//#---------------------------------------------------------------------------
//# SDFITSwriter.cc: ATNF CFITSIO interface class for SDFITS output.
//#---------------------------------------------------------------------------
//# livedata - processing pipeline for single-dish, multibeam spectral data.
//# Copyright (C) 2000-2009, Australia Telescope National Facility, CSIRO
//#
//# This file is part of livedata.
//#
//# livedata is free software: you can redistribute it and/or modify it under
//# the terms of the GNU General Public License as published by the Free
//# Software Foundation, either version 3 of the License, or (at your option)
//# any later version.
//#
//# livedata is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
//# more details.
//#
//# You should have received a copy of the GNU General Public License along
//# with livedata. If not, see .
//#
//# Correspondence concerning livedata may be directed to:
//# Internet email: mcalabre@atnf.csiro.au
//# Postal address: Dr. Mark Calabretta
//# Australia Telescope National Facility, CSIRO
//# PO Box 76
//# Epping NSW 1710
//# AUSTRALIA
//#
//# http://www.atnf.csiro.au/computing/software/livedata.html
//# $Id: SDFITSwriter.cc,v 19.18 2009-09-29 07:33:39 cal103 Exp $
//#---------------------------------------------------------------------------
//# Original: 2000/07/24, Mark Calabretta, ATNF
//#---------------------------------------------------------------------------
#include
#include
#include
#include
#include
#include
#include
using namespace std;
// Numerical constants.
const double PI = 3.141592653589793238462643;
// Factor to convert radians to degrees.
const double R2D = 180.0 / PI;
// Class name
const string className = "SDFITSwriter" ;
//------------------------------------------------- SDFITSwriter::SDFITSwriter
SDFITSwriter::SDFITSwriter()
{
// Default constructor.
cSDptr = 0x0;
}
//------------------------------------------------ SDFITSwriter::~SDFITSwriter
SDFITSwriter::~SDFITSwriter()
{
close();
}
//------------------------------------------------------- SDFITSwriter::create
// Create the output SDFITS file.
int SDFITSwriter::create(
char* sdName,
char* observer,
char* project,
char* telescope,
double antPos[3],
char* obsMode,
char* bunit,
float equinox,
char* dopplerFrame,
int nIF,
int* nChan,
int* nPol,
int* haveXPol,
int haveBase,
int extraSysCal)
{
const string methodName = "create()" ;
if (cSDptr) {
log(LogOrigin( className, methodName, WHERE ), LogIO::SEVERE, "Output file already open, close it first.");
return 1;
}
// Prepend an '!' to the output name to force it to be overwritten.
char sdname[80];
sdname[0] = '!';
strcpy(sdname+1, sdName);
// Create a new SDFITS file.
cStatus = 0;
if (fits_create_file(&cSDptr, sdname, &cStatus)) {
sprintf(cMsg, "Failed to create SDFITS file\n %s", sdName);
log(LogOrigin( className, methodName, WHERE ), LogIO::SEVERE, cMsg);
return cStatus;
}
cIsMX = strstr(obsMode, "MX") != 0;
cNIF = nIF;
cNChan = nChan;
cNPol = nPol;
cHaveXPol = haveXPol;
cHaveBase = haveBase;
cExtraSysCal = extraSysCal;
// Do all IFs have the same number of channels and polarizations?
cDoTDIM = 0;
int nprod = cNChan[0] * cNPol[0];
for (int iIF = 0; iIF < nIF; iIF++) {
if (cNChan[iIF]*cNPol[iIF] != nprod) {
// Need variable-length arrays as well as a TDIM column.
cDoTDIM = 2;
break;
}
if (cNChan[iIF] != cNChan[0] || cNPol[iIF] != cNPol[0]) {
// Varying channels and/or polarizations, need a TDIM column at least.
cDoTDIM = 1;
}
}
// Find the maximum number of polarizations in any IF.
int maxNPol = 0;
for (int iIF = 0; iIF < nIF; iIF++) {
if (cNPol[iIF] > maxNPol) maxNPol = cNPol[iIF];
}
// Do any IFs have cross-polarizations?
cDoXPol = 0;
for (int iIF = 0; iIF < nIF; iIF++) {
if (cHaveXPol[iIF]) {
cDoXPol = 1;
break;
}
}
cRow = 0;
// Write required primary header keywords.
if (fits_write_imghdr(cSDptr, 8, 0, 0, &cStatus)) {
log(LogOrigin( className, methodName, WHERE ), LogIO::SEVERE, "Failed to write required primary header keywords.");
return cStatus;
}
// Identify the origin of the data.
fits_write_comment(cSDptr, " ", &cStatus);
fits_write_comment(cSDptr,
"This single dish FITS (SDFITS) file has a binary table extension which",
&cStatus);
fits_write_comment(cSDptr,
"contains data obtained from a telescope run by the Australia Telescope",
&cStatus);
fits_write_comment(cSDptr, "National Facility (ATNF).", &cStatus);
fits_write_comment(cSDptr, " ", &cStatus);
fits_write_date(cSDptr, &cStatus);
char text[72];
char version[7];
char date[11];
sscanf("$Revision: 19.18 $", "%*s%s", version);
sscanf("$Date: 2009-09-29 07:33:39 $", "%*s%s", date);
sprintf(text, "SDFITSwriter (v%s, %s)", version, date);
fits_write_key_str(cSDptr, "ORIGIN", text, "output class", &cStatus);
float cfvers;
fits_write_comment(cSDptr, "Written by Mark Calabretta "
"(mcalabre@atnf.csiro.au)", &cStatus);
sprintf(text, "using cfitsio v%.3f.", fits_get_version(&cfvers));
fits_write_comment(cSDptr, text, &cStatus);
if (cStatus) {
log(LogOrigin( className, methodName, WHERE ), LogIO::SEVERE, "Failed in writing primary header.");
return cStatus;
}
// Create an SDFITS extension.
long nrow = 0;
int ncol = 0;
if (fits_create_tbl(cSDptr, BINARY_TBL, nrow, ncol, NULL, NULL, NULL,
"SINGLE DISH", &cStatus)) {
log(LogOrigin( className, methodName, WHERE ), LogIO::SEVERE, "Failed to create a binary table extension.");
return 1;
}
char ttype[16];
char tform[9];
char tunit[9];
// NMATRIX (core, virtual).
fits_write_key_lng(cSDptr, "NMATRIX", 1l, "Number of DATA arrays",
&cStatus);
// OBSERVER (shared, virtual).
fits_write_key_str(cSDptr, "OBSERVER", observer, "Observer name(s)",
&cStatus);
// PROJID (shared, virtual).
fits_write_key_str(cSDptr, "PROJID", project, "Project name", &cStatus);
// TELESCOP (core, virtual).
fits_write_key_str(cSDptr, "TELESCOP", telescope, "Telescope name",
&cStatus);
// OBSGEO-X/Y/Z (additional, virtual).
fits_write_key_dbl(cSDptr, "OBSGEO-X", antPos[0], 9,
"[m] Antenna ITRF X-coordinate", &cStatus);
fits_write_key_dbl(cSDptr, "OBSGEO-Y", antPos[1], 9,
"[m] Antenna ITRF Y-coordinate", &cStatus);
fits_write_key_dbl(cSDptr, "OBSGEO-Z", antPos[2], 9,
"[m] Antenna ITRF Z-coordinate", &cStatus);
// SCAN (shared, real).
fits_insert_col(cSDptr, ++ncol, "SCAN", "1I", &cStatus);
// CYCLE (additional, real).
fits_insert_col(cSDptr, ++ncol, "CYCLE", "1J", &cStatus);
// DATE-OBS (core, real).
fits_insert_col(cSDptr, ++ncol, "DATE-OBS", "10A", &cStatus);
// TIME (core, real).
fits_insert_col(cSDptr, ++ncol, "TIME", "1D", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "s", "units of field", &cStatus);
// EXPOSURE (core, real).
fits_insert_col(cSDptr, ++ncol, "EXPOSURE", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "s", "units of field", &cStatus);
// OBJECT (core, real).
fits_insert_col(cSDptr, ++ncol, "OBJECT", "16A", &cStatus);
// OBJ-RA (additional, real).
fits_insert_col(cSDptr, ++ncol, "OBJ-RA", "1D", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "deg", "units of field", &cStatus);
// OBJ-DEC (additional, real).
fits_insert_col(cSDptr, ++ncol, "OBJ-DEC", "1D", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "deg", "units of field", &cStatus);
// RESTFRQ (additional, real).
fits_insert_col(cSDptr, ++ncol, "RESTFRQ", "1D", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "Hz", "units of field", &cStatus);
// OBSMODE (shared, real).
fits_insert_col(cSDptr, ++ncol, "OBSMODE", "16A", &cStatus);
// BEAM (additional, real).
fits_insert_col(cSDptr, ++ncol, "BEAM", "1I", &cStatus);
// IF (additional, real).
fits_insert_col(cSDptr, ++ncol, "IF", "1I", &cStatus);
// FREQRES (core, real).
fits_insert_col(cSDptr, ++ncol, "FREQRES", "1D", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "Hz", "units of field", &cStatus);
// BANDWID (core, real).
fits_insert_col(cSDptr, ++ncol, "BANDWID", "1D", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "Hz", "units of field", &cStatus);
// CTYPE1 (core, virtual).
fits_write_key_str(cSDptr, "CTYPE1", "FREQ",
"DATA array axis 1: frequency in Hz.", &cStatus);
// CRPIX1 (core, real).
fits_insert_col(cSDptr, ++ncol, "CRPIX1", "1E", &cStatus);
// CRVAL1 (core, real).
fits_insert_col(cSDptr, ++ncol, "CRVAL1", "1D", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "Hz", "units of field", &cStatus);
// CDELT1 (core, real).
fits_insert_col(cSDptr, ++ncol, "CDELT1", "1D", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "Hz", "units of field", &cStatus);
// CTYPE2 (core, virtual).
fits_write_key_str(cSDptr, "CTYPE2", "STOKES",
"DATA array axis 2: polarization code", &cStatus);
// CRPIX2 (core, virtual).
fits_write_key_flt(cSDptr, "CRPIX2", 1.0f, 1,
"Polarization code reference pixel", &cStatus);
// CRVAL2 (core, virtual).
fits_write_key_dbl(cSDptr, "CRVAL2", -5.0, 1,
"Polarization code at reference pixel (XX)", &cStatus);
// CDELT2 (core, virtual).
fits_write_key_dbl(cSDptr, "CDELT2", -1.0, 1,
"Polarization code axis increment", &cStatus);
// CTYPE3 (core, virtual).
fits_write_key_str(cSDptr, "CTYPE3", "RA",
"DATA array axis 3 (degenerate): RA (mid-int)",
&cStatus);
// CRPIX3 (core, virtual).
fits_write_key_flt(cSDptr, "CRPIX3", 1.0f, 1, "RA reference pixel",
&cStatus);
// CRVAL3 (core, real).
fits_insert_col(cSDptr, ++ncol, "CRVAL3", "1D", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "deg", "units of field", &cStatus);
// CDELT3 (core, virtual).
fits_write_key_dbl(cSDptr, "CDELT3", -1.0, 1, "RA axis increment", &cStatus);
// CTYPE4 (core, virtual).
fits_write_key_str(cSDptr, "CTYPE4", "DEC",
"DATA array axis 4 (degenerate): Dec (mid-int)",
&cStatus);
// CRPIX4 (core, virtual).
fits_write_key_flt(cSDptr, "CRPIX4", 1.0f, 1, "Dec reference pixel",
&cStatus);
// CRVAL4 (core, real).
fits_insert_col(cSDptr, ++ncol, "CRVAL4", "1D", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "deg", "units of field", &cStatus);
// CDELT4 (core, virtual).
fits_write_key_dbl(cSDptr, "CDELT4", 1.0, 1, "Dec axis increment", &cStatus);
// SCANRATE (additional, real).
fits_insert_col(cSDptr, ++ncol, "SCANRATE", "2E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "deg/s", "units of field", &cStatus);
// SPECSYS (additional, virtual).
fits_write_key_str(cSDptr, "SPECSYS", dopplerFrame,
"Doppler reference frame (transformed)", &cStatus);
// SSYSOBS (additional, virtual).
fits_write_key_str(cSDptr, "SSYSOBS", "TOPOCENT",
"Doppler reference frame of observation", &cStatus);
// EQUINOX (shared, virtual).
fits_write_key_flt(cSDptr, "EQUINOX", equinox, 1,
"Equinox of equatorial coordinates", &cStatus);
// RADESYS (additional, virtual).
fits_write_key_str(cSDptr, "RADESYS", "FK5", "Equatorial coordinate frame",
&cStatus);
// TSYS (core, real).
sprintf(tform, "%dE", maxNPol);
fits_insert_col(cSDptr, ++ncol, "TSYS", tform, &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, bunit, "units of field", &cStatus);
// CALFCTR (additional, real).
sprintf(tform, "%dE", maxNPol);
fits_insert_col(cSDptr, ++ncol, "CALFCTR", tform, &cStatus);
if (cHaveBase) {
// BASELIN (additional, real).
sprintf(tform, "%dE", 2*maxNPol);
fits_insert_col(cSDptr, ++ncol, "BASELIN", tform, &cStatus);
long tdim[] = {2, maxNPol};
fits_write_tdim(cSDptr, ncol, 2, tdim, &cStatus);
// BASESUB (additional, real).
sprintf(tform, "%dE", 24*maxNPol);
fits_insert_col(cSDptr, ++ncol, "BASESUB", tform, &cStatus);
tdim[0] = 24;
fits_write_tdim(cSDptr, ncol, 2, tdim, &cStatus);
}
// DATA (core, real).
if (cDoTDIM < 2) {
// IFs all have the same number of products, use fixed-length arrays.
sprintf(tform, "%dE", cNChan[0]*cNPol[0]);
} else {
// IFs have a differing number of products, use variable-length arrays.
strcpy(tform, "1PE");
}
fits_insert_col(cSDptr, ++ncol, "DATA", tform, &cStatus);
if (cDoTDIM) {
// TDIMn varies with IF, write a TDIM column.
sprintf(ttype, "TDIM%d", ncol);
fits_insert_col(cSDptr, ++ncol, ttype, "16A", &cStatus);
} else {
// TDIMn fixed for each IF, write a TDIM keyword.
long tdim[] = {cNChan[0], cNPol[0], 1, 1};
fits_write_tdim(cSDptr, ncol, 4, tdim, &cStatus);
}
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, bunit, "units of field", &cStatus);
// FLAGGED (additional, logical).
if (cDoTDIM < 2) {
// IFs all have the same number of products, use fixed-length arrays.
sprintf(tform, "%dB", cNChan[0]*cNPol[0]);
} else {
// IFs have a differing number of products, use variable-length arrays.
strcpy(tform, "1PB");
}
fits_insert_col(cSDptr, ++ncol, "FLAGGED", tform, &cStatus);
if (cDoTDIM) {
// TDIMn varies with IF, write a TDIM column.
sprintf(ttype, "TDIM%d", ncol);
fits_insert_col(cSDptr, ++ncol, ttype, "16A", &cStatus);
} else {
// TDIMn fixed for each IF, write a TDIM keyword.
long tdim[] = {cNChan[0], cNPol[0], 1, 1};
fits_write_tdim(cSDptr, ncol, 4, tdim, &cStatus);
}
if (cDoXPol) {
// XCALFCTR (additional, real).
sprintf(tform, "%dE", 2);
fits_insert_col(cSDptr, ++ncol, "XCALFCTR", tform, &cStatus);
// XPOLDATA (additional, real).
if (cDoTDIM < 2) {
// IFs all have the same number of products, use fixed-length arrays.
sprintf(tform, "%dE", 2*cNChan[0]);
} else {
// IFs have a differing number of products, use variable-length arrays.
strcpy(tform, "1PE");
}
fits_insert_col(cSDptr, ++ncol, "XPOLDATA", tform, &cStatus);
if (cDoTDIM) {
// TDIMn varies with IF, write a TDIM column.
sprintf(ttype, "TDIM%d", ncol);
fits_insert_col(cSDptr, ++ncol, ttype, "16A", &cStatus);
} else {
// TDIMn fixed for each IF, write a TDIM keyword.
long tdim[] = {2, cNChan[0]};
fits_write_tdim(cSDptr, ncol, 2, tdim, &cStatus);
}
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, bunit, "units of field", &cStatus);
}
if (cExtraSysCal) {
if (cIsMX) {
// REFBEAM (additional, real).
fits_insert_col(cSDptr, ++ncol, "REFBEAM", "1I", &cStatus);
}
// TCAL (shared, real).
sprintf(tform, "%dE", min(maxNPol,2));
fits_insert_col(cSDptr, ++ncol, "TCAL", tform, &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "Jy", "units of field", &cStatus);
// TCALTIME (additional, real).
fits_insert_col(cSDptr, ++ncol, "TCALTIME", "16A", &cStatus);
// AZIMUTH (shared, real).
fits_insert_col(cSDptr, ++ncol, "AZIMUTH", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "deg", "units of field", &cStatus);
// ELEVATIO (shared, real).
fits_insert_col(cSDptr, ++ncol, "ELEVATIO", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "deg", "units of field", &cStatus);
// PARANGLE (additional, real).
fits_insert_col(cSDptr, ++ncol, "PARANGLE", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "deg", "units of field", &cStatus);
// FOCUSAXI (additional, real).
fits_insert_col(cSDptr, ++ncol, "FOCUSAXI", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "m", "units of field", &cStatus);
// FOCUSTAN (additional, real).
fits_insert_col(cSDptr, ++ncol, "FOCUSTAN", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "m", "units of field", &cStatus);
// FOCUSROT (additional, real).
fits_insert_col(cSDptr, ++ncol, "FOCUSROT", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "deg", "units of field", &cStatus);
// TAMBIENT (shared, real).
fits_insert_col(cSDptr, ++ncol, "TAMBIENT", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "C", "units of field", &cStatus);
// PRESSURE (shared, real).
fits_insert_col(cSDptr, ++ncol, "PRESSURE", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "Pa", "units of field", &cStatus);
// HUMIDITY (shared, real).
fits_insert_col(cSDptr, ++ncol, "HUMIDITY", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "%", "units of field", &cStatus);
// WINDSPEE (shared, real).
fits_insert_col(cSDptr, ++ncol, "WINDSPEE", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "m/s", "units of field", &cStatus);
// WINDDIRE (shared, real).
fits_insert_col(cSDptr, ++ncol, "WINDDIRE", "1E", &cStatus);
sprintf(tunit, "TUNIT%d", ncol);
fits_write_key_str(cSDptr, tunit, "deg", "units of field", &cStatus);
}
// Set scaling parameters.
for (int j = 1; j <= ncol; j++) {
fits_set_tscale(cSDptr, j, 1.0, 0.0, &cStatus);
}
if (cStatus) {
log(LogOrigin( className, methodName, WHERE ), LogIO::SEVERE, "Failed in writing binary table header.");
}
return cStatus;
}
//-------------------------------------------------------- SDFITSwriter::write
// Write a record to the SDFITS file.
int SDFITSwriter::write(MBrecord &mbrec)
{
const string methodName = "write()" ;
LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
char *cptr;
// Check parameters.
int IFno = mbrec.IFno[0];
if (IFno < 1 || cNIF < IFno) {
os << LogIO::WARN
<< "SDFITSwriter::write: "
<< "Invalid IF number " << IFno
<< " (maximum " << cNIF << ")." << LogIO::POST ;
return 1;
}
int iIF = IFno - 1;
int nChan = cNChan[iIF];
if (mbrec.nChan[0] != nChan) {
os << LogIO::WARN
<< "SDFITSriter::write: "
<< "Wrong number of channels for IF " << IFno << "," << endl
<< " "
<< "got " << nChan << " should be " << mbrec.nChan[0] << "." << endl;
os << LogIO::POST ;
return 1;
}
int nPol = cNPol[iIF];
if (mbrec.nPol[0] != nPol) {
os << LogIO::WARN
<< "SDFITSriter::write: "
<< "Wrong number of polarizations for IF " << IFno << "," << endl
<< " "
<< "got " << nPol << " should be " << mbrec.nPol[0] << "." << endl;
os << LogIO::POST ;
return 1;
}
// Next row.
cRow++;
int icol = 0;
// SCAN.
fits_write_col_int(cSDptr, ++icol, cRow, 1, 1, &mbrec.scanNo, &cStatus);
// CYCLE.
fits_write_col_int(cSDptr, ++icol, cRow, 1, 1, &mbrec.cycleNo, &cStatus);
// DATE-OBS.
cptr = mbrec.datobs;
fits_write_col_str(cSDptr, ++icol, cRow, 1, 1, &cptr, &cStatus);
// TIME.
fits_write_col_dbl(cSDptr, ++icol, cRow, 1, 1, &mbrec.utc, &cStatus);
// EXPOSURE.
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &mbrec.exposure, &cStatus);
// OBJECT.
cptr = mbrec.srcName;
fits_write_col_str(cSDptr, ++icol, cRow, 1, 1, &cptr, &cStatus);
// OBJ-RA.
double srcRA = mbrec.srcRA * R2D;
fits_write_col_dbl(cSDptr, ++icol, cRow, 1, 1, &srcRA, &cStatus);
// OBJ-DEC.
double srcDec = mbrec.srcDec * R2D;
fits_write_col_dbl(cSDptr, ++icol, cRow, 1, 1, &srcDec, &cStatus);
// RESTFRQ.
fits_write_col_dbl(cSDptr, ++icol, cRow, 1, 1, &mbrec.restFreq, &cStatus);
// OBJECT.
cptr = mbrec.obsType;
fits_write_col_str(cSDptr, ++icol, cRow, 1, 1, &cptr, &cStatus);
// BEAM.
fits_write_col_sht(cSDptr, ++icol, cRow, 1, 1, &mbrec.beamNo, &cStatus);
// IF.
fits_write_col_sht(cSDptr, ++icol, cRow, 1, 1, &mbrec.IFno[0], &cStatus);
// FREQRES.
double freqRes = fabs(mbrec.fqDelt[0]);
fits_write_col_dbl(cSDptr, ++icol, cRow, 1, 1, &freqRes, &cStatus);
// BANDWID.
double bandwidth = freqRes * nChan;
fits_write_col_dbl(cSDptr, ++icol, cRow, 1, 1, &bandwidth, &cStatus);
// CRPIX1.
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &mbrec.fqRefPix[0],
&cStatus);
// CRVAL1.
fits_write_col_dbl(cSDptr, ++icol, cRow, 1, 1, &mbrec.fqRefVal[0],
&cStatus);
// CDELT1.
fits_write_col_dbl(cSDptr, ++icol, cRow, 1, 1, &mbrec.fqDelt[0], &cStatus);
// CRVAL3.
double ra = mbrec.ra * R2D;
fits_write_col_dbl(cSDptr, ++icol, cRow, 1, 1, &ra, &cStatus);
// CRVAL4.
double dec = mbrec.dec * R2D;
fits_write_col_dbl(cSDptr, ++icol, cRow, 1, 1, &dec, &cStatus);
// SCANRATE.
float scanrate[2];
scanrate[0] = mbrec.raRate * R2D;
scanrate[1] = mbrec.decRate * R2D;
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 2, scanrate, &cStatus);
// TSYS.
fits_write_col_flt(cSDptr, ++icol, cRow, 1, nPol, mbrec.tsys[0], &cStatus);
// CALFCTR.
fits_write_col_flt(cSDptr, ++icol, cRow, 1, nPol, mbrec.calfctr[0],
&cStatus);
if (cHaveBase) {
// BASELIN.
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 2*nPol, mbrec.baseLin[0][0],
&cStatus);
// BASESUB.
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 24*nPol, mbrec.baseSub[0][0],
&cStatus);
}
// DATA.
fits_write_col_flt(cSDptr, ++icol, cRow, 1, nChan*nPol, mbrec.spectra[0],
&cStatus);
if (cDoTDIM) {
// TDIM(DATA).
char tdim[16];
sprintf(tdim, "(%d,%d,1,1)", nChan, nPol);
cptr = tdim;
fits_write_col_str(cSDptr, ++icol, cRow, 1, 1, &cptr, &cStatus);
}
// FLAGGED.
fits_write_col_byt(cSDptr, ++icol, cRow, 1, nChan*nPol, mbrec.flagged[0],
&cStatus);
if (cDoTDIM) {
// TDIM(FLAGGED).
char tdim[16];
sprintf(tdim, "(%d,%d,1,1)", nChan, nPol);
cptr = tdim;
fits_write_col_str(cSDptr, ++icol, cRow, 1, 1, &cptr, &cStatus);
}
if (cDoXPol) {
if (cHaveXPol[iIF] && mbrec.xpol[0]) {
// XCALFCTR.
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 2, mbrec.xcalfctr[0],
&cStatus);
// XPOLDATA.
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 2*nChan, mbrec.xpol[0],
&cStatus);
if (cDoTDIM) {
// TDIM(XPOLDATA).
char tdim[16];
sprintf(tdim, "(2,%d)", nChan);
cptr = tdim;
fits_write_col_str(cSDptr, ++icol, cRow, 1, 1, &cptr, &cStatus);
}
} else {
// Skip columns.
icol += cDoTDIM ? 3 : 2;
}
}
// Extra system calibration quantities from Parkes.
if (cExtraSysCal) {
if (cIsMX) {
fits_write_col_sht(cSDptr, ++icol, cRow, 1, 1, &mbrec.refBeam, &cStatus);
}
fits_write_col_flt(cSDptr, ++icol, cRow, 1, min(nPol,2), mbrec.tcal[0],
&cStatus);
cptr = mbrec.tcalTime;
fits_write_col_str(cSDptr, ++icol, cRow, 1, 1, &cptr, &cStatus);
float azimuth = mbrec.azimuth * R2D;
float elevation = mbrec.elevation * R2D;
float parAngle = mbrec.parAngle * R2D;
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &azimuth, &cStatus);
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &elevation, &cStatus);
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &parAngle, &cStatus);
float focusRot = mbrec.focusRot * R2D;
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &mbrec.focusAxi, &cStatus);
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &mbrec.focusTan, &cStatus);
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &focusRot, &cStatus);
float windAz = mbrec.windAz * R2D;
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &mbrec.temp, &cStatus);
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &mbrec.pressure, &cStatus);
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &mbrec.humidity, &cStatus);
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &mbrec.windSpeed, &cStatus);
fits_write_col_flt(cSDptr, ++icol, cRow, 1, 1, &windAz, &cStatus);
}
if (cStatus) {
log(LogOrigin( className, methodName, WHERE ), LogIO::SEVERE, "Failed in writing binary table entry.");
}
return cStatus;
}
//------------------------------------------------------ SDFITSwriter::history
// Write a history record.
int SDFITSwriter::history(char *text)
{
const string methodName = "history()" ;
if (!cSDptr) {
return 1;
}
if (fits_write_history(cSDptr, text, &cStatus)) {
log(LogOrigin( className, methodName, WHERE ), LogIO::SEVERE, "Failed in writing HISTORY records.");
}
return cStatus;
}
//-------------------------------------------------------- SDFITSwriter::close
// Close the SDFITS file.
void SDFITSwriter::close()
{
const string methodName = "close()" ;
if (cSDptr) {
cStatus = 0;
if (fits_close_file(cSDptr, &cStatus)) {
log(LogOrigin( className, methodName, WHERE ), LogIO::SEVERE, "Failed to close file.");
}
cSDptr = 0;
}
}
//--------------------------------------------------- SDFITSwriter::deleteFile
// Delete the SDFITS file.
void SDFITSwriter::deleteFile()
{
const string methodName = "deleteFile()" ;
if (cSDptr) {
cStatus = 0;
if (fits_delete_file(cSDptr, &cStatus)) {
log(LogOrigin( className, methodName, WHERE ), LogIO::SEVERE, "Failed to close and delete file.");
}
cSDptr = 0;
}
}
//------------------------------------------------------- SDFITSwriter::log
// Log a message. If the current CFITSIO status value is non-zero, also log
// the corresponding error message and dump the CFITSIO message stack.
void SDFITSwriter::log(LogOrigin origin, LogIO::Command cmd, const char *msg)
{
LogIO os( origin ) ;
os << cmd << msg << endl ;
if (cStatus) {
fits_get_errstatus(cStatus, cMsg);
os << cMsg << endl ;
while (fits_read_errmsg(cMsg)) {
os << cMsg << endl ;
}
}
os << LogIO::POST ;
}