0p;
216  }
217  lng1 = fmod(lng1, C::_2pi);
218  if (lng1 < 0.0) lng1 += C::_2pi;
219
220  lat1 = asin(slat0*ctheta - clat0*stheta*slng0p);
221}
222
223//------------------------------------------------------------------------ sol
224
225// Low precision coordinates of the Sun (accurate to 1 arcmin between 1800 and
226// 2200) from http://aa.usno.navy.mil/faq/docs/SunApprox.html matches closely
227// that in the Astronomical Almanac.
228
229void sol(Double mjd, Double &elng, Double &ra, Double &dec)
230{
231  Double d2r = C::pi/180.0;
232
233  // Number of days since J2000.0.
234  Double d = mjd - 51544.5;
235
236  // Mean longitude and mean anomaly of the Sun (deg).
237  Double L = 280.459 + 0.98564736*d;
238  Double g = 357.529 + 0.98560028*d;
239
240  // Apparent ecliptic longitude corrected for aberration (deg).
241  g *= d2r;
242  elng = L + 1.915*sin(g) + 0.020*sin(g+g);
243  elng = fmod(elng, 360.0);
244  if (elng < 0.0) elng += 360.0;
245
246  // Obliquity of the ecliptic (deg).
247  Double epsilon = 23.439 - 0.00000036*d;
248
249  // Transform ecliptic to equatorial coordinates.
250  elng *= d2r;
251  epsilon *= d2r;
252  ra  = atan2(cos(epsilon)*sin(elng), cos(elng));
253  dec = asin(sin(epsilon)*sin(elng));
254  if (ra < 0.0) ra += C::_2pi;
255}
256
257//------------------------------------------------------------------------ gst
258
259// Greenwich mean sidereal time, and low precision Greenwich apparent sidereal
260// time, both in radian, from http://aa.usno.navy.mil/faq/docs/GAST.html.  UT1
261// is given in MJD form.
262
263void gst(Double ut1, Double &gmst, Double &gast)
264{
265  Double d2r = C::pi/180.0;
266
267  Double d  = ut1 - 51544.5;
268  Double d0 = int(ut1) - 51544.5;
269  Double h = 24.0*(d - d0);
270  Double t = d / 35625.0;
271
272  // GMST (hr).
273  gmst = 6.697374558 + 0.06570982441908*d0 + 1.00273790935*h + 0.000026*t*t;
274  gmst = fmod(gmst, 24.0);
275
276  // Longitude of the ascending node of the Moon (deg).
277  Double Omega = 125.04 - 0.052954*d;
278
279  // Mean Longitude of the Sun (deg).
280  Double L = 280.47 + 0.98565*d;
281
282  // Obliquity of the ecliptic (deg).
283  Double epsilon = 23.4393 - 0.0000004*d;
284
285  // Approximate nutation in longitude (hr).
286  Double dpsi = -0.000319*sin(Omega*d2r) - 0.000024*sin((L+L)*d2r);
287
288  // Equation of the equinoxes (hr).
289  Double eqeq = dpsi*cos(epsilon*d2r);
290
291  // GAST (hr).
292  gast = gmst + eqeq;
293  gast = fmod(gast, 24.0);
294
295  // Convert to radian.
296  gmst *= C::pi/12.0;
297  gast *= C::pi/12.0;
298}
299
300//----------------------------------------------------------------------- azel
301
302// Convert (ra,dec) to (az,el).  Position as a Cartesian triplet in m, UT1 in
303// MJD form, and all angles in radian.
304
305void azel(const Vector<Double> position, Double ut1, Double ra, Double dec,
306          Double &az, Double &el)
307{
308  // Get geocentric longitude and latitude (rad).
309  Double x = position(0);
310  Double y = position(1);
311  Double z = position(2);
312  Double r = sqrt(x*x + y*y + z*z);
313  Double lng = atan2(y, x);
314  Double lat = asin(z/r);
315
316  // Get GAST (rad).
317  Double gast, gmst;
318  gst(ut1, gmst, gast);
319
320  // Local hour angle (rad).
321  Double ha = (gast + lng) - ra;
322
323  // Azimuth and elevation (rad).
324  az = atan2(-cos(dec)*sin(ha),
325            sin(dec)*cos(lat) - cos(dec)*sin(lat)*cos(ha));
326  el = asin(sin(dec)*sin(lat) + cos(dec)*cos(lat)*cos(ha));
327
328  if (az < 0.0) az += C::_2pi;
329}
330
331//---------------------------------------------------------------------- solel
332
333// Compute the Solar elevation using the above functions.
334
335Double solel(const Vector<Double> position, Double ut1)
336{
337  Double az, dec, el, elng, gast, gmst, ra;
338  sol(ut1, elng, ra, dec);
339  gst(ut1, gmst, gast);
340  azel(position, ut1, ra, dec, az, el);
341  return el;
342}
Note: See TracBrowser for help on using the repository browser.