1 | //#---------------------------------------------------------------------------
|
---|
2 | //# MBFITSreader.cc: ATNF single-dish RPFITS reader.
|
---|
3 | //#---------------------------------------------------------------------------
|
---|
4 | //# livedata - processing pipeline for single-dish, multibeam spectral data.
|
---|
5 | //# Copyright (C) 2000-2009, Australia Telescope National Facility, CSIRO
|
---|
6 | //#
|
---|
7 | //# This file is part of livedata.
|
---|
8 | //#
|
---|
9 | //# livedata is free software: you can redistribute it and/or modify it under
|
---|
10 | //# the terms of the GNU General Public License as published by the Free
|
---|
11 | //# Software Foundation, either version 3 of the License, or (at your option)
|
---|
12 | //# any later version.
|
---|
13 | //#
|
---|
14 | //# livedata is distributed in the hope that it will be useful, but WITHOUT
|
---|
15 | //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
16 | //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
---|
17 | //# more details.
|
---|
18 | //#
|
---|
19 | //# You should have received a copy of the GNU General Public License along
|
---|
20 | //# with livedata. If not, see <http://www.gnu.org/licenses/>.
|
---|
21 | //#
|
---|
22 | //# Correspondence concerning livedata may be directed to:
|
---|
23 | //# Internet email: mcalabre@atnf.csiro.au
|
---|
24 | //# Postal address: Dr. Mark Calabretta
|
---|
25 | //# Australia Telescope National Facility, CSIRO
|
---|
26 | //# PO Box 76
|
---|
27 | //# Epping NSW 1710
|
---|
28 | //# AUSTRALIA
|
---|
29 | //#
|
---|
30 | //# http://www.atnf.csiro.au/computing/software/livedata.html
|
---|
31 | //# $Id: MBFITSreader.cc,v 19.57 2009-10-30 06:34:36 cal103 Exp $
|
---|
32 | //#---------------------------------------------------------------------------
|
---|
33 | //# The MBFITSreader class reads single dish RPFITS files (such as Parkes
|
---|
34 | //# Multibeam MBFITS files).
|
---|
35 | //#
|
---|
36 | //# Original: 2000/07/28 Mark Calabretta
|
---|
37 | //#---------------------------------------------------------------------------
|
---|
38 |
|
---|
39 | #include <atnf/pks/pks_maths.h>
|
---|
40 | #include <atnf/PKSIO/MBFITSreader.h>
|
---|
41 | #include <atnf/PKSIO/MBrecord.h>
|
---|
42 |
|
---|
43 | #include <casa/Logging/LogIO.h>
|
---|
44 |
|
---|
45 | #include <casa/math.h>
|
---|
46 | #include <casa/iostream.h>
|
---|
47 | #include <casa/stdio.h>
|
---|
48 | #include <casa/stdlib.h>
|
---|
49 | #include <casa/string.h>
|
---|
50 | #include <unistd.h>
|
---|
51 |
|
---|
52 | #include <RPFITS.h>
|
---|
53 |
|
---|
54 | using namespace std;
|
---|
55 |
|
---|
56 | // Numerical constants.
|
---|
57 | const double PI = 3.141592653589793238462643;
|
---|
58 | const double TWOPI = 2.0 * PI;
|
---|
59 | const double HALFPI = PI / 2.0;
|
---|
60 | #ifdef PKSIO_DEBUG
|
---|
61 | const double R2D = 180.0 / PI;
|
---|
62 | #endif
|
---|
63 |
|
---|
64 | // Class name
|
---|
65 | const string className = "MBFITSreader" ;
|
---|
66 |
|
---|
67 | //------------------------------------------------- MBFITSreader::MBFITSreader
|
---|
68 |
|
---|
69 | // Default constructor.
|
---|
70 |
|
---|
71 | MBFITSreader::MBFITSreader(
|
---|
72 | const int retry,
|
---|
73 | const int interpolate)
|
---|
74 | {
|
---|
75 | cRetry = retry;
|
---|
76 | if (cRetry > 10) {
|
---|
77 | cRetry = 10;
|
---|
78 | }
|
---|
79 |
|
---|
80 | cInterp = interpolate;
|
---|
81 | if (cInterp < 0 || cInterp > 2) {
|
---|
82 | cInterp = 1;
|
---|
83 | }
|
---|
84 |
|
---|
85 | // Initialize pointers.
|
---|
86 | cBeams = 0x0;
|
---|
87 | cIFs = 0x0;
|
---|
88 | cNChan = 0x0;
|
---|
89 | cNPol = 0x0;
|
---|
90 | cHaveXPol = 0x0;
|
---|
91 | cStartChan = 0x0;
|
---|
92 | cEndChan = 0x0;
|
---|
93 | cRefChan = 0x0;
|
---|
94 |
|
---|
95 | cVis = 0x0;
|
---|
96 | cWgt = 0x0;
|
---|
97 |
|
---|
98 | cBeamSel = 0x0;
|
---|
99 | cIFSel = 0x0;
|
---|
100 | cChanOff = 0x0;
|
---|
101 | cXpolOff = 0x0;
|
---|
102 | cBuffer = 0x0;
|
---|
103 | cPosUTC = 0x0;
|
---|
104 |
|
---|
105 | cMBopen = 0;
|
---|
106 |
|
---|
107 | // Tell RPFITSIN not to report errors directly.
|
---|
108 | //iostat_.errlun = -1;
|
---|
109 | }
|
---|
110 |
|
---|
111 | //------------------------------------------------ MBFITSreader::~MBFITSreader
|
---|
112 |
|
---|
113 | // Destructor.
|
---|
114 |
|
---|
115 | MBFITSreader::~MBFITSreader()
|
---|
116 | {
|
---|
117 | close();
|
---|
118 | }
|
---|
119 |
|
---|
120 | //--------------------------------------------------------- MBFITSreader::open
|
---|
121 |
|
---|
122 | // Open the RPFITS file for reading.
|
---|
123 |
|
---|
124 | int MBFITSreader::open(
|
---|
125 | char *rpname,
|
---|
126 | int &nBeam,
|
---|
127 | int* &beams,
|
---|
128 | int &nIF,
|
---|
129 | int* &IFs,
|
---|
130 | int* &nChan,
|
---|
131 | int* &nPol,
|
---|
132 | int* &haveXPol,
|
---|
133 | int &haveBase,
|
---|
134 | int &haveSpectra,
|
---|
135 | int &extraSysCal)
|
---|
136 | {
|
---|
137 | const string methodName = "open()" ;
|
---|
138 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
139 |
|
---|
140 | if (cMBopen) {
|
---|
141 | close();
|
---|
142 | }
|
---|
143 |
|
---|
144 | strcpy(names_.file, rpname);
|
---|
145 |
|
---|
146 | // Open the RPFITS file.
|
---|
147 | int jstat = -3;
|
---|
148 | if (rpfitsin(jstat)) {
|
---|
149 | sprintf(cMsg, "Failed to open MBFITS file\n%s", rpname);
|
---|
150 | //os << LogIO::SEVERE << cMsg << LogIO::POST ;
|
---|
151 | return 1;
|
---|
152 | }
|
---|
153 |
|
---|
154 | cMBopen = 1;
|
---|
155 |
|
---|
156 | // Tell RPFITSIN that we want the OBSTYPE card.
|
---|
157 | int j;
|
---|
158 | param_.ncard = 1;
|
---|
159 | for (j = 0; j < 80; j++) {
|
---|
160 | names_.card[j] = ' ';
|
---|
161 | }
|
---|
162 | strncpy(names_.card, "OBSTYPE", 7);
|
---|
163 |
|
---|
164 | // Read the first header.
|
---|
165 | jstat = -1;
|
---|
166 | if (rpfitsin(jstat)) {
|
---|
167 | sprintf(cMsg, "Failed to read MBFITS header in file\n"
|
---|
168 | "%s", rpname);
|
---|
169 | //os << LogIO::SEVERE << cMsg << LogIO::POST ;
|
---|
170 | close();
|
---|
171 | return 1;
|
---|
172 | }
|
---|
173 |
|
---|
174 | // Mopra data has some peculiarities.
|
---|
175 | cMopra = strncmp(names_.instrument, "ATMOPRA", 7) == 0;
|
---|
176 |
|
---|
177 | // Non-ATNF data may not store the position in (u,v,w).
|
---|
178 | if (strncmp(names_.sta, "tid", 3) == 0) {
|
---|
179 | sprintf(cMsg, "Found Tidbinbilla data");
|
---|
180 | cSUpos = 1;
|
---|
181 | } else if (strncmp(names_.sta, "HOB", 3) == 0) {
|
---|
182 | sprintf(cMsg, "Found Hobart data");
|
---|
183 | cSUpos = 1;
|
---|
184 | } else if (strncmp(names_.sta, "CED", 3) == 0) {
|
---|
185 | sprintf(cMsg, "Found Ceduna data");
|
---|
186 | cSUpos = 1;
|
---|
187 | } else {
|
---|
188 | cSUpos = 0;
|
---|
189 | }
|
---|
190 |
|
---|
191 | if (cSUpos) {
|
---|
192 | strcat(cMsg, ", using telescope position\n from SU table.");
|
---|
193 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
194 | cInterp = 0;
|
---|
195 | }
|
---|
196 |
|
---|
197 | // Mean scan rate (for timestamp repairs).
|
---|
198 | cNRate = 0;
|
---|
199 | cAvRate[0] = 0.0;
|
---|
200 | cAvRate[1] = 0.0;
|
---|
201 | cCode5 = 0;
|
---|
202 |
|
---|
203 |
|
---|
204 | // Find the maximum beam number.
|
---|
205 | cNBeam = 0;
|
---|
206 | for (int iBeam = 0; iBeam < anten_.nant; iBeam++) {
|
---|
207 | if (anten_.ant_num[iBeam] > cNBeam) {
|
---|
208 | cNBeam = anten_.ant_num[iBeam];
|
---|
209 | }
|
---|
210 | }
|
---|
211 |
|
---|
212 | if (cNBeam <= 0) {
|
---|
213 | os << LogIO::SEVERE << "Couldn't determine number of beams." << LogIO::POST ;
|
---|
214 | close();
|
---|
215 | return 1;
|
---|
216 | }
|
---|
217 |
|
---|
218 | // Construct the beam mask.
|
---|
219 | cBeams = new int[cNBeam];
|
---|
220 | for (int iBeam = 0; iBeam < cNBeam; iBeam++) {
|
---|
221 | cBeams[iBeam] = 0;
|
---|
222 | }
|
---|
223 |
|
---|
224 | // ...beams present in the data.
|
---|
225 | for (int iBeam = 0; iBeam < anten_.nant; iBeam++) {
|
---|
226 | // Guard against dubious beam numbers, e.g. zeroes in
|
---|
227 | // 1999-09-29_1632_024848p14_071b.hpf and the four scans following.
|
---|
228 | // Note that the actual beam number is decoded from the 'baseline' random
|
---|
229 | // parameter for each spectrum and is only used for beam selection.
|
---|
230 | int beamNo = anten_.ant_num[iBeam];
|
---|
231 | if (beamNo != iBeam+1) {
|
---|
232 | char sta[8];
|
---|
233 | strncpy(sta, names_.sta+(8*iBeam), 8);
|
---|
234 | char *cp = sta + 7;
|
---|
235 | while (*cp == ' ') *(cp--) = '\0';
|
---|
236 |
|
---|
237 | sprintf(cMsg,
|
---|
238 | "RPFITSIN returned beam number %2d for AN table\n"
|
---|
239 | "entry %2d with name '%.8s'", beamNo, iBeam+1, sta);
|
---|
240 |
|
---|
241 | char text[8];
|
---|
242 | sprintf(text, "MB%2.2d", iBeam+1);
|
---|
243 | cp = cMsg + strlen(cMsg);
|
---|
244 | if (strncmp(sta, text, 8) == 0) {
|
---|
245 | beamNo = iBeam + 1;
|
---|
246 | sprintf(cp, "; using beam number %2d.", beamNo);
|
---|
247 | } else {
|
---|
248 | sprintf(cp, ".");
|
---|
249 | }
|
---|
250 |
|
---|
251 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
252 | }
|
---|
253 |
|
---|
254 | if (0 < beamNo && beamNo <= cNBeam) {
|
---|
255 | cBeams[beamNo-1] = 1;
|
---|
256 | }
|
---|
257 | }
|
---|
258 |
|
---|
259 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
260 | // modify its elements directly.
|
---|
261 | nBeam = cNBeam;
|
---|
262 | beams = cBeams;
|
---|
263 |
|
---|
264 |
|
---|
265 | // Number of IFs.
|
---|
266 | cNIF = if_.n_if;
|
---|
267 | cIFs = new int[cNIF];
|
---|
268 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
269 | cIFs[iIF] = 1;
|
---|
270 | }
|
---|
271 |
|
---|
272 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
273 | // modify its elements directly.
|
---|
274 | nIF = cNIF;
|
---|
275 | IFs = cIFs;
|
---|
276 |
|
---|
277 |
|
---|
278 | // Number of channels and polarizations.
|
---|
279 | cNChan = new int[cNIF];
|
---|
280 | cNPol = new int[cNIF];
|
---|
281 | cHaveXPol = new int[cNIF];
|
---|
282 | cGetXPol = 0;
|
---|
283 |
|
---|
284 | int maxProd = 0;
|
---|
285 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
286 | cNChan[iIF] = if_.if_nfreq[iIF];
|
---|
287 | cNPol[iIF] = if_.if_nstok[iIF];
|
---|
288 | cNChan[iIF] -= cNChan[iIF]%2;
|
---|
289 |
|
---|
290 | // Do we have cross-polarization data?
|
---|
291 | if ((cHaveXPol[iIF] = cNPol[iIF] > 2)) {
|
---|
292 | // Cross-polarization data is handled separately.
|
---|
293 | cNPol[iIF] = 2;
|
---|
294 |
|
---|
295 | // Default is to get it if we have it.
|
---|
296 | cGetXPol = 1;
|
---|
297 | }
|
---|
298 |
|
---|
299 | // Maximum number of spectral products in any IF.
|
---|
300 | int nProd = if_.if_nfreq[iIF] * if_.if_nstok[iIF];
|
---|
301 | if (maxProd < nProd) maxProd = nProd;
|
---|
302 | }
|
---|
303 |
|
---|
304 | // Allocate memory for RPFITSIN subroutine arguments.
|
---|
305 | if (cVis) delete [] cVis;
|
---|
306 | if (cWgt) delete [] cWgt;
|
---|
307 | cVis = new float[2*maxProd];
|
---|
308 | cWgt = new float[maxProd];
|
---|
309 |
|
---|
310 | nChan = cNChan;
|
---|
311 | nPol = cNPol;
|
---|
312 | haveXPol = cHaveXPol;
|
---|
313 |
|
---|
314 |
|
---|
315 | // Default channel range selection.
|
---|
316 | cStartChan = new int[cNIF];
|
---|
317 | cEndChan = new int[cNIF];
|
---|
318 | cRefChan = new int[cNIF];
|
---|
319 |
|
---|
320 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
321 | cStartChan[iIF] = 1;
|
---|
322 | cEndChan[iIF] = cNChan[iIF];
|
---|
323 | cRefChan[iIF] = cNChan[iIF]/2 + 1;
|
---|
324 | }
|
---|
325 |
|
---|
326 | cGetSpectra = 1;
|
---|
327 |
|
---|
328 |
|
---|
329 | // No baseline parameters in MBFITS.
|
---|
330 | haveBase = 0;
|
---|
331 |
|
---|
332 | // Always have spectra in MBFITS.
|
---|
333 | haveSpectra = cHaveSpectra = 1;
|
---|
334 |
|
---|
335 |
|
---|
336 | // Integration cycle time (s).
|
---|
337 | cIntTime = param_.intime;
|
---|
338 |
|
---|
339 | // Can't deduce binning mode till later.
|
---|
340 | cNBin = 0;
|
---|
341 |
|
---|
342 |
|
---|
343 | // Read the first syscal record.
|
---|
344 | if (rpget(1, cEOS)) {
|
---|
345 | os << LogIO::SEVERE << "Failed to read first syscal record." << LogIO::POST ;
|
---|
346 | close();
|
---|
347 | return 1;
|
---|
348 | }
|
---|
349 |
|
---|
350 | // Additional information for Parkes Multibeam data?
|
---|
351 | extraSysCal = (sc_.sc_ant > anten_.nant);
|
---|
352 |
|
---|
353 |
|
---|
354 | cFirst = 1;
|
---|
355 | cEOF = 0;
|
---|
356 | cFlushing = 0;
|
---|
357 |
|
---|
358 | return 0;
|
---|
359 | }
|
---|
360 |
|
---|
361 | //---------------------------------------------------- MBFITSreader::getHeader
|
---|
362 |
|
---|
363 | // Get parameters describing the data.
|
---|
364 |
|
---|
365 | int MBFITSreader::getHeader(
|
---|
366 | char observer[32],
|
---|
367 | char project[32],
|
---|
368 | char telescope[32],
|
---|
369 | double antPos[3],
|
---|
370 | char obsType[32],
|
---|
371 | char bunit[32],
|
---|
372 | float &equinox,
|
---|
373 | char radecsys[32],
|
---|
374 | char dopplerFrame[32],
|
---|
375 | char datobs[32],
|
---|
376 | double &utc,
|
---|
377 | double &refFreq,
|
---|
378 | double &bandwidth)
|
---|
379 | {
|
---|
380 | const string methodName = "getHeader()" ;
|
---|
381 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
382 |
|
---|
383 | if (!cMBopen) {
|
---|
384 | os << LogIO::SEVERE << "An MBFITS file has not been opened." << LogIO::POST ;
|
---|
385 | return 1;
|
---|
386 | }
|
---|
387 |
|
---|
388 | sprintf(observer, "%-16.16s", names_.rp_observer);
|
---|
389 | sprintf(project, "%-16.16s", names_.object);
|
---|
390 | sprintf(telescope, "%-16.16s", names_.instrument);
|
---|
391 |
|
---|
392 | // Observatory coordinates (ITRF), in m.
|
---|
393 | antPos[0] = doubles_.x[0];
|
---|
394 | antPos[1] = doubles_.y[0];
|
---|
395 | antPos[2] = doubles_.z[0];
|
---|
396 |
|
---|
397 | // This is the only sure way to identify the telescope, maybe.
|
---|
398 | if (strncmp(names_.sta, "MB0", 3) == 0) {
|
---|
399 | // Parkes Multibeam.
|
---|
400 | sprintf(telescope, "%-16.16s", "ATPKSMB");
|
---|
401 | antPos[0] = -4554232.087;
|
---|
402 | antPos[1] = 2816759.046;
|
---|
403 | antPos[2] = -3454035.950;
|
---|
404 |
|
---|
405 | } else if (strncmp(names_.sta, "HOH", 3) == 0) {
|
---|
406 | // Parkes HOH receiver.
|
---|
407 | sprintf(telescope, "%-16.16s", "ATPKSHOH");
|
---|
408 | antPos[0] = -4554232.087;
|
---|
409 | antPos[1] = 2816759.046;
|
---|
410 | antPos[2] = -3454035.950;
|
---|
411 |
|
---|
412 | } else if (strncmp(names_.sta, "CA0", 3) == 0) {
|
---|
413 | // An ATCA antenna, use the array centre position.
|
---|
414 | sprintf(telescope, "%-16.16s", "ATCA");
|
---|
415 | antPos[0] = -4750915.837;
|
---|
416 | antPos[1] = 2792906.182;
|
---|
417 | antPos[2] = -3200483.747;
|
---|
418 |
|
---|
419 | // ATCA-104. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
420 | // antPos[0] = -4751640.182; // ᅵ 0.008
|
---|
421 | // antPos[1] = 2791700.322; // ᅵ 0.006
|
---|
422 | // antPos[2] = -3200490.668; // ᅵ 0.007
|
---|
423 | //
|
---|
424 | } else if (strncmp(names_.sta, "MOP", 3) == 0) {
|
---|
425 | // Mopra. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
426 | sprintf(telescope, "%-16.16s", "ATMOPRA");
|
---|
427 | antPos[0] = -4682769.444; // ᅵ 0.009
|
---|
428 | antPos[1] = 2802618.963; // ᅵ 0.006
|
---|
429 | antPos[2] = -3291758.864; // ᅵ 0.008
|
---|
430 |
|
---|
431 | } else if (strncmp(names_.sta, "HOB", 3) == 0) {
|
---|
432 | // Hobart.
|
---|
433 | sprintf(telescope, "%-16.16s", "HOBART");
|
---|
434 | antPos[0] = -3950236.735;
|
---|
435 | antPos[1] = 2522347.567;
|
---|
436 | antPos[2] = -4311562.569;
|
---|
437 |
|
---|
438 | } else if (strncmp(names_.sta, "CED", 3) == 0) {
|
---|
439 | // Ceduna. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
440 | sprintf(telescope, "%-16.16s", "CEDUNA");
|
---|
441 | antPos[0] = -3753443.168; // ᅵ 0.017
|
---|
442 | antPos[1] = 3912709.794; // ᅵ 0.017
|
---|
443 | antPos[2] = -3348067.060; // ᅵ 0.016
|
---|
444 |
|
---|
445 | } else if (strncmp(names_.sta, "tid", 3) == 0) {
|
---|
446 | // DSS.
|
---|
447 | sprintf(telescope, "%-16.16s", "DSS-43");
|
---|
448 | antPos[0] = -4460894.727;
|
---|
449 | antPos[1] = 2682361.530;
|
---|
450 | antPos[2] = -3674748.424;
|
---|
451 | }
|
---|
452 |
|
---|
453 | // Observation type.
|
---|
454 | int j;
|
---|
455 | for (j = 0; j < 31; j++) {
|
---|
456 | obsType[j] = names_.card[11+j];
|
---|
457 | if (obsType[j] == '\'') break;
|
---|
458 | }
|
---|
459 | obsType[j] = '\0';
|
---|
460 |
|
---|
461 | // Brightness unit.
|
---|
462 | sprintf(bunit, "%-16.16s", names_.bunit);
|
---|
463 | if (strcmp(bunit, "JY") == 0) {
|
---|
464 | bunit[1] = 'y';
|
---|
465 | } else if (strcmp(bunit, "JY/BEAM") == 0) {
|
---|
466 | strcpy(bunit, "Jy/beam");
|
---|
467 | }
|
---|
468 |
|
---|
469 | // Coordinate frames.
|
---|
470 | equinox = 2000.0f;
|
---|
471 | strcpy(radecsys, "FK5");
|
---|
472 | strcpy(dopplerFrame, "TOPOCENT");
|
---|
473 |
|
---|
474 | // Time at start of observation.
|
---|
475 | sprintf(datobs, "%-10.10s", names_.datobs);
|
---|
476 | utc = cUTC;
|
---|
477 |
|
---|
478 | // Spectral parameters.
|
---|
479 | refFreq = doubles_.if_freq[0];
|
---|
480 | bandwidth = doubles_.if_bw[0];
|
---|
481 |
|
---|
482 | return 0;
|
---|
483 | }
|
---|
484 |
|
---|
485 | //-------------------------------------------------- MBFITSreader::getFreqInfo
|
---|
486 |
|
---|
487 | // Get frequency parameters for each IF.
|
---|
488 |
|
---|
489 | int MBFITSreader::getFreqInfo(
|
---|
490 | int &/*nIF*/,
|
---|
491 | double* &/*startFreq*/,
|
---|
492 | double* &/*endFreq*/)
|
---|
493 | {
|
---|
494 | // This is RPFITS - can't do it!
|
---|
495 | return 1;
|
---|
496 | }
|
---|
497 |
|
---|
498 | //---------------------------------------------------- MBFITSreader::findRange
|
---|
499 |
|
---|
500 | // Find the range of the data selected in time and position.
|
---|
501 |
|
---|
502 | int MBFITSreader::findRange(
|
---|
503 | int &/*nRow*/,
|
---|
504 | int &/*nSel*/,
|
---|
505 | char /*dateSpan*/[2][32],
|
---|
506 | double /*utcSpan*/[2],
|
---|
507 | double* &/*positions*/)
|
---|
508 | {
|
---|
509 | // This is RPFITS - can't do it!
|
---|
510 | return 1;
|
---|
511 | }
|
---|
512 |
|
---|
513 | //--------------------------------------------------------- MBFITSreader::read
|
---|
514 |
|
---|
515 | // Read the next data record (if you're feeling lucky).
|
---|
516 |
|
---|
517 | int MBFITSreader::read(
|
---|
518 | MBrecord &MBrec)
|
---|
519 | {
|
---|
520 | const string methodName = "read()" ;
|
---|
521 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
522 |
|
---|
523 | int beamNo = -1;
|
---|
524 | int haveData, pCode = 0, status;
|
---|
525 | double raRate = 0.0, decRate = 0.0, paRate = 0.0;
|
---|
526 | MBrecord *iMBuff = 0x0;
|
---|
527 |
|
---|
528 | if (!cMBopen) {
|
---|
529 | os << LogIO::SEVERE << "An MBFITS file has not been opened." << LogIO::POST ;
|
---|
530 | return 1;
|
---|
531 | }
|
---|
532 |
|
---|
533 | // Positions recorded in the input records usually do not coincide with the
|
---|
534 | // midpoint of the integration and hence the input must be buffered so that
|
---|
535 | // true positions may be interpolated.
|
---|
536 | //
|
---|
537 | // On the first call nBeamSel buffers of length nBin, are allocated and
|
---|
538 | // filled, where nBin is the number of time bins.
|
---|
539 | //
|
---|
540 | // The input records for binned, single beam data with multiple simultaneous
|
---|
541 | // IFs are ordered by IF within each integration rather than by bin number
|
---|
542 | // and hence are not in time order. No multibeam data exists with
|
---|
543 | // nBin > 1 but the likelihood that the input records would be in beam/IF
|
---|
544 | // order and the requirement that output records be in time order would
|
---|
545 | // force an elaborate double-buffering system and we do not support it.
|
---|
546 | //
|
---|
547 | // Once all buffers are filled, the next record for each beam pertains to
|
---|
548 | // the next integration and should contain new position information allowing
|
---|
549 | // the proper position for each spectrum in the buffer to be interpolated.
|
---|
550 | // The buffers are then flushed in time order. For single beam data there
|
---|
551 | // is only one buffer and reads from the MBFITS file are suspended while the
|
---|
552 | // flush is in progress. For multibeam data each buffer is of unit length
|
---|
553 | // so the flush completes immediately and the new record takes its place.
|
---|
554 |
|
---|
555 | haveData = 0;
|
---|
556 | while (!haveData) {
|
---|
557 | int iBeamSel = -1, iIFSel = -1;
|
---|
558 |
|
---|
559 | if (!cFlushing) {
|
---|
560 | if (cEOF) {
|
---|
561 | return -1;
|
---|
562 | }
|
---|
563 |
|
---|
564 | // Read the next record.
|
---|
565 | pCode = 0;
|
---|
566 | if ((status = rpget(0, cEOS)) == -1) {
|
---|
567 | // EOF.
|
---|
568 | cEOF = 1;
|
---|
569 | cFlushing = 1;
|
---|
570 | cFlushBin = 0;
|
---|
571 | cFlushIF = 0;
|
---|
572 |
|
---|
573 | #ifdef PKSIO_DEBUG
|
---|
574 | os << LogIO::DEBUGGING << "\nEnd-of-file detected, flushing last cycle.\n" << LogIO::POST ;
|
---|
575 | #endif
|
---|
576 |
|
---|
577 | } else if (status) {
|
---|
578 | // IO error.
|
---|
579 | return 1;
|
---|
580 |
|
---|
581 | } else {
|
---|
582 | if (cFirst) {
|
---|
583 | // First data; cBeamSel[] stores the buffer index for each beam.
|
---|
584 | cNBeamSel = 0;
|
---|
585 | cBeamSel = new int[cNBeam];
|
---|
586 |
|
---|
587 | for (int iBeam = 0; iBeam < cNBeam; iBeam++) {
|
---|
588 | if (cBeams[iBeam]) {
|
---|
589 | // Buffer offset for this beam.
|
---|
590 | cBeamSel[iBeam] = cNBeamSel++;
|
---|
591 | } else {
|
---|
592 | // Signal that the beam is not selected.
|
---|
593 | cBeamSel[iBeam] = -1;
|
---|
594 | }
|
---|
595 | }
|
---|
596 |
|
---|
597 | // Set up bookkeeping arrays for IFs.
|
---|
598 | cIFSel = new int[cNIF];
|
---|
599 | cChanOff = new int[cNIF];
|
---|
600 | cXpolOff = new int[cNIF];
|
---|
601 |
|
---|
602 | int maxChan = 0;
|
---|
603 | int maxXpol = 0;
|
---|
604 |
|
---|
605 | cSimulIF = 0;
|
---|
606 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
607 | if (cIFs[iIF]) {
|
---|
608 | // Buffer index for each IF within each simultaneous set.
|
---|
609 | cIFSel[iIF] = 0;
|
---|
610 |
|
---|
611 | // Array offsets for each IF within each simultaneous set.
|
---|
612 | cChanOff[iIF] = 0;
|
---|
613 | cXpolOff[iIF] = 0;
|
---|
614 |
|
---|
615 | // Look for earlier IFs in the same simultaneous set.
|
---|
616 | for (int jIF = 0; jIF < iIF; jIF++) {
|
---|
617 | if (!cIFs[jIF]) continue;
|
---|
618 |
|
---|
619 | if (if_.if_simul[jIF] == if_.if_simul[iIF]) {
|
---|
620 | // Got one, increment indices.
|
---|
621 | cIFSel[iIF]++;
|
---|
622 |
|
---|
623 | cChanOff[iIF] += cNChan[jIF] * cNPol[jIF];
|
---|
624 | if (cHaveXPol[jIF]) {
|
---|
625 | cXpolOff[iIF] += 2 * cNChan[jIF];
|
---|
626 | }
|
---|
627 | }
|
---|
628 | }
|
---|
629 |
|
---|
630 | // Maximum number of selected IFs in any simultaneous set.
|
---|
631 | cSimulIF = max(cSimulIF, cIFSel[iIF]+1);
|
---|
632 |
|
---|
633 | // Maximum memory required for any simultaneous set.
|
---|
634 | maxChan = max(maxChan, cChanOff[iIF] + cNChan[iIF]*cNPol[iIF]);
|
---|
635 | if (cHaveXPol[iIF]) {
|
---|
636 | maxXpol = max(maxXpol, cXpolOff[iIF] + 2*cNChan[iIF]);
|
---|
637 | }
|
---|
638 |
|
---|
639 | } else {
|
---|
640 | // Signal that the IF is not selected.
|
---|
641 | cIFSel[iIF] = -1;
|
---|
642 | }
|
---|
643 | }
|
---|
644 |
|
---|
645 | // Check for binning mode observations.
|
---|
646 | if (param_.intbase > 0.0f) {
|
---|
647 | cNBin = int((cIntTime / param_.intbase) + 0.5);
|
---|
648 |
|
---|
649 | // intbase sometimes contains rubbish.
|
---|
650 | if (cNBin == 0) {
|
---|
651 | cNBin = 1;
|
---|
652 | }
|
---|
653 | } else {
|
---|
654 | cNBin = 1;
|
---|
655 | }
|
---|
656 |
|
---|
657 | if (cNBin > 1 && cNBeamSel > 1) {
|
---|
658 | os << LogIO::SEVERE << "Cannot handle binning mode for multiple beams.\nSelect a single beam for input." << LogIO::POST ;
|
---|
659 | close();
|
---|
660 | return 1;
|
---|
661 | }
|
---|
662 |
|
---|
663 | // Allocate buffer data storage; the MBrecord constructor zeroes
|
---|
664 | // class members such as cycleNo that are tested in the first pass
|
---|
665 | // below.
|
---|
666 | int nBuff = cNBeamSel * cNBin;
|
---|
667 | cBuffer = new MBrecord[nBuff];
|
---|
668 |
|
---|
669 | // Allocate memory for spectral arrays.
|
---|
670 | for (int ibuff = 0; ibuff < nBuff; ibuff++) {
|
---|
671 | cBuffer[ibuff].setNIFs(cSimulIF);
|
---|
672 | cBuffer[ibuff].allocate(0, maxChan, maxXpol);
|
---|
673 |
|
---|
674 | // Signal that this IF in this buffer has been flushed.
|
---|
675 | for (int iIF = 0; iIF < cSimulIF; iIF++) {
|
---|
676 | cBuffer[ibuff].IFno[iIF] = 0;
|
---|
677 | }
|
---|
678 | }
|
---|
679 |
|
---|
680 | cPosUTC = new double[cNBeamSel];
|
---|
681 |
|
---|
682 | cFirst = 0;
|
---|
683 | cScanNo = 1;
|
---|
684 | cCycleNo = 0;
|
---|
685 | cPrevUTC = -1.0;
|
---|
686 | }
|
---|
687 |
|
---|
688 | // Check for end-of-scan.
|
---|
689 | if (cEOS) {
|
---|
690 | cScanNo++;
|
---|
691 | cCycleNo = 0;
|
---|
692 | cPrevUTC = -1.0;
|
---|
693 | }
|
---|
694 |
|
---|
695 | // Apply beam and IF selection before the change-of-day test to allow
|
---|
696 | // a single selected beam and IF to be handled in binning-mode.
|
---|
697 | beamNo = int(cBaseline / 256.0);
|
---|
698 | if (beamNo == 1) {
|
---|
699 | // Store the position of beam 1 for grid convergence corrections.
|
---|
700 | cRA0 = cU;
|
---|
701 | cDec0 = cV;
|
---|
702 | }
|
---|
703 | iBeamSel = cBeamSel[beamNo-1];
|
---|
704 | if (iBeamSel < 0) continue;
|
---|
705 |
|
---|
706 | // Sanity check (mainly for MOPS).
|
---|
707 | if (cIFno > cNIF) continue;
|
---|
708 |
|
---|
709 | // Apply IF selection; iIFSel == 0 for the first selected IF, == 1
|
---|
710 | // for the second, etc.
|
---|
711 | iIFSel = cIFSel[cIFno - 1];
|
---|
712 | if (iIFSel < 0) continue;
|
---|
713 |
|
---|
714 |
|
---|
715 | if (cNBin > 1) {
|
---|
716 | // Binning mode: correct the time.
|
---|
717 | cUTC += param_.intbase * (cBin - (cNBin + 1)/2.0);
|
---|
718 | }
|
---|
719 |
|
---|
720 | // Check for change-of-day.
|
---|
721 | double cod = 0.0;
|
---|
722 | if ((cUTC + 86400.0) < (cPrevUTC + 600.0)) {
|
---|
723 | // cUTC should continue to increase past 86400 during a single scan.
|
---|
724 | // However, if the RPFITS file contains multiple scans that straddle
|
---|
725 | // midnight then cUTC can jump backwards from the end of one scan to
|
---|
726 | // the start of the next.
|
---|
727 | #ifdef PKSIO_DEBUG
|
---|
728 | char buf[256] ;
|
---|
729 | sprintf(buf, "Change-of-day on cUTC: %.1f -> %.1f\n", cPrevUTC, cUTC);
|
---|
730 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
731 | #endif
|
---|
732 | // Can't change the recorded value of cUTC directly (without also
|
---|
733 | // changing dateobs) so change-of-day must be recorded separately as
|
---|
734 | // an offset to be applied when comparing integration timestamps.
|
---|
735 | cod = 86400.0;
|
---|
736 |
|
---|
737 | }
|
---|
738 |
|
---|
739 | if ((cUTC+cod) < cPrevUTC - 1.0) {
|
---|
740 | if (cBin == 1 && iIFSel) {
|
---|
741 | // Multiple-IF, binning-mode data is only partially time ordered.
|
---|
742 | #ifdef PKSIO_DEBUG
|
---|
743 | fprintf(stderr, "New IF in multiple-IF, binning-mode data.\n");
|
---|
744 | #endif
|
---|
745 | cCycleNo -= cNBin;
|
---|
746 | cPrevUTC = -1.0;
|
---|
747 |
|
---|
748 | } else {
|
---|
749 | // All other data should be fully time ordered.
|
---|
750 | sprintf(cMsg,
|
---|
751 | "Cycle %d:%03d-%03d, UTC went backwards from\n"
|
---|
752 | "%.1f to %.1f! Incrementing day number,\n"
|
---|
753 | "positions may be unreliable.", cScanNo, cCycleNo,
|
---|
754 | cCycleNo+1, cPrevUTC, cUTC);
|
---|
755 | //logMsg(cMsg);
|
---|
756 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
757 | cUTC += 86400.0;
|
---|
758 | }
|
---|
759 | }
|
---|
760 |
|
---|
761 | // New integration cycle?
|
---|
762 | if ((cUTC+cod) > cPrevUTC) {
|
---|
763 | cCycleNo++;
|
---|
764 | cPrevUTC = cUTC + 0.0001;
|
---|
765 | }
|
---|
766 |
|
---|
767 | sprintf(cDateObs, "%-10.10s", names_.datobs);
|
---|
768 | cDateObs[10] = '\0';
|
---|
769 |
|
---|
770 | // Compute buffer number.
|
---|
771 | iMBuff = cBuffer + iBeamSel;
|
---|
772 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
773 |
|
---|
774 | if (cCycleNo < iMBuff->cycleNo) {
|
---|
775 | // Note that if the first beam and IF are not both selected cEOS
|
---|
776 | // will be cleared by rpget() when the next beam/IF is read.
|
---|
777 | cEOS = 1;
|
---|
778 | }
|
---|
779 |
|
---|
780 | // Begin flush cycle?
|
---|
781 | if (cEOS || (iMBuff->nIF && (cUTC+cod) > (iMBuff->utc+0.0001))) {
|
---|
782 | cFlushing = 1;
|
---|
783 | cFlushBin = 0;
|
---|
784 | cFlushIF = 0;
|
---|
785 | }
|
---|
786 |
|
---|
787 | #ifdef PKSIO_DEBUG
|
---|
788 | char rel = '=';
|
---|
789 | double dt = utcDiff(cUTC, cW);
|
---|
790 | if (dt < 0.0) {
|
---|
791 | rel = '<';
|
---|
792 | } else if (dt > 0.0) {
|
---|
793 | rel = '>';
|
---|
794 | }
|
---|
795 |
|
---|
796 | sprintf(buf, "\n In:%4d%4d%3d%3d %.3f %c %.3f (%+.3fs) - "
|
---|
797 | "%sflushing\n", cScanNo, cCycleNo, beamNo, cIFno, cUTC, rel, cW, dt,
|
---|
798 | cFlushing ? "" : "not ");
|
---|
799 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
800 | if (cEOS) {
|
---|
801 | sprintf(buf, "Start of new scan, flushing previous scan.\n");
|
---|
802 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
803 | }
|
---|
804 | #endif
|
---|
805 | }
|
---|
806 | }
|
---|
807 |
|
---|
808 |
|
---|
809 | if (cFlushing) {
|
---|
810 | // Find the oldest integration to flush, noting that the last
|
---|
811 | // integration cycle may be incomplete.
|
---|
812 | beamNo = 0;
|
---|
813 | int cycleNo = 0;
|
---|
814 | for (; cFlushBin < cNBin; cFlushBin++) {
|
---|
815 | for (iBeamSel = 0; iBeamSel < cNBeamSel; iBeamSel++) {
|
---|
816 | iMBuff = cBuffer + iBeamSel + cNBeamSel*cFlushBin;
|
---|
817 |
|
---|
818 | // iMBuff->nIF is decremented (below) and if zero signals that all
|
---|
819 | // IFs in an integration have been flushed.
|
---|
820 | if (iMBuff->nIF) {
|
---|
821 | if (cycleNo == 0 || iMBuff->cycleNo < cycleNo) {
|
---|
822 | beamNo = iMBuff->beamNo;
|
---|
823 | cycleNo = iMBuff->cycleNo;
|
---|
824 | }
|
---|
825 | }
|
---|
826 | }
|
---|
827 |
|
---|
828 | if (beamNo) {
|
---|
829 | // Found an integration to flush.
|
---|
830 | break;
|
---|
831 | }
|
---|
832 |
|
---|
833 | // Start with the first IF in the next bin.
|
---|
834 | cFlushIF = 0;
|
---|
835 | }
|
---|
836 |
|
---|
837 | if (beamNo) {
|
---|
838 | iBeamSel = cBeamSel[beamNo-1];
|
---|
839 | iMBuff = cBuffer + iBeamSel + cNBeamSel*cFlushBin;
|
---|
840 |
|
---|
841 | // Find the IF to flush.
|
---|
842 | for (; cFlushIF < cSimulIF; cFlushIF++) {
|
---|
843 | if (iMBuff->IFno[cFlushIF]) break;
|
---|
844 | }
|
---|
845 |
|
---|
846 | } else {
|
---|
847 | // Flush complete.
|
---|
848 | cFlushing = 0;
|
---|
849 | if (cEOF) {
|
---|
850 | return -1;
|
---|
851 | }
|
---|
852 |
|
---|
853 | // The last record read must have been the first of a new cycle.
|
---|
854 | beamNo = int(cBaseline / 256.0);
|
---|
855 | iBeamSel = cBeamSel[beamNo-1];
|
---|
856 |
|
---|
857 | // Compute buffer number.
|
---|
858 | iMBuff = cBuffer + iBeamSel;
|
---|
859 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
860 | }
|
---|
861 | }
|
---|
862 |
|
---|
863 |
|
---|
864 | if (cInterp && cFlushing == 1) {
|
---|
865 | // Start of flush cycle, interpolate the beam position.
|
---|
866 | //
|
---|
867 | // The position is measured by the control system at a time returned by
|
---|
868 | // RPFITSIN as the 'w' visibility coordinate. The ra and dec, returned
|
---|
869 | // as the 'u' and 'v' visibility coordinates, must be interpolated to
|
---|
870 | // the integration time which RPFITSIN returns as 'cUTC', this usually
|
---|
871 | // being a second or two later. The interpolation method used here is
|
---|
872 | // based on the scan rate.
|
---|
873 | //
|
---|
874 | // "This" RA, Dec, and UTC refers to the position currently stored in
|
---|
875 | // the buffer marked for output (iMBuff). This position is interpolated
|
---|
876 | // to the midpoint of that integration using either
|
---|
877 | // a) the rate currently sitting in iMBuff, which was computed from
|
---|
878 | // the previous integration, otherwise
|
---|
879 | // b) from the position recorded in the "next" integration which is
|
---|
880 | // currently sitting in the RPFITS commons,
|
---|
881 | // so that the position timestamps straddle the midpoint of the
|
---|
882 | // integration and is thereby interpolated rather than extrapolated.
|
---|
883 | //
|
---|
884 | // At the end of a scan, or if the next position has not been updated
|
---|
885 | // or its timestamp does not advance sufficiently, the most recent
|
---|
886 | // determination of the scan rate will be used for extrapolation which
|
---|
887 | // is quantified by the "rate age" measured in seconds beyond the
|
---|
888 | // interval defined by the position timestamps.
|
---|
889 |
|
---|
890 | // At this point, iMBuff contains cU, cV, cW, parAngle and focusRot
|
---|
891 | // stored from the previous call to rpget() for this beam (i.e. "this"),
|
---|
892 | // and also raRate, decRate and paRate computed from that integration
|
---|
893 | // and the previous one.
|
---|
894 | double thisRA = iMBuff->ra;
|
---|
895 | double thisDec = iMBuff->dec;
|
---|
896 | double thisUTC = cPosUTC[iBeamSel];
|
---|
897 | double thisPA = iMBuff->parAngle + iMBuff->focusRot;
|
---|
898 |
|
---|
899 | #ifdef PKSIO_DEBUG
|
---|
900 | sprintf(buf, "This (%d) ra, dec, UTC: %9.4f %9.4f %10.3f %9.4f\n",
|
---|
901 | iMBuff->cycleNo, thisRA*R2D, thisDec*R2D, thisUTC, thisPA*R2D);
|
---|
902 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
903 | #endif
|
---|
904 |
|
---|
905 | if (cEOF || cEOS) {
|
---|
906 | // Use rates from the last cycle.
|
---|
907 | raRate = iMBuff->raRate;
|
---|
908 | decRate = iMBuff->decRate;
|
---|
909 | paRate = iMBuff->paRate;
|
---|
910 |
|
---|
911 | } else {
|
---|
912 | if (cW == thisUTC) {
|
---|
913 | // The control system at Mopra typically does not update the
|
---|
914 | // positions between successive integration cycles at the end of a
|
---|
915 | // scan (nor are they flagged). In this case we use the previously
|
---|
916 | // computed rates, even if from the previous scan since these are
|
---|
917 | // likely to be a better guess than anything else.
|
---|
918 | raRate = iMBuff->raRate;
|
---|
919 | decRate = iMBuff->decRate;
|
---|
920 | paRate = iMBuff->paRate;
|
---|
921 |
|
---|
922 | if (cU == thisRA && cV == thisDec) {
|
---|
923 | // Position and timestamp unchanged.
|
---|
924 | pCode = 1;
|
---|
925 |
|
---|
926 | } else if (fabs(cU-thisRA) < 0.0001 && fabs(cV-thisDec) < 0.0001) {
|
---|
927 | // Allow small rounding errors (seen infrequently).
|
---|
928 | pCode = 1;
|
---|
929 |
|
---|
930 | } else {
|
---|
931 | // (cU,cV) are probably rubbish (not yet seen in practice).
|
---|
932 | pCode = 2;
|
---|
933 | cU = thisRA;
|
---|
934 | cV = thisDec;
|
---|
935 | }
|
---|
936 |
|
---|
937 | #ifdef PKSIO_DEBUG
|
---|
938 | sprintf(buf, "Next (%d) ra, dec, UTC: %9.4f %9.4f %10.3f "
|
---|
939 | "(0.000s)\n", cCycleNo, cU*R2D, cV*R2D, cW);
|
---|
940 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
941 | #endif
|
---|
942 |
|
---|
943 | } else {
|
---|
944 | double nextRA = cU;
|
---|
945 | double nextDec = cV;
|
---|
946 |
|
---|
947 | // Check and, if necessary, repair the position timestamp,
|
---|
948 | // remembering that pCode refers to the NEXT cycle.
|
---|
949 | pCode = fixw(cDateObs, cCycleNo, beamNo, cAvRate, thisRA, thisDec,
|
---|
950 | thisUTC, nextRA, nextDec, cW);
|
---|
951 | if (pCode > 0) pCode += 3;
|
---|
952 | double nextUTC = cW;
|
---|
953 |
|
---|
954 | #ifdef PKSIO_DEBUG
|
---|
955 | sprintf(buf, "Next (%d) ra, dec, UTC: %9.4f %9.4f %10.3f "
|
---|
956 | "(%+.3fs)\n", cCycleNo, nextRA*R2D, nextDec*R2D, nextUTC,
|
---|
957 | utcDiff(nextUTC, thisUTC));
|
---|
958 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
959 | #endif
|
---|
960 |
|
---|
961 | // Compute the scan rate for this beam.
|
---|
962 | double dUTC = utcDiff(nextUTC, thisUTC);
|
---|
963 | if ((0.0 < dUTC) && (dUTC < 600.0)) {
|
---|
964 | scanRate(cRA0, cDec0, thisRA, thisDec, nextRA, nextDec, dUTC,
|
---|
965 | raRate, decRate);
|
---|
966 |
|
---|
967 | // Update the mean scan rate.
|
---|
968 | cAvRate[0] = (cAvRate[0]*cNRate + raRate) / (cNRate + 1);
|
---|
969 | cAvRate[1] = (cAvRate[1]*cNRate + decRate) / (cNRate + 1);
|
---|
970 | cNRate++;
|
---|
971 |
|
---|
972 | // Rate of change of position angle.
|
---|
973 | if (sc_.sc_ant <= anten_.nant) {
|
---|
974 | paRate = 0.0;
|
---|
975 | } else {
|
---|
976 | int iOff = sc_.sc_q * (sc_.sc_ant - 1) - 1;
|
---|
977 | double nextPA = sc_.sc_cal[iOff + 4] + sc_.sc_cal[iOff + 7];
|
---|
978 | double paDiff = nextPA - thisPA;
|
---|
979 | if (paDiff > PI) {
|
---|
980 | paDiff -= TWOPI;
|
---|
981 | } else if (paDiff < -PI) {
|
---|
982 | paDiff += TWOPI;
|
---|
983 | }
|
---|
984 | paRate = paDiff / dUTC;
|
---|
985 | }
|
---|
986 |
|
---|
987 | if (cInterp == 2) {
|
---|
988 | // Use the same interpolation scheme as the original pksmbfits
|
---|
989 | // client. This incorrectly assumed that (nextUTC - thisUTC) is
|
---|
990 | // equal to the integration time and interpolated by computing a
|
---|
991 | // weighted sum of the positions before and after the required
|
---|
992 | // time.
|
---|
993 |
|
---|
994 | double utc = iMBuff->utc;
|
---|
995 | double tw1 = 1.0 - utcDiff(utc, thisUTC) / iMBuff->exposure;
|
---|
996 | double tw2 = 1.0 - utcDiff(nextUTC, utc) / iMBuff->exposure;
|
---|
997 | double gamma = (tw2 / (tw1 + tw2)) * dUTC / (utc - thisUTC);
|
---|
998 |
|
---|
999 | // Guard against RA cycling through 24h in either direction.
|
---|
1000 | if (fabs(nextRA - thisRA) > PI) {
|
---|
1001 | if (nextRA < thisRA) {
|
---|
1002 | nextRA += TWOPI;
|
---|
1003 | } else {
|
---|
1004 | nextRA -= TWOPI;
|
---|
1005 | }
|
---|
1006 | }
|
---|
1007 |
|
---|
1008 | raRate = gamma * (nextRA - thisRA) / dUTC;
|
---|
1009 | decRate = gamma * (nextDec - thisDec) / dUTC;
|
---|
1010 | }
|
---|
1011 |
|
---|
1012 | } else {
|
---|
1013 | if (cCycleNo == 2 && fabs(utcDiff(cUTC,cW)) < 600.0) {
|
---|
1014 | // thisUTC (i.e. cW for the first cycle) is rubbish, and
|
---|
1015 | // probably the position as well (extremely rare in practice,
|
---|
1016 | // e.g. 97-12-19_1029_235708-18_586e.hpf which actually has the
|
---|
1017 | // t/1000 scaling bug in the first cycle).
|
---|
1018 | iMBuff->pCode = 3;
|
---|
1019 | thisRA = cU;
|
---|
1020 | thisDec = cV;
|
---|
1021 | thisUTC = cW;
|
---|
1022 | raRate = 0.0;
|
---|
1023 | decRate = 0.0;
|
---|
1024 | paRate = 0.0;
|
---|
1025 |
|
---|
1026 | } else {
|
---|
1027 | // cW is rubbish and probably (cU,cV), and possibly the
|
---|
1028 | // parallactic angle and everything else as well (rarely seen
|
---|
1029 | // in practice, e.g. 97-12-09_0743_235707-58_327c.hpf and
|
---|
1030 | // 97-09-01_0034_123717-42_242b.hpf, the latter with bad
|
---|
1031 | // parallactic angle).
|
---|
1032 | pCode = 3;
|
---|
1033 | cU = thisRA;
|
---|
1034 | cV = thisDec;
|
---|
1035 | cW = thisUTC;
|
---|
1036 | raRate = iMBuff->raRate;
|
---|
1037 | decRate = iMBuff->decRate;
|
---|
1038 | paRate = iMBuff->paRate;
|
---|
1039 | }
|
---|
1040 | }
|
---|
1041 | }
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 |
|
---|
1045 | // Choose the closest rate determination.
|
---|
1046 | if (cCycleNo == 1) {
|
---|
1047 | // Scan containing a single integration.
|
---|
1048 | iMBuff->raRate = 0.0;
|
---|
1049 | iMBuff->decRate = 0.0;
|
---|
1050 | iMBuff->paRate = 0.0;
|
---|
1051 |
|
---|
1052 | } else {
|
---|
1053 | double dUTC = iMBuff->utc - cPosUTC[iBeamSel];
|
---|
1054 |
|
---|
1055 | if (dUTC >= 0.0) {
|
---|
1056 | // In HIPASS/ZOA, the position timestamp, which should always occur
|
---|
1057 | // on the whole second, normally precedes an integration midpoint
|
---|
1058 | // falling on the half-second. Consequently, positive ages are
|
---|
1059 | // always half-integral.
|
---|
1060 | dUTC = utcDiff(iMBuff->utc, cW);
|
---|
1061 | if (dUTC > 0.0) {
|
---|
1062 | iMBuff->rateAge = dUTC;
|
---|
1063 | } else {
|
---|
1064 | iMBuff->rateAge = 0.0f;
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 | iMBuff->raRate = raRate;
|
---|
1068 | iMBuff->decRate = decRate;
|
---|
1069 | iMBuff->paRate = paRate;
|
---|
1070 |
|
---|
1071 | } else {
|
---|
1072 | // In HIPASS/ZOA, negative ages occur when the integration midpoint,
|
---|
1073 | // occurring on the whole second, precedes the position timestamp.
|
---|
1074 | // Thus negative ages are always an integral number of seconds.
|
---|
1075 | // They have only been seen to occur sporadically in the period
|
---|
1076 | // 1999/05/31 to 1999/11/01, e.g. 1999-07-26_1821_005410-74_007c.hpf
|
---|
1077 | //
|
---|
1078 | // In recent (2008/10/07) Mopra data, small negative ages (~10ms,
|
---|
1079 | // occasionally up to ~300ms) seem to be the norm, with both the
|
---|
1080 | // position timestamp and integration midpoint falling close to but
|
---|
1081 | // not on the integral second.
|
---|
1082 | if (cCycleNo == 2) {
|
---|
1083 | // We have to start with something!
|
---|
1084 | iMBuff->rateAge = dUTC;
|
---|
1085 |
|
---|
1086 | } else {
|
---|
1087 | // Although we did not record the relevant position timestamp
|
---|
1088 | // explicitly, it can easily be deduced.
|
---|
1089 | double w = iMBuff->utc - utcDiff(cUTC, iMBuff->utc) -
|
---|
1090 | iMBuff->rateAge;
|
---|
1091 | dUTC = utcDiff(iMBuff->utc, w);
|
---|
1092 |
|
---|
1093 | if (dUTC > 0.0) {
|
---|
1094 | iMBuff->rateAge = 0.0f;
|
---|
1095 | } else {
|
---|
1096 | iMBuff->rateAge = dUTC;
|
---|
1097 | }
|
---|
1098 | }
|
---|
1099 |
|
---|
1100 | iMBuff->raRate = raRate;
|
---|
1101 | iMBuff->decRate = decRate;
|
---|
1102 | iMBuff->paRate = paRate;
|
---|
1103 | }
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 | #ifdef PKSIO_DEBUG
|
---|
1107 | double avRate = sqrt(cAvRate[0]*cAvRate[0] + cAvRate[1]*cAvRate[1]);
|
---|
1108 | sprintf(buf, "RA, Dec, Av & PA rates: %8.4f %8.4f %8.4f %8.4f "
|
---|
1109 | "pCode %d\n", raRate*R2D, decRate*R2D, avRate*R2D, paRate*R2D, pCode);
|
---|
1110 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
1111 | #endif
|
---|
1112 |
|
---|
1113 |
|
---|
1114 | // Compute the position of this beam for all bins.
|
---|
1115 | for (int idx = 0; idx < cNBin; idx++) {
|
---|
1116 | int jbuff = iBeamSel + cNBeamSel*idx;
|
---|
1117 |
|
---|
1118 | cBuffer[jbuff].raRate = iMBuff->raRate;
|
---|
1119 | cBuffer[jbuff].decRate = iMBuff->decRate;
|
---|
1120 | cBuffer[jbuff].paRate = iMBuff->paRate;
|
---|
1121 |
|
---|
1122 | double dUTC = utcDiff(cBuffer[jbuff].utc, thisUTC);
|
---|
1123 | if (dUTC > 100.0) {
|
---|
1124 | // Must have cycled through midnight.
|
---|
1125 | dUTC -= 86400.0;
|
---|
1126 | }
|
---|
1127 |
|
---|
1128 | applyRate(cRA0, cDec0, thisRA, thisDec,
|
---|
1129 | cBuffer[jbuff].raRate, cBuffer[jbuff].decRate, dUTC,
|
---|
1130 | cBuffer[jbuff].ra, cBuffer[jbuff].dec);
|
---|
1131 |
|
---|
1132 | #ifdef PKSIO_DEBUG
|
---|
1133 | sprintf(buf, "Intp (%d) ra, dec, UTC: %9.4f %9.4f %10.3f (pCode, "
|
---|
1134 | "age: %d %.1fs)\n", iMBuff->cycleNo, cBuffer[jbuff].ra*R2D,
|
---|
1135 | cBuffer[jbuff].dec*R2D, cBuffer[jbuff].utc, iMBuff->pCode,
|
---|
1136 | iMBuff->rateAge);
|
---|
1137 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
1138 | #endif
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 | cFlushing = 2;
|
---|
1142 | }
|
---|
1143 |
|
---|
1144 |
|
---|
1145 | if (cFlushing) {
|
---|
1146 | // Copy buffer location out one IF at a time.
|
---|
1147 | MBrec.extract(*iMBuff, cFlushIF);
|
---|
1148 | haveData = 1;
|
---|
1149 |
|
---|
1150 | #ifdef PKSIO_DEBUG
|
---|
1151 | sprintf(buf, "Out:%4d%4d%3d%3d\n", MBrec.scanNo, MBrec.cycleNo,
|
---|
1152 | MBrec.beamNo, MBrec.IFno[0]);
|
---|
1153 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
1154 | #endif
|
---|
1155 |
|
---|
1156 | // Signal that this IF in this buffer location has been flushed.
|
---|
1157 | iMBuff->IFno[cFlushIF] = 0;
|
---|
1158 |
|
---|
1159 | iMBuff->nIF--;
|
---|
1160 | if (iMBuff->nIF == 0) {
|
---|
1161 | // All IFs in this buffer location have been flushed. Stop cEOS
|
---|
1162 | // being set when the next integration is read.
|
---|
1163 | iMBuff->cycleNo = 0;
|
---|
1164 |
|
---|
1165 | } else {
|
---|
1166 | // Carry on flushing the other IFs.
|
---|
1167 | continue;
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | // Has the whole buffer been flushed?
|
---|
1171 | if (cFlushBin == cNBin - 1) {
|
---|
1172 | if (cEOS || cEOF) {
|
---|
1173 | // Carry on flushing other buffers.
|
---|
1174 | cFlushIF = 0;
|
---|
1175 | continue;
|
---|
1176 | }
|
---|
1177 |
|
---|
1178 | cFlushing = 0;
|
---|
1179 |
|
---|
1180 | beamNo = int(cBaseline / 256.0);
|
---|
1181 | iBeamSel = cBeamSel[beamNo-1];
|
---|
1182 |
|
---|
1183 | // Compute buffer number.
|
---|
1184 | iMBuff = cBuffer + iBeamSel;
|
---|
1185 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
1186 | }
|
---|
1187 | }
|
---|
1188 |
|
---|
1189 | if (!cFlushing) {
|
---|
1190 | // Buffer this MBrec.
|
---|
1191 | if ((cScanNo > iMBuff->scanNo) && iMBuff->IFno[0]) {
|
---|
1192 | // Sanity check on the number of IFs in the new scan.
|
---|
1193 | if (if_.n_if != cNIF) {
|
---|
1194 | sprintf(cMsg, "Scan %d has %d IFs instead of %d, "
|
---|
1195 | "continuing.", cScanNo, if_.n_if, cNIF);
|
---|
1196 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
1197 | }
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | // Sanity check on incomplete integrations within a scan.
|
---|
1201 | if (iMBuff->nIF && (iMBuff->cycleNo != cCycleNo)) {
|
---|
1202 | // Force the incomplete integration to be flushed before proceeding.
|
---|
1203 | cFlushing = 1;
|
---|
1204 | continue;
|
---|
1205 | }
|
---|
1206 |
|
---|
1207 | #ifdef PKSIO_DEBUG
|
---|
1208 | sprintf(buf, "Buf:%4d%4d%3d%3d\n", cScanNo, cCycleNo, beamNo, cIFno);
|
---|
1209 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
1210 | #endif
|
---|
1211 |
|
---|
1212 | // Store IF-independent parameters only for the first IF of a new cycle,
|
---|
1213 | // particularly because this is the only one for which the scan rates
|
---|
1214 | // are computed above.
|
---|
1215 | int firstIF = (iMBuff->nIF == 0);
|
---|
1216 | if (firstIF) {
|
---|
1217 | iMBuff->scanNo = cScanNo;
|
---|
1218 | iMBuff->cycleNo = cCycleNo;
|
---|
1219 |
|
---|
1220 | // Times.
|
---|
1221 | strcpy(iMBuff->datobs, cDateObs);
|
---|
1222 | iMBuff->utc = cUTC;
|
---|
1223 | iMBuff->exposure = param_.intbase;
|
---|
1224 |
|
---|
1225 | // Source identification.
|
---|
1226 | sprintf(iMBuff->srcName, "%-16.16s",
|
---|
1227 | names_.su_name + (cSrcNo-1)*16);
|
---|
1228 | iMBuff->srcName[16] = '\0';
|
---|
1229 | iMBuff->srcRA = doubles_.su_ra[cSrcNo-1];
|
---|
1230 | iMBuff->srcDec = doubles_.su_dec[cSrcNo-1];
|
---|
1231 |
|
---|
1232 | // Rest frequency of the line of interest.
|
---|
1233 | iMBuff->restFreq = doubles_.rfreq;
|
---|
1234 | if (strncmp(names_.instrument, "ATPKSMB", 7) == 0) {
|
---|
1235 | // Fix the HI rest frequency recorded for Parkes multibeam data.
|
---|
1236 | double reffreq = doubles_.freq;
|
---|
1237 | double restfreq = doubles_.rfreq;
|
---|
1238 | if ((restfreq == 0.0 || fabs(restfreq - reffreq) == 0.0) &&
|
---|
1239 | fabs(reffreq - 1420.405752e6) < 100.0) {
|
---|
1240 | iMBuff->restFreq = 1420.405752e6;
|
---|
1241 | }
|
---|
1242 | }
|
---|
1243 |
|
---|
1244 | // Observation type.
|
---|
1245 | int j;
|
---|
1246 | for (j = 0; j < 15; j++) {
|
---|
1247 | iMBuff->obsType[j] = names_.card[11+j];
|
---|
1248 | if (iMBuff->obsType[j] == '\'') break;
|
---|
1249 | }
|
---|
1250 | iMBuff->obsType[j] = '\0';
|
---|
1251 |
|
---|
1252 | // Beam-dependent parameters.
|
---|
1253 | iMBuff->beamNo = beamNo;
|
---|
1254 |
|
---|
1255 | // Beam position at the specified time.
|
---|
1256 | if (cSUpos) {
|
---|
1257 | // Non-ATNF data that does not store the position in (u,v,w).
|
---|
1258 | iMBuff->ra = doubles_.su_ra[cSrcNo-1];
|
---|
1259 | iMBuff->dec = doubles_.su_dec[cSrcNo-1];
|
---|
1260 | } else {
|
---|
1261 | iMBuff->ra = cU;
|
---|
1262 | iMBuff->dec = cV;
|
---|
1263 | }
|
---|
1264 | cPosUTC[iBeamSel] = cW;
|
---|
1265 | iMBuff->pCode = pCode;
|
---|
1266 |
|
---|
1267 | // Store rates for next time.
|
---|
1268 | iMBuff->raRate = raRate;
|
---|
1269 | iMBuff->decRate = decRate;
|
---|
1270 | iMBuff->paRate = paRate;
|
---|
1271 | }
|
---|
1272 |
|
---|
1273 | // IF-dependent parameters.
|
---|
1274 | int iIF = cIFno - 1;
|
---|
1275 | int startChan = cStartChan[iIF];
|
---|
1276 | int endChan = cEndChan[iIF];
|
---|
1277 | int refChan = cRefChan[iIF];
|
---|
1278 |
|
---|
1279 | int nChan = abs(endChan - startChan) + 1;
|
---|
1280 |
|
---|
1281 | iIFSel = cIFSel[iIF];
|
---|
1282 | if (iMBuff->IFno[iIFSel] == 0) {
|
---|
1283 | iMBuff->nIF++;
|
---|
1284 | iMBuff->IFno[iIFSel] = cIFno;
|
---|
1285 | } else {
|
---|
1286 | // Integration cycle written to the output file twice (the only known
|
---|
1287 | // example is 1999-05-22_1914_000-031805_03v.hpf).
|
---|
1288 | sprintf(cMsg, "Integration cycle %d:%d, beam %2d, \n"
|
---|
1289 | "IF %d was duplicated.", cScanNo, cCycleNo-1,
|
---|
1290 | beamNo, cIFno);
|
---|
1291 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
1292 | }
|
---|
1293 | iMBuff->nChan[iIFSel] = nChan;
|
---|
1294 | iMBuff->nPol[iIFSel] = cNPol[iIF];
|
---|
1295 |
|
---|
1296 | iMBuff->fqRefPix[iIFSel] = doubles_.if_ref[iIF];
|
---|
1297 | iMBuff->fqRefVal[iIFSel] = doubles_.if_freq[iIF];
|
---|
1298 | iMBuff->fqDelt[iIFSel] =
|
---|
1299 | if_.if_invert[iIF] * fabs(doubles_.if_bw[iIF] /
|
---|
1300 | (if_.if_nfreq[iIF] - 1));
|
---|
1301 |
|
---|
1302 | // Adjust for channel selection.
|
---|
1303 | if (iMBuff->fqRefPix[iIFSel] != refChan) {
|
---|
1304 | iMBuff->fqRefVal[iIFSel] +=
|
---|
1305 | (refChan - iMBuff->fqRefPix[iIFSel]) *
|
---|
1306 | iMBuff->fqDelt[iIFSel];
|
---|
1307 | iMBuff->fqRefPix[iIFSel] = refChan;
|
---|
1308 | }
|
---|
1309 |
|
---|
1310 | if (endChan < startChan) {
|
---|
1311 | iMBuff->fqDelt[iIFSel] = -iMBuff->fqDelt[iIFSel];
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 |
|
---|
1315 | // System temperature.
|
---|
1316 | int iBeam = beamNo - 1;
|
---|
1317 | int scq = sc_.sc_q;
|
---|
1318 | float TsysPol1 = sc_.sc_cal[scq*iBeam + 3];
|
---|
1319 | float TsysPol2 = sc_.sc_cal[scq*iBeam + 4];
|
---|
1320 | iMBuff->tsys[iIFSel][0] = TsysPol1*TsysPol1;
|
---|
1321 | iMBuff->tsys[iIFSel][1] = TsysPol2*TsysPol2;
|
---|
1322 |
|
---|
1323 | // Calibration factor; may be changed later if the data is recalibrated.
|
---|
1324 | if (scq > 14) {
|
---|
1325 | // Will only be present for Parkes Multibeam or LBA data.
|
---|
1326 | iMBuff->calfctr[iIFSel][0] = sc_.sc_cal[scq*iBeam + 14];
|
---|
1327 | iMBuff->calfctr[iIFSel][1] = sc_.sc_cal[scq*iBeam + 15];
|
---|
1328 | } else {
|
---|
1329 | iMBuff->calfctr[iIFSel][0] = 0.0f;
|
---|
1330 | iMBuff->calfctr[iIFSel][1] = 0.0f;
|
---|
1331 | }
|
---|
1332 |
|
---|
1333 | // Cross-polarization calibration factor (unknown to MBFITS).
|
---|
1334 | for (int j = 0; j < 2; j++) {
|
---|
1335 | iMBuff->xcalfctr[iIFSel][j] = 0.0f;
|
---|
1336 | }
|
---|
1337 |
|
---|
1338 | // Baseline parameters (unknown to MBFITS).
|
---|
1339 | iMBuff->haveBase = 0;
|
---|
1340 |
|
---|
1341 | // Data (always present in MBFITS).
|
---|
1342 | iMBuff->haveSpectra = 1;
|
---|
1343 |
|
---|
1344 | // Flag: bit 0 set if off source.
|
---|
1345 | // bit 1 set if loss of sync in A polarization.
|
---|
1346 | // bit 2 set if loss of sync in B polarization.
|
---|
1347 | unsigned char rpflag =
|
---|
1348 | (unsigned char)(sc_.sc_cal[scq*iBeam + 12] + 0.5f);
|
---|
1349 |
|
---|
1350 | // The baseline flag may be set independently.
|
---|
1351 | if (rpflag == 0) rpflag = cFlag;
|
---|
1352 |
|
---|
1353 | // Copy and scale data.
|
---|
1354 | int inc = 2 * if_.if_nstok[iIF];
|
---|
1355 | if (endChan < startChan) inc = -inc;
|
---|
1356 |
|
---|
1357 | float TsysF;
|
---|
1358 | iMBuff->spectra[iIFSel] = iMBuff->spectra[0] + cChanOff[iIF];
|
---|
1359 | iMBuff->flagged[iIFSel] = iMBuff->flagged[0] + cChanOff[iIF];
|
---|
1360 |
|
---|
1361 | float *spectra = iMBuff->spectra[iIFSel];
|
---|
1362 | unsigned char *flagged = iMBuff->flagged[iIFSel];
|
---|
1363 | for (int ipol = 0; ipol < cNPol[iIF]; ipol++) {
|
---|
1364 | if (sc_.sc_cal[scq*iBeam + 3 + ipol] > 0.0f) {
|
---|
1365 | // The correlator has already applied the calibration.
|
---|
1366 | TsysF = 1.0f;
|
---|
1367 | } else {
|
---|
1368 | // The correlator has normalized cVis[k] to a Tsys of 500K.
|
---|
1369 | TsysF = iMBuff->tsys[iIFSel][ipol] / 500.0f;
|
---|
1370 | }
|
---|
1371 |
|
---|
1372 | int k = 2 * (if_.if_nstok[iIF]*(startChan - 1) + ipol);
|
---|
1373 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
1374 | *(spectra++) = TsysF * cVis[k];
|
---|
1375 | *(flagged++) = rpflag;
|
---|
1376 | k += inc;
|
---|
1377 | }
|
---|
1378 | }
|
---|
1379 |
|
---|
1380 | if (cHaveXPol[iIF]) {
|
---|
1381 | int k = 2 * (3*(startChan - 1) + 2);
|
---|
1382 | iMBuff->xpol[iIFSel] = iMBuff->xpol[0] + cXpolOff[iIF];
|
---|
1383 | float *xpol = iMBuff->xpol[iIFSel];
|
---|
1384 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
1385 | *(xpol++) = cVis[k];
|
---|
1386 | *(xpol++) = cVis[k+1];
|
---|
1387 | k += inc;
|
---|
1388 | }
|
---|
1389 | }
|
---|
1390 |
|
---|
1391 |
|
---|
1392 | // Calibration factor applied to the data by the correlator.
|
---|
1393 | if (scq > 14) {
|
---|
1394 | // Will only be present for Parkes Multibeam or LBA data.
|
---|
1395 | iMBuff->tcal[iIFSel][0] = sc_.sc_cal[scq*iBeam + 14];
|
---|
1396 | iMBuff->tcal[iIFSel][1] = sc_.sc_cal[scq*iBeam + 15];
|
---|
1397 | } else {
|
---|
1398 | iMBuff->tcal[iIFSel][0] = 0.0f;
|
---|
1399 | iMBuff->tcal[iIFSel][1] = 0.0f;
|
---|
1400 | }
|
---|
1401 |
|
---|
1402 | if (firstIF) {
|
---|
1403 | if (sc_.sc_ant <= anten_.nant) {
|
---|
1404 | // No extra syscal information present.
|
---|
1405 | iMBuff->extraSysCal = 0;
|
---|
1406 | iMBuff->azimuth = 0.0f;
|
---|
1407 | iMBuff->elevation = 0.0f;
|
---|
1408 | iMBuff->parAngle = 0.0f;
|
---|
1409 | iMBuff->focusAxi = 0.0f;
|
---|
1410 | iMBuff->focusTan = 0.0f;
|
---|
1411 | iMBuff->focusRot = 0.0f;
|
---|
1412 | iMBuff->temp = 0.0f;
|
---|
1413 | iMBuff->pressure = 0.0f;
|
---|
1414 | iMBuff->humidity = 0.0f;
|
---|
1415 | iMBuff->windSpeed = 0.0f;
|
---|
1416 | iMBuff->windAz = 0.0f;
|
---|
1417 | strcpy(iMBuff->tcalTime, " ");
|
---|
1418 | iMBuff->refBeam = 0;
|
---|
1419 |
|
---|
1420 | } else {
|
---|
1421 | // Additional information for Parkes Multibeam data.
|
---|
1422 | int iOff = scq*(sc_.sc_ant - 1) - 1;
|
---|
1423 | iMBuff->extraSysCal = 1;
|
---|
1424 |
|
---|
1425 | iMBuff->azimuth = sc_.sc_cal[iOff + 2];
|
---|
1426 | iMBuff->elevation = sc_.sc_cal[iOff + 3];
|
---|
1427 | iMBuff->parAngle = sc_.sc_cal[iOff + 4];
|
---|
1428 |
|
---|
1429 | iMBuff->focusAxi = sc_.sc_cal[iOff + 5] * 1e-3;
|
---|
1430 | iMBuff->focusTan = sc_.sc_cal[iOff + 6] * 1e-3;
|
---|
1431 | iMBuff->focusRot = sc_.sc_cal[iOff + 7];
|
---|
1432 |
|
---|
1433 | iMBuff->temp = sc_.sc_cal[iOff + 8];
|
---|
1434 | iMBuff->pressure = sc_.sc_cal[iOff + 9];
|
---|
1435 | iMBuff->humidity = sc_.sc_cal[iOff + 10];
|
---|
1436 | iMBuff->windSpeed = sc_.sc_cal[iOff + 11];
|
---|
1437 | iMBuff->windAz = sc_.sc_cal[iOff + 12];
|
---|
1438 |
|
---|
1439 | char *tcalTime = iMBuff->tcalTime;
|
---|
1440 | sprintf(tcalTime, "%-16.16s", (char *)(&sc_.sc_cal[iOff+13]));
|
---|
1441 | tcalTime[16] = '\0';
|
---|
1442 |
|
---|
1443 | #ifndef AIPS_LITTLE_ENDIAN
|
---|
1444 | // Do byte swapping on the ASCII date string.
|
---|
1445 | for (int j = 0; j < 16; j += 4) {
|
---|
1446 | char ctmp;
|
---|
1447 | ctmp = tcalTime[j];
|
---|
1448 | tcalTime[j] = tcalTime[j+3];
|
---|
1449 | tcalTime[j+3] = ctmp;
|
---|
1450 | ctmp = tcalTime[j+1];
|
---|
1451 | tcalTime[j+1] = tcalTime[j+2];
|
---|
1452 | tcalTime[j+2] = ctmp;
|
---|
1453 | }
|
---|
1454 | #endif
|
---|
1455 |
|
---|
1456 | // Reference beam number.
|
---|
1457 | float refbeam = sc_.sc_cal[iOff + 17];
|
---|
1458 | if (refbeam > 0.0f || refbeam < 100.0f) {
|
---|
1459 | iMBuff->refBeam = int(refbeam);
|
---|
1460 | } else {
|
---|
1461 | iMBuff->refBeam = 0;
|
---|
1462 | }
|
---|
1463 | }
|
---|
1464 | }
|
---|
1465 | }
|
---|
1466 | }
|
---|
1467 |
|
---|
1468 | return 0;
|
---|
1469 | }
|
---|
1470 |
|
---|
1471 | //-------------------------------------------------------- MBFITSreader::rpget
|
---|
1472 |
|
---|
1473 | // Read the next data record from the RPFITS file.
|
---|
1474 |
|
---|
1475 | int MBFITSreader::rpget(int syscalonly, int &EOS)
|
---|
1476 | {
|
---|
1477 | const string methodName = "rpget()" ;
|
---|
1478 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
1479 |
|
---|
1480 | EOS = 0;
|
---|
1481 |
|
---|
1482 | int retries = 0;
|
---|
1483 |
|
---|
1484 | // Allow 10 read errors.
|
---|
1485 | int numErr = 0;
|
---|
1486 |
|
---|
1487 | int jstat = 0;
|
---|
1488 | while (numErr < 10) {
|
---|
1489 | int lastjstat = jstat;
|
---|
1490 |
|
---|
1491 | switch(rpfitsin(jstat)) {
|
---|
1492 | case -1:
|
---|
1493 | // Read failed; retry.
|
---|
1494 | numErr++;
|
---|
1495 | os << LogIO::WARN << "RPFITS read failed - retrying." << LogIO::POST ;
|
---|
1496 | jstat = 0;
|
---|
1497 | break;
|
---|
1498 |
|
---|
1499 | case 0:
|
---|
1500 | // Successful read.
|
---|
1501 | if (lastjstat == 0) {
|
---|
1502 | if (cBaseline == -1) {
|
---|
1503 | // Syscal data.
|
---|
1504 | if (syscalonly) {
|
---|
1505 | return 0;
|
---|
1506 | }
|
---|
1507 |
|
---|
1508 | } else {
|
---|
1509 | if (!syscalonly) {
|
---|
1510 | return 0;
|
---|
1511 | }
|
---|
1512 | }
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 | // Last operation was to read header or FG table; now read data.
|
---|
1516 | break;
|
---|
1517 |
|
---|
1518 | case 1:
|
---|
1519 | // Encountered header while trying to read data; read it.
|
---|
1520 | EOS = 1;
|
---|
1521 | jstat = -1;
|
---|
1522 | break;
|
---|
1523 |
|
---|
1524 | case 2:
|
---|
1525 | // End of scan; read past it.
|
---|
1526 | jstat = 0;
|
---|
1527 | break;
|
---|
1528 |
|
---|
1529 | case 3:
|
---|
1530 | // End-of-file; retry applies to real-time mode.
|
---|
1531 | if (retries++ >= cRetry) {
|
---|
1532 | return -1;
|
---|
1533 | }
|
---|
1534 |
|
---|
1535 | sleep(10);
|
---|
1536 | jstat = 0;
|
---|
1537 | break;
|
---|
1538 |
|
---|
1539 | case 4:
|
---|
1540 | // Encountered FG table while trying to read data; read it.
|
---|
1541 | jstat = -1;
|
---|
1542 | break;
|
---|
1543 |
|
---|
1544 | case 5:
|
---|
1545 | // Illegal data at end of block after close/reopen operation; retry.
|
---|
1546 | jstat = 0;
|
---|
1547 | break;
|
---|
1548 |
|
---|
1549 | default:
|
---|
1550 | // Shouldn't reach here.
|
---|
1551 | sprintf(cMsg, "Unrecognized RPFITSIN return code: %d "
|
---|
1552 | "(retrying).", jstat);
|
---|
1553 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
1554 | jstat = 0;
|
---|
1555 | break;
|
---|
1556 | }
|
---|
1557 | }
|
---|
1558 |
|
---|
1559 | os << LogIO::SEVERE << "RPFITS read failed too many times." << LogIO::POST ;
|
---|
1560 | return 2;
|
---|
1561 | }
|
---|
1562 |
|
---|
1563 | //----------------------------------------------------- MBFITSreader::rpfitsin
|
---|
1564 |
|
---|
1565 | // Wrapper around RPFITSIN that reports errors. Returned RPFITSIN subroutine
|
---|
1566 | // arguments are captured as MBFITSreader member variables.
|
---|
1567 |
|
---|
1568 | int MBFITSreader::rpfitsin(int &jstat)
|
---|
1569 |
|
---|
1570 | {
|
---|
1571 | rpfitsin_(&jstat, cVis, cWgt, &cBaseline, &cUTC, &cU, &cV, &cW, &cFlag,
|
---|
1572 | &cBin, &cIFno, &cSrcNo);
|
---|
1573 |
|
---|
1574 | // Handle messages from RPFITSIN.
|
---|
1575 | /**
|
---|
1576 | if (names_.errmsg[0] != ' ') {
|
---|
1577 | int i;
|
---|
1578 | for (i = 80; i > 0; i--) {
|
---|
1579 | if (names_.errmsg[i-1] != ' ') break;
|
---|
1580 | }
|
---|
1581 |
|
---|
1582 | sprintf(cMsg, "WARNING: Cycle %d:%03d, RPFITSIN reported -\n"
|
---|
1583 | " %.*s", cScanNo, cCycleNo, i, names_.errmsg);
|
---|
1584 | logMsg(cMsg);
|
---|
1585 | }
|
---|
1586 | **/
|
---|
1587 | return jstat;
|
---|
1588 | }
|
---|
1589 |
|
---|
1590 | //------------------------------------------------------- MBFITSreader::fixPos
|
---|
1591 |
|
---|
1592 | // Check and, if necessary, repair a position timestamp.
|
---|
1593 | //
|
---|
1594 | // Problems with the position timestamp manifest themselves via the scan rate:
|
---|
1595 | //
|
---|
1596 | // 1) Zero scan rate pairs, 1997/02/28 to 1998/01/07
|
---|
1597 | //
|
---|
1598 | // These occur because the position timestamp for the first integration
|
---|
1599 | // of the pair is erroneous; the value recorded is t/1000, where t is the
|
---|
1600 | // true value.
|
---|
1601 | // Earliest known: 97-02-28_1725_132653-42_258a.hpf
|
---|
1602 | // Latest known: 98-01-02_1923_095644-50_165c.hpf
|
---|
1603 | // (time range chosen to encompass observing runs).
|
---|
1604 | //
|
---|
1605 | // 2) Slow-fast scan rate pairs (0.013 - 0.020 deg/s),
|
---|
1606 | // 1997/03/28 to 1998/01/07.
|
---|
1607 | //
|
---|
1608 | // The UTC position timestamp is 1.0s later than it should be (never
|
---|
1609 | // earlier), almost certainly arising from an error in the telescope
|
---|
1610 | // control system.
|
---|
1611 | // Earliest known: 97-03-28_0150_010420-74_008d.hpf
|
---|
1612 | // Latest known: 98-01-04_1502_065150-02_177c.hpf
|
---|
1613 | // (time range chosen to encompass observing runs).
|
---|
1614 | //
|
---|
1615 | // 3) Slow-fast scan rate pairs (0.015 - 0.018 deg/s),
|
---|
1616 | // 1999/05/20 to 2001/07/12 (HIPASS and ZOA),
|
---|
1617 | // 2001/09/02 to 2001/12/04 (HIPASS and ZOA),
|
---|
1618 | // 2002/03/28 to 2002/05/13 (ZOA only),
|
---|
1619 | // 2003/04/26 to 2003/06/09 (ZOA only).
|
---|
1620 | // Earliest known: 1999-05-20_1818_175720-50_297e.hpf
|
---|
1621 | // Latest known: 2001-12-04_1814_065531p14_173e.hpf (HIPASS)
|
---|
1622 | // 2003-06-09_1924_352-085940_-6c.hpf (ZOA)
|
---|
1623 | //
|
---|
1624 | // Caused by the Linux signalling NaN problem. IEEE "signalling" NaNs
|
---|
1625 | // are silently transformed to "quiet" NaNs during assignment by setting
|
---|
1626 | // bit 22. This affected RPFITS because of its use of VAX-format
|
---|
1627 | // floating-point numbers which, with their permuted bytes, may sometimes
|
---|
1628 | // appear as signalling NaNs.
|
---|
1629 | //
|
---|
1630 | // The problem arose when the linux correlator came online and was
|
---|
1631 | // fixed with a workaround to the RPFITS library (repeated episodes
|
---|
1632 | // are probably due to use of an older version of the library). It
|
---|
1633 | // should not have affected the data significantly because of the
|
---|
1634 | // low relative error, which ranges from 0.0000038 to 0.0000076, but
|
---|
1635 | // it is important for the computation of scan rates which requires
|
---|
1636 | // taking the difference of two large UTC timestamps, one or other
|
---|
1637 | // of which will have 0.5s added to it.
|
---|
1638 | //
|
---|
1639 | // The return value identifies which, if any, of these problems was repaired.
|
---|
1640 |
|
---|
1641 | int MBFITSreader::fixw(
|
---|
1642 | const char *datobs,
|
---|
1643 | int cycleNo,
|
---|
1644 | int beamNo,
|
---|
1645 | double avRate[2],
|
---|
1646 | double thisRA,
|
---|
1647 | double thisDec,
|
---|
1648 | double thisUTC,
|
---|
1649 | double nextRA,
|
---|
1650 | double nextDec,
|
---|
1651 | float &nextUTC)
|
---|
1652 | {
|
---|
1653 | if (strcmp(datobs, "2003-06-09") > 0) {
|
---|
1654 | return 0;
|
---|
1655 |
|
---|
1656 | } else if (strcmp(datobs, "1998-01-07") <= 0) {
|
---|
1657 | if (nextUTC < thisUTC && (nextUTC + 86400.0) > (thisUTC + 600.0)) {
|
---|
1658 | // Possible scaling problem.
|
---|
1659 | double diff = nextUTC*1000.0 - thisUTC;
|
---|
1660 | if (0.0 < diff && diff < 600.0) {
|
---|
1661 | nextUTC *= 1000.0;
|
---|
1662 | return 1;
|
---|
1663 | } else {
|
---|
1664 | // Irreparable.
|
---|
1665 | return -1;
|
---|
1666 | }
|
---|
1667 | }
|
---|
1668 |
|
---|
1669 | if (cycleNo > 2) {
|
---|
1670 | if (beamNo == 1) {
|
---|
1671 | // This test is only reliable for beam 1.
|
---|
1672 | double dUTC = nextUTC - thisUTC;
|
---|
1673 | if (dUTC < 0.0) dUTC += 86400.0;
|
---|
1674 |
|
---|
1675 | // Guard against RA cycling through 24h in either direction.
|
---|
1676 | if (fabs(nextRA - thisRA) > PI) {
|
---|
1677 | if (nextRA < thisRA) {
|
---|
1678 | nextRA += TWOPI;
|
---|
1679 | } else {
|
---|
1680 | nextRA -= TWOPI;
|
---|
1681 | }
|
---|
1682 | }
|
---|
1683 |
|
---|
1684 | double dRA = (nextRA - thisRA) * cos(nextDec);
|
---|
1685 | double dDec = nextDec - thisDec;
|
---|
1686 | double arc = sqrt(dRA*dRA + dDec*dDec);
|
---|
1687 |
|
---|
1688 | double averate = sqrt(avRate[0]*avRate[0] + avRate[1]*avRate[1]);
|
---|
1689 | double diff1 = fabs(averate - arc/(dUTC-1.0));
|
---|
1690 | double diff2 = fabs(averate - arc/dUTC);
|
---|
1691 | if ((diff1 < diff2) && (diff1 < 0.05*averate)) {
|
---|
1692 | nextUTC -= 1.0;
|
---|
1693 | cCode5 = cycleNo;
|
---|
1694 | return 2;
|
---|
1695 | } else {
|
---|
1696 | cCode5 = 0;
|
---|
1697 | }
|
---|
1698 |
|
---|
1699 | } else {
|
---|
1700 | if (cycleNo == cCode5) {
|
---|
1701 | nextUTC -= 1.0;
|
---|
1702 | return 2;
|
---|
1703 | }
|
---|
1704 | }
|
---|
1705 | }
|
---|
1706 |
|
---|
1707 | } else if ((strcmp(datobs, "1999-05-20") >= 0 &&
|
---|
1708 | strcmp(datobs, "2001-07-12") <= 0) ||
|
---|
1709 | (strcmp(datobs, "2001-09-02") >= 0 &&
|
---|
1710 | strcmp(datobs, "2001-12-04") <= 0) ||
|
---|
1711 | (strcmp(datobs, "2002-03-28") >= 0 &&
|
---|
1712 | strcmp(datobs, "2002-05-13") <= 0) ||
|
---|
1713 | (strcmp(datobs, "2003-04-26") >= 0 &&
|
---|
1714 | strcmp(datobs, "2003-06-09") <= 0)) {
|
---|
1715 | // Signalling NaN problem, e.g. 1999-07-26_1839_011106-74_009c.hpf.
|
---|
1716 | // Position timestamps should always be an integral number of seconds.
|
---|
1717 | double resid = nextUTC - int(nextUTC);
|
---|
1718 | if (resid == 0.5) {
|
---|
1719 | nextUTC -= 0.5;
|
---|
1720 | return 3;
|
---|
1721 | }
|
---|
1722 | }
|
---|
1723 |
|
---|
1724 | return 0;
|
---|
1725 | }
|
---|
1726 |
|
---|
1727 | //-------------------------------------------------------- MBFITSreader::close
|
---|
1728 |
|
---|
1729 | // Close the input file.
|
---|
1730 |
|
---|
1731 | void MBFITSreader::close(void)
|
---|
1732 | {
|
---|
1733 | if (cMBopen) {
|
---|
1734 | int jstat = 1;
|
---|
1735 | rpfitsin_(&jstat, cVis, cWgt, &cBaseline, &cUTC, &cU, &cV, &cW, &cFlag,
|
---|
1736 | &cBin, &cIFno, &cSrcNo);
|
---|
1737 |
|
---|
1738 | if (cBeams) delete [] cBeams;
|
---|
1739 | if (cIFs) delete [] cIFs;
|
---|
1740 | if (cNChan) delete [] cNChan;
|
---|
1741 | if (cNPol) delete [] cNPol;
|
---|
1742 | if (cHaveXPol) delete [] cHaveXPol;
|
---|
1743 | if (cStartChan) delete [] cStartChan;
|
---|
1744 | if (cEndChan) delete [] cEndChan;
|
---|
1745 | if (cRefChan) delete [] cRefChan;
|
---|
1746 |
|
---|
1747 | if (cVis) delete [] cVis;
|
---|
1748 | if (cWgt) delete [] cWgt;
|
---|
1749 |
|
---|
1750 | if (cBeamSel) delete [] cBeamSel;
|
---|
1751 | if (cIFSel) delete [] cIFSel;
|
---|
1752 | if (cChanOff) delete [] cChanOff;
|
---|
1753 | if (cXpolOff) delete [] cXpolOff;
|
---|
1754 | if (cBuffer) delete [] cBuffer;
|
---|
1755 | if (cPosUTC) delete [] cPosUTC;
|
---|
1756 |
|
---|
1757 | cMBopen = 0;
|
---|
1758 | }
|
---|
1759 | }
|
---|
1760 |
|
---|
1761 | //-------------------------------------------------------------------- utcDiff
|
---|
1762 |
|
---|
1763 | // Subtract two UTCs (s) allowing for any plausible number of cycles through
|
---|
1764 | // 86400s, returning a result in the range [-43200, +43200]s.
|
---|
1765 |
|
---|
1766 | double MBFITSreader::utcDiff(double utc1, double utc2)
|
---|
1767 | {
|
---|
1768 | double diff = utc1 - utc2;
|
---|
1769 |
|
---|
1770 | if (diff > 43200.0) {
|
---|
1771 | diff -= 86400.0;
|
---|
1772 | while (diff > 43200.0) diff -= 86400.0;
|
---|
1773 | } else if (diff < -43200.0) {
|
---|
1774 | diff += 86400.0;
|
---|
1775 | while (diff < -43200.0) diff += 86400.0;
|
---|
1776 | }
|
---|
1777 |
|
---|
1778 | return diff;
|
---|
1779 | }
|
---|
1780 |
|
---|
1781 | //------------------------------------------------------- scanRate & applyRate
|
---|
1782 |
|
---|
1783 | // Compute and apply the scan rate corrected for grid convergence. (ra0,dec0)
|
---|
1784 | // are the coordinates of the central beam, assumed to be the tracking centre.
|
---|
1785 | // The rate computed in RA will be a rate of change of angular distance in the
|
---|
1786 | // direction of increasing RA at the position of the central beam. Similarly
|
---|
1787 | // for declination. Angles in radian, time in s.
|
---|
1788 |
|
---|
1789 | void MBFITSreader::scanRate(
|
---|
1790 | double ra0,
|
---|
1791 | double dec0,
|
---|
1792 | double ra1,
|
---|
1793 | double dec1,
|
---|
1794 | double ra2,
|
---|
1795 | double dec2,
|
---|
1796 | double dt,
|
---|
1797 | double &raRate,
|
---|
1798 | double &decRate)
|
---|
1799 | {
|
---|
1800 | // Transform to a system where the central beam lies on the equator at 12h.
|
---|
1801 | eulerx(ra1, dec1, ra0+HALFPI, -dec0, -HALFPI, ra1, dec1);
|
---|
1802 | eulerx(ra2, dec2, ra0+HALFPI, -dec0, -HALFPI, ra2, dec2);
|
---|
1803 |
|
---|
1804 | raRate = (ra2 - ra1) / dt;
|
---|
1805 | decRate = (dec2 - dec1) / dt;
|
---|
1806 | }
|
---|
1807 |
|
---|
1808 |
|
---|
1809 | void MBFITSreader::applyRate(
|
---|
1810 | double ra0,
|
---|
1811 | double dec0,
|
---|
1812 | double ra1,
|
---|
1813 | double dec1,
|
---|
1814 | double raRate,
|
---|
1815 | double decRate,
|
---|
1816 | double dt,
|
---|
1817 | double &ra2,
|
---|
1818 | double &dec2)
|
---|
1819 | {
|
---|
1820 | // Transform to a system where the central beam lies on the equator at 12h.
|
---|
1821 | eulerx(ra1, dec1, ra0+HALFPI, -dec0, -HALFPI, ra1, dec1);
|
---|
1822 |
|
---|
1823 | ra2 = ra1 + (raRate * dt);
|
---|
1824 | dec2 = dec1 + (decRate * dt);
|
---|
1825 |
|
---|
1826 | // Transform back.
|
---|
1827 | eulerx(ra2, dec2, -HALFPI, dec0, ra0+HALFPI, ra2, dec2);
|
---|
1828 | }
|
---|
1829 |
|
---|
1830 | //--------------------------------------------------------------------- eulerx
|
---|
1831 |
|
---|
1832 | void MBFITSreader::eulerx(
|
---|
1833 | double lng0,
|
---|
1834 | double lat0,
|
---|
1835 | double phi0,
|
---|
1836 | double theta,
|
---|
1837 | double phi,
|
---|
1838 | double &lng1,
|
---|
1839 | double &lat1)
|
---|
1840 |
|
---|
1841 | // Applies the Euler angle based transformation of spherical coordinates.
|
---|
1842 | //
|
---|
1843 | // phi0 Longitude of the ascending node in the old system, radians. The
|
---|
1844 | // ascending node is the point of intersection of the equators of
|
---|
1845 | // the two systems such that the equator of the new system crosses
|
---|
1846 | // from south to north as viewed in the old system.
|
---|
1847 | //
|
---|
1848 | // theta Angle between the poles of the two systems, radians. THETA is
|
---|
1849 | // positive for a positive rotation about the ascending node.
|
---|
1850 | //
|
---|
1851 | // phi Longitude of the ascending node in the new system, radians.
|
---|
1852 |
|
---|
1853 | {
|
---|
1854 | // Compute intermediaries.
|
---|
1855 | double lng0p = lng0 - phi0;
|
---|
1856 | double slng0p = sin(lng0p);
|
---|
1857 | double clng0p = cos(lng0p);
|
---|
1858 | double slat0 = sin(lat0);
|
---|
1859 | double clat0 = cos(lat0);
|
---|
1860 | double ctheta = cos(theta);
|
---|
1861 | double stheta = sin(theta);
|
---|
1862 |
|
---|
1863 | double x = clat0*clng0p;
|
---|
1864 | double y = clat0*slng0p*ctheta + slat0*stheta;
|
---|
1865 |
|
---|
1866 | // Longitude in the new system.
|
---|
1867 | if (x != 0.0 || y != 0.0) {
|
---|
1868 | lng1 = phi + atan2(y, x);
|
---|
1869 | } else {
|
---|
1870 | // Longitude at the poles in the new system is consistent with that
|
---|
1871 | // specified in the old system.
|
---|
1872 | lng1 = phi + lng0p;
|
---|
1873 | }
|
---|
1874 | lng1 = fmod(lng1, TWOPI);
|
---|
1875 | if (lng1 < 0.0) lng1 += TWOPI;
|
---|
1876 |
|
---|
1877 | lat1 = asin(slat0*ctheta - clat0*stheta*slng0p);
|
---|
1878 | }
|
---|