[1325] | 1 | //#---------------------------------------------------------------------------
|
---|
| 2 | //# MBFITSreader.cc: ATNF single-dish RPFITS reader.
|
---|
| 3 | //#---------------------------------------------------------------------------
|
---|
[1757] | 4 | //# livedata - processing pipeline for single-dish, multibeam spectral data.
|
---|
| 5 | //# Copyright (C) 2000-2009, Australia Telescope National Facility, CSIRO
|
---|
[1325] | 6 | //#
|
---|
[1757] | 7 | //# This file is part of livedata.
|
---|
[1325] | 8 | //#
|
---|
[1757] | 9 | //# livedata is free software: you can redistribute it and/or modify it under
|
---|
| 10 | //# the terms of the GNU General Public License as published by the Free
|
---|
| 11 | //# Software Foundation, either version 3 of the License, or (at your option)
|
---|
| 12 | //# any later version.
|
---|
| 13 | //#
|
---|
| 14 | //# livedata is distributed in the hope that it will be useful, but WITHOUT
|
---|
[1325] | 15 | //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
[1757] | 16 | //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
---|
| 17 | //# more details.
|
---|
[1325] | 18 | //#
|
---|
[1757] | 19 | //# You should have received a copy of the GNU General Public License along
|
---|
| 20 | //# with livedata. If not, see <http://www.gnu.org/licenses/>.
|
---|
[1325] | 21 | //#
|
---|
[1757] | 22 | //# Correspondence concerning livedata may be directed to:
|
---|
| 23 | //# Internet email: mcalabre@atnf.csiro.au
|
---|
| 24 | //# Postal address: Dr. Mark Calabretta
|
---|
| 25 | //# Australia Telescope National Facility, CSIRO
|
---|
| 26 | //# PO Box 76
|
---|
| 27 | //# Epping NSW 1710
|
---|
[1325] | 28 | //# AUSTRALIA
|
---|
| 29 | //#
|
---|
[1757] | 30 | //# http://www.atnf.csiro.au/computing/software/livedata.html
|
---|
| 31 | //# $Id: MBFITSreader.cc,v 19.57 2009-10-30 06:34:36 cal103 Exp $
|
---|
[1325] | 32 | //#---------------------------------------------------------------------------
|
---|
| 33 | //# The MBFITSreader class reads single dish RPFITS files (such as Parkes
|
---|
| 34 | //# Multibeam MBFITS files).
|
---|
| 35 | //#
|
---|
| 36 | //# Original: 2000/07/28 Mark Calabretta
|
---|
| 37 | //#---------------------------------------------------------------------------
|
---|
| 38 |
|
---|
[1757] | 39 | #include <atnf/pks/pks_maths.h>
|
---|
[1325] | 40 | #include <atnf/PKSIO/MBFITSreader.h>
|
---|
[1757] | 41 | #include <atnf/PKSIO/MBrecord.h>
|
---|
[1325] | 42 |
|
---|
[1757] | 43 | #include <casa/Logging/LogIO.h>
|
---|
[1325] | 44 |
|
---|
| 45 | #include <casa/math.h>
|
---|
| 46 | #include <casa/iostream.h>
|
---|
| 47 | #include <casa/stdio.h>
|
---|
| 48 | #include <casa/stdlib.h>
|
---|
| 49 | #include <casa/string.h>
|
---|
| 50 | #include <unistd.h>
|
---|
| 51 |
|
---|
[1757] | 52 | #include <RPFITS.h>
|
---|
| 53 |
|
---|
[1325] | 54 | using namespace std;
|
---|
| 55 |
|
---|
| 56 | // Numerical constants.
|
---|
| 57 | const double PI = 3.141592653589793238462643;
|
---|
| 58 | const double TWOPI = 2.0 * PI;
|
---|
[1757] | 59 | const double HALFPI = PI / 2.0;
|
---|
[3089] | 60 | #ifdef PKSIO_DEBUG
|
---|
[1757] | 61 | const double R2D = 180.0 / PI;
|
---|
[3089] | 62 | #endif
|
---|
[1325] | 63 |
|
---|
[1757] | 64 | // Class name
|
---|
| 65 | const string className = "MBFITSreader" ;
|
---|
| 66 |
|
---|
[1325] | 67 | //------------------------------------------------- MBFITSreader::MBFITSreader
|
---|
| 68 |
|
---|
| 69 | // Default constructor.
|
---|
| 70 |
|
---|
| 71 | MBFITSreader::MBFITSreader(
|
---|
| 72 | const int retry,
|
---|
| 73 | const int interpolate)
|
---|
| 74 | {
|
---|
| 75 | cRetry = retry;
|
---|
| 76 | if (cRetry > 10) {
|
---|
| 77 | cRetry = 10;
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | cInterp = interpolate;
|
---|
| 81 | if (cInterp < 0 || cInterp > 2) {
|
---|
| 82 | cInterp = 1;
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | // Initialize pointers.
|
---|
| 86 | cBeams = 0x0;
|
---|
| 87 | cIFs = 0x0;
|
---|
| 88 | cNChan = 0x0;
|
---|
| 89 | cNPol = 0x0;
|
---|
| 90 | cHaveXPol = 0x0;
|
---|
| 91 | cStartChan = 0x0;
|
---|
| 92 | cEndChan = 0x0;
|
---|
| 93 | cRefChan = 0x0;
|
---|
| 94 |
|
---|
[1757] | 95 | cVis = 0x0;
|
---|
| 96 | cWgt = 0x0;
|
---|
[1325] | 97 |
|
---|
| 98 | cBeamSel = 0x0;
|
---|
| 99 | cIFSel = 0x0;
|
---|
| 100 | cChanOff = 0x0;
|
---|
| 101 | cXpolOff = 0x0;
|
---|
| 102 | cBuffer = 0x0;
|
---|
| 103 | cPosUTC = 0x0;
|
---|
| 104 |
|
---|
| 105 | cMBopen = 0;
|
---|
[1757] | 106 |
|
---|
| 107 | // Tell RPFITSIN not to report errors directly.
|
---|
| 108 | //iostat_.errlun = -1;
|
---|
[1325] | 109 | }
|
---|
| 110 |
|
---|
| 111 | //------------------------------------------------ MBFITSreader::~MBFITSreader
|
---|
| 112 |
|
---|
| 113 | // Destructor.
|
---|
| 114 |
|
---|
| 115 | MBFITSreader::~MBFITSreader()
|
---|
| 116 | {
|
---|
| 117 | close();
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | //--------------------------------------------------------- MBFITSreader::open
|
---|
| 121 |
|
---|
| 122 | // Open the RPFITS file for reading.
|
---|
| 123 |
|
---|
| 124 | int MBFITSreader::open(
|
---|
| 125 | char *rpname,
|
---|
| 126 | int &nBeam,
|
---|
| 127 | int* &beams,
|
---|
| 128 | int &nIF,
|
---|
| 129 | int* &IFs,
|
---|
| 130 | int* &nChan,
|
---|
| 131 | int* &nPol,
|
---|
| 132 | int* &haveXPol,
|
---|
| 133 | int &haveBase,
|
---|
| 134 | int &haveSpectra,
|
---|
| 135 | int &extraSysCal)
|
---|
| 136 | {
|
---|
[1757] | 137 | const string methodName = "open()" ;
|
---|
| 138 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
| 139 |
|
---|
[1325] | 140 | if (cMBopen) {
|
---|
| 141 | close();
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | strcpy(names_.file, rpname);
|
---|
| 145 |
|
---|
| 146 | // Open the RPFITS file.
|
---|
[1757] | 147 | int jstat = -3;
|
---|
| 148 | if (rpfitsin(jstat)) {
|
---|
| 149 | sprintf(cMsg, "Failed to open MBFITS file\n%s", rpname);
|
---|
[1868] | 150 | //os << LogIO::SEVERE << cMsg << LogIO::POST ;
|
---|
[1325] | 151 | return 1;
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | cMBopen = 1;
|
---|
| 155 |
|
---|
| 156 | // Tell RPFITSIN that we want the OBSTYPE card.
|
---|
| 157 | int j;
|
---|
| 158 | param_.ncard = 1;
|
---|
| 159 | for (j = 0; j < 80; j++) {
|
---|
| 160 | names_.card[j] = ' ';
|
---|
| 161 | }
|
---|
| 162 | strncpy(names_.card, "OBSTYPE", 7);
|
---|
| 163 |
|
---|
| 164 | // Read the first header.
|
---|
| 165 | jstat = -1;
|
---|
[1757] | 166 | if (rpfitsin(jstat)) {
|
---|
| 167 | sprintf(cMsg, "Failed to read MBFITS header in file\n"
|
---|
| 168 | "%s", rpname);
|
---|
[1868] | 169 | //os << LogIO::SEVERE << cMsg << LogIO::POST ;
|
---|
[1325] | 170 | close();
|
---|
| 171 | return 1;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | // Mopra data has some peculiarities.
|
---|
| 175 | cMopra = strncmp(names_.instrument, "ATMOPRA", 7) == 0;
|
---|
| 176 |
|
---|
[1757] | 177 | // Non-ATNF data may not store the position in (u,v,w).
|
---|
| 178 | if (strncmp(names_.sta, "tid", 3) == 0) {
|
---|
| 179 | sprintf(cMsg, "Found Tidbinbilla data");
|
---|
| 180 | cSUpos = 1;
|
---|
| 181 | } else if (strncmp(names_.sta, "HOB", 3) == 0) {
|
---|
| 182 | sprintf(cMsg, "Found Hobart data");
|
---|
| 183 | cSUpos = 1;
|
---|
| 184 | } else if (strncmp(names_.sta, "CED", 3) == 0) {
|
---|
| 185 | sprintf(cMsg, "Found Ceduna data");
|
---|
| 186 | cSUpos = 1;
|
---|
| 187 | } else {
|
---|
| 188 | cSUpos = 0;
|
---|
| 189 | }
|
---|
| 190 |
|
---|
| 191 | if (cSUpos) {
|
---|
| 192 | strcat(cMsg, ", using telescope position\n from SU table.");
|
---|
| 193 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
[1325] | 194 | cInterp = 0;
|
---|
| 195 | }
|
---|
| 196 |
|
---|
[1757] | 197 | // Mean scan rate (for timestamp repairs).
|
---|
| 198 | cNRate = 0;
|
---|
| 199 | cAvRate[0] = 0.0;
|
---|
| 200 | cAvRate[1] = 0.0;
|
---|
| 201 | cCode5 = 0;
|
---|
[1325] | 202 |
|
---|
[1757] | 203 |
|
---|
[1325] | 204 | // Find the maximum beam number.
|
---|
| 205 | cNBeam = 0;
|
---|
| 206 | for (int iBeam = 0; iBeam < anten_.nant; iBeam++) {
|
---|
| 207 | if (anten_.ant_num[iBeam] > cNBeam) {
|
---|
| 208 | cNBeam = anten_.ant_num[iBeam];
|
---|
| 209 | }
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 | if (cNBeam <= 0) {
|
---|
[1757] | 213 | os << LogIO::SEVERE << "Couldn't determine number of beams." << LogIO::POST ;
|
---|
[1325] | 214 | close();
|
---|
| 215 | return 1;
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 | // Construct the beam mask.
|
---|
| 219 | cBeams = new int[cNBeam];
|
---|
| 220 | for (int iBeam = 0; iBeam < cNBeam; iBeam++) {
|
---|
| 221 | cBeams[iBeam] = 0;
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | // ...beams present in the data.
|
---|
| 225 | for (int iBeam = 0; iBeam < anten_.nant; iBeam++) {
|
---|
[1757] | 226 | // Guard against dubious beam numbers, e.g. zeroes in
|
---|
| 227 | // 1999-09-29_1632_024848p14_071b.hpf and the four scans following.
|
---|
| 228 | // Note that the actual beam number is decoded from the 'baseline' random
|
---|
| 229 | // parameter for each spectrum and is only used for beam selection.
|
---|
| 230 | int beamNo = anten_.ant_num[iBeam];
|
---|
| 231 | if (beamNo != iBeam+1) {
|
---|
| 232 | char sta[8];
|
---|
| 233 | strncpy(sta, names_.sta+(8*iBeam), 8);
|
---|
| 234 | char *cp = sta + 7;
|
---|
| 235 | while (*cp == ' ') *(cp--) = '\0';
|
---|
| 236 |
|
---|
| 237 | sprintf(cMsg,
|
---|
| 238 | "RPFITSIN returned beam number %2d for AN table\n"
|
---|
| 239 | "entry %2d with name '%.8s'", beamNo, iBeam+1, sta);
|
---|
| 240 |
|
---|
| 241 | char text[8];
|
---|
| 242 | sprintf(text, "MB%2.2d", iBeam+1);
|
---|
| 243 | cp = cMsg + strlen(cMsg);
|
---|
| 244 | if (strncmp(sta, text, 8) == 0) {
|
---|
| 245 | beamNo = iBeam + 1;
|
---|
| 246 | sprintf(cp, "; using beam number %2d.", beamNo);
|
---|
| 247 | } else {
|
---|
| 248 | sprintf(cp, ".");
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
| 252 | }
|
---|
| 253 |
|
---|
| 254 | if (0 < beamNo && beamNo <= cNBeam) {
|
---|
| 255 | cBeams[beamNo-1] = 1;
|
---|
| 256 | }
|
---|
[1325] | 257 | }
|
---|
| 258 |
|
---|
| 259 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
| 260 | // modify its elements directly.
|
---|
| 261 | nBeam = cNBeam;
|
---|
| 262 | beams = cBeams;
|
---|
| 263 |
|
---|
| 264 |
|
---|
| 265 | // Number of IFs.
|
---|
| 266 | cNIF = if_.n_if;
|
---|
| 267 | cIFs = new int[cNIF];
|
---|
| 268 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 269 | cIFs[iIF] = 1;
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
| 273 | // modify its elements directly.
|
---|
| 274 | nIF = cNIF;
|
---|
| 275 | IFs = cIFs;
|
---|
| 276 |
|
---|
| 277 |
|
---|
| 278 | // Number of channels and polarizations.
|
---|
| 279 | cNChan = new int[cNIF];
|
---|
| 280 | cNPol = new int[cNIF];
|
---|
| 281 | cHaveXPol = new int[cNIF];
|
---|
| 282 | cGetXPol = 0;
|
---|
| 283 |
|
---|
| 284 | int maxProd = 0;
|
---|
| 285 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 286 | cNChan[iIF] = if_.if_nfreq[iIF];
|
---|
| 287 | cNPol[iIF] = if_.if_nstok[iIF];
|
---|
| 288 | cNChan[iIF] -= cNChan[iIF]%2;
|
---|
| 289 |
|
---|
| 290 | // Do we have cross-polarization data?
|
---|
| 291 | if ((cHaveXPol[iIF] = cNPol[iIF] > 2)) {
|
---|
| 292 | // Cross-polarization data is handled separately.
|
---|
| 293 | cNPol[iIF] = 2;
|
---|
| 294 |
|
---|
| 295 | // Default is to get it if we have it.
|
---|
| 296 | cGetXPol = 1;
|
---|
| 297 | }
|
---|
| 298 |
|
---|
| 299 | // Maximum number of spectral products in any IF.
|
---|
| 300 | int nProd = if_.if_nfreq[iIF] * if_.if_nstok[iIF];
|
---|
| 301 | if (maxProd < nProd) maxProd = nProd;
|
---|
| 302 | }
|
---|
| 303 |
|
---|
[1757] | 304 | // Allocate memory for RPFITSIN subroutine arguments.
|
---|
| 305 | if (cVis) delete [] cVis;
|
---|
| 306 | if (cWgt) delete [] cWgt;
|
---|
| 307 | cVis = new float[2*maxProd];
|
---|
| 308 | cWgt = new float[maxProd];
|
---|
[1325] | 309 |
|
---|
| 310 | nChan = cNChan;
|
---|
| 311 | nPol = cNPol;
|
---|
| 312 | haveXPol = cHaveXPol;
|
---|
| 313 |
|
---|
| 314 |
|
---|
| 315 | // Default channel range selection.
|
---|
| 316 | cStartChan = new int[cNIF];
|
---|
| 317 | cEndChan = new int[cNIF];
|
---|
| 318 | cRefChan = new int[cNIF];
|
---|
| 319 |
|
---|
| 320 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 321 | cStartChan[iIF] = 1;
|
---|
| 322 | cEndChan[iIF] = cNChan[iIF];
|
---|
| 323 | cRefChan[iIF] = cNChan[iIF]/2 + 1;
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 | cGetSpectra = 1;
|
---|
| 327 |
|
---|
| 328 |
|
---|
| 329 | // No baseline parameters in MBFITS.
|
---|
| 330 | haveBase = 0;
|
---|
| 331 |
|
---|
| 332 | // Always have spectra in MBFITS.
|
---|
| 333 | haveSpectra = cHaveSpectra = 1;
|
---|
| 334 |
|
---|
| 335 |
|
---|
| 336 | // Integration cycle time (s).
|
---|
| 337 | cIntTime = param_.intime;
|
---|
| 338 |
|
---|
| 339 | // Can't deduce binning mode till later.
|
---|
| 340 | cNBin = 0;
|
---|
| 341 |
|
---|
| 342 |
|
---|
| 343 | // Read the first syscal record.
|
---|
| 344 | if (rpget(1, cEOS)) {
|
---|
[1757] | 345 | os << LogIO::SEVERE << "Failed to read first syscal record." << LogIO::POST ;
|
---|
[1325] | 346 | close();
|
---|
| 347 | return 1;
|
---|
| 348 | }
|
---|
| 349 |
|
---|
| 350 | // Additional information for Parkes Multibeam data?
|
---|
| 351 | extraSysCal = (sc_.sc_ant > anten_.nant);
|
---|
| 352 |
|
---|
| 353 |
|
---|
| 354 | cFirst = 1;
|
---|
| 355 | cEOF = 0;
|
---|
| 356 | cFlushing = 0;
|
---|
| 357 |
|
---|
| 358 | return 0;
|
---|
| 359 | }
|
---|
| 360 |
|
---|
| 361 | //---------------------------------------------------- MBFITSreader::getHeader
|
---|
| 362 |
|
---|
| 363 | // Get parameters describing the data.
|
---|
| 364 |
|
---|
| 365 | int MBFITSreader::getHeader(
|
---|
| 366 | char observer[32],
|
---|
| 367 | char project[32],
|
---|
| 368 | char telescope[32],
|
---|
| 369 | double antPos[3],
|
---|
| 370 | char obsType[32],
|
---|
[1757] | 371 | char bunit[32],
|
---|
[1325] | 372 | float &equinox,
|
---|
| 373 | char radecsys[32],
|
---|
| 374 | char dopplerFrame[32],
|
---|
| 375 | char datobs[32],
|
---|
| 376 | double &utc,
|
---|
| 377 | double &refFreq,
|
---|
| 378 | double &bandwidth)
|
---|
| 379 | {
|
---|
[1757] | 380 | const string methodName = "getHeader()" ;
|
---|
| 381 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
| 382 |
|
---|
[1325] | 383 | if (!cMBopen) {
|
---|
[1757] | 384 | os << LogIO::SEVERE << "An MBFITS file has not been opened." << LogIO::POST ;
|
---|
[1325] | 385 | return 1;
|
---|
| 386 | }
|
---|
| 387 |
|
---|
| 388 | sprintf(observer, "%-16.16s", names_.rp_observer);
|
---|
| 389 | sprintf(project, "%-16.16s", names_.object);
|
---|
| 390 | sprintf(telescope, "%-16.16s", names_.instrument);
|
---|
| 391 |
|
---|
| 392 | // Observatory coordinates (ITRF), in m.
|
---|
| 393 | antPos[0] = doubles_.x[0];
|
---|
| 394 | antPos[1] = doubles_.y[0];
|
---|
| 395 | antPos[2] = doubles_.z[0];
|
---|
| 396 |
|
---|
| 397 | // This is the only sure way to identify the telescope, maybe.
|
---|
| 398 | if (strncmp(names_.sta, "MB0", 3) == 0) {
|
---|
| 399 | // Parkes Multibeam.
|
---|
| 400 | sprintf(telescope, "%-16.16s", "ATPKSMB");
|
---|
| 401 | antPos[0] = -4554232.087;
|
---|
| 402 | antPos[1] = 2816759.046;
|
---|
| 403 | antPos[2] = -3454035.950;
|
---|
[1757] | 404 |
|
---|
[1325] | 405 | } else if (strncmp(names_.sta, "HOH", 3) == 0) {
|
---|
| 406 | // Parkes HOH receiver.
|
---|
| 407 | sprintf(telescope, "%-16.16s", "ATPKSHOH");
|
---|
| 408 | antPos[0] = -4554232.087;
|
---|
| 409 | antPos[1] = 2816759.046;
|
---|
| 410 | antPos[2] = -3454035.950;
|
---|
[1757] | 411 |
|
---|
[1325] | 412 | } else if (strncmp(names_.sta, "CA0", 3) == 0) {
|
---|
| 413 | // An ATCA antenna, use the array centre position.
|
---|
| 414 | sprintf(telescope, "%-16.16s", "ATCA");
|
---|
| 415 | antPos[0] = -4750915.837;
|
---|
| 416 | antPos[1] = 2792906.182;
|
---|
| 417 | antPos[2] = -3200483.747;
|
---|
[1757] | 418 |
|
---|
| 419 | // ATCA-104. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
[3067] | 420 | // antPos[0] = -4751640.182; // ᅵ 0.008
|
---|
| 421 | // antPos[1] = 2791700.322; // ᅵ 0.006
|
---|
| 422 | // antPos[2] = -3200490.668; // ᅵ 0.007
|
---|
[1757] | 423 | //
|
---|
[1325] | 424 | } else if (strncmp(names_.sta, "MOP", 3) == 0) {
|
---|
[1757] | 425 | // Mopra. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
[1325] | 426 | sprintf(telescope, "%-16.16s", "ATMOPRA");
|
---|
[3067] | 427 | antPos[0] = -4682769.444; // ᅵ 0.009
|
---|
| 428 | antPos[1] = 2802618.963; // ᅵ 0.006
|
---|
| 429 | antPos[2] = -3291758.864; // ᅵ 0.008
|
---|
[1757] | 430 |
|
---|
[1325] | 431 | } else if (strncmp(names_.sta, "HOB", 3) == 0) {
|
---|
| 432 | // Hobart.
|
---|
| 433 | sprintf(telescope, "%-16.16s", "HOBART");
|
---|
| 434 | antPos[0] = -3950236.735;
|
---|
| 435 | antPos[1] = 2522347.567;
|
---|
| 436 | antPos[2] = -4311562.569;
|
---|
[1757] | 437 |
|
---|
[1325] | 438 | } else if (strncmp(names_.sta, "CED", 3) == 0) {
|
---|
[1757] | 439 | // Ceduna. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
[1325] | 440 | sprintf(telescope, "%-16.16s", "CEDUNA");
|
---|
[3067] | 441 | antPos[0] = -3753443.168; // ᅵ 0.017
|
---|
| 442 | antPos[1] = 3912709.794; // ᅵ 0.017
|
---|
| 443 | antPos[2] = -3348067.060; // ᅵ 0.016
|
---|
[1757] | 444 |
|
---|
[1325] | 445 | } else if (strncmp(names_.sta, "tid", 3) == 0) {
|
---|
| 446 | // DSS.
|
---|
| 447 | sprintf(telescope, "%-16.16s", "DSS-43");
|
---|
| 448 | antPos[0] = -4460894.727;
|
---|
| 449 | antPos[1] = 2682361.530;
|
---|
| 450 | antPos[2] = -3674748.424;
|
---|
| 451 | }
|
---|
| 452 |
|
---|
| 453 | // Observation type.
|
---|
| 454 | int j;
|
---|
| 455 | for (j = 0; j < 31; j++) {
|
---|
| 456 | obsType[j] = names_.card[11+j];
|
---|
| 457 | if (obsType[j] == '\'') break;
|
---|
| 458 | }
|
---|
| 459 | obsType[j] = '\0';
|
---|
| 460 |
|
---|
[1757] | 461 | // Brightness unit.
|
---|
| 462 | sprintf(bunit, "%-16.16s", names_.bunit);
|
---|
| 463 | if (strcmp(bunit, "JY") == 0) {
|
---|
| 464 | bunit[1] = 'y';
|
---|
| 465 | } else if (strcmp(bunit, "JY/BEAM") == 0) {
|
---|
| 466 | strcpy(bunit, "Jy/beam");
|
---|
| 467 | }
|
---|
| 468 |
|
---|
[1325] | 469 | // Coordinate frames.
|
---|
| 470 | equinox = 2000.0f;
|
---|
| 471 | strcpy(radecsys, "FK5");
|
---|
| 472 | strcpy(dopplerFrame, "TOPOCENT");
|
---|
| 473 |
|
---|
| 474 | // Time at start of observation.
|
---|
| 475 | sprintf(datobs, "%-10.10s", names_.datobs);
|
---|
[1757] | 476 | utc = cUTC;
|
---|
[1325] | 477 |
|
---|
| 478 | // Spectral parameters.
|
---|
| 479 | refFreq = doubles_.if_freq[0];
|
---|
| 480 | bandwidth = doubles_.if_bw[0];
|
---|
| 481 |
|
---|
| 482 | return 0;
|
---|
| 483 | }
|
---|
| 484 |
|
---|
| 485 | //-------------------------------------------------- MBFITSreader::getFreqInfo
|
---|
| 486 |
|
---|
| 487 | // Get frequency parameters for each IF.
|
---|
| 488 |
|
---|
| 489 | int MBFITSreader::getFreqInfo(
|
---|
[3067] | 490 | int &/*nIF*/,
|
---|
| 491 | double* &/*startFreq*/,
|
---|
| 492 | double* &/*endFreq*/)
|
---|
[1325] | 493 | {
|
---|
| 494 | // This is RPFITS - can't do it!
|
---|
| 495 | return 1;
|
---|
| 496 | }
|
---|
| 497 |
|
---|
| 498 | //---------------------------------------------------- MBFITSreader::findRange
|
---|
| 499 |
|
---|
| 500 | // Find the range of the data selected in time and position.
|
---|
| 501 |
|
---|
| 502 | int MBFITSreader::findRange(
|
---|
[3067] | 503 | int &/*nRow*/,
|
---|
| 504 | int &/*nSel*/,
|
---|
| 505 | char /*dateSpan*/[2][32],
|
---|
| 506 | double /*utcSpan*/[2],
|
---|
| 507 | double* &/*positions*/)
|
---|
[1325] | 508 | {
|
---|
| 509 | // This is RPFITS - can't do it!
|
---|
| 510 | return 1;
|
---|
| 511 | }
|
---|
| 512 |
|
---|
| 513 | //--------------------------------------------------------- MBFITSreader::read
|
---|
| 514 |
|
---|
[1757] | 515 | // Read the next data record (if you're feeling lucky).
|
---|
[1325] | 516 |
|
---|
| 517 | int MBFITSreader::read(
|
---|
[1757] | 518 | MBrecord &MBrec)
|
---|
[1325] | 519 | {
|
---|
[1757] | 520 | const string methodName = "read()" ;
|
---|
| 521 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
| 522 |
|
---|
[1325] | 523 | int beamNo = -1;
|
---|
[1757] | 524 | int haveData, pCode = 0, status;
|
---|
| 525 | double raRate = 0.0, decRate = 0.0, paRate = 0.0;
|
---|
| 526 | MBrecord *iMBuff = 0x0;
|
---|
[1325] | 527 |
|
---|
| 528 | if (!cMBopen) {
|
---|
[1757] | 529 | os << LogIO::SEVERE << "An MBFITS file has not been opened." << LogIO::POST ;
|
---|
[1325] | 530 | return 1;
|
---|
| 531 | }
|
---|
| 532 |
|
---|
[1757] | 533 | // Positions recorded in the input records usually do not coincide with the
|
---|
| 534 | // midpoint of the integration and hence the input must be buffered so that
|
---|
| 535 | // true positions may be interpolated.
|
---|
[1325] | 536 | //
|
---|
| 537 | // On the first call nBeamSel buffers of length nBin, are allocated and
|
---|
| 538 | // filled, where nBin is the number of time bins.
|
---|
| 539 | //
|
---|
| 540 | // The input records for binned, single beam data with multiple simultaneous
|
---|
| 541 | // IFs are ordered by IF within each integration rather than by bin number
|
---|
| 542 | // and hence are not in time order. No multibeam data exists with
|
---|
| 543 | // nBin > 1 but the likelihood that the input records would be in beam/IF
|
---|
| 544 | // order and the requirement that output records be in time order would
|
---|
| 545 | // force an elaborate double-buffering system and we do not support it.
|
---|
| 546 | //
|
---|
| 547 | // Once all buffers are filled, the next record for each beam pertains to
|
---|
| 548 | // the next integration and should contain new position information allowing
|
---|
| 549 | // the proper position for each spectrum in the buffer to be interpolated.
|
---|
| 550 | // The buffers are then flushed in time order. For single beam data there
|
---|
| 551 | // is only one buffer and reads from the MBFITS file are suspended while the
|
---|
| 552 | // flush is in progress. For multibeam data each buffer is of unit length
|
---|
| 553 | // so the flush completes immediately and the new record takes its place.
|
---|
| 554 |
|
---|
| 555 | haveData = 0;
|
---|
| 556 | while (!haveData) {
|
---|
| 557 | int iBeamSel = -1, iIFSel = -1;
|
---|
| 558 |
|
---|
| 559 | if (!cFlushing) {
|
---|
| 560 | if (cEOF) {
|
---|
| 561 | return -1;
|
---|
| 562 | }
|
---|
| 563 |
|
---|
| 564 | // Read the next record.
|
---|
[1757] | 565 | pCode = 0;
|
---|
[1325] | 566 | if ((status = rpget(0, cEOS)) == -1) {
|
---|
| 567 | // EOF.
|
---|
| 568 | cEOF = 1;
|
---|
| 569 | cFlushing = 1;
|
---|
| 570 | cFlushBin = 0;
|
---|
| 571 | cFlushIF = 0;
|
---|
| 572 |
|
---|
| 573 | #ifdef PKSIO_DEBUG
|
---|
[1757] | 574 | os << LogIO::DEBUGGING << "\nEnd-of-file detected, flushing last cycle.\n" << LogIO::POST ;
|
---|
[1325] | 575 | #endif
|
---|
| 576 |
|
---|
| 577 | } else if (status) {
|
---|
| 578 | // IO error.
|
---|
| 579 | return 1;
|
---|
| 580 |
|
---|
| 581 | } else {
|
---|
| 582 | if (cFirst) {
|
---|
| 583 | // First data; cBeamSel[] stores the buffer index for each beam.
|
---|
| 584 | cNBeamSel = 0;
|
---|
| 585 | cBeamSel = new int[cNBeam];
|
---|
| 586 |
|
---|
| 587 | for (int iBeam = 0; iBeam < cNBeam; iBeam++) {
|
---|
| 588 | if (cBeams[iBeam]) {
|
---|
| 589 | // Buffer offset for this beam.
|
---|
| 590 | cBeamSel[iBeam] = cNBeamSel++;
|
---|
| 591 | } else {
|
---|
| 592 | // Signal that the beam is not selected.
|
---|
| 593 | cBeamSel[iBeam] = -1;
|
---|
| 594 | }
|
---|
| 595 | }
|
---|
| 596 |
|
---|
| 597 | // Set up bookkeeping arrays for IFs.
|
---|
| 598 | cIFSel = new int[cNIF];
|
---|
| 599 | cChanOff = new int[cNIF];
|
---|
| 600 | cXpolOff = new int[cNIF];
|
---|
| 601 |
|
---|
| 602 | int maxChan = 0;
|
---|
| 603 | int maxXpol = 0;
|
---|
| 604 |
|
---|
[1757] | 605 | cSimulIF = 0;
|
---|
[1325] | 606 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 607 | if (cIFs[iIF]) {
|
---|
| 608 | // Buffer index for each IF within each simultaneous set.
|
---|
| 609 | cIFSel[iIF] = 0;
|
---|
| 610 |
|
---|
| 611 | // Array offsets for each IF within each simultaneous set.
|
---|
| 612 | cChanOff[iIF] = 0;
|
---|
| 613 | cXpolOff[iIF] = 0;
|
---|
| 614 |
|
---|
| 615 | // Look for earlier IFs in the same simultaneous set.
|
---|
| 616 | for (int jIF = 0; jIF < iIF; jIF++) {
|
---|
| 617 | if (!cIFs[jIF]) continue;
|
---|
| 618 |
|
---|
| 619 | if (if_.if_simul[jIF] == if_.if_simul[iIF]) {
|
---|
| 620 | // Got one, increment indices.
|
---|
| 621 | cIFSel[iIF]++;
|
---|
| 622 |
|
---|
| 623 | cChanOff[iIF] += cNChan[jIF] * cNPol[jIF];
|
---|
| 624 | if (cHaveXPol[jIF]) {
|
---|
| 625 | cXpolOff[iIF] += 2 * cNChan[jIF];
|
---|
| 626 | }
|
---|
| 627 | }
|
---|
| 628 | }
|
---|
| 629 |
|
---|
| 630 | // Maximum number of selected IFs in any simultaneous set.
|
---|
[1757] | 631 | cSimulIF = max(cSimulIF, cIFSel[iIF]+1);
|
---|
[1325] | 632 |
|
---|
| 633 | // Maximum memory required for any simultaneous set.
|
---|
| 634 | maxChan = max(maxChan, cChanOff[iIF] + cNChan[iIF]*cNPol[iIF]);
|
---|
| 635 | if (cHaveXPol[iIF]) {
|
---|
| 636 | maxXpol = max(maxXpol, cXpolOff[iIF] + 2*cNChan[iIF]);
|
---|
| 637 | }
|
---|
| 638 |
|
---|
| 639 | } else {
|
---|
| 640 | // Signal that the IF is not selected.
|
---|
| 641 | cIFSel[iIF] = -1;
|
---|
| 642 | }
|
---|
| 643 | }
|
---|
| 644 |
|
---|
| 645 | // Check for binning mode observations.
|
---|
| 646 | if (param_.intbase > 0.0f) {
|
---|
| 647 | cNBin = int((cIntTime / param_.intbase) + 0.5);
|
---|
| 648 |
|
---|
| 649 | // intbase sometimes contains rubbish.
|
---|
| 650 | if (cNBin == 0) {
|
---|
| 651 | cNBin = 1;
|
---|
| 652 | }
|
---|
| 653 | } else {
|
---|
| 654 | cNBin = 1;
|
---|
| 655 | }
|
---|
| 656 |
|
---|
| 657 | if (cNBin > 1 && cNBeamSel > 1) {
|
---|
[1757] | 658 | os << LogIO::SEVERE << "Cannot handle binning mode for multiple beams.\nSelect a single beam for input." << LogIO::POST ;
|
---|
[1325] | 659 | close();
|
---|
| 660 | return 1;
|
---|
| 661 | }
|
---|
| 662 |
|
---|
[1757] | 663 | // Allocate buffer data storage; the MBrecord constructor zeroes
|
---|
| 664 | // class members such as cycleNo that are tested in the first pass
|
---|
| 665 | // below.
|
---|
[1325] | 666 | int nBuff = cNBeamSel * cNBin;
|
---|
[1757] | 667 | cBuffer = new MBrecord[nBuff];
|
---|
[1325] | 668 |
|
---|
| 669 | // Allocate memory for spectral arrays.
|
---|
| 670 | for (int ibuff = 0; ibuff < nBuff; ibuff++) {
|
---|
[1757] | 671 | cBuffer[ibuff].setNIFs(cSimulIF);
|
---|
[1325] | 672 | cBuffer[ibuff].allocate(0, maxChan, maxXpol);
|
---|
[1757] | 673 |
|
---|
| 674 | // Signal that this IF in this buffer has been flushed.
|
---|
| 675 | for (int iIF = 0; iIF < cSimulIF; iIF++) {
|
---|
| 676 | cBuffer[ibuff].IFno[iIF] = 0;
|
---|
| 677 | }
|
---|
[1325] | 678 | }
|
---|
| 679 |
|
---|
| 680 | cPosUTC = new double[cNBeamSel];
|
---|
| 681 |
|
---|
| 682 | cFirst = 0;
|
---|
| 683 | cScanNo = 1;
|
---|
| 684 | cCycleNo = 0;
|
---|
[1757] | 685 | cPrevUTC = -1.0;
|
---|
[1325] | 686 | }
|
---|
| 687 |
|
---|
| 688 | // Check for end-of-scan.
|
---|
| 689 | if (cEOS) {
|
---|
| 690 | cScanNo++;
|
---|
| 691 | cCycleNo = 0;
|
---|
[1757] | 692 | cPrevUTC = -1.0;
|
---|
[1325] | 693 | }
|
---|
| 694 |
|
---|
[1757] | 695 | // Apply beam and IF selection before the change-of-day test to allow
|
---|
| 696 | // a single selected beam and IF to be handled in binning-mode.
|
---|
| 697 | beamNo = int(cBaseline / 256.0);
|
---|
| 698 | if (beamNo == 1) {
|
---|
| 699 | // Store the position of beam 1 for grid convergence corrections.
|
---|
| 700 | cRA0 = cU;
|
---|
| 701 | cDec0 = cV;
|
---|
| 702 | }
|
---|
[1325] | 703 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 704 | if (iBeamSel < 0) continue;
|
---|
| 705 |
|
---|
| 706 | // Sanity check (mainly for MOPS).
|
---|
[1757] | 707 | if (cIFno > cNIF) continue;
|
---|
[1325] | 708 |
|
---|
[1757] | 709 | // Apply IF selection; iIFSel == 0 for the first selected IF, == 1
|
---|
| 710 | // for the second, etc.
|
---|
| 711 | iIFSel = cIFSel[cIFno - 1];
|
---|
[1325] | 712 | if (iIFSel < 0) continue;
|
---|
| 713 |
|
---|
| 714 |
|
---|
[1757] | 715 | if (cNBin > 1) {
|
---|
| 716 | // Binning mode: correct the time.
|
---|
| 717 | cUTC += param_.intbase * (cBin - (cNBin + 1)/2.0);
|
---|
[1325] | 718 | }
|
---|
| 719 |
|
---|
[1757] | 720 | // Check for change-of-day.
|
---|
| 721 | double cod = 0.0;
|
---|
| 722 | if ((cUTC + 86400.0) < (cPrevUTC + 600.0)) {
|
---|
| 723 | // cUTC should continue to increase past 86400 during a single scan.
|
---|
| 724 | // However, if the RPFITS file contains multiple scans that straddle
|
---|
| 725 | // midnight then cUTC can jump backwards from the end of one scan to
|
---|
| 726 | // the start of the next.
|
---|
| 727 | #ifdef PKSIO_DEBUG
|
---|
| 728 | char buf[256] ;
|
---|
| 729 | sprintf(buf, "Change-of-day on cUTC: %.1f -> %.1f\n", cPrevUTC, cUTC);
|
---|
| 730 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 731 | #endif
|
---|
| 732 | // Can't change the recorded value of cUTC directly (without also
|
---|
| 733 | // changing dateobs) so change-of-day must be recorded separately as
|
---|
| 734 | // an offset to be applied when comparing integration timestamps.
|
---|
| 735 | cod = 86400.0;
|
---|
| 736 |
|
---|
| 737 | }
|
---|
| 738 |
|
---|
| 739 | if ((cUTC+cod) < cPrevUTC - 1.0) {
|
---|
| 740 | if (cBin == 1 && iIFSel) {
|
---|
| 741 | // Multiple-IF, binning-mode data is only partially time ordered.
|
---|
| 742 | #ifdef PKSIO_DEBUG
|
---|
| 743 | fprintf(stderr, "New IF in multiple-IF, binning-mode data.\n");
|
---|
| 744 | #endif
|
---|
| 745 | cCycleNo -= cNBin;
|
---|
| 746 | cPrevUTC = -1.0;
|
---|
| 747 |
|
---|
| 748 | } else {
|
---|
| 749 | // All other data should be fully time ordered.
|
---|
| 750 | sprintf(cMsg,
|
---|
| 751 | "Cycle %d:%03d-%03d, UTC went backwards from\n"
|
---|
| 752 | "%.1f to %.1f! Incrementing day number,\n"
|
---|
| 753 | "positions may be unreliable.", cScanNo, cCycleNo,
|
---|
| 754 | cCycleNo+1, cPrevUTC, cUTC);
|
---|
| 755 | //logMsg(cMsg);
|
---|
| 756 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
| 757 | cUTC += 86400.0;
|
---|
| 758 | }
|
---|
| 759 | }
|
---|
| 760 |
|
---|
[1453] | 761 | // New integration cycle?
|
---|
[1757] | 762 | if ((cUTC+cod) > cPrevUTC) {
|
---|
[1453] | 763 | cCycleNo++;
|
---|
[1757] | 764 | cPrevUTC = cUTC + 0.0001;
|
---|
[1453] | 765 | }
|
---|
| 766 |
|
---|
[1757] | 767 | sprintf(cDateObs, "%-10.10s", names_.datobs);
|
---|
| 768 | cDateObs[10] = '\0';
|
---|
[1325] | 769 |
|
---|
| 770 | // Compute buffer number.
|
---|
| 771 | iMBuff = cBuffer + iBeamSel;
|
---|
[1757] | 772 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
[1325] | 773 |
|
---|
| 774 | if (cCycleNo < iMBuff->cycleNo) {
|
---|
| 775 | // Note that if the first beam and IF are not both selected cEOS
|
---|
| 776 | // will be cleared by rpget() when the next beam/IF is read.
|
---|
| 777 | cEOS = 1;
|
---|
| 778 | }
|
---|
| 779 |
|
---|
| 780 | // Begin flush cycle?
|
---|
[1757] | 781 | if (cEOS || (iMBuff->nIF && (cUTC+cod) > (iMBuff->utc+0.0001))) {
|
---|
[1325] | 782 | cFlushing = 1;
|
---|
| 783 | cFlushBin = 0;
|
---|
| 784 | cFlushIF = 0;
|
---|
| 785 | }
|
---|
| 786 |
|
---|
| 787 | #ifdef PKSIO_DEBUG
|
---|
[1757] | 788 | char rel = '=';
|
---|
| 789 | double dt = utcDiff(cUTC, cW);
|
---|
| 790 | if (dt < 0.0) {
|
---|
| 791 | rel = '<';
|
---|
| 792 | } else if (dt > 0.0) {
|
---|
| 793 | rel = '>';
|
---|
| 794 | }
|
---|
| 795 |
|
---|
| 796 | sprintf(buf, "\n In:%4d%4d%3d%3d %.3f %c %.3f (%+.3fs) - "
|
---|
| 797 | "%sflushing\n", cScanNo, cCycleNo, beamNo, cIFno, cUTC, rel, cW, dt,
|
---|
| 798 | cFlushing ? "" : "not ");
|
---|
| 799 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 800 | if (cEOS) {
|
---|
| 801 | sprintf(buf, "Start of new scan, flushing previous scan.\n");
|
---|
| 802 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 803 | }
|
---|
[1325] | 804 | #endif
|
---|
| 805 | }
|
---|
| 806 | }
|
---|
| 807 |
|
---|
| 808 |
|
---|
| 809 | if (cFlushing) {
|
---|
| 810 | // Find the oldest integration to flush, noting that the last
|
---|
| 811 | // integration cycle may be incomplete.
|
---|
| 812 | beamNo = 0;
|
---|
| 813 | int cycleNo = 0;
|
---|
| 814 | for (; cFlushBin < cNBin; cFlushBin++) {
|
---|
| 815 | for (iBeamSel = 0; iBeamSel < cNBeamSel; iBeamSel++) {
|
---|
| 816 | iMBuff = cBuffer + iBeamSel + cNBeamSel*cFlushBin;
|
---|
| 817 |
|
---|
[1757] | 818 | // iMBuff->nIF is decremented (below) and if zero signals that all
|
---|
| 819 | // IFs in an integration have been flushed.
|
---|
[1325] | 820 | if (iMBuff->nIF) {
|
---|
| 821 | if (cycleNo == 0 || iMBuff->cycleNo < cycleNo) {
|
---|
| 822 | beamNo = iMBuff->beamNo;
|
---|
| 823 | cycleNo = iMBuff->cycleNo;
|
---|
| 824 | }
|
---|
| 825 | }
|
---|
| 826 | }
|
---|
| 827 |
|
---|
| 828 | if (beamNo) {
|
---|
| 829 | // Found an integration to flush.
|
---|
| 830 | break;
|
---|
| 831 | }
|
---|
[1757] | 832 |
|
---|
| 833 | // Start with the first IF in the next bin.
|
---|
| 834 | cFlushIF = 0;
|
---|
[1325] | 835 | }
|
---|
| 836 |
|
---|
| 837 | if (beamNo) {
|
---|
| 838 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 839 | iMBuff = cBuffer + iBeamSel + cNBeamSel*cFlushBin;
|
---|
| 840 |
|
---|
| 841 | // Find the IF to flush.
|
---|
[1757] | 842 | for (; cFlushIF < cSimulIF; cFlushIF++) {
|
---|
[1325] | 843 | if (iMBuff->IFno[cFlushIF]) break;
|
---|
| 844 | }
|
---|
| 845 |
|
---|
| 846 | } else {
|
---|
| 847 | // Flush complete.
|
---|
| 848 | cFlushing = 0;
|
---|
| 849 | if (cEOF) {
|
---|
| 850 | return -1;
|
---|
| 851 | }
|
---|
| 852 |
|
---|
| 853 | // The last record read must have been the first of a new cycle.
|
---|
[1757] | 854 | beamNo = int(cBaseline / 256.0);
|
---|
[1325] | 855 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 856 |
|
---|
| 857 | // Compute buffer number.
|
---|
| 858 | iMBuff = cBuffer + iBeamSel;
|
---|
[1757] | 859 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
[1325] | 860 | }
|
---|
| 861 | }
|
---|
| 862 |
|
---|
| 863 |
|
---|
[1757] | 864 | if (cInterp && cFlushing == 1) {
|
---|
| 865 | // Start of flush cycle, interpolate the beam position.
|
---|
| 866 | //
|
---|
| 867 | // The position is measured by the control system at a time returned by
|
---|
| 868 | // RPFITSIN as the 'w' visibility coordinate. The ra and dec, returned
|
---|
| 869 | // as the 'u' and 'v' visibility coordinates, must be interpolated to
|
---|
| 870 | // the integration time which RPFITSIN returns as 'cUTC', this usually
|
---|
| 871 | // being a second or two later. The interpolation method used here is
|
---|
| 872 | // based on the scan rate.
|
---|
| 873 | //
|
---|
| 874 | // "This" RA, Dec, and UTC refers to the position currently stored in
|
---|
| 875 | // the buffer marked for output (iMBuff). This position is interpolated
|
---|
| 876 | // to the midpoint of that integration using either
|
---|
| 877 | // a) the rate currently sitting in iMBuff, which was computed from
|
---|
| 878 | // the previous integration, otherwise
|
---|
| 879 | // b) from the position recorded in the "next" integration which is
|
---|
| 880 | // currently sitting in the RPFITS commons,
|
---|
| 881 | // so that the position timestamps straddle the midpoint of the
|
---|
| 882 | // integration and is thereby interpolated rather than extrapolated.
|
---|
| 883 | //
|
---|
| 884 | // At the end of a scan, or if the next position has not been updated
|
---|
| 885 | // or its timestamp does not advance sufficiently, the most recent
|
---|
| 886 | // determination of the scan rate will be used for extrapolation which
|
---|
| 887 | // is quantified by the "rate age" measured in seconds beyond the
|
---|
| 888 | // interval defined by the position timestamps.
|
---|
| 889 |
|
---|
| 890 | // At this point, iMBuff contains cU, cV, cW, parAngle and focusRot
|
---|
| 891 | // stored from the previous call to rpget() for this beam (i.e. "this"),
|
---|
| 892 | // and also raRate, decRate and paRate computed from that integration
|
---|
| 893 | // and the previous one.
|
---|
| 894 | double thisRA = iMBuff->ra;
|
---|
| 895 | double thisDec = iMBuff->dec;
|
---|
| 896 | double thisUTC = cPosUTC[iBeamSel];
|
---|
| 897 | double thisPA = iMBuff->parAngle + iMBuff->focusRot;
|
---|
| 898 |
|
---|
[1325] | 899 | #ifdef PKSIO_DEBUG
|
---|
[1757] | 900 | sprintf(buf, "This (%d) ra, dec, UTC: %9.4f %9.4f %10.3f %9.4f\n",
|
---|
| 901 | iMBuff->cycleNo, thisRA*R2D, thisDec*R2D, thisUTC, thisPA*R2D);
|
---|
| 902 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
[1325] | 903 | #endif
|
---|
| 904 |
|
---|
[1757] | 905 | if (cEOF || cEOS) {
|
---|
| 906 | // Use rates from the last cycle.
|
---|
| 907 | raRate = iMBuff->raRate;
|
---|
| 908 | decRate = iMBuff->decRate;
|
---|
| 909 | paRate = iMBuff->paRate;
|
---|
[1325] | 910 |
|
---|
[1757] | 911 | } else {
|
---|
| 912 | if (cW == thisUTC) {
|
---|
| 913 | // The control system at Mopra typically does not update the
|
---|
| 914 | // positions between successive integration cycles at the end of a
|
---|
| 915 | // scan (nor are they flagged). In this case we use the previously
|
---|
| 916 | // computed rates, even if from the previous scan since these are
|
---|
| 917 | // likely to be a better guess than anything else.
|
---|
| 918 | raRate = iMBuff->raRate;
|
---|
| 919 | decRate = iMBuff->decRate;
|
---|
| 920 | paRate = iMBuff->paRate;
|
---|
[1325] | 921 |
|
---|
[1757] | 922 | if (cU == thisRA && cV == thisDec) {
|
---|
| 923 | // Position and timestamp unchanged.
|
---|
| 924 | pCode = 1;
|
---|
[1325] | 925 |
|
---|
[1757] | 926 | } else if (fabs(cU-thisRA) < 0.0001 && fabs(cV-thisDec) < 0.0001) {
|
---|
| 927 | // Allow small rounding errors (seen infrequently).
|
---|
| 928 | pCode = 1;
|
---|
[1325] | 929 |
|
---|
| 930 | } else {
|
---|
[1757] | 931 | // (cU,cV) are probably rubbish (not yet seen in practice).
|
---|
| 932 | pCode = 2;
|
---|
| 933 | cU = thisRA;
|
---|
| 934 | cV = thisDec;
|
---|
[1325] | 935 | }
|
---|
| 936 |
|
---|
[1757] | 937 | #ifdef PKSIO_DEBUG
|
---|
| 938 | sprintf(buf, "Next (%d) ra, dec, UTC: %9.4f %9.4f %10.3f "
|
---|
| 939 | "(0.000s)\n", cCycleNo, cU*R2D, cV*R2D, cW);
|
---|
| 940 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 941 | #endif
|
---|
[1325] | 942 |
|
---|
[1757] | 943 | } else {
|
---|
| 944 | double nextRA = cU;
|
---|
| 945 | double nextDec = cV;
|
---|
[1325] | 946 |
|
---|
[1757] | 947 | // Check and, if necessary, repair the position timestamp,
|
---|
| 948 | // remembering that pCode refers to the NEXT cycle.
|
---|
| 949 | pCode = fixw(cDateObs, cCycleNo, beamNo, cAvRate, thisRA, thisDec,
|
---|
| 950 | thisUTC, nextRA, nextDec, cW);
|
---|
| 951 | if (pCode > 0) pCode += 3;
|
---|
| 952 | double nextUTC = cW;
|
---|
[1325] | 953 |
|
---|
[1757] | 954 | #ifdef PKSIO_DEBUG
|
---|
| 955 | sprintf(buf, "Next (%d) ra, dec, UTC: %9.4f %9.4f %10.3f "
|
---|
| 956 | "(%+.3fs)\n", cCycleNo, nextRA*R2D, nextDec*R2D, nextUTC,
|
---|
| 957 | utcDiff(nextUTC, thisUTC));
|
---|
| 958 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 959 | #endif
|
---|
[1325] | 960 |
|
---|
[1757] | 961 | // Compute the scan rate for this beam.
|
---|
| 962 | double dUTC = utcDiff(nextUTC, thisUTC);
|
---|
| 963 | if ((0.0 < dUTC) && (dUTC < 600.0)) {
|
---|
| 964 | scanRate(cRA0, cDec0, thisRA, thisDec, nextRA, nextDec, dUTC,
|
---|
| 965 | raRate, decRate);
|
---|
| 966 |
|
---|
| 967 | // Update the mean scan rate.
|
---|
| 968 | cAvRate[0] = (cAvRate[0]*cNRate + raRate) / (cNRate + 1);
|
---|
| 969 | cAvRate[1] = (cAvRate[1]*cNRate + decRate) / (cNRate + 1);
|
---|
| 970 | cNRate++;
|
---|
| 971 |
|
---|
| 972 | // Rate of change of position angle.
|
---|
| 973 | if (sc_.sc_ant <= anten_.nant) {
|
---|
| 974 | paRate = 0.0;
|
---|
| 975 | } else {
|
---|
| 976 | int iOff = sc_.sc_q * (sc_.sc_ant - 1) - 1;
|
---|
| 977 | double nextPA = sc_.sc_cal[iOff + 4] + sc_.sc_cal[iOff + 7];
|
---|
| 978 | double paDiff = nextPA - thisPA;
|
---|
| 979 | if (paDiff > PI) {
|
---|
| 980 | paDiff -= TWOPI;
|
---|
| 981 | } else if (paDiff < -PI) {
|
---|
| 982 | paDiff += TWOPI;
|
---|
| 983 | }
|
---|
| 984 | paRate = paDiff / dUTC;
|
---|
[1325] | 985 | }
|
---|
| 986 |
|
---|
[1757] | 987 | if (cInterp == 2) {
|
---|
| 988 | // Use the same interpolation scheme as the original pksmbfits
|
---|
| 989 | // client. This incorrectly assumed that (nextUTC - thisUTC) is
|
---|
| 990 | // equal to the integration time and interpolated by computing a
|
---|
| 991 | // weighted sum of the positions before and after the required
|
---|
| 992 | // time.
|
---|
[1325] | 993 |
|
---|
[1757] | 994 | double utc = iMBuff->utc;
|
---|
| 995 | double tw1 = 1.0 - utcDiff(utc, thisUTC) / iMBuff->exposure;
|
---|
| 996 | double tw2 = 1.0 - utcDiff(nextUTC, utc) / iMBuff->exposure;
|
---|
| 997 | double gamma = (tw2 / (tw1 + tw2)) * dUTC / (utc - thisUTC);
|
---|
[1325] | 998 |
|
---|
[1757] | 999 | // Guard against RA cycling through 24h in either direction.
|
---|
| 1000 | if (fabs(nextRA - thisRA) > PI) {
|
---|
| 1001 | if (nextRA < thisRA) {
|
---|
| 1002 | nextRA += TWOPI;
|
---|
| 1003 | } else {
|
---|
| 1004 | nextRA -= TWOPI;
|
---|
| 1005 | }
|
---|
| 1006 | }
|
---|
[1325] | 1007 |
|
---|
[1757] | 1008 | raRate = gamma * (nextRA - thisRA) / dUTC;
|
---|
| 1009 | decRate = gamma * (nextDec - thisDec) / dUTC;
|
---|
| 1010 | }
|
---|
[1325] | 1011 |
|
---|
| 1012 | } else {
|
---|
[1757] | 1013 | if (cCycleNo == 2 && fabs(utcDiff(cUTC,cW)) < 600.0) {
|
---|
| 1014 | // thisUTC (i.e. cW for the first cycle) is rubbish, and
|
---|
| 1015 | // probably the position as well (extremely rare in practice,
|
---|
| 1016 | // e.g. 97-12-19_1029_235708-18_586e.hpf which actually has the
|
---|
| 1017 | // t/1000 scaling bug in the first cycle).
|
---|
| 1018 | iMBuff->pCode = 3;
|
---|
| 1019 | thisRA = cU;
|
---|
| 1020 | thisDec = cV;
|
---|
| 1021 | thisUTC = cW;
|
---|
| 1022 | raRate = 0.0;
|
---|
| 1023 | decRate = 0.0;
|
---|
| 1024 | paRate = 0.0;
|
---|
| 1025 |
|
---|
[1325] | 1026 | } else {
|
---|
[1757] | 1027 | // cW is rubbish and probably (cU,cV), and possibly the
|
---|
| 1028 | // parallactic angle and everything else as well (rarely seen
|
---|
| 1029 | // in practice, e.g. 97-12-09_0743_235707-58_327c.hpf and
|
---|
| 1030 | // 97-09-01_0034_123717-42_242b.hpf, the latter with bad
|
---|
| 1031 | // parallactic angle).
|
---|
| 1032 | pCode = 3;
|
---|
| 1033 | cU = thisRA;
|
---|
| 1034 | cV = thisDec;
|
---|
| 1035 | cW = thisUTC;
|
---|
| 1036 | raRate = iMBuff->raRate;
|
---|
| 1037 | decRate = iMBuff->decRate;
|
---|
| 1038 | paRate = iMBuff->paRate;
|
---|
[1325] | 1039 | }
|
---|
| 1040 | }
|
---|
[1757] | 1041 | }
|
---|
| 1042 | }
|
---|
[1325] | 1043 |
|
---|
| 1044 |
|
---|
[1757] | 1045 | // Choose the closest rate determination.
|
---|
| 1046 | if (cCycleNo == 1) {
|
---|
| 1047 | // Scan containing a single integration.
|
---|
| 1048 | iMBuff->raRate = 0.0;
|
---|
| 1049 | iMBuff->decRate = 0.0;
|
---|
| 1050 | iMBuff->paRate = 0.0;
|
---|
| 1051 |
|
---|
| 1052 | } else {
|
---|
| 1053 | double dUTC = iMBuff->utc - cPosUTC[iBeamSel];
|
---|
| 1054 |
|
---|
| 1055 | if (dUTC >= 0.0) {
|
---|
| 1056 | // In HIPASS/ZOA, the position timestamp, which should always occur
|
---|
| 1057 | // on the whole second, normally precedes an integration midpoint
|
---|
| 1058 | // falling on the half-second. Consequently, positive ages are
|
---|
| 1059 | // always half-integral.
|
---|
| 1060 | dUTC = utcDiff(iMBuff->utc, cW);
|
---|
| 1061 | if (dUTC > 0.0) {
|
---|
| 1062 | iMBuff->rateAge = dUTC;
|
---|
| 1063 | } else {
|
---|
| 1064 | iMBuff->rateAge = 0.0f;
|
---|
| 1065 | }
|
---|
| 1066 |
|
---|
| 1067 | iMBuff->raRate = raRate;
|
---|
| 1068 | iMBuff->decRate = decRate;
|
---|
| 1069 | iMBuff->paRate = paRate;
|
---|
| 1070 |
|
---|
| 1071 | } else {
|
---|
| 1072 | // In HIPASS/ZOA, negative ages occur when the integration midpoint,
|
---|
| 1073 | // occurring on the whole second, precedes the position timestamp.
|
---|
| 1074 | // Thus negative ages are always an integral number of seconds.
|
---|
| 1075 | // They have only been seen to occur sporadically in the period
|
---|
| 1076 | // 1999/05/31 to 1999/11/01, e.g. 1999-07-26_1821_005410-74_007c.hpf
|
---|
| 1077 | //
|
---|
| 1078 | // In recent (2008/10/07) Mopra data, small negative ages (~10ms,
|
---|
| 1079 | // occasionally up to ~300ms) seem to be the norm, with both the
|
---|
| 1080 | // position timestamp and integration midpoint falling close to but
|
---|
| 1081 | // not on the integral second.
|
---|
| 1082 | if (cCycleNo == 2) {
|
---|
| 1083 | // We have to start with something!
|
---|
| 1084 | iMBuff->rateAge = dUTC;
|
---|
| 1085 |
|
---|
| 1086 | } else {
|
---|
| 1087 | // Although we did not record the relevant position timestamp
|
---|
| 1088 | // explicitly, it can easily be deduced.
|
---|
| 1089 | double w = iMBuff->utc - utcDiff(cUTC, iMBuff->utc) -
|
---|
| 1090 | iMBuff->rateAge;
|
---|
| 1091 | dUTC = utcDiff(iMBuff->utc, w);
|
---|
| 1092 |
|
---|
| 1093 | if (dUTC > 0.0) {
|
---|
| 1094 | iMBuff->rateAge = 0.0f;
|
---|
| 1095 | } else {
|
---|
| 1096 | iMBuff->rateAge = dUTC;
|
---|
[1325] | 1097 | }
|
---|
| 1098 | }
|
---|
[1757] | 1099 |
|
---|
| 1100 | iMBuff->raRate = raRate;
|
---|
| 1101 | iMBuff->decRate = decRate;
|
---|
| 1102 | iMBuff->paRate = paRate;
|
---|
[1325] | 1103 | }
|
---|
| 1104 | }
|
---|
| 1105 |
|
---|
[1757] | 1106 | #ifdef PKSIO_DEBUG
|
---|
| 1107 | double avRate = sqrt(cAvRate[0]*cAvRate[0] + cAvRate[1]*cAvRate[1]);
|
---|
| 1108 | sprintf(buf, "RA, Dec, Av & PA rates: %8.4f %8.4f %8.4f %8.4f "
|
---|
| 1109 | "pCode %d\n", raRate*R2D, decRate*R2D, avRate*R2D, paRate*R2D, pCode);
|
---|
| 1110 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 1111 | #endif
|
---|
| 1112 |
|
---|
| 1113 |
|
---|
[1325] | 1114 | // Compute the position of this beam for all bins.
|
---|
| 1115 | for (int idx = 0; idx < cNBin; idx++) {
|
---|
| 1116 | int jbuff = iBeamSel + cNBeamSel*idx;
|
---|
| 1117 |
|
---|
| 1118 | cBuffer[jbuff].raRate = iMBuff->raRate;
|
---|
| 1119 | cBuffer[jbuff].decRate = iMBuff->decRate;
|
---|
[1757] | 1120 | cBuffer[jbuff].paRate = iMBuff->paRate;
|
---|
[1325] | 1121 |
|
---|
[1757] | 1122 | double dUTC = utcDiff(cBuffer[jbuff].utc, thisUTC);
|
---|
| 1123 | if (dUTC > 100.0) {
|
---|
[1325] | 1124 | // Must have cycled through midnight.
|
---|
[1757] | 1125 | dUTC -= 86400.0;
|
---|
[1325] | 1126 | }
|
---|
| 1127 |
|
---|
[1757] | 1128 | applyRate(cRA0, cDec0, thisRA, thisDec,
|
---|
| 1129 | cBuffer[jbuff].raRate, cBuffer[jbuff].decRate, dUTC,
|
---|
| 1130 | cBuffer[jbuff].ra, cBuffer[jbuff].dec);
|
---|
| 1131 |
|
---|
| 1132 | #ifdef PKSIO_DEBUG
|
---|
| 1133 | sprintf(buf, "Intp (%d) ra, dec, UTC: %9.4f %9.4f %10.3f (pCode, "
|
---|
| 1134 | "age: %d %.1fs)\n", iMBuff->cycleNo, cBuffer[jbuff].ra*R2D,
|
---|
| 1135 | cBuffer[jbuff].dec*R2D, cBuffer[jbuff].utc, iMBuff->pCode,
|
---|
| 1136 | iMBuff->rateAge);
|
---|
| 1137 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 1138 | #endif
|
---|
[1325] | 1139 | }
|
---|
[1757] | 1140 |
|
---|
| 1141 | cFlushing = 2;
|
---|
[1325] | 1142 | }
|
---|
| 1143 |
|
---|
| 1144 |
|
---|
| 1145 | if (cFlushing) {
|
---|
| 1146 | // Copy buffer location out one IF at a time.
|
---|
| 1147 | MBrec.extract(*iMBuff, cFlushIF);
|
---|
| 1148 | haveData = 1;
|
---|
| 1149 |
|
---|
| 1150 | #ifdef PKSIO_DEBUG
|
---|
[1757] | 1151 | sprintf(buf, "Out:%4d%4d%3d%3d\n", MBrec.scanNo, MBrec.cycleNo,
|
---|
| 1152 | MBrec.beamNo, MBrec.IFno[0]);
|
---|
| 1153 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
[1325] | 1154 | #endif
|
---|
| 1155 |
|
---|
| 1156 | // Signal that this IF in this buffer location has been flushed.
|
---|
| 1157 | iMBuff->IFno[cFlushIF] = 0;
|
---|
| 1158 |
|
---|
[1757] | 1159 | iMBuff->nIF--;
|
---|
| 1160 | if (iMBuff->nIF == 0) {
|
---|
| 1161 | // All IFs in this buffer location have been flushed. Stop cEOS
|
---|
| 1162 | // being set when the next integration is read.
|
---|
| 1163 | iMBuff->cycleNo = 0;
|
---|
| 1164 |
|
---|
[1325] | 1165 | } else {
|
---|
| 1166 | // Carry on flushing the other IFs.
|
---|
| 1167 | continue;
|
---|
| 1168 | }
|
---|
| 1169 |
|
---|
| 1170 | // Has the whole buffer been flushed?
|
---|
| 1171 | if (cFlushBin == cNBin - 1) {
|
---|
| 1172 | if (cEOS || cEOF) {
|
---|
| 1173 | // Carry on flushing other buffers.
|
---|
| 1174 | cFlushIF = 0;
|
---|
| 1175 | continue;
|
---|
| 1176 | }
|
---|
| 1177 |
|
---|
| 1178 | cFlushing = 0;
|
---|
| 1179 |
|
---|
[1757] | 1180 | beamNo = int(cBaseline / 256.0);
|
---|
[1325] | 1181 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 1182 |
|
---|
| 1183 | // Compute buffer number.
|
---|
| 1184 | iMBuff = cBuffer + iBeamSel;
|
---|
[1757] | 1185 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
[1325] | 1186 | }
|
---|
| 1187 | }
|
---|
| 1188 |
|
---|
| 1189 | if (!cFlushing) {
|
---|
| 1190 | // Buffer this MBrec.
|
---|
[1757] | 1191 | if ((cScanNo > iMBuff->scanNo) && iMBuff->IFno[0]) {
|
---|
[1325] | 1192 | // Sanity check on the number of IFs in the new scan.
|
---|
| 1193 | if (if_.n_if != cNIF) {
|
---|
[1757] | 1194 | sprintf(cMsg, "Scan %d has %d IFs instead of %d, "
|
---|
| 1195 | "continuing.", cScanNo, if_.n_if, cNIF);
|
---|
| 1196 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
[1325] | 1197 | }
|
---|
| 1198 | }
|
---|
| 1199 |
|
---|
[1757] | 1200 | // Sanity check on incomplete integrations within a scan.
|
---|
| 1201 | if (iMBuff->nIF && (iMBuff->cycleNo != cCycleNo)) {
|
---|
| 1202 | // Force the incomplete integration to be flushed before proceeding.
|
---|
| 1203 | cFlushing = 1;
|
---|
| 1204 | continue;
|
---|
| 1205 | }
|
---|
[1325] | 1206 |
|
---|
[1757] | 1207 | #ifdef PKSIO_DEBUG
|
---|
| 1208 | sprintf(buf, "Buf:%4d%4d%3d%3d\n", cScanNo, cCycleNo, beamNo, cIFno);
|
---|
| 1209 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 1210 | #endif
|
---|
[1325] | 1211 |
|
---|
[1757] | 1212 | // Store IF-independent parameters only for the first IF of a new cycle,
|
---|
| 1213 | // particularly because this is the only one for which the scan rates
|
---|
| 1214 | // are computed above.
|
---|
| 1215 | int firstIF = (iMBuff->nIF == 0);
|
---|
| 1216 | if (firstIF) {
|
---|
| 1217 | iMBuff->scanNo = cScanNo;
|
---|
| 1218 | iMBuff->cycleNo = cCycleNo;
|
---|
[1325] | 1219 |
|
---|
[1757] | 1220 | // Times.
|
---|
| 1221 | strcpy(iMBuff->datobs, cDateObs);
|
---|
| 1222 | iMBuff->utc = cUTC;
|
---|
| 1223 | iMBuff->exposure = param_.intbase;
|
---|
| 1224 |
|
---|
| 1225 | // Source identification.
|
---|
| 1226 | sprintf(iMBuff->srcName, "%-16.16s",
|
---|
| 1227 | names_.su_name + (cSrcNo-1)*16);
|
---|
| 1228 | iMBuff->srcName[16] = '\0';
|
---|
| 1229 | iMBuff->srcRA = doubles_.su_ra[cSrcNo-1];
|
---|
| 1230 | iMBuff->srcDec = doubles_.su_dec[cSrcNo-1];
|
---|
| 1231 |
|
---|
| 1232 | // Rest frequency of the line of interest.
|
---|
| 1233 | iMBuff->restFreq = doubles_.rfreq;
|
---|
| 1234 | if (strncmp(names_.instrument, "ATPKSMB", 7) == 0) {
|
---|
| 1235 | // Fix the HI rest frequency recorded for Parkes multibeam data.
|
---|
| 1236 | double reffreq = doubles_.freq;
|
---|
| 1237 | double restfreq = doubles_.rfreq;
|
---|
| 1238 | if ((restfreq == 0.0 || fabs(restfreq - reffreq) == 0.0) &&
|
---|
| 1239 | fabs(reffreq - 1420.405752e6) < 100.0) {
|
---|
| 1240 | iMBuff->restFreq = 1420.405752e6;
|
---|
| 1241 | }
|
---|
[1325] | 1242 | }
|
---|
| 1243 |
|
---|
[1757] | 1244 | // Observation type.
|
---|
| 1245 | int j;
|
---|
| 1246 | for (j = 0; j < 15; j++) {
|
---|
| 1247 | iMBuff->obsType[j] = names_.card[11+j];
|
---|
| 1248 | if (iMBuff->obsType[j] == '\'') break;
|
---|
| 1249 | }
|
---|
| 1250 | iMBuff->obsType[j] = '\0';
|
---|
[1325] | 1251 |
|
---|
[1757] | 1252 | // Beam-dependent parameters.
|
---|
| 1253 | iMBuff->beamNo = beamNo;
|
---|
[1325] | 1254 |
|
---|
[1757] | 1255 | // Beam position at the specified time.
|
---|
| 1256 | if (cSUpos) {
|
---|
| 1257 | // Non-ATNF data that does not store the position in (u,v,w).
|
---|
| 1258 | iMBuff->ra = doubles_.su_ra[cSrcNo-1];
|
---|
| 1259 | iMBuff->dec = doubles_.su_dec[cSrcNo-1];
|
---|
| 1260 | } else {
|
---|
| 1261 | iMBuff->ra = cU;
|
---|
| 1262 | iMBuff->dec = cV;
|
---|
| 1263 | }
|
---|
| 1264 | cPosUTC[iBeamSel] = cW;
|
---|
| 1265 | iMBuff->pCode = pCode;
|
---|
| 1266 |
|
---|
| 1267 | // Store rates for next time.
|
---|
| 1268 | iMBuff->raRate = raRate;
|
---|
| 1269 | iMBuff->decRate = decRate;
|
---|
| 1270 | iMBuff->paRate = paRate;
|
---|
[1325] | 1271 | }
|
---|
| 1272 |
|
---|
| 1273 | // IF-dependent parameters.
|
---|
[1757] | 1274 | int iIF = cIFno - 1;
|
---|
[1325] | 1275 | int startChan = cStartChan[iIF];
|
---|
| 1276 | int endChan = cEndChan[iIF];
|
---|
| 1277 | int refChan = cRefChan[iIF];
|
---|
| 1278 |
|
---|
| 1279 | int nChan = abs(endChan - startChan) + 1;
|
---|
| 1280 |
|
---|
| 1281 | iIFSel = cIFSel[iIF];
|
---|
[1757] | 1282 | if (iMBuff->IFno[iIFSel] == 0) {
|
---|
| 1283 | iMBuff->nIF++;
|
---|
| 1284 | iMBuff->IFno[iIFSel] = cIFno;
|
---|
| 1285 | } else {
|
---|
| 1286 | // Integration cycle written to the output file twice (the only known
|
---|
| 1287 | // example is 1999-05-22_1914_000-031805_03v.hpf).
|
---|
| 1288 | sprintf(cMsg, "Integration cycle %d:%d, beam %2d, \n"
|
---|
| 1289 | "IF %d was duplicated.", cScanNo, cCycleNo-1,
|
---|
| 1290 | beamNo, cIFno);
|
---|
| 1291 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
| 1292 | }
|
---|
[1325] | 1293 | iMBuff->nChan[iIFSel] = nChan;
|
---|
| 1294 | iMBuff->nPol[iIFSel] = cNPol[iIF];
|
---|
| 1295 |
|
---|
| 1296 | iMBuff->fqRefPix[iIFSel] = doubles_.if_ref[iIF];
|
---|
| 1297 | iMBuff->fqRefVal[iIFSel] = doubles_.if_freq[iIF];
|
---|
| 1298 | iMBuff->fqDelt[iIFSel] =
|
---|
| 1299 | if_.if_invert[iIF] * fabs(doubles_.if_bw[iIF] /
|
---|
| 1300 | (if_.if_nfreq[iIF] - 1));
|
---|
| 1301 |
|
---|
| 1302 | // Adjust for channel selection.
|
---|
| 1303 | if (iMBuff->fqRefPix[iIFSel] != refChan) {
|
---|
| 1304 | iMBuff->fqRefVal[iIFSel] +=
|
---|
| 1305 | (refChan - iMBuff->fqRefPix[iIFSel]) *
|
---|
| 1306 | iMBuff->fqDelt[iIFSel];
|
---|
| 1307 | iMBuff->fqRefPix[iIFSel] = refChan;
|
---|
| 1308 | }
|
---|
| 1309 |
|
---|
| 1310 | if (endChan < startChan) {
|
---|
| 1311 | iMBuff->fqDelt[iIFSel] = -iMBuff->fqDelt[iIFSel];
|
---|
| 1312 | }
|
---|
| 1313 |
|
---|
| 1314 |
|
---|
| 1315 | // System temperature.
|
---|
| 1316 | int iBeam = beamNo - 1;
|
---|
| 1317 | int scq = sc_.sc_q;
|
---|
| 1318 | float TsysPol1 = sc_.sc_cal[scq*iBeam + 3];
|
---|
| 1319 | float TsysPol2 = sc_.sc_cal[scq*iBeam + 4];
|
---|
| 1320 | iMBuff->tsys[iIFSel][0] = TsysPol1*TsysPol1;
|
---|
| 1321 | iMBuff->tsys[iIFSel][1] = TsysPol2*TsysPol2;
|
---|
| 1322 |
|
---|
| 1323 | // Calibration factor; may be changed later if the data is recalibrated.
|
---|
| 1324 | if (scq > 14) {
|
---|
| 1325 | // Will only be present for Parkes Multibeam or LBA data.
|
---|
| 1326 | iMBuff->calfctr[iIFSel][0] = sc_.sc_cal[scq*iBeam + 14];
|
---|
| 1327 | iMBuff->calfctr[iIFSel][1] = sc_.sc_cal[scq*iBeam + 15];
|
---|
| 1328 | } else {
|
---|
| 1329 | iMBuff->calfctr[iIFSel][0] = 0.0f;
|
---|
| 1330 | iMBuff->calfctr[iIFSel][1] = 0.0f;
|
---|
| 1331 | }
|
---|
| 1332 |
|
---|
| 1333 | // Cross-polarization calibration factor (unknown to MBFITS).
|
---|
| 1334 | for (int j = 0; j < 2; j++) {
|
---|
| 1335 | iMBuff->xcalfctr[iIFSel][j] = 0.0f;
|
---|
| 1336 | }
|
---|
| 1337 |
|
---|
| 1338 | // Baseline parameters (unknown to MBFITS).
|
---|
| 1339 | iMBuff->haveBase = 0;
|
---|
| 1340 |
|
---|
| 1341 | // Data (always present in MBFITS).
|
---|
| 1342 | iMBuff->haveSpectra = 1;
|
---|
| 1343 |
|
---|
| 1344 | // Flag: bit 0 set if off source.
|
---|
| 1345 | // bit 1 set if loss of sync in A polarization.
|
---|
| 1346 | // bit 2 set if loss of sync in B polarization.
|
---|
| 1347 | unsigned char rpflag =
|
---|
| 1348 | (unsigned char)(sc_.sc_cal[scq*iBeam + 12] + 0.5f);
|
---|
| 1349 |
|
---|
| 1350 | // The baseline flag may be set independently.
|
---|
[1757] | 1351 | if (rpflag == 0) rpflag = cFlag;
|
---|
[1325] | 1352 |
|
---|
| 1353 | // Copy and scale data.
|
---|
| 1354 | int inc = 2 * if_.if_nstok[iIF];
|
---|
| 1355 | if (endChan < startChan) inc = -inc;
|
---|
| 1356 |
|
---|
| 1357 | float TsysF;
|
---|
| 1358 | iMBuff->spectra[iIFSel] = iMBuff->spectra[0] + cChanOff[iIF];
|
---|
| 1359 | iMBuff->flagged[iIFSel] = iMBuff->flagged[0] + cChanOff[iIF];
|
---|
| 1360 |
|
---|
| 1361 | float *spectra = iMBuff->spectra[iIFSel];
|
---|
| 1362 | unsigned char *flagged = iMBuff->flagged[iIFSel];
|
---|
| 1363 | for (int ipol = 0; ipol < cNPol[iIF]; ipol++) {
|
---|
| 1364 | if (sc_.sc_cal[scq*iBeam + 3 + ipol] > 0.0f) {
|
---|
| 1365 | // The correlator has already applied the calibration.
|
---|
| 1366 | TsysF = 1.0f;
|
---|
| 1367 | } else {
|
---|
| 1368 | // The correlator has normalized cVis[k] to a Tsys of 500K.
|
---|
| 1369 | TsysF = iMBuff->tsys[iIFSel][ipol] / 500.0f;
|
---|
| 1370 | }
|
---|
| 1371 |
|
---|
| 1372 | int k = 2 * (if_.if_nstok[iIF]*(startChan - 1) + ipol);
|
---|
| 1373 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
| 1374 | *(spectra++) = TsysF * cVis[k];
|
---|
| 1375 | *(flagged++) = rpflag;
|
---|
| 1376 | k += inc;
|
---|
| 1377 | }
|
---|
| 1378 | }
|
---|
| 1379 |
|
---|
| 1380 | if (cHaveXPol[iIF]) {
|
---|
| 1381 | int k = 2 * (3*(startChan - 1) + 2);
|
---|
| 1382 | iMBuff->xpol[iIFSel] = iMBuff->xpol[0] + cXpolOff[iIF];
|
---|
| 1383 | float *xpol = iMBuff->xpol[iIFSel];
|
---|
| 1384 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
| 1385 | *(xpol++) = cVis[k];
|
---|
| 1386 | *(xpol++) = cVis[k+1];
|
---|
| 1387 | k += inc;
|
---|
| 1388 | }
|
---|
| 1389 | }
|
---|
| 1390 |
|
---|
| 1391 |
|
---|
| 1392 | // Calibration factor applied to the data by the correlator.
|
---|
| 1393 | if (scq > 14) {
|
---|
| 1394 | // Will only be present for Parkes Multibeam or LBA data.
|
---|
| 1395 | iMBuff->tcal[iIFSel][0] = sc_.sc_cal[scq*iBeam + 14];
|
---|
| 1396 | iMBuff->tcal[iIFSel][1] = sc_.sc_cal[scq*iBeam + 15];
|
---|
| 1397 | } else {
|
---|
| 1398 | iMBuff->tcal[iIFSel][0] = 0.0f;
|
---|
| 1399 | iMBuff->tcal[iIFSel][1] = 0.0f;
|
---|
| 1400 | }
|
---|
| 1401 |
|
---|
[1757] | 1402 | if (firstIF) {
|
---|
| 1403 | if (sc_.sc_ant <= anten_.nant) {
|
---|
| 1404 | // No extra syscal information present.
|
---|
| 1405 | iMBuff->extraSysCal = 0;
|
---|
| 1406 | iMBuff->azimuth = 0.0f;
|
---|
| 1407 | iMBuff->elevation = 0.0f;
|
---|
| 1408 | iMBuff->parAngle = 0.0f;
|
---|
| 1409 | iMBuff->focusAxi = 0.0f;
|
---|
| 1410 | iMBuff->focusTan = 0.0f;
|
---|
| 1411 | iMBuff->focusRot = 0.0f;
|
---|
| 1412 | iMBuff->temp = 0.0f;
|
---|
| 1413 | iMBuff->pressure = 0.0f;
|
---|
| 1414 | iMBuff->humidity = 0.0f;
|
---|
| 1415 | iMBuff->windSpeed = 0.0f;
|
---|
| 1416 | iMBuff->windAz = 0.0f;
|
---|
| 1417 | strcpy(iMBuff->tcalTime, " ");
|
---|
| 1418 | iMBuff->refBeam = 0;
|
---|
[1325] | 1419 |
|
---|
[1757] | 1420 | } else {
|
---|
| 1421 | // Additional information for Parkes Multibeam data.
|
---|
| 1422 | int iOff = scq*(sc_.sc_ant - 1) - 1;
|
---|
| 1423 | iMBuff->extraSysCal = 1;
|
---|
[1325] | 1424 |
|
---|
[1757] | 1425 | iMBuff->azimuth = sc_.sc_cal[iOff + 2];
|
---|
| 1426 | iMBuff->elevation = sc_.sc_cal[iOff + 3];
|
---|
| 1427 | iMBuff->parAngle = sc_.sc_cal[iOff + 4];
|
---|
[1325] | 1428 |
|
---|
[1757] | 1429 | iMBuff->focusAxi = sc_.sc_cal[iOff + 5] * 1e-3;
|
---|
| 1430 | iMBuff->focusTan = sc_.sc_cal[iOff + 6] * 1e-3;
|
---|
| 1431 | iMBuff->focusRot = sc_.sc_cal[iOff + 7];
|
---|
| 1432 |
|
---|
| 1433 | iMBuff->temp = sc_.sc_cal[iOff + 8];
|
---|
| 1434 | iMBuff->pressure = sc_.sc_cal[iOff + 9];
|
---|
| 1435 | iMBuff->humidity = sc_.sc_cal[iOff + 10];
|
---|
| 1436 | iMBuff->windSpeed = sc_.sc_cal[iOff + 11];
|
---|
| 1437 | iMBuff->windAz = sc_.sc_cal[iOff + 12];
|
---|
| 1438 |
|
---|
| 1439 | char *tcalTime = iMBuff->tcalTime;
|
---|
| 1440 | sprintf(tcalTime, "%-16.16s", (char *)(&sc_.sc_cal[iOff+13]));
|
---|
| 1441 | tcalTime[16] = '\0';
|
---|
| 1442 |
|
---|
[1325] | 1443 | #ifndef AIPS_LITTLE_ENDIAN
|
---|
[1757] | 1444 | // Do byte swapping on the ASCII date string.
|
---|
| 1445 | for (int j = 0; j < 16; j += 4) {
|
---|
| 1446 | char ctmp;
|
---|
| 1447 | ctmp = tcalTime[j];
|
---|
| 1448 | tcalTime[j] = tcalTime[j+3];
|
---|
| 1449 | tcalTime[j+3] = ctmp;
|
---|
| 1450 | ctmp = tcalTime[j+1];
|
---|
| 1451 | tcalTime[j+1] = tcalTime[j+2];
|
---|
| 1452 | tcalTime[j+2] = ctmp;
|
---|
| 1453 | }
|
---|
[1325] | 1454 | #endif
|
---|
| 1455 |
|
---|
[1757] | 1456 | // Reference beam number.
|
---|
| 1457 | float refbeam = sc_.sc_cal[iOff + 17];
|
---|
| 1458 | if (refbeam > 0.0f || refbeam < 100.0f) {
|
---|
| 1459 | iMBuff->refBeam = int(refbeam);
|
---|
| 1460 | } else {
|
---|
| 1461 | iMBuff->refBeam = 0;
|
---|
| 1462 | }
|
---|
[1325] | 1463 | }
|
---|
| 1464 | }
|
---|
| 1465 | }
|
---|
| 1466 | }
|
---|
| 1467 |
|
---|
| 1468 | return 0;
|
---|
| 1469 | }
|
---|
| 1470 |
|
---|
| 1471 | //-------------------------------------------------------- MBFITSreader::rpget
|
---|
| 1472 |
|
---|
| 1473 | // Read the next data record from the RPFITS file.
|
---|
| 1474 |
|
---|
| 1475 | int MBFITSreader::rpget(int syscalonly, int &EOS)
|
---|
| 1476 | {
|
---|
[1757] | 1477 | const string methodName = "rpget()" ;
|
---|
| 1478 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
| 1479 |
|
---|
[1325] | 1480 | EOS = 0;
|
---|
| 1481 |
|
---|
| 1482 | int retries = 0;
|
---|
| 1483 |
|
---|
| 1484 | // Allow 10 read errors.
|
---|
| 1485 | int numErr = 0;
|
---|
| 1486 |
|
---|
[1757] | 1487 | int jstat = 0;
|
---|
[1325] | 1488 | while (numErr < 10) {
|
---|
| 1489 | int lastjstat = jstat;
|
---|
| 1490 |
|
---|
[1757] | 1491 | switch(rpfitsin(jstat)) {
|
---|
[1325] | 1492 | case -1:
|
---|
| 1493 | // Read failed; retry.
|
---|
| 1494 | numErr++;
|
---|
[1757] | 1495 | os << LogIO::WARN << "RPFITS read failed - retrying." << LogIO::POST ;
|
---|
[1325] | 1496 | jstat = 0;
|
---|
| 1497 | break;
|
---|
| 1498 |
|
---|
| 1499 | case 0:
|
---|
| 1500 | // Successful read.
|
---|
| 1501 | if (lastjstat == 0) {
|
---|
[1757] | 1502 | if (cBaseline == -1) {
|
---|
[1325] | 1503 | // Syscal data.
|
---|
| 1504 | if (syscalonly) {
|
---|
| 1505 | return 0;
|
---|
| 1506 | }
|
---|
| 1507 |
|
---|
| 1508 | } else {
|
---|
| 1509 | if (!syscalonly) {
|
---|
| 1510 | return 0;
|
---|
| 1511 | }
|
---|
| 1512 | }
|
---|
| 1513 | }
|
---|
| 1514 |
|
---|
| 1515 | // Last operation was to read header or FG table; now read data.
|
---|
| 1516 | break;
|
---|
| 1517 |
|
---|
| 1518 | case 1:
|
---|
| 1519 | // Encountered header while trying to read data; read it.
|
---|
| 1520 | EOS = 1;
|
---|
| 1521 | jstat = -1;
|
---|
| 1522 | break;
|
---|
| 1523 |
|
---|
| 1524 | case 2:
|
---|
| 1525 | // End of scan; read past it.
|
---|
| 1526 | jstat = 0;
|
---|
| 1527 | break;
|
---|
| 1528 |
|
---|
| 1529 | case 3:
|
---|
| 1530 | // End-of-file; retry applies to real-time mode.
|
---|
| 1531 | if (retries++ >= cRetry) {
|
---|
| 1532 | return -1;
|
---|
| 1533 | }
|
---|
| 1534 |
|
---|
| 1535 | sleep(10);
|
---|
| 1536 | jstat = 0;
|
---|
| 1537 | break;
|
---|
| 1538 |
|
---|
| 1539 | case 4:
|
---|
| 1540 | // Encountered FG table while trying to read data; read it.
|
---|
| 1541 | jstat = -1;
|
---|
| 1542 | break;
|
---|
| 1543 |
|
---|
| 1544 | case 5:
|
---|
| 1545 | // Illegal data at end of block after close/reopen operation; retry.
|
---|
| 1546 | jstat = 0;
|
---|
| 1547 | break;
|
---|
| 1548 |
|
---|
| 1549 | default:
|
---|
| 1550 | // Shouldn't reach here.
|
---|
[1757] | 1551 | sprintf(cMsg, "Unrecognized RPFITSIN return code: %d "
|
---|
| 1552 | "(retrying).", jstat);
|
---|
| 1553 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
[1325] | 1554 | jstat = 0;
|
---|
| 1555 | break;
|
---|
| 1556 | }
|
---|
| 1557 | }
|
---|
| 1558 |
|
---|
[1757] | 1559 | os << LogIO::SEVERE << "RPFITS read failed too many times." << LogIO::POST ;
|
---|
[1325] | 1560 | return 2;
|
---|
| 1561 | }
|
---|
| 1562 |
|
---|
[1757] | 1563 | //----------------------------------------------------- MBFITSreader::rpfitsin
|
---|
| 1564 |
|
---|
| 1565 | // Wrapper around RPFITSIN that reports errors. Returned RPFITSIN subroutine
|
---|
| 1566 | // arguments are captured as MBFITSreader member variables.
|
---|
| 1567 |
|
---|
| 1568 | int MBFITSreader::rpfitsin(int &jstat)
|
---|
| 1569 |
|
---|
| 1570 | {
|
---|
| 1571 | rpfitsin_(&jstat, cVis, cWgt, &cBaseline, &cUTC, &cU, &cV, &cW, &cFlag,
|
---|
| 1572 | &cBin, &cIFno, &cSrcNo);
|
---|
| 1573 |
|
---|
| 1574 | // Handle messages from RPFITSIN.
|
---|
| 1575 | /**
|
---|
| 1576 | if (names_.errmsg[0] != ' ') {
|
---|
| 1577 | int i;
|
---|
| 1578 | for (i = 80; i > 0; i--) {
|
---|
| 1579 | if (names_.errmsg[i-1] != ' ') break;
|
---|
| 1580 | }
|
---|
| 1581 |
|
---|
| 1582 | sprintf(cMsg, "WARNING: Cycle %d:%03d, RPFITSIN reported -\n"
|
---|
| 1583 | " %.*s", cScanNo, cCycleNo, i, names_.errmsg);
|
---|
| 1584 | logMsg(cMsg);
|
---|
| 1585 | }
|
---|
| 1586 | **/
|
---|
| 1587 | return jstat;
|
---|
| 1588 | }
|
---|
| 1589 |
|
---|
| 1590 | //------------------------------------------------------- MBFITSreader::fixPos
|
---|
| 1591 |
|
---|
| 1592 | // Check and, if necessary, repair a position timestamp.
|
---|
| 1593 | //
|
---|
| 1594 | // Problems with the position timestamp manifest themselves via the scan rate:
|
---|
| 1595 | //
|
---|
| 1596 | // 1) Zero scan rate pairs, 1997/02/28 to 1998/01/07
|
---|
| 1597 | //
|
---|
| 1598 | // These occur because the position timestamp for the first integration
|
---|
| 1599 | // of the pair is erroneous; the value recorded is t/1000, where t is the
|
---|
| 1600 | // true value.
|
---|
| 1601 | // Earliest known: 97-02-28_1725_132653-42_258a.hpf
|
---|
| 1602 | // Latest known: 98-01-02_1923_095644-50_165c.hpf
|
---|
| 1603 | // (time range chosen to encompass observing runs).
|
---|
| 1604 | //
|
---|
| 1605 | // 2) Slow-fast scan rate pairs (0.013 - 0.020 deg/s),
|
---|
| 1606 | // 1997/03/28 to 1998/01/07.
|
---|
| 1607 | //
|
---|
| 1608 | // The UTC position timestamp is 1.0s later than it should be (never
|
---|
| 1609 | // earlier), almost certainly arising from an error in the telescope
|
---|
| 1610 | // control system.
|
---|
| 1611 | // Earliest known: 97-03-28_0150_010420-74_008d.hpf
|
---|
| 1612 | // Latest known: 98-01-04_1502_065150-02_177c.hpf
|
---|
| 1613 | // (time range chosen to encompass observing runs).
|
---|
| 1614 | //
|
---|
| 1615 | // 3) Slow-fast scan rate pairs (0.015 - 0.018 deg/s),
|
---|
| 1616 | // 1999/05/20 to 2001/07/12 (HIPASS and ZOA),
|
---|
| 1617 | // 2001/09/02 to 2001/12/04 (HIPASS and ZOA),
|
---|
| 1618 | // 2002/03/28 to 2002/05/13 (ZOA only),
|
---|
| 1619 | // 2003/04/26 to 2003/06/09 (ZOA only).
|
---|
| 1620 | // Earliest known: 1999-05-20_1818_175720-50_297e.hpf
|
---|
| 1621 | // Latest known: 2001-12-04_1814_065531p14_173e.hpf (HIPASS)
|
---|
| 1622 | // 2003-06-09_1924_352-085940_-6c.hpf (ZOA)
|
---|
| 1623 | //
|
---|
| 1624 | // Caused by the Linux signalling NaN problem. IEEE "signalling" NaNs
|
---|
| 1625 | // are silently transformed to "quiet" NaNs during assignment by setting
|
---|
| 1626 | // bit 22. This affected RPFITS because of its use of VAX-format
|
---|
| 1627 | // floating-point numbers which, with their permuted bytes, may sometimes
|
---|
| 1628 | // appear as signalling NaNs.
|
---|
| 1629 | //
|
---|
| 1630 | // The problem arose when the linux correlator came online and was
|
---|
| 1631 | // fixed with a workaround to the RPFITS library (repeated episodes
|
---|
| 1632 | // are probably due to use of an older version of the library). It
|
---|
| 1633 | // should not have affected the data significantly because of the
|
---|
| 1634 | // low relative error, which ranges from 0.0000038 to 0.0000076, but
|
---|
| 1635 | // it is important for the computation of scan rates which requires
|
---|
| 1636 | // taking the difference of two large UTC timestamps, one or other
|
---|
| 1637 | // of which will have 0.5s added to it.
|
---|
| 1638 | //
|
---|
| 1639 | // The return value identifies which, if any, of these problems was repaired.
|
---|
| 1640 |
|
---|
| 1641 | int MBFITSreader::fixw(
|
---|
| 1642 | const char *datobs,
|
---|
| 1643 | int cycleNo,
|
---|
| 1644 | int beamNo,
|
---|
| 1645 | double avRate[2],
|
---|
| 1646 | double thisRA,
|
---|
| 1647 | double thisDec,
|
---|
| 1648 | double thisUTC,
|
---|
| 1649 | double nextRA,
|
---|
| 1650 | double nextDec,
|
---|
| 1651 | float &nextUTC)
|
---|
| 1652 | {
|
---|
| 1653 | if (strcmp(datobs, "2003-06-09") > 0) {
|
---|
| 1654 | return 0;
|
---|
| 1655 |
|
---|
| 1656 | } else if (strcmp(datobs, "1998-01-07") <= 0) {
|
---|
| 1657 | if (nextUTC < thisUTC && (nextUTC + 86400.0) > (thisUTC + 600.0)) {
|
---|
| 1658 | // Possible scaling problem.
|
---|
| 1659 | double diff = nextUTC*1000.0 - thisUTC;
|
---|
| 1660 | if (0.0 < diff && diff < 600.0) {
|
---|
| 1661 | nextUTC *= 1000.0;
|
---|
| 1662 | return 1;
|
---|
| 1663 | } else {
|
---|
| 1664 | // Irreparable.
|
---|
| 1665 | return -1;
|
---|
| 1666 | }
|
---|
| 1667 | }
|
---|
| 1668 |
|
---|
| 1669 | if (cycleNo > 2) {
|
---|
| 1670 | if (beamNo == 1) {
|
---|
| 1671 | // This test is only reliable for beam 1.
|
---|
| 1672 | double dUTC = nextUTC - thisUTC;
|
---|
| 1673 | if (dUTC < 0.0) dUTC += 86400.0;
|
---|
| 1674 |
|
---|
| 1675 | // Guard against RA cycling through 24h in either direction.
|
---|
| 1676 | if (fabs(nextRA - thisRA) > PI) {
|
---|
| 1677 | if (nextRA < thisRA) {
|
---|
| 1678 | nextRA += TWOPI;
|
---|
| 1679 | } else {
|
---|
| 1680 | nextRA -= TWOPI;
|
---|
| 1681 | }
|
---|
| 1682 | }
|
---|
| 1683 |
|
---|
| 1684 | double dRA = (nextRA - thisRA) * cos(nextDec);
|
---|
| 1685 | double dDec = nextDec - thisDec;
|
---|
| 1686 | double arc = sqrt(dRA*dRA + dDec*dDec);
|
---|
| 1687 |
|
---|
| 1688 | double averate = sqrt(avRate[0]*avRate[0] + avRate[1]*avRate[1]);
|
---|
| 1689 | double diff1 = fabs(averate - arc/(dUTC-1.0));
|
---|
| 1690 | double diff2 = fabs(averate - arc/dUTC);
|
---|
| 1691 | if ((diff1 < diff2) && (diff1 < 0.05*averate)) {
|
---|
| 1692 | nextUTC -= 1.0;
|
---|
| 1693 | cCode5 = cycleNo;
|
---|
| 1694 | return 2;
|
---|
| 1695 | } else {
|
---|
| 1696 | cCode5 = 0;
|
---|
| 1697 | }
|
---|
| 1698 |
|
---|
| 1699 | } else {
|
---|
| 1700 | if (cycleNo == cCode5) {
|
---|
| 1701 | nextUTC -= 1.0;
|
---|
| 1702 | return 2;
|
---|
| 1703 | }
|
---|
| 1704 | }
|
---|
| 1705 | }
|
---|
| 1706 |
|
---|
| 1707 | } else if ((strcmp(datobs, "1999-05-20") >= 0 &&
|
---|
| 1708 | strcmp(datobs, "2001-07-12") <= 0) ||
|
---|
| 1709 | (strcmp(datobs, "2001-09-02") >= 0 &&
|
---|
| 1710 | strcmp(datobs, "2001-12-04") <= 0) ||
|
---|
| 1711 | (strcmp(datobs, "2002-03-28") >= 0 &&
|
---|
| 1712 | strcmp(datobs, "2002-05-13") <= 0) ||
|
---|
| 1713 | (strcmp(datobs, "2003-04-26") >= 0 &&
|
---|
| 1714 | strcmp(datobs, "2003-06-09") <= 0)) {
|
---|
| 1715 | // Signalling NaN problem, e.g. 1999-07-26_1839_011106-74_009c.hpf.
|
---|
| 1716 | // Position timestamps should always be an integral number of seconds.
|
---|
| 1717 | double resid = nextUTC - int(nextUTC);
|
---|
| 1718 | if (resid == 0.5) {
|
---|
| 1719 | nextUTC -= 0.5;
|
---|
| 1720 | return 3;
|
---|
| 1721 | }
|
---|
| 1722 | }
|
---|
| 1723 |
|
---|
| 1724 | return 0;
|
---|
| 1725 | }
|
---|
| 1726 |
|
---|
[1325] | 1727 | //-------------------------------------------------------- MBFITSreader::close
|
---|
| 1728 |
|
---|
| 1729 | // Close the input file.
|
---|
| 1730 |
|
---|
| 1731 | void MBFITSreader::close(void)
|
---|
| 1732 | {
|
---|
| 1733 | if (cMBopen) {
|
---|
[1757] | 1734 | int jstat = 1;
|
---|
| 1735 | rpfitsin_(&jstat, cVis, cWgt, &cBaseline, &cUTC, &cU, &cV, &cW, &cFlag,
|
---|
| 1736 | &cBin, &cIFno, &cSrcNo);
|
---|
[1325] | 1737 |
|
---|
| 1738 | if (cBeams) delete [] cBeams;
|
---|
| 1739 | if (cIFs) delete [] cIFs;
|
---|
| 1740 | if (cNChan) delete [] cNChan;
|
---|
| 1741 | if (cNPol) delete [] cNPol;
|
---|
| 1742 | if (cHaveXPol) delete [] cHaveXPol;
|
---|
| 1743 | if (cStartChan) delete [] cStartChan;
|
---|
| 1744 | if (cEndChan) delete [] cEndChan;
|
---|
| 1745 | if (cRefChan) delete [] cRefChan;
|
---|
| 1746 |
|
---|
[1757] | 1747 | if (cVis) delete [] cVis;
|
---|
| 1748 | if (cWgt) delete [] cWgt;
|
---|
[1325] | 1749 |
|
---|
| 1750 | if (cBeamSel) delete [] cBeamSel;
|
---|
| 1751 | if (cIFSel) delete [] cIFSel;
|
---|
| 1752 | if (cChanOff) delete [] cChanOff;
|
---|
| 1753 | if (cXpolOff) delete [] cXpolOff;
|
---|
| 1754 | if (cBuffer) delete [] cBuffer;
|
---|
| 1755 | if (cPosUTC) delete [] cPosUTC;
|
---|
| 1756 |
|
---|
| 1757 | cMBopen = 0;
|
---|
| 1758 | }
|
---|
| 1759 | }
|
---|
[1757] | 1760 |
|
---|
| 1761 | //-------------------------------------------------------------------- utcDiff
|
---|
| 1762 |
|
---|
| 1763 | // Subtract two UTCs (s) allowing for any plausible number of cycles through
|
---|
| 1764 | // 86400s, returning a result in the range [-43200, +43200]s.
|
---|
| 1765 |
|
---|
| 1766 | double MBFITSreader::utcDiff(double utc1, double utc2)
|
---|
| 1767 | {
|
---|
| 1768 | double diff = utc1 - utc2;
|
---|
| 1769 |
|
---|
| 1770 | if (diff > 43200.0) {
|
---|
| 1771 | diff -= 86400.0;
|
---|
| 1772 | while (diff > 43200.0) diff -= 86400.0;
|
---|
| 1773 | } else if (diff < -43200.0) {
|
---|
| 1774 | diff += 86400.0;
|
---|
| 1775 | while (diff < -43200.0) diff += 86400.0;
|
---|
| 1776 | }
|
---|
| 1777 |
|
---|
| 1778 | return diff;
|
---|
| 1779 | }
|
---|
| 1780 |
|
---|
| 1781 | //------------------------------------------------------- scanRate & applyRate
|
---|
| 1782 |
|
---|
| 1783 | // Compute and apply the scan rate corrected for grid convergence. (ra0,dec0)
|
---|
| 1784 | // are the coordinates of the central beam, assumed to be the tracking centre.
|
---|
| 1785 | // The rate computed in RA will be a rate of change of angular distance in the
|
---|
| 1786 | // direction of increasing RA at the position of the central beam. Similarly
|
---|
| 1787 | // for declination. Angles in radian, time in s.
|
---|
| 1788 |
|
---|
| 1789 | void MBFITSreader::scanRate(
|
---|
| 1790 | double ra0,
|
---|
| 1791 | double dec0,
|
---|
| 1792 | double ra1,
|
---|
| 1793 | double dec1,
|
---|
| 1794 | double ra2,
|
---|
| 1795 | double dec2,
|
---|
| 1796 | double dt,
|
---|
| 1797 | double &raRate,
|
---|
| 1798 | double &decRate)
|
---|
| 1799 | {
|
---|
| 1800 | // Transform to a system where the central beam lies on the equator at 12h.
|
---|
| 1801 | eulerx(ra1, dec1, ra0+HALFPI, -dec0, -HALFPI, ra1, dec1);
|
---|
| 1802 | eulerx(ra2, dec2, ra0+HALFPI, -dec0, -HALFPI, ra2, dec2);
|
---|
| 1803 |
|
---|
| 1804 | raRate = (ra2 - ra1) / dt;
|
---|
| 1805 | decRate = (dec2 - dec1) / dt;
|
---|
| 1806 | }
|
---|
| 1807 |
|
---|
| 1808 |
|
---|
| 1809 | void MBFITSreader::applyRate(
|
---|
| 1810 | double ra0,
|
---|
| 1811 | double dec0,
|
---|
| 1812 | double ra1,
|
---|
| 1813 | double dec1,
|
---|
| 1814 | double raRate,
|
---|
| 1815 | double decRate,
|
---|
| 1816 | double dt,
|
---|
| 1817 | double &ra2,
|
---|
| 1818 | double &dec2)
|
---|
| 1819 | {
|
---|
| 1820 | // Transform to a system where the central beam lies on the equator at 12h.
|
---|
| 1821 | eulerx(ra1, dec1, ra0+HALFPI, -dec0, -HALFPI, ra1, dec1);
|
---|
| 1822 |
|
---|
| 1823 | ra2 = ra1 + (raRate * dt);
|
---|
| 1824 | dec2 = dec1 + (decRate * dt);
|
---|
| 1825 |
|
---|
| 1826 | // Transform back.
|
---|
| 1827 | eulerx(ra2, dec2, -HALFPI, dec0, ra0+HALFPI, ra2, dec2);
|
---|
| 1828 | }
|
---|
| 1829 |
|
---|
| 1830 | //--------------------------------------------------------------------- eulerx
|
---|
| 1831 |
|
---|
| 1832 | void MBFITSreader::eulerx(
|
---|
| 1833 | double lng0,
|
---|
| 1834 | double lat0,
|
---|
| 1835 | double phi0,
|
---|
| 1836 | double theta,
|
---|
| 1837 | double phi,
|
---|
| 1838 | double &lng1,
|
---|
| 1839 | double &lat1)
|
---|
| 1840 |
|
---|
| 1841 | // Applies the Euler angle based transformation of spherical coordinates.
|
---|
| 1842 | //
|
---|
| 1843 | // phi0 Longitude of the ascending node in the old system, radians. The
|
---|
| 1844 | // ascending node is the point of intersection of the equators of
|
---|
| 1845 | // the two systems such that the equator of the new system crosses
|
---|
| 1846 | // from south to north as viewed in the old system.
|
---|
| 1847 | //
|
---|
| 1848 | // theta Angle between the poles of the two systems, radians. THETA is
|
---|
| 1849 | // positive for a positive rotation about the ascending node.
|
---|
| 1850 | //
|
---|
| 1851 | // phi Longitude of the ascending node in the new system, radians.
|
---|
| 1852 |
|
---|
| 1853 | {
|
---|
| 1854 | // Compute intermediaries.
|
---|
| 1855 | double lng0p = lng0 - phi0;
|
---|
| 1856 | double slng0p = sin(lng0p);
|
---|
| 1857 | double clng0p = cos(lng0p);
|
---|
| 1858 | double slat0 = sin(lat0);
|
---|
| 1859 | double clat0 = cos(lat0);
|
---|
| 1860 | double ctheta = cos(theta);
|
---|
| 1861 | double stheta = sin(theta);
|
---|
| 1862 |
|
---|
| 1863 | double x = clat0*clng0p;
|
---|
| 1864 | double y = clat0*slng0p*ctheta + slat0*stheta;
|
---|
| 1865 |
|
---|
| 1866 | // Longitude in the new system.
|
---|
| 1867 | if (x != 0.0 || y != 0.0) {
|
---|
| 1868 | lng1 = phi + atan2(y, x);
|
---|
| 1869 | } else {
|
---|
| 1870 | // Longitude at the poles in the new system is consistent with that
|
---|
| 1871 | // specified in the old system.
|
---|
| 1872 | lng1 = phi + lng0p;
|
---|
| 1873 | }
|
---|
| 1874 | lng1 = fmod(lng1, TWOPI);
|
---|
| 1875 | if (lng1 < 0.0) lng1 += TWOPI;
|
---|
| 1876 |
|
---|
| 1877 | lat1 = asin(slat0*ctheta - clat0*stheta*slng0p);
|
---|
| 1878 | }
|
---|