[1325] | 1 | //#---------------------------------------------------------------------------
|
---|
| 2 | //# MBFITSreader.cc: ATNF single-dish RPFITS reader.
|
---|
| 3 | //#---------------------------------------------------------------------------
|
---|
[1757] | 4 | //# livedata - processing pipeline for single-dish, multibeam spectral data.
|
---|
| 5 | //# Copyright (C) 2000-2009, Australia Telescope National Facility, CSIRO
|
---|
[1325] | 6 | //#
|
---|
[1757] | 7 | //# This file is part of livedata.
|
---|
[1325] | 8 | //#
|
---|
[1757] | 9 | //# livedata is free software: you can redistribute it and/or modify it under
|
---|
| 10 | //# the terms of the GNU General Public License as published by the Free
|
---|
| 11 | //# Software Foundation, either version 3 of the License, or (at your option)
|
---|
| 12 | //# any later version.
|
---|
| 13 | //#
|
---|
| 14 | //# livedata is distributed in the hope that it will be useful, but WITHOUT
|
---|
[1325] | 15 | //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
[1757] | 16 | //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
---|
| 17 | //# more details.
|
---|
[1325] | 18 | //#
|
---|
[1757] | 19 | //# You should have received a copy of the GNU General Public License along
|
---|
| 20 | //# with livedata. If not, see <http://www.gnu.org/licenses/>.
|
---|
[1325] | 21 | //#
|
---|
[1757] | 22 | //# Correspondence concerning livedata may be directed to:
|
---|
| 23 | //# Internet email: mcalabre@atnf.csiro.au
|
---|
| 24 | //# Postal address: Dr. Mark Calabretta
|
---|
| 25 | //# Australia Telescope National Facility, CSIRO
|
---|
| 26 | //# PO Box 76
|
---|
| 27 | //# Epping NSW 1710
|
---|
[1325] | 28 | //# AUSTRALIA
|
---|
| 29 | //#
|
---|
[1757] | 30 | //# http://www.atnf.csiro.au/computing/software/livedata.html
|
---|
| 31 | //# $Id: MBFITSreader.cc,v 19.57 2009-10-30 06:34:36 cal103 Exp $
|
---|
[1325] | 32 | //#---------------------------------------------------------------------------
|
---|
| 33 | //# The MBFITSreader class reads single dish RPFITS files (such as Parkes
|
---|
| 34 | //# Multibeam MBFITS files).
|
---|
| 35 | //#
|
---|
| 36 | //# Original: 2000/07/28 Mark Calabretta
|
---|
| 37 | //#---------------------------------------------------------------------------
|
---|
| 38 |
|
---|
[1757] | 39 | #include <atnf/pks/pks_maths.h>
|
---|
[1325] | 40 | #include <atnf/PKSIO/MBFITSreader.h>
|
---|
[1757] | 41 | #include <atnf/PKSIO/MBrecord.h>
|
---|
[1325] | 42 |
|
---|
[1757] | 43 | #include <casa/Logging/LogIO.h>
|
---|
[1325] | 44 |
|
---|
| 45 | #include <casa/math.h>
|
---|
| 46 | #include <casa/iostream.h>
|
---|
| 47 | #include <casa/stdio.h>
|
---|
| 48 | #include <casa/stdlib.h>
|
---|
| 49 | #include <casa/string.h>
|
---|
| 50 | #include <unistd.h>
|
---|
| 51 |
|
---|
[1757] | 52 | #include <RPFITS.h>
|
---|
| 53 |
|
---|
[1325] | 54 | using namespace std;
|
---|
| 55 |
|
---|
| 56 | // Numerical constants.
|
---|
| 57 | const double PI = 3.141592653589793238462643;
|
---|
| 58 | const double TWOPI = 2.0 * PI;
|
---|
[1757] | 59 | const double HALFPI = PI / 2.0;
|
---|
| 60 | const double R2D = 180.0 / PI;
|
---|
[1325] | 61 |
|
---|
[1757] | 62 | // Class name
|
---|
| 63 | const string className = "MBFITSreader" ;
|
---|
| 64 |
|
---|
[1325] | 65 | //------------------------------------------------- MBFITSreader::MBFITSreader
|
---|
| 66 |
|
---|
| 67 | // Default constructor.
|
---|
| 68 |
|
---|
| 69 | MBFITSreader::MBFITSreader(
|
---|
| 70 | const int retry,
|
---|
| 71 | const int interpolate)
|
---|
| 72 | {
|
---|
| 73 | cRetry = retry;
|
---|
| 74 | if (cRetry > 10) {
|
---|
| 75 | cRetry = 10;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | cInterp = interpolate;
|
---|
| 79 | if (cInterp < 0 || cInterp > 2) {
|
---|
| 80 | cInterp = 1;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | // Initialize pointers.
|
---|
| 84 | cBeams = 0x0;
|
---|
| 85 | cIFs = 0x0;
|
---|
| 86 | cNChan = 0x0;
|
---|
| 87 | cNPol = 0x0;
|
---|
| 88 | cHaveXPol = 0x0;
|
---|
| 89 | cStartChan = 0x0;
|
---|
| 90 | cEndChan = 0x0;
|
---|
| 91 | cRefChan = 0x0;
|
---|
| 92 |
|
---|
[1757] | 93 | cVis = 0x0;
|
---|
| 94 | cWgt = 0x0;
|
---|
[1325] | 95 |
|
---|
| 96 | cBeamSel = 0x0;
|
---|
| 97 | cIFSel = 0x0;
|
---|
| 98 | cChanOff = 0x0;
|
---|
| 99 | cXpolOff = 0x0;
|
---|
| 100 | cBuffer = 0x0;
|
---|
| 101 | cPosUTC = 0x0;
|
---|
| 102 |
|
---|
| 103 | cMBopen = 0;
|
---|
[1757] | 104 |
|
---|
| 105 | // Tell RPFITSIN not to report errors directly.
|
---|
| 106 | //iostat_.errlun = -1;
|
---|
[1325] | 107 | }
|
---|
| 108 |
|
---|
| 109 | //------------------------------------------------ MBFITSreader::~MBFITSreader
|
---|
| 110 |
|
---|
| 111 | // Destructor.
|
---|
| 112 |
|
---|
| 113 | MBFITSreader::~MBFITSreader()
|
---|
| 114 | {
|
---|
| 115 | close();
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | //--------------------------------------------------------- MBFITSreader::open
|
---|
| 119 |
|
---|
| 120 | // Open the RPFITS file for reading.
|
---|
| 121 |
|
---|
| 122 | int MBFITSreader::open(
|
---|
| 123 | char *rpname,
|
---|
| 124 | int &nBeam,
|
---|
| 125 | int* &beams,
|
---|
| 126 | int &nIF,
|
---|
| 127 | int* &IFs,
|
---|
| 128 | int* &nChan,
|
---|
| 129 | int* &nPol,
|
---|
| 130 | int* &haveXPol,
|
---|
| 131 | int &haveBase,
|
---|
| 132 | int &haveSpectra,
|
---|
| 133 | int &extraSysCal)
|
---|
| 134 | {
|
---|
[1757] | 135 | const string methodName = "open()" ;
|
---|
| 136 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
| 137 |
|
---|
[1325] | 138 | if (cMBopen) {
|
---|
| 139 | close();
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | strcpy(names_.file, rpname);
|
---|
| 143 |
|
---|
| 144 | // Open the RPFITS file.
|
---|
[1757] | 145 | int jstat = -3;
|
---|
| 146 | if (rpfitsin(jstat)) {
|
---|
| 147 | sprintf(cMsg, "Failed to open MBFITS file\n%s", rpname);
|
---|
[1868] | 148 | //os << LogIO::SEVERE << cMsg << LogIO::POST ;
|
---|
[1325] | 149 | return 1;
|
---|
| 150 | }
|
---|
| 151 |
|
---|
| 152 | cMBopen = 1;
|
---|
| 153 |
|
---|
| 154 | // Tell RPFITSIN that we want the OBSTYPE card.
|
---|
| 155 | int j;
|
---|
| 156 | param_.ncard = 1;
|
---|
| 157 | for (j = 0; j < 80; j++) {
|
---|
| 158 | names_.card[j] = ' ';
|
---|
| 159 | }
|
---|
| 160 | strncpy(names_.card, "OBSTYPE", 7);
|
---|
| 161 |
|
---|
| 162 | // Read the first header.
|
---|
| 163 | jstat = -1;
|
---|
[1757] | 164 | if (rpfitsin(jstat)) {
|
---|
| 165 | sprintf(cMsg, "Failed to read MBFITS header in file\n"
|
---|
| 166 | "%s", rpname);
|
---|
[1868] | 167 | //os << LogIO::SEVERE << cMsg << LogIO::POST ;
|
---|
[1325] | 168 | close();
|
---|
| 169 | return 1;
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | // Mopra data has some peculiarities.
|
---|
| 173 | cMopra = strncmp(names_.instrument, "ATMOPRA", 7) == 0;
|
---|
| 174 |
|
---|
[1757] | 175 | // Non-ATNF data may not store the position in (u,v,w).
|
---|
| 176 | if (strncmp(names_.sta, "tid", 3) == 0) {
|
---|
| 177 | sprintf(cMsg, "Found Tidbinbilla data");
|
---|
| 178 | cSUpos = 1;
|
---|
| 179 | } else if (strncmp(names_.sta, "HOB", 3) == 0) {
|
---|
| 180 | sprintf(cMsg, "Found Hobart data");
|
---|
| 181 | cSUpos = 1;
|
---|
| 182 | } else if (strncmp(names_.sta, "CED", 3) == 0) {
|
---|
| 183 | sprintf(cMsg, "Found Ceduna data");
|
---|
| 184 | cSUpos = 1;
|
---|
| 185 | } else {
|
---|
| 186 | cSUpos = 0;
|
---|
| 187 | }
|
---|
| 188 |
|
---|
| 189 | if (cSUpos) {
|
---|
| 190 | strcat(cMsg, ", using telescope position\n from SU table.");
|
---|
| 191 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
[1325] | 192 | cInterp = 0;
|
---|
| 193 | }
|
---|
| 194 |
|
---|
[1757] | 195 | // Mean scan rate (for timestamp repairs).
|
---|
| 196 | cNRate = 0;
|
---|
| 197 | cAvRate[0] = 0.0;
|
---|
| 198 | cAvRate[1] = 0.0;
|
---|
| 199 | cCode5 = 0;
|
---|
[1325] | 200 |
|
---|
[1757] | 201 |
|
---|
[1325] | 202 | // Find the maximum beam number.
|
---|
| 203 | cNBeam = 0;
|
---|
| 204 | for (int iBeam = 0; iBeam < anten_.nant; iBeam++) {
|
---|
| 205 | if (anten_.ant_num[iBeam] > cNBeam) {
|
---|
| 206 | cNBeam = anten_.ant_num[iBeam];
|
---|
| 207 | }
|
---|
| 208 | }
|
---|
| 209 |
|
---|
| 210 | if (cNBeam <= 0) {
|
---|
[1757] | 211 | os << LogIO::SEVERE << "Couldn't determine number of beams." << LogIO::POST ;
|
---|
[1325] | 212 | close();
|
---|
| 213 | return 1;
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 | // Construct the beam mask.
|
---|
| 217 | cBeams = new int[cNBeam];
|
---|
| 218 | for (int iBeam = 0; iBeam < cNBeam; iBeam++) {
|
---|
| 219 | cBeams[iBeam] = 0;
|
---|
| 220 | }
|
---|
| 221 |
|
---|
| 222 | // ...beams present in the data.
|
---|
| 223 | for (int iBeam = 0; iBeam < anten_.nant; iBeam++) {
|
---|
[1757] | 224 | // Guard against dubious beam numbers, e.g. zeroes in
|
---|
| 225 | // 1999-09-29_1632_024848p14_071b.hpf and the four scans following.
|
---|
| 226 | // Note that the actual beam number is decoded from the 'baseline' random
|
---|
| 227 | // parameter for each spectrum and is only used for beam selection.
|
---|
| 228 | int beamNo = anten_.ant_num[iBeam];
|
---|
| 229 | if (beamNo != iBeam+1) {
|
---|
| 230 | char sta[8];
|
---|
| 231 | strncpy(sta, names_.sta+(8*iBeam), 8);
|
---|
| 232 | char *cp = sta + 7;
|
---|
| 233 | while (*cp == ' ') *(cp--) = '\0';
|
---|
| 234 |
|
---|
| 235 | sprintf(cMsg,
|
---|
| 236 | "RPFITSIN returned beam number %2d for AN table\n"
|
---|
| 237 | "entry %2d with name '%.8s'", beamNo, iBeam+1, sta);
|
---|
| 238 |
|
---|
| 239 | char text[8];
|
---|
| 240 | sprintf(text, "MB%2.2d", iBeam+1);
|
---|
| 241 | cp = cMsg + strlen(cMsg);
|
---|
| 242 | if (strncmp(sta, text, 8) == 0) {
|
---|
| 243 | beamNo = iBeam + 1;
|
---|
| 244 | sprintf(cp, "; using beam number %2d.", beamNo);
|
---|
| 245 | } else {
|
---|
| 246 | sprintf(cp, ".");
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
| 250 | }
|
---|
| 251 |
|
---|
| 252 | if (0 < beamNo && beamNo <= cNBeam) {
|
---|
| 253 | cBeams[beamNo-1] = 1;
|
---|
| 254 | }
|
---|
[1325] | 255 | }
|
---|
| 256 |
|
---|
| 257 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
| 258 | // modify its elements directly.
|
---|
| 259 | nBeam = cNBeam;
|
---|
| 260 | beams = cBeams;
|
---|
| 261 |
|
---|
| 262 |
|
---|
| 263 | // Number of IFs.
|
---|
| 264 | cNIF = if_.n_if;
|
---|
| 265 | cIFs = new int[cNIF];
|
---|
| 266 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 267 | cIFs[iIF] = 1;
|
---|
| 268 | }
|
---|
| 269 |
|
---|
| 270 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
| 271 | // modify its elements directly.
|
---|
| 272 | nIF = cNIF;
|
---|
| 273 | IFs = cIFs;
|
---|
| 274 |
|
---|
| 275 |
|
---|
| 276 | // Number of channels and polarizations.
|
---|
| 277 | cNChan = new int[cNIF];
|
---|
| 278 | cNPol = new int[cNIF];
|
---|
| 279 | cHaveXPol = new int[cNIF];
|
---|
| 280 | cGetXPol = 0;
|
---|
| 281 |
|
---|
| 282 | int maxProd = 0;
|
---|
| 283 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 284 | cNChan[iIF] = if_.if_nfreq[iIF];
|
---|
| 285 | cNPol[iIF] = if_.if_nstok[iIF];
|
---|
| 286 | cNChan[iIF] -= cNChan[iIF]%2;
|
---|
| 287 |
|
---|
| 288 | // Do we have cross-polarization data?
|
---|
| 289 | if ((cHaveXPol[iIF] = cNPol[iIF] > 2)) {
|
---|
| 290 | // Cross-polarization data is handled separately.
|
---|
| 291 | cNPol[iIF] = 2;
|
---|
| 292 |
|
---|
| 293 | // Default is to get it if we have it.
|
---|
| 294 | cGetXPol = 1;
|
---|
| 295 | }
|
---|
| 296 |
|
---|
| 297 | // Maximum number of spectral products in any IF.
|
---|
| 298 | int nProd = if_.if_nfreq[iIF] * if_.if_nstok[iIF];
|
---|
| 299 | if (maxProd < nProd) maxProd = nProd;
|
---|
| 300 | }
|
---|
| 301 |
|
---|
[1757] | 302 | // Allocate memory for RPFITSIN subroutine arguments.
|
---|
| 303 | if (cVis) delete [] cVis;
|
---|
| 304 | if (cWgt) delete [] cWgt;
|
---|
| 305 | cVis = new float[2*maxProd];
|
---|
| 306 | cWgt = new float[maxProd];
|
---|
[1325] | 307 |
|
---|
| 308 | nChan = cNChan;
|
---|
| 309 | nPol = cNPol;
|
---|
| 310 | haveXPol = cHaveXPol;
|
---|
| 311 |
|
---|
| 312 |
|
---|
| 313 | // Default channel range selection.
|
---|
| 314 | cStartChan = new int[cNIF];
|
---|
| 315 | cEndChan = new int[cNIF];
|
---|
| 316 | cRefChan = new int[cNIF];
|
---|
| 317 |
|
---|
| 318 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 319 | cStartChan[iIF] = 1;
|
---|
| 320 | cEndChan[iIF] = cNChan[iIF];
|
---|
| 321 | cRefChan[iIF] = cNChan[iIF]/2 + 1;
|
---|
| 322 | }
|
---|
| 323 |
|
---|
| 324 | cGetSpectra = 1;
|
---|
| 325 |
|
---|
| 326 |
|
---|
| 327 | // No baseline parameters in MBFITS.
|
---|
| 328 | haveBase = 0;
|
---|
| 329 |
|
---|
| 330 | // Always have spectra in MBFITS.
|
---|
| 331 | haveSpectra = cHaveSpectra = 1;
|
---|
| 332 |
|
---|
| 333 |
|
---|
| 334 | // Integration cycle time (s).
|
---|
| 335 | cIntTime = param_.intime;
|
---|
| 336 |
|
---|
| 337 | // Can't deduce binning mode till later.
|
---|
| 338 | cNBin = 0;
|
---|
| 339 |
|
---|
| 340 |
|
---|
| 341 | // Read the first syscal record.
|
---|
| 342 | if (rpget(1, cEOS)) {
|
---|
[1757] | 343 | os << LogIO::SEVERE << "Failed to read first syscal record." << LogIO::POST ;
|
---|
[1325] | 344 | close();
|
---|
| 345 | return 1;
|
---|
| 346 | }
|
---|
| 347 |
|
---|
| 348 | // Additional information for Parkes Multibeam data?
|
---|
| 349 | extraSysCal = (sc_.sc_ant > anten_.nant);
|
---|
| 350 |
|
---|
| 351 |
|
---|
| 352 | cFirst = 1;
|
---|
| 353 | cEOF = 0;
|
---|
| 354 | cFlushing = 0;
|
---|
| 355 |
|
---|
| 356 | return 0;
|
---|
| 357 | }
|
---|
| 358 |
|
---|
| 359 | //---------------------------------------------------- MBFITSreader::getHeader
|
---|
| 360 |
|
---|
| 361 | // Get parameters describing the data.
|
---|
| 362 |
|
---|
| 363 | int MBFITSreader::getHeader(
|
---|
| 364 | char observer[32],
|
---|
| 365 | char project[32],
|
---|
| 366 | char telescope[32],
|
---|
| 367 | double antPos[3],
|
---|
| 368 | char obsType[32],
|
---|
[1757] | 369 | char bunit[32],
|
---|
[1325] | 370 | float &equinox,
|
---|
| 371 | char radecsys[32],
|
---|
| 372 | char dopplerFrame[32],
|
---|
| 373 | char datobs[32],
|
---|
| 374 | double &utc,
|
---|
| 375 | double &refFreq,
|
---|
| 376 | double &bandwidth)
|
---|
| 377 | {
|
---|
[1757] | 378 | const string methodName = "getHeader()" ;
|
---|
| 379 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
| 380 |
|
---|
[1325] | 381 | if (!cMBopen) {
|
---|
[1757] | 382 | os << LogIO::SEVERE << "An MBFITS file has not been opened." << LogIO::POST ;
|
---|
[1325] | 383 | return 1;
|
---|
| 384 | }
|
---|
| 385 |
|
---|
| 386 | sprintf(observer, "%-16.16s", names_.rp_observer);
|
---|
| 387 | sprintf(project, "%-16.16s", names_.object);
|
---|
| 388 | sprintf(telescope, "%-16.16s", names_.instrument);
|
---|
| 389 |
|
---|
| 390 | // Observatory coordinates (ITRF), in m.
|
---|
| 391 | antPos[0] = doubles_.x[0];
|
---|
| 392 | antPos[1] = doubles_.y[0];
|
---|
| 393 | antPos[2] = doubles_.z[0];
|
---|
| 394 |
|
---|
| 395 | // This is the only sure way to identify the telescope, maybe.
|
---|
| 396 | if (strncmp(names_.sta, "MB0", 3) == 0) {
|
---|
| 397 | // Parkes Multibeam.
|
---|
| 398 | sprintf(telescope, "%-16.16s", "ATPKSMB");
|
---|
| 399 | antPos[0] = -4554232.087;
|
---|
| 400 | antPos[1] = 2816759.046;
|
---|
| 401 | antPos[2] = -3454035.950;
|
---|
[1757] | 402 |
|
---|
[1325] | 403 | } else if (strncmp(names_.sta, "HOH", 3) == 0) {
|
---|
| 404 | // Parkes HOH receiver.
|
---|
| 405 | sprintf(telescope, "%-16.16s", "ATPKSHOH");
|
---|
| 406 | antPos[0] = -4554232.087;
|
---|
| 407 | antPos[1] = 2816759.046;
|
---|
| 408 | antPos[2] = -3454035.950;
|
---|
[1757] | 409 |
|
---|
[1325] | 410 | } else if (strncmp(names_.sta, "CA0", 3) == 0) {
|
---|
| 411 | // An ATCA antenna, use the array centre position.
|
---|
| 412 | sprintf(telescope, "%-16.16s", "ATCA");
|
---|
| 413 | antPos[0] = -4750915.837;
|
---|
| 414 | antPos[1] = 2792906.182;
|
---|
| 415 | antPos[2] = -3200483.747;
|
---|
[1757] | 416 |
|
---|
| 417 | // ATCA-104. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
[3067] | 418 | // antPos[0] = -4751640.182; // ᅵ 0.008
|
---|
| 419 | // antPos[1] = 2791700.322; // ᅵ 0.006
|
---|
| 420 | // antPos[2] = -3200490.668; // ᅵ 0.007
|
---|
[1757] | 421 | //
|
---|
[1325] | 422 | } else if (strncmp(names_.sta, "MOP", 3) == 0) {
|
---|
[1757] | 423 | // Mopra. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
[1325] | 424 | sprintf(telescope, "%-16.16s", "ATMOPRA");
|
---|
[3067] | 425 | antPos[0] = -4682769.444; // ᅵ 0.009
|
---|
| 426 | antPos[1] = 2802618.963; // ᅵ 0.006
|
---|
| 427 | antPos[2] = -3291758.864; // ᅵ 0.008
|
---|
[1757] | 428 |
|
---|
[1325] | 429 | } else if (strncmp(names_.sta, "HOB", 3) == 0) {
|
---|
| 430 | // Hobart.
|
---|
| 431 | sprintf(telescope, "%-16.16s", "HOBART");
|
---|
| 432 | antPos[0] = -3950236.735;
|
---|
| 433 | antPos[1] = 2522347.567;
|
---|
| 434 | antPos[2] = -4311562.569;
|
---|
[1757] | 435 |
|
---|
[1325] | 436 | } else if (strncmp(names_.sta, "CED", 3) == 0) {
|
---|
[1757] | 437 | // Ceduna. Updated position at epoch 2007/06/24 from Chris Phillips.
|
---|
[1325] | 438 | sprintf(telescope, "%-16.16s", "CEDUNA");
|
---|
[3067] | 439 | antPos[0] = -3753443.168; // ᅵ 0.017
|
---|
| 440 | antPos[1] = 3912709.794; // ᅵ 0.017
|
---|
| 441 | antPos[2] = -3348067.060; // ᅵ 0.016
|
---|
[1757] | 442 |
|
---|
[1325] | 443 | } else if (strncmp(names_.sta, "tid", 3) == 0) {
|
---|
| 444 | // DSS.
|
---|
| 445 | sprintf(telescope, "%-16.16s", "DSS-43");
|
---|
| 446 | antPos[0] = -4460894.727;
|
---|
| 447 | antPos[1] = 2682361.530;
|
---|
| 448 | antPos[2] = -3674748.424;
|
---|
| 449 | }
|
---|
| 450 |
|
---|
| 451 | // Observation type.
|
---|
| 452 | int j;
|
---|
| 453 | for (j = 0; j < 31; j++) {
|
---|
| 454 | obsType[j] = names_.card[11+j];
|
---|
| 455 | if (obsType[j] == '\'') break;
|
---|
| 456 | }
|
---|
| 457 | obsType[j] = '\0';
|
---|
| 458 |
|
---|
[1757] | 459 | // Brightness unit.
|
---|
| 460 | sprintf(bunit, "%-16.16s", names_.bunit);
|
---|
| 461 | if (strcmp(bunit, "JY") == 0) {
|
---|
| 462 | bunit[1] = 'y';
|
---|
| 463 | } else if (strcmp(bunit, "JY/BEAM") == 0) {
|
---|
| 464 | strcpy(bunit, "Jy/beam");
|
---|
| 465 | }
|
---|
| 466 |
|
---|
[1325] | 467 | // Coordinate frames.
|
---|
| 468 | equinox = 2000.0f;
|
---|
| 469 | strcpy(radecsys, "FK5");
|
---|
| 470 | strcpy(dopplerFrame, "TOPOCENT");
|
---|
| 471 |
|
---|
| 472 | // Time at start of observation.
|
---|
| 473 | sprintf(datobs, "%-10.10s", names_.datobs);
|
---|
[1757] | 474 | utc = cUTC;
|
---|
[1325] | 475 |
|
---|
| 476 | // Spectral parameters.
|
---|
| 477 | refFreq = doubles_.if_freq[0];
|
---|
| 478 | bandwidth = doubles_.if_bw[0];
|
---|
| 479 |
|
---|
| 480 | return 0;
|
---|
| 481 | }
|
---|
| 482 |
|
---|
| 483 | //-------------------------------------------------- MBFITSreader::getFreqInfo
|
---|
| 484 |
|
---|
| 485 | // Get frequency parameters for each IF.
|
---|
| 486 |
|
---|
| 487 | int MBFITSreader::getFreqInfo(
|
---|
[3067] | 488 | int &/*nIF*/,
|
---|
| 489 | double* &/*startFreq*/,
|
---|
| 490 | double* &/*endFreq*/)
|
---|
[1325] | 491 | {
|
---|
| 492 | // This is RPFITS - can't do it!
|
---|
| 493 | return 1;
|
---|
| 494 | }
|
---|
| 495 |
|
---|
| 496 | //---------------------------------------------------- MBFITSreader::findRange
|
---|
| 497 |
|
---|
| 498 | // Find the range of the data selected in time and position.
|
---|
| 499 |
|
---|
| 500 | int MBFITSreader::findRange(
|
---|
[3067] | 501 | int &/*nRow*/,
|
---|
| 502 | int &/*nSel*/,
|
---|
| 503 | char /*dateSpan*/[2][32],
|
---|
| 504 | double /*utcSpan*/[2],
|
---|
| 505 | double* &/*positions*/)
|
---|
[1325] | 506 | {
|
---|
| 507 | // This is RPFITS - can't do it!
|
---|
| 508 | return 1;
|
---|
| 509 | }
|
---|
| 510 |
|
---|
| 511 | //--------------------------------------------------------- MBFITSreader::read
|
---|
| 512 |
|
---|
[1757] | 513 | // Read the next data record (if you're feeling lucky).
|
---|
[1325] | 514 |
|
---|
| 515 | int MBFITSreader::read(
|
---|
[1757] | 516 | MBrecord &MBrec)
|
---|
[1325] | 517 | {
|
---|
[1757] | 518 | const string methodName = "read()" ;
|
---|
| 519 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
| 520 |
|
---|
[1325] | 521 | int beamNo = -1;
|
---|
[1757] | 522 | int haveData, pCode = 0, status;
|
---|
| 523 | double raRate = 0.0, decRate = 0.0, paRate = 0.0;
|
---|
| 524 | MBrecord *iMBuff = 0x0;
|
---|
[1325] | 525 |
|
---|
| 526 | if (!cMBopen) {
|
---|
[1757] | 527 | os << LogIO::SEVERE << "An MBFITS file has not been opened." << LogIO::POST ;
|
---|
[1325] | 528 | return 1;
|
---|
| 529 | }
|
---|
| 530 |
|
---|
[1757] | 531 | // Positions recorded in the input records usually do not coincide with the
|
---|
| 532 | // midpoint of the integration and hence the input must be buffered so that
|
---|
| 533 | // true positions may be interpolated.
|
---|
[1325] | 534 | //
|
---|
| 535 | // On the first call nBeamSel buffers of length nBin, are allocated and
|
---|
| 536 | // filled, where nBin is the number of time bins.
|
---|
| 537 | //
|
---|
| 538 | // The input records for binned, single beam data with multiple simultaneous
|
---|
| 539 | // IFs are ordered by IF within each integration rather than by bin number
|
---|
| 540 | // and hence are not in time order. No multibeam data exists with
|
---|
| 541 | // nBin > 1 but the likelihood that the input records would be in beam/IF
|
---|
| 542 | // order and the requirement that output records be in time order would
|
---|
| 543 | // force an elaborate double-buffering system and we do not support it.
|
---|
| 544 | //
|
---|
| 545 | // Once all buffers are filled, the next record for each beam pertains to
|
---|
| 546 | // the next integration and should contain new position information allowing
|
---|
| 547 | // the proper position for each spectrum in the buffer to be interpolated.
|
---|
| 548 | // The buffers are then flushed in time order. For single beam data there
|
---|
| 549 | // is only one buffer and reads from the MBFITS file are suspended while the
|
---|
| 550 | // flush is in progress. For multibeam data each buffer is of unit length
|
---|
| 551 | // so the flush completes immediately and the new record takes its place.
|
---|
| 552 |
|
---|
| 553 | haveData = 0;
|
---|
| 554 | while (!haveData) {
|
---|
| 555 | int iBeamSel = -1, iIFSel = -1;
|
---|
| 556 |
|
---|
| 557 | if (!cFlushing) {
|
---|
| 558 | if (cEOF) {
|
---|
| 559 | return -1;
|
---|
| 560 | }
|
---|
| 561 |
|
---|
| 562 | // Read the next record.
|
---|
[1757] | 563 | pCode = 0;
|
---|
[1325] | 564 | if ((status = rpget(0, cEOS)) == -1) {
|
---|
| 565 | // EOF.
|
---|
| 566 | cEOF = 1;
|
---|
| 567 | cFlushing = 1;
|
---|
| 568 | cFlushBin = 0;
|
---|
| 569 | cFlushIF = 0;
|
---|
| 570 |
|
---|
| 571 | #ifdef PKSIO_DEBUG
|
---|
[1757] | 572 | os << LogIO::DEBUGGING << "\nEnd-of-file detected, flushing last cycle.\n" << LogIO::POST ;
|
---|
[1325] | 573 | #endif
|
---|
| 574 |
|
---|
| 575 | } else if (status) {
|
---|
| 576 | // IO error.
|
---|
| 577 | return 1;
|
---|
| 578 |
|
---|
| 579 | } else {
|
---|
| 580 | if (cFirst) {
|
---|
| 581 | // First data; cBeamSel[] stores the buffer index for each beam.
|
---|
| 582 | cNBeamSel = 0;
|
---|
| 583 | cBeamSel = new int[cNBeam];
|
---|
| 584 |
|
---|
| 585 | for (int iBeam = 0; iBeam < cNBeam; iBeam++) {
|
---|
| 586 | if (cBeams[iBeam]) {
|
---|
| 587 | // Buffer offset for this beam.
|
---|
| 588 | cBeamSel[iBeam] = cNBeamSel++;
|
---|
| 589 | } else {
|
---|
| 590 | // Signal that the beam is not selected.
|
---|
| 591 | cBeamSel[iBeam] = -1;
|
---|
| 592 | }
|
---|
| 593 | }
|
---|
| 594 |
|
---|
| 595 | // Set up bookkeeping arrays for IFs.
|
---|
| 596 | cIFSel = new int[cNIF];
|
---|
| 597 | cChanOff = new int[cNIF];
|
---|
| 598 | cXpolOff = new int[cNIF];
|
---|
| 599 |
|
---|
| 600 | int maxChan = 0;
|
---|
| 601 | int maxXpol = 0;
|
---|
| 602 |
|
---|
[1757] | 603 | cSimulIF = 0;
|
---|
[1325] | 604 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
| 605 | if (cIFs[iIF]) {
|
---|
| 606 | // Buffer index for each IF within each simultaneous set.
|
---|
| 607 | cIFSel[iIF] = 0;
|
---|
| 608 |
|
---|
| 609 | // Array offsets for each IF within each simultaneous set.
|
---|
| 610 | cChanOff[iIF] = 0;
|
---|
| 611 | cXpolOff[iIF] = 0;
|
---|
| 612 |
|
---|
| 613 | // Look for earlier IFs in the same simultaneous set.
|
---|
| 614 | for (int jIF = 0; jIF < iIF; jIF++) {
|
---|
| 615 | if (!cIFs[jIF]) continue;
|
---|
| 616 |
|
---|
| 617 | if (if_.if_simul[jIF] == if_.if_simul[iIF]) {
|
---|
| 618 | // Got one, increment indices.
|
---|
| 619 | cIFSel[iIF]++;
|
---|
| 620 |
|
---|
| 621 | cChanOff[iIF] += cNChan[jIF] * cNPol[jIF];
|
---|
| 622 | if (cHaveXPol[jIF]) {
|
---|
| 623 | cXpolOff[iIF] += 2 * cNChan[jIF];
|
---|
| 624 | }
|
---|
| 625 | }
|
---|
| 626 | }
|
---|
| 627 |
|
---|
| 628 | // Maximum number of selected IFs in any simultaneous set.
|
---|
[1757] | 629 | cSimulIF = max(cSimulIF, cIFSel[iIF]+1);
|
---|
[1325] | 630 |
|
---|
| 631 | // Maximum memory required for any simultaneous set.
|
---|
| 632 | maxChan = max(maxChan, cChanOff[iIF] + cNChan[iIF]*cNPol[iIF]);
|
---|
| 633 | if (cHaveXPol[iIF]) {
|
---|
| 634 | maxXpol = max(maxXpol, cXpolOff[iIF] + 2*cNChan[iIF]);
|
---|
| 635 | }
|
---|
| 636 |
|
---|
| 637 | } else {
|
---|
| 638 | // Signal that the IF is not selected.
|
---|
| 639 | cIFSel[iIF] = -1;
|
---|
| 640 | }
|
---|
| 641 | }
|
---|
| 642 |
|
---|
| 643 | // Check for binning mode observations.
|
---|
| 644 | if (param_.intbase > 0.0f) {
|
---|
| 645 | cNBin = int((cIntTime / param_.intbase) + 0.5);
|
---|
| 646 |
|
---|
| 647 | // intbase sometimes contains rubbish.
|
---|
| 648 | if (cNBin == 0) {
|
---|
| 649 | cNBin = 1;
|
---|
| 650 | }
|
---|
| 651 | } else {
|
---|
| 652 | cNBin = 1;
|
---|
| 653 | }
|
---|
| 654 |
|
---|
| 655 | if (cNBin > 1 && cNBeamSel > 1) {
|
---|
[1757] | 656 | os << LogIO::SEVERE << "Cannot handle binning mode for multiple beams.\nSelect a single beam for input." << LogIO::POST ;
|
---|
[1325] | 657 | close();
|
---|
| 658 | return 1;
|
---|
| 659 | }
|
---|
| 660 |
|
---|
[1757] | 661 | // Allocate buffer data storage; the MBrecord constructor zeroes
|
---|
| 662 | // class members such as cycleNo that are tested in the first pass
|
---|
| 663 | // below.
|
---|
[1325] | 664 | int nBuff = cNBeamSel * cNBin;
|
---|
[1757] | 665 | cBuffer = new MBrecord[nBuff];
|
---|
[1325] | 666 |
|
---|
| 667 | // Allocate memory for spectral arrays.
|
---|
| 668 | for (int ibuff = 0; ibuff < nBuff; ibuff++) {
|
---|
[1757] | 669 | cBuffer[ibuff].setNIFs(cSimulIF);
|
---|
[1325] | 670 | cBuffer[ibuff].allocate(0, maxChan, maxXpol);
|
---|
[1757] | 671 |
|
---|
| 672 | // Signal that this IF in this buffer has been flushed.
|
---|
| 673 | for (int iIF = 0; iIF < cSimulIF; iIF++) {
|
---|
| 674 | cBuffer[ibuff].IFno[iIF] = 0;
|
---|
| 675 | }
|
---|
[1325] | 676 | }
|
---|
| 677 |
|
---|
| 678 | cPosUTC = new double[cNBeamSel];
|
---|
| 679 |
|
---|
| 680 | cFirst = 0;
|
---|
| 681 | cScanNo = 1;
|
---|
| 682 | cCycleNo = 0;
|
---|
[1757] | 683 | cPrevUTC = -1.0;
|
---|
[1325] | 684 | }
|
---|
| 685 |
|
---|
| 686 | // Check for end-of-scan.
|
---|
| 687 | if (cEOS) {
|
---|
| 688 | cScanNo++;
|
---|
| 689 | cCycleNo = 0;
|
---|
[1757] | 690 | cPrevUTC = -1.0;
|
---|
[1325] | 691 | }
|
---|
| 692 |
|
---|
[1757] | 693 | // Apply beam and IF selection before the change-of-day test to allow
|
---|
| 694 | // a single selected beam and IF to be handled in binning-mode.
|
---|
| 695 | beamNo = int(cBaseline / 256.0);
|
---|
| 696 | if (beamNo == 1) {
|
---|
| 697 | // Store the position of beam 1 for grid convergence corrections.
|
---|
| 698 | cRA0 = cU;
|
---|
| 699 | cDec0 = cV;
|
---|
| 700 | }
|
---|
[1325] | 701 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 702 | if (iBeamSel < 0) continue;
|
---|
| 703 |
|
---|
| 704 | // Sanity check (mainly for MOPS).
|
---|
[1757] | 705 | if (cIFno > cNIF) continue;
|
---|
[1325] | 706 |
|
---|
[1757] | 707 | // Apply IF selection; iIFSel == 0 for the first selected IF, == 1
|
---|
| 708 | // for the second, etc.
|
---|
| 709 | iIFSel = cIFSel[cIFno - 1];
|
---|
[1325] | 710 | if (iIFSel < 0) continue;
|
---|
| 711 |
|
---|
| 712 |
|
---|
[1757] | 713 | if (cNBin > 1) {
|
---|
| 714 | // Binning mode: correct the time.
|
---|
| 715 | cUTC += param_.intbase * (cBin - (cNBin + 1)/2.0);
|
---|
[1325] | 716 | }
|
---|
| 717 |
|
---|
[1757] | 718 | // Check for change-of-day.
|
---|
| 719 | double cod = 0.0;
|
---|
| 720 | if ((cUTC + 86400.0) < (cPrevUTC + 600.0)) {
|
---|
| 721 | // cUTC should continue to increase past 86400 during a single scan.
|
---|
| 722 | // However, if the RPFITS file contains multiple scans that straddle
|
---|
| 723 | // midnight then cUTC can jump backwards from the end of one scan to
|
---|
| 724 | // the start of the next.
|
---|
| 725 | #ifdef PKSIO_DEBUG
|
---|
| 726 | char buf[256] ;
|
---|
| 727 | sprintf(buf, "Change-of-day on cUTC: %.1f -> %.1f\n", cPrevUTC, cUTC);
|
---|
| 728 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 729 | #endif
|
---|
| 730 | // Can't change the recorded value of cUTC directly (without also
|
---|
| 731 | // changing dateobs) so change-of-day must be recorded separately as
|
---|
| 732 | // an offset to be applied when comparing integration timestamps.
|
---|
| 733 | cod = 86400.0;
|
---|
| 734 |
|
---|
| 735 | }
|
---|
| 736 |
|
---|
| 737 | if ((cUTC+cod) < cPrevUTC - 1.0) {
|
---|
| 738 | if (cBin == 1 && iIFSel) {
|
---|
| 739 | // Multiple-IF, binning-mode data is only partially time ordered.
|
---|
| 740 | #ifdef PKSIO_DEBUG
|
---|
| 741 | fprintf(stderr, "New IF in multiple-IF, binning-mode data.\n");
|
---|
| 742 | #endif
|
---|
| 743 | cCycleNo -= cNBin;
|
---|
| 744 | cPrevUTC = -1.0;
|
---|
| 745 |
|
---|
| 746 | } else {
|
---|
| 747 | // All other data should be fully time ordered.
|
---|
| 748 | sprintf(cMsg,
|
---|
| 749 | "Cycle %d:%03d-%03d, UTC went backwards from\n"
|
---|
| 750 | "%.1f to %.1f! Incrementing day number,\n"
|
---|
| 751 | "positions may be unreliable.", cScanNo, cCycleNo,
|
---|
| 752 | cCycleNo+1, cPrevUTC, cUTC);
|
---|
| 753 | //logMsg(cMsg);
|
---|
| 754 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
| 755 | cUTC += 86400.0;
|
---|
| 756 | }
|
---|
| 757 | }
|
---|
| 758 |
|
---|
[1453] | 759 | // New integration cycle?
|
---|
[1757] | 760 | if ((cUTC+cod) > cPrevUTC) {
|
---|
[1453] | 761 | cCycleNo++;
|
---|
[1757] | 762 | cPrevUTC = cUTC + 0.0001;
|
---|
[1453] | 763 | }
|
---|
| 764 |
|
---|
[1757] | 765 | sprintf(cDateObs, "%-10.10s", names_.datobs);
|
---|
| 766 | cDateObs[10] = '\0';
|
---|
[1325] | 767 |
|
---|
| 768 | // Compute buffer number.
|
---|
| 769 | iMBuff = cBuffer + iBeamSel;
|
---|
[1757] | 770 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
[1325] | 771 |
|
---|
| 772 | if (cCycleNo < iMBuff->cycleNo) {
|
---|
| 773 | // Note that if the first beam and IF are not both selected cEOS
|
---|
| 774 | // will be cleared by rpget() when the next beam/IF is read.
|
---|
| 775 | cEOS = 1;
|
---|
| 776 | }
|
---|
| 777 |
|
---|
| 778 | // Begin flush cycle?
|
---|
[1757] | 779 | if (cEOS || (iMBuff->nIF && (cUTC+cod) > (iMBuff->utc+0.0001))) {
|
---|
[1325] | 780 | cFlushing = 1;
|
---|
| 781 | cFlushBin = 0;
|
---|
| 782 | cFlushIF = 0;
|
---|
| 783 | }
|
---|
| 784 |
|
---|
| 785 | #ifdef PKSIO_DEBUG
|
---|
[1757] | 786 | char rel = '=';
|
---|
| 787 | double dt = utcDiff(cUTC, cW);
|
---|
| 788 | if (dt < 0.0) {
|
---|
| 789 | rel = '<';
|
---|
| 790 | } else if (dt > 0.0) {
|
---|
| 791 | rel = '>';
|
---|
| 792 | }
|
---|
| 793 |
|
---|
| 794 | sprintf(buf, "\n In:%4d%4d%3d%3d %.3f %c %.3f (%+.3fs) - "
|
---|
| 795 | "%sflushing\n", cScanNo, cCycleNo, beamNo, cIFno, cUTC, rel, cW, dt,
|
---|
| 796 | cFlushing ? "" : "not ");
|
---|
| 797 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 798 | if (cEOS) {
|
---|
| 799 | sprintf(buf, "Start of new scan, flushing previous scan.\n");
|
---|
| 800 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 801 | }
|
---|
[1325] | 802 | #endif
|
---|
| 803 | }
|
---|
| 804 | }
|
---|
| 805 |
|
---|
| 806 |
|
---|
| 807 | if (cFlushing) {
|
---|
| 808 | // Find the oldest integration to flush, noting that the last
|
---|
| 809 | // integration cycle may be incomplete.
|
---|
| 810 | beamNo = 0;
|
---|
| 811 | int cycleNo = 0;
|
---|
| 812 | for (; cFlushBin < cNBin; cFlushBin++) {
|
---|
| 813 | for (iBeamSel = 0; iBeamSel < cNBeamSel; iBeamSel++) {
|
---|
| 814 | iMBuff = cBuffer + iBeamSel + cNBeamSel*cFlushBin;
|
---|
| 815 |
|
---|
[1757] | 816 | // iMBuff->nIF is decremented (below) and if zero signals that all
|
---|
| 817 | // IFs in an integration have been flushed.
|
---|
[1325] | 818 | if (iMBuff->nIF) {
|
---|
| 819 | if (cycleNo == 0 || iMBuff->cycleNo < cycleNo) {
|
---|
| 820 | beamNo = iMBuff->beamNo;
|
---|
| 821 | cycleNo = iMBuff->cycleNo;
|
---|
| 822 | }
|
---|
| 823 | }
|
---|
| 824 | }
|
---|
| 825 |
|
---|
| 826 | if (beamNo) {
|
---|
| 827 | // Found an integration to flush.
|
---|
| 828 | break;
|
---|
| 829 | }
|
---|
[1757] | 830 |
|
---|
| 831 | // Start with the first IF in the next bin.
|
---|
| 832 | cFlushIF = 0;
|
---|
[1325] | 833 | }
|
---|
| 834 |
|
---|
| 835 | if (beamNo) {
|
---|
| 836 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 837 | iMBuff = cBuffer + iBeamSel + cNBeamSel*cFlushBin;
|
---|
| 838 |
|
---|
| 839 | // Find the IF to flush.
|
---|
[1757] | 840 | for (; cFlushIF < cSimulIF; cFlushIF++) {
|
---|
[1325] | 841 | if (iMBuff->IFno[cFlushIF]) break;
|
---|
| 842 | }
|
---|
| 843 |
|
---|
| 844 | } else {
|
---|
| 845 | // Flush complete.
|
---|
| 846 | cFlushing = 0;
|
---|
| 847 | if (cEOF) {
|
---|
| 848 | return -1;
|
---|
| 849 | }
|
---|
| 850 |
|
---|
| 851 | // The last record read must have been the first of a new cycle.
|
---|
[1757] | 852 | beamNo = int(cBaseline / 256.0);
|
---|
[1325] | 853 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 854 |
|
---|
| 855 | // Compute buffer number.
|
---|
| 856 | iMBuff = cBuffer + iBeamSel;
|
---|
[1757] | 857 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
[1325] | 858 | }
|
---|
| 859 | }
|
---|
| 860 |
|
---|
| 861 |
|
---|
[1757] | 862 | if (cInterp && cFlushing == 1) {
|
---|
| 863 | // Start of flush cycle, interpolate the beam position.
|
---|
| 864 | //
|
---|
| 865 | // The position is measured by the control system at a time returned by
|
---|
| 866 | // RPFITSIN as the 'w' visibility coordinate. The ra and dec, returned
|
---|
| 867 | // as the 'u' and 'v' visibility coordinates, must be interpolated to
|
---|
| 868 | // the integration time which RPFITSIN returns as 'cUTC', this usually
|
---|
| 869 | // being a second or two later. The interpolation method used here is
|
---|
| 870 | // based on the scan rate.
|
---|
| 871 | //
|
---|
| 872 | // "This" RA, Dec, and UTC refers to the position currently stored in
|
---|
| 873 | // the buffer marked for output (iMBuff). This position is interpolated
|
---|
| 874 | // to the midpoint of that integration using either
|
---|
| 875 | // a) the rate currently sitting in iMBuff, which was computed from
|
---|
| 876 | // the previous integration, otherwise
|
---|
| 877 | // b) from the position recorded in the "next" integration which is
|
---|
| 878 | // currently sitting in the RPFITS commons,
|
---|
| 879 | // so that the position timestamps straddle the midpoint of the
|
---|
| 880 | // integration and is thereby interpolated rather than extrapolated.
|
---|
| 881 | //
|
---|
| 882 | // At the end of a scan, or if the next position has not been updated
|
---|
| 883 | // or its timestamp does not advance sufficiently, the most recent
|
---|
| 884 | // determination of the scan rate will be used for extrapolation which
|
---|
| 885 | // is quantified by the "rate age" measured in seconds beyond the
|
---|
| 886 | // interval defined by the position timestamps.
|
---|
| 887 |
|
---|
| 888 | // At this point, iMBuff contains cU, cV, cW, parAngle and focusRot
|
---|
| 889 | // stored from the previous call to rpget() for this beam (i.e. "this"),
|
---|
| 890 | // and also raRate, decRate and paRate computed from that integration
|
---|
| 891 | // and the previous one.
|
---|
| 892 | double thisRA = iMBuff->ra;
|
---|
| 893 | double thisDec = iMBuff->dec;
|
---|
| 894 | double thisUTC = cPosUTC[iBeamSel];
|
---|
| 895 | double thisPA = iMBuff->parAngle + iMBuff->focusRot;
|
---|
| 896 |
|
---|
[1325] | 897 | #ifdef PKSIO_DEBUG
|
---|
[1757] | 898 | sprintf(buf, "This (%d) ra, dec, UTC: %9.4f %9.4f %10.3f %9.4f\n",
|
---|
| 899 | iMBuff->cycleNo, thisRA*R2D, thisDec*R2D, thisUTC, thisPA*R2D);
|
---|
| 900 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
[1325] | 901 | #endif
|
---|
| 902 |
|
---|
[1757] | 903 | if (cEOF || cEOS) {
|
---|
| 904 | // Use rates from the last cycle.
|
---|
| 905 | raRate = iMBuff->raRate;
|
---|
| 906 | decRate = iMBuff->decRate;
|
---|
| 907 | paRate = iMBuff->paRate;
|
---|
[1325] | 908 |
|
---|
[1757] | 909 | } else {
|
---|
| 910 | if (cW == thisUTC) {
|
---|
| 911 | // The control system at Mopra typically does not update the
|
---|
| 912 | // positions between successive integration cycles at the end of a
|
---|
| 913 | // scan (nor are they flagged). In this case we use the previously
|
---|
| 914 | // computed rates, even if from the previous scan since these are
|
---|
| 915 | // likely to be a better guess than anything else.
|
---|
| 916 | raRate = iMBuff->raRate;
|
---|
| 917 | decRate = iMBuff->decRate;
|
---|
| 918 | paRate = iMBuff->paRate;
|
---|
[1325] | 919 |
|
---|
[1757] | 920 | if (cU == thisRA && cV == thisDec) {
|
---|
| 921 | // Position and timestamp unchanged.
|
---|
| 922 | pCode = 1;
|
---|
[1325] | 923 |
|
---|
[1757] | 924 | } else if (fabs(cU-thisRA) < 0.0001 && fabs(cV-thisDec) < 0.0001) {
|
---|
| 925 | // Allow small rounding errors (seen infrequently).
|
---|
| 926 | pCode = 1;
|
---|
[1325] | 927 |
|
---|
| 928 | } else {
|
---|
[1757] | 929 | // (cU,cV) are probably rubbish (not yet seen in practice).
|
---|
| 930 | pCode = 2;
|
---|
| 931 | cU = thisRA;
|
---|
| 932 | cV = thisDec;
|
---|
[1325] | 933 | }
|
---|
| 934 |
|
---|
[1757] | 935 | #ifdef PKSIO_DEBUG
|
---|
| 936 | sprintf(buf, "Next (%d) ra, dec, UTC: %9.4f %9.4f %10.3f "
|
---|
| 937 | "(0.000s)\n", cCycleNo, cU*R2D, cV*R2D, cW);
|
---|
| 938 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 939 | #endif
|
---|
[1325] | 940 |
|
---|
[1757] | 941 | } else {
|
---|
| 942 | double nextRA = cU;
|
---|
| 943 | double nextDec = cV;
|
---|
[1325] | 944 |
|
---|
[1757] | 945 | // Check and, if necessary, repair the position timestamp,
|
---|
| 946 | // remembering that pCode refers to the NEXT cycle.
|
---|
| 947 | pCode = fixw(cDateObs, cCycleNo, beamNo, cAvRate, thisRA, thisDec,
|
---|
| 948 | thisUTC, nextRA, nextDec, cW);
|
---|
| 949 | if (pCode > 0) pCode += 3;
|
---|
| 950 | double nextUTC = cW;
|
---|
[1325] | 951 |
|
---|
[1757] | 952 | #ifdef PKSIO_DEBUG
|
---|
| 953 | sprintf(buf, "Next (%d) ra, dec, UTC: %9.4f %9.4f %10.3f "
|
---|
| 954 | "(%+.3fs)\n", cCycleNo, nextRA*R2D, nextDec*R2D, nextUTC,
|
---|
| 955 | utcDiff(nextUTC, thisUTC));
|
---|
| 956 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 957 | #endif
|
---|
[1325] | 958 |
|
---|
[1757] | 959 | // Compute the scan rate for this beam.
|
---|
| 960 | double dUTC = utcDiff(nextUTC, thisUTC);
|
---|
| 961 | if ((0.0 < dUTC) && (dUTC < 600.0)) {
|
---|
| 962 | scanRate(cRA0, cDec0, thisRA, thisDec, nextRA, nextDec, dUTC,
|
---|
| 963 | raRate, decRate);
|
---|
| 964 |
|
---|
| 965 | // Update the mean scan rate.
|
---|
| 966 | cAvRate[0] = (cAvRate[0]*cNRate + raRate) / (cNRate + 1);
|
---|
| 967 | cAvRate[1] = (cAvRate[1]*cNRate + decRate) / (cNRate + 1);
|
---|
| 968 | cNRate++;
|
---|
| 969 |
|
---|
| 970 | // Rate of change of position angle.
|
---|
| 971 | if (sc_.sc_ant <= anten_.nant) {
|
---|
| 972 | paRate = 0.0;
|
---|
| 973 | } else {
|
---|
| 974 | int iOff = sc_.sc_q * (sc_.sc_ant - 1) - 1;
|
---|
| 975 | double nextPA = sc_.sc_cal[iOff + 4] + sc_.sc_cal[iOff + 7];
|
---|
| 976 | double paDiff = nextPA - thisPA;
|
---|
| 977 | if (paDiff > PI) {
|
---|
| 978 | paDiff -= TWOPI;
|
---|
| 979 | } else if (paDiff < -PI) {
|
---|
| 980 | paDiff += TWOPI;
|
---|
| 981 | }
|
---|
| 982 | paRate = paDiff / dUTC;
|
---|
[1325] | 983 | }
|
---|
| 984 |
|
---|
[1757] | 985 | if (cInterp == 2) {
|
---|
| 986 | // Use the same interpolation scheme as the original pksmbfits
|
---|
| 987 | // client. This incorrectly assumed that (nextUTC - thisUTC) is
|
---|
| 988 | // equal to the integration time and interpolated by computing a
|
---|
| 989 | // weighted sum of the positions before and after the required
|
---|
| 990 | // time.
|
---|
[1325] | 991 |
|
---|
[1757] | 992 | double utc = iMBuff->utc;
|
---|
| 993 | double tw1 = 1.0 - utcDiff(utc, thisUTC) / iMBuff->exposure;
|
---|
| 994 | double tw2 = 1.0 - utcDiff(nextUTC, utc) / iMBuff->exposure;
|
---|
| 995 | double gamma = (tw2 / (tw1 + tw2)) * dUTC / (utc - thisUTC);
|
---|
[1325] | 996 |
|
---|
[1757] | 997 | // Guard against RA cycling through 24h in either direction.
|
---|
| 998 | if (fabs(nextRA - thisRA) > PI) {
|
---|
| 999 | if (nextRA < thisRA) {
|
---|
| 1000 | nextRA += TWOPI;
|
---|
| 1001 | } else {
|
---|
| 1002 | nextRA -= TWOPI;
|
---|
| 1003 | }
|
---|
| 1004 | }
|
---|
[1325] | 1005 |
|
---|
[1757] | 1006 | raRate = gamma * (nextRA - thisRA) / dUTC;
|
---|
| 1007 | decRate = gamma * (nextDec - thisDec) / dUTC;
|
---|
| 1008 | }
|
---|
[1325] | 1009 |
|
---|
| 1010 | } else {
|
---|
[1757] | 1011 | if (cCycleNo == 2 && fabs(utcDiff(cUTC,cW)) < 600.0) {
|
---|
| 1012 | // thisUTC (i.e. cW for the first cycle) is rubbish, and
|
---|
| 1013 | // probably the position as well (extremely rare in practice,
|
---|
| 1014 | // e.g. 97-12-19_1029_235708-18_586e.hpf which actually has the
|
---|
| 1015 | // t/1000 scaling bug in the first cycle).
|
---|
| 1016 | iMBuff->pCode = 3;
|
---|
| 1017 | thisRA = cU;
|
---|
| 1018 | thisDec = cV;
|
---|
| 1019 | thisUTC = cW;
|
---|
| 1020 | raRate = 0.0;
|
---|
| 1021 | decRate = 0.0;
|
---|
| 1022 | paRate = 0.0;
|
---|
| 1023 |
|
---|
[1325] | 1024 | } else {
|
---|
[1757] | 1025 | // cW is rubbish and probably (cU,cV), and possibly the
|
---|
| 1026 | // parallactic angle and everything else as well (rarely seen
|
---|
| 1027 | // in practice, e.g. 97-12-09_0743_235707-58_327c.hpf and
|
---|
| 1028 | // 97-09-01_0034_123717-42_242b.hpf, the latter with bad
|
---|
| 1029 | // parallactic angle).
|
---|
| 1030 | pCode = 3;
|
---|
| 1031 | cU = thisRA;
|
---|
| 1032 | cV = thisDec;
|
---|
| 1033 | cW = thisUTC;
|
---|
| 1034 | raRate = iMBuff->raRate;
|
---|
| 1035 | decRate = iMBuff->decRate;
|
---|
| 1036 | paRate = iMBuff->paRate;
|
---|
[1325] | 1037 | }
|
---|
| 1038 | }
|
---|
[1757] | 1039 | }
|
---|
| 1040 | }
|
---|
[1325] | 1041 |
|
---|
| 1042 |
|
---|
[1757] | 1043 | // Choose the closest rate determination.
|
---|
| 1044 | if (cCycleNo == 1) {
|
---|
| 1045 | // Scan containing a single integration.
|
---|
| 1046 | iMBuff->raRate = 0.0;
|
---|
| 1047 | iMBuff->decRate = 0.0;
|
---|
| 1048 | iMBuff->paRate = 0.0;
|
---|
| 1049 |
|
---|
| 1050 | } else {
|
---|
| 1051 | double dUTC = iMBuff->utc - cPosUTC[iBeamSel];
|
---|
| 1052 |
|
---|
| 1053 | if (dUTC >= 0.0) {
|
---|
| 1054 | // In HIPASS/ZOA, the position timestamp, which should always occur
|
---|
| 1055 | // on the whole second, normally precedes an integration midpoint
|
---|
| 1056 | // falling on the half-second. Consequently, positive ages are
|
---|
| 1057 | // always half-integral.
|
---|
| 1058 | dUTC = utcDiff(iMBuff->utc, cW);
|
---|
| 1059 | if (dUTC > 0.0) {
|
---|
| 1060 | iMBuff->rateAge = dUTC;
|
---|
| 1061 | } else {
|
---|
| 1062 | iMBuff->rateAge = 0.0f;
|
---|
| 1063 | }
|
---|
| 1064 |
|
---|
| 1065 | iMBuff->raRate = raRate;
|
---|
| 1066 | iMBuff->decRate = decRate;
|
---|
| 1067 | iMBuff->paRate = paRate;
|
---|
| 1068 |
|
---|
| 1069 | } else {
|
---|
| 1070 | // In HIPASS/ZOA, negative ages occur when the integration midpoint,
|
---|
| 1071 | // occurring on the whole second, precedes the position timestamp.
|
---|
| 1072 | // Thus negative ages are always an integral number of seconds.
|
---|
| 1073 | // They have only been seen to occur sporadically in the period
|
---|
| 1074 | // 1999/05/31 to 1999/11/01, e.g. 1999-07-26_1821_005410-74_007c.hpf
|
---|
| 1075 | //
|
---|
| 1076 | // In recent (2008/10/07) Mopra data, small negative ages (~10ms,
|
---|
| 1077 | // occasionally up to ~300ms) seem to be the norm, with both the
|
---|
| 1078 | // position timestamp and integration midpoint falling close to but
|
---|
| 1079 | // not on the integral second.
|
---|
| 1080 | if (cCycleNo == 2) {
|
---|
| 1081 | // We have to start with something!
|
---|
| 1082 | iMBuff->rateAge = dUTC;
|
---|
| 1083 |
|
---|
| 1084 | } else {
|
---|
| 1085 | // Although we did not record the relevant position timestamp
|
---|
| 1086 | // explicitly, it can easily be deduced.
|
---|
| 1087 | double w = iMBuff->utc - utcDiff(cUTC, iMBuff->utc) -
|
---|
| 1088 | iMBuff->rateAge;
|
---|
| 1089 | dUTC = utcDiff(iMBuff->utc, w);
|
---|
| 1090 |
|
---|
| 1091 | if (dUTC > 0.0) {
|
---|
| 1092 | iMBuff->rateAge = 0.0f;
|
---|
| 1093 | } else {
|
---|
| 1094 | iMBuff->rateAge = dUTC;
|
---|
[1325] | 1095 | }
|
---|
| 1096 | }
|
---|
[1757] | 1097 |
|
---|
| 1098 | iMBuff->raRate = raRate;
|
---|
| 1099 | iMBuff->decRate = decRate;
|
---|
| 1100 | iMBuff->paRate = paRate;
|
---|
[1325] | 1101 | }
|
---|
| 1102 | }
|
---|
| 1103 |
|
---|
[1757] | 1104 | #ifdef PKSIO_DEBUG
|
---|
| 1105 | double avRate = sqrt(cAvRate[0]*cAvRate[0] + cAvRate[1]*cAvRate[1]);
|
---|
| 1106 | sprintf(buf, "RA, Dec, Av & PA rates: %8.4f %8.4f %8.4f %8.4f "
|
---|
| 1107 | "pCode %d\n", raRate*R2D, decRate*R2D, avRate*R2D, paRate*R2D, pCode);
|
---|
| 1108 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 1109 | #endif
|
---|
| 1110 |
|
---|
| 1111 |
|
---|
[1325] | 1112 | // Compute the position of this beam for all bins.
|
---|
| 1113 | for (int idx = 0; idx < cNBin; idx++) {
|
---|
| 1114 | int jbuff = iBeamSel + cNBeamSel*idx;
|
---|
| 1115 |
|
---|
| 1116 | cBuffer[jbuff].raRate = iMBuff->raRate;
|
---|
| 1117 | cBuffer[jbuff].decRate = iMBuff->decRate;
|
---|
[1757] | 1118 | cBuffer[jbuff].paRate = iMBuff->paRate;
|
---|
[1325] | 1119 |
|
---|
[1757] | 1120 | double dUTC = utcDiff(cBuffer[jbuff].utc, thisUTC);
|
---|
| 1121 | if (dUTC > 100.0) {
|
---|
[1325] | 1122 | // Must have cycled through midnight.
|
---|
[1757] | 1123 | dUTC -= 86400.0;
|
---|
[1325] | 1124 | }
|
---|
| 1125 |
|
---|
[1757] | 1126 | applyRate(cRA0, cDec0, thisRA, thisDec,
|
---|
| 1127 | cBuffer[jbuff].raRate, cBuffer[jbuff].decRate, dUTC,
|
---|
| 1128 | cBuffer[jbuff].ra, cBuffer[jbuff].dec);
|
---|
| 1129 |
|
---|
| 1130 | #ifdef PKSIO_DEBUG
|
---|
| 1131 | sprintf(buf, "Intp (%d) ra, dec, UTC: %9.4f %9.4f %10.3f (pCode, "
|
---|
| 1132 | "age: %d %.1fs)\n", iMBuff->cycleNo, cBuffer[jbuff].ra*R2D,
|
---|
| 1133 | cBuffer[jbuff].dec*R2D, cBuffer[jbuff].utc, iMBuff->pCode,
|
---|
| 1134 | iMBuff->rateAge);
|
---|
| 1135 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 1136 | #endif
|
---|
[1325] | 1137 | }
|
---|
[1757] | 1138 |
|
---|
| 1139 | cFlushing = 2;
|
---|
[1325] | 1140 | }
|
---|
| 1141 |
|
---|
| 1142 |
|
---|
| 1143 | if (cFlushing) {
|
---|
| 1144 | // Copy buffer location out one IF at a time.
|
---|
| 1145 | MBrec.extract(*iMBuff, cFlushIF);
|
---|
| 1146 | haveData = 1;
|
---|
| 1147 |
|
---|
| 1148 | #ifdef PKSIO_DEBUG
|
---|
[1757] | 1149 | sprintf(buf, "Out:%4d%4d%3d%3d\n", MBrec.scanNo, MBrec.cycleNo,
|
---|
| 1150 | MBrec.beamNo, MBrec.IFno[0]);
|
---|
| 1151 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
[1325] | 1152 | #endif
|
---|
| 1153 |
|
---|
| 1154 | // Signal that this IF in this buffer location has been flushed.
|
---|
| 1155 | iMBuff->IFno[cFlushIF] = 0;
|
---|
| 1156 |
|
---|
[1757] | 1157 | iMBuff->nIF--;
|
---|
| 1158 | if (iMBuff->nIF == 0) {
|
---|
| 1159 | // All IFs in this buffer location have been flushed. Stop cEOS
|
---|
| 1160 | // being set when the next integration is read.
|
---|
| 1161 | iMBuff->cycleNo = 0;
|
---|
| 1162 |
|
---|
[1325] | 1163 | } else {
|
---|
| 1164 | // Carry on flushing the other IFs.
|
---|
| 1165 | continue;
|
---|
| 1166 | }
|
---|
| 1167 |
|
---|
| 1168 | // Has the whole buffer been flushed?
|
---|
| 1169 | if (cFlushBin == cNBin - 1) {
|
---|
| 1170 | if (cEOS || cEOF) {
|
---|
| 1171 | // Carry on flushing other buffers.
|
---|
| 1172 | cFlushIF = 0;
|
---|
| 1173 | continue;
|
---|
| 1174 | }
|
---|
| 1175 |
|
---|
| 1176 | cFlushing = 0;
|
---|
| 1177 |
|
---|
[1757] | 1178 | beamNo = int(cBaseline / 256.0);
|
---|
[1325] | 1179 | iBeamSel = cBeamSel[beamNo-1];
|
---|
| 1180 |
|
---|
| 1181 | // Compute buffer number.
|
---|
| 1182 | iMBuff = cBuffer + iBeamSel;
|
---|
[1757] | 1183 | if (cNBin > 1) iMBuff += cNBeamSel*(cBin-1);
|
---|
[1325] | 1184 | }
|
---|
| 1185 | }
|
---|
| 1186 |
|
---|
| 1187 | if (!cFlushing) {
|
---|
| 1188 | // Buffer this MBrec.
|
---|
[1757] | 1189 | if ((cScanNo > iMBuff->scanNo) && iMBuff->IFno[0]) {
|
---|
[1325] | 1190 | // Sanity check on the number of IFs in the new scan.
|
---|
| 1191 | if (if_.n_if != cNIF) {
|
---|
[1757] | 1192 | sprintf(cMsg, "Scan %d has %d IFs instead of %d, "
|
---|
| 1193 | "continuing.", cScanNo, if_.n_if, cNIF);
|
---|
| 1194 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
[1325] | 1195 | }
|
---|
| 1196 | }
|
---|
| 1197 |
|
---|
[1757] | 1198 | // Sanity check on incomplete integrations within a scan.
|
---|
| 1199 | if (iMBuff->nIF && (iMBuff->cycleNo != cCycleNo)) {
|
---|
| 1200 | // Force the incomplete integration to be flushed before proceeding.
|
---|
| 1201 | cFlushing = 1;
|
---|
| 1202 | continue;
|
---|
| 1203 | }
|
---|
[1325] | 1204 |
|
---|
[1757] | 1205 | #ifdef PKSIO_DEBUG
|
---|
| 1206 | sprintf(buf, "Buf:%4d%4d%3d%3d\n", cScanNo, cCycleNo, beamNo, cIFno);
|
---|
| 1207 | os << LogIO::DEBUGGING << buf << LogIO::POST ;
|
---|
| 1208 | #endif
|
---|
[1325] | 1209 |
|
---|
[1757] | 1210 | // Store IF-independent parameters only for the first IF of a new cycle,
|
---|
| 1211 | // particularly because this is the only one for which the scan rates
|
---|
| 1212 | // are computed above.
|
---|
| 1213 | int firstIF = (iMBuff->nIF == 0);
|
---|
| 1214 | if (firstIF) {
|
---|
| 1215 | iMBuff->scanNo = cScanNo;
|
---|
| 1216 | iMBuff->cycleNo = cCycleNo;
|
---|
[1325] | 1217 |
|
---|
[1757] | 1218 | // Times.
|
---|
| 1219 | strcpy(iMBuff->datobs, cDateObs);
|
---|
| 1220 | iMBuff->utc = cUTC;
|
---|
| 1221 | iMBuff->exposure = param_.intbase;
|
---|
| 1222 |
|
---|
| 1223 | // Source identification.
|
---|
| 1224 | sprintf(iMBuff->srcName, "%-16.16s",
|
---|
| 1225 | names_.su_name + (cSrcNo-1)*16);
|
---|
| 1226 | iMBuff->srcName[16] = '\0';
|
---|
| 1227 | iMBuff->srcRA = doubles_.su_ra[cSrcNo-1];
|
---|
| 1228 | iMBuff->srcDec = doubles_.su_dec[cSrcNo-1];
|
---|
| 1229 |
|
---|
| 1230 | // Rest frequency of the line of interest.
|
---|
| 1231 | iMBuff->restFreq = doubles_.rfreq;
|
---|
| 1232 | if (strncmp(names_.instrument, "ATPKSMB", 7) == 0) {
|
---|
| 1233 | // Fix the HI rest frequency recorded for Parkes multibeam data.
|
---|
| 1234 | double reffreq = doubles_.freq;
|
---|
| 1235 | double restfreq = doubles_.rfreq;
|
---|
| 1236 | if ((restfreq == 0.0 || fabs(restfreq - reffreq) == 0.0) &&
|
---|
| 1237 | fabs(reffreq - 1420.405752e6) < 100.0) {
|
---|
| 1238 | iMBuff->restFreq = 1420.405752e6;
|
---|
| 1239 | }
|
---|
[1325] | 1240 | }
|
---|
| 1241 |
|
---|
[1757] | 1242 | // Observation type.
|
---|
| 1243 | int j;
|
---|
| 1244 | for (j = 0; j < 15; j++) {
|
---|
| 1245 | iMBuff->obsType[j] = names_.card[11+j];
|
---|
| 1246 | if (iMBuff->obsType[j] == '\'') break;
|
---|
| 1247 | }
|
---|
| 1248 | iMBuff->obsType[j] = '\0';
|
---|
[1325] | 1249 |
|
---|
[1757] | 1250 | // Beam-dependent parameters.
|
---|
| 1251 | iMBuff->beamNo = beamNo;
|
---|
[1325] | 1252 |
|
---|
[1757] | 1253 | // Beam position at the specified time.
|
---|
| 1254 | if (cSUpos) {
|
---|
| 1255 | // Non-ATNF data that does not store the position in (u,v,w).
|
---|
| 1256 | iMBuff->ra = doubles_.su_ra[cSrcNo-1];
|
---|
| 1257 | iMBuff->dec = doubles_.su_dec[cSrcNo-1];
|
---|
| 1258 | } else {
|
---|
| 1259 | iMBuff->ra = cU;
|
---|
| 1260 | iMBuff->dec = cV;
|
---|
| 1261 | }
|
---|
| 1262 | cPosUTC[iBeamSel] = cW;
|
---|
| 1263 | iMBuff->pCode = pCode;
|
---|
| 1264 |
|
---|
| 1265 | // Store rates for next time.
|
---|
| 1266 | iMBuff->raRate = raRate;
|
---|
| 1267 | iMBuff->decRate = decRate;
|
---|
| 1268 | iMBuff->paRate = paRate;
|
---|
[1325] | 1269 | }
|
---|
| 1270 |
|
---|
| 1271 | // IF-dependent parameters.
|
---|
[1757] | 1272 | int iIF = cIFno - 1;
|
---|
[1325] | 1273 | int startChan = cStartChan[iIF];
|
---|
| 1274 | int endChan = cEndChan[iIF];
|
---|
| 1275 | int refChan = cRefChan[iIF];
|
---|
| 1276 |
|
---|
| 1277 | int nChan = abs(endChan - startChan) + 1;
|
---|
| 1278 |
|
---|
| 1279 | iIFSel = cIFSel[iIF];
|
---|
[1757] | 1280 | if (iMBuff->IFno[iIFSel] == 0) {
|
---|
| 1281 | iMBuff->nIF++;
|
---|
| 1282 | iMBuff->IFno[iIFSel] = cIFno;
|
---|
| 1283 | } else {
|
---|
| 1284 | // Integration cycle written to the output file twice (the only known
|
---|
| 1285 | // example is 1999-05-22_1914_000-031805_03v.hpf).
|
---|
| 1286 | sprintf(cMsg, "Integration cycle %d:%d, beam %2d, \n"
|
---|
| 1287 | "IF %d was duplicated.", cScanNo, cCycleNo-1,
|
---|
| 1288 | beamNo, cIFno);
|
---|
| 1289 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
| 1290 | }
|
---|
[1325] | 1291 | iMBuff->nChan[iIFSel] = nChan;
|
---|
| 1292 | iMBuff->nPol[iIFSel] = cNPol[iIF];
|
---|
| 1293 |
|
---|
| 1294 | iMBuff->fqRefPix[iIFSel] = doubles_.if_ref[iIF];
|
---|
| 1295 | iMBuff->fqRefVal[iIFSel] = doubles_.if_freq[iIF];
|
---|
| 1296 | iMBuff->fqDelt[iIFSel] =
|
---|
| 1297 | if_.if_invert[iIF] * fabs(doubles_.if_bw[iIF] /
|
---|
| 1298 | (if_.if_nfreq[iIF] - 1));
|
---|
| 1299 |
|
---|
| 1300 | // Adjust for channel selection.
|
---|
| 1301 | if (iMBuff->fqRefPix[iIFSel] != refChan) {
|
---|
| 1302 | iMBuff->fqRefVal[iIFSel] +=
|
---|
| 1303 | (refChan - iMBuff->fqRefPix[iIFSel]) *
|
---|
| 1304 | iMBuff->fqDelt[iIFSel];
|
---|
| 1305 | iMBuff->fqRefPix[iIFSel] = refChan;
|
---|
| 1306 | }
|
---|
| 1307 |
|
---|
| 1308 | if (endChan < startChan) {
|
---|
| 1309 | iMBuff->fqDelt[iIFSel] = -iMBuff->fqDelt[iIFSel];
|
---|
| 1310 | }
|
---|
| 1311 |
|
---|
| 1312 |
|
---|
| 1313 | // System temperature.
|
---|
| 1314 | int iBeam = beamNo - 1;
|
---|
| 1315 | int scq = sc_.sc_q;
|
---|
| 1316 | float TsysPol1 = sc_.sc_cal[scq*iBeam + 3];
|
---|
| 1317 | float TsysPol2 = sc_.sc_cal[scq*iBeam + 4];
|
---|
| 1318 | iMBuff->tsys[iIFSel][0] = TsysPol1*TsysPol1;
|
---|
| 1319 | iMBuff->tsys[iIFSel][1] = TsysPol2*TsysPol2;
|
---|
| 1320 |
|
---|
| 1321 | // Calibration factor; may be changed later if the data is recalibrated.
|
---|
| 1322 | if (scq > 14) {
|
---|
| 1323 | // Will only be present for Parkes Multibeam or LBA data.
|
---|
| 1324 | iMBuff->calfctr[iIFSel][0] = sc_.sc_cal[scq*iBeam + 14];
|
---|
| 1325 | iMBuff->calfctr[iIFSel][1] = sc_.sc_cal[scq*iBeam + 15];
|
---|
| 1326 | } else {
|
---|
| 1327 | iMBuff->calfctr[iIFSel][0] = 0.0f;
|
---|
| 1328 | iMBuff->calfctr[iIFSel][1] = 0.0f;
|
---|
| 1329 | }
|
---|
| 1330 |
|
---|
| 1331 | // Cross-polarization calibration factor (unknown to MBFITS).
|
---|
| 1332 | for (int j = 0; j < 2; j++) {
|
---|
| 1333 | iMBuff->xcalfctr[iIFSel][j] = 0.0f;
|
---|
| 1334 | }
|
---|
| 1335 |
|
---|
| 1336 | // Baseline parameters (unknown to MBFITS).
|
---|
| 1337 | iMBuff->haveBase = 0;
|
---|
| 1338 |
|
---|
| 1339 | // Data (always present in MBFITS).
|
---|
| 1340 | iMBuff->haveSpectra = 1;
|
---|
| 1341 |
|
---|
| 1342 | // Flag: bit 0 set if off source.
|
---|
| 1343 | // bit 1 set if loss of sync in A polarization.
|
---|
| 1344 | // bit 2 set if loss of sync in B polarization.
|
---|
| 1345 | unsigned char rpflag =
|
---|
| 1346 | (unsigned char)(sc_.sc_cal[scq*iBeam + 12] + 0.5f);
|
---|
| 1347 |
|
---|
| 1348 | // The baseline flag may be set independently.
|
---|
[1757] | 1349 | if (rpflag == 0) rpflag = cFlag;
|
---|
[1325] | 1350 |
|
---|
| 1351 | // Copy and scale data.
|
---|
| 1352 | int inc = 2 * if_.if_nstok[iIF];
|
---|
| 1353 | if (endChan < startChan) inc = -inc;
|
---|
| 1354 |
|
---|
| 1355 | float TsysF;
|
---|
| 1356 | iMBuff->spectra[iIFSel] = iMBuff->spectra[0] + cChanOff[iIF];
|
---|
| 1357 | iMBuff->flagged[iIFSel] = iMBuff->flagged[0] + cChanOff[iIF];
|
---|
| 1358 |
|
---|
| 1359 | float *spectra = iMBuff->spectra[iIFSel];
|
---|
| 1360 | unsigned char *flagged = iMBuff->flagged[iIFSel];
|
---|
| 1361 | for (int ipol = 0; ipol < cNPol[iIF]; ipol++) {
|
---|
| 1362 | if (sc_.sc_cal[scq*iBeam + 3 + ipol] > 0.0f) {
|
---|
| 1363 | // The correlator has already applied the calibration.
|
---|
| 1364 | TsysF = 1.0f;
|
---|
| 1365 | } else {
|
---|
| 1366 | // The correlator has normalized cVis[k] to a Tsys of 500K.
|
---|
| 1367 | TsysF = iMBuff->tsys[iIFSel][ipol] / 500.0f;
|
---|
| 1368 | }
|
---|
| 1369 |
|
---|
| 1370 | int k = 2 * (if_.if_nstok[iIF]*(startChan - 1) + ipol);
|
---|
| 1371 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
| 1372 | *(spectra++) = TsysF * cVis[k];
|
---|
| 1373 | *(flagged++) = rpflag;
|
---|
| 1374 | k += inc;
|
---|
| 1375 | }
|
---|
| 1376 | }
|
---|
| 1377 |
|
---|
| 1378 | if (cHaveXPol[iIF]) {
|
---|
| 1379 | int k = 2 * (3*(startChan - 1) + 2);
|
---|
| 1380 | iMBuff->xpol[iIFSel] = iMBuff->xpol[0] + cXpolOff[iIF];
|
---|
| 1381 | float *xpol = iMBuff->xpol[iIFSel];
|
---|
| 1382 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
| 1383 | *(xpol++) = cVis[k];
|
---|
| 1384 | *(xpol++) = cVis[k+1];
|
---|
| 1385 | k += inc;
|
---|
| 1386 | }
|
---|
| 1387 | }
|
---|
| 1388 |
|
---|
| 1389 |
|
---|
| 1390 | // Calibration factor applied to the data by the correlator.
|
---|
| 1391 | if (scq > 14) {
|
---|
| 1392 | // Will only be present for Parkes Multibeam or LBA data.
|
---|
| 1393 | iMBuff->tcal[iIFSel][0] = sc_.sc_cal[scq*iBeam + 14];
|
---|
| 1394 | iMBuff->tcal[iIFSel][1] = sc_.sc_cal[scq*iBeam + 15];
|
---|
| 1395 | } else {
|
---|
| 1396 | iMBuff->tcal[iIFSel][0] = 0.0f;
|
---|
| 1397 | iMBuff->tcal[iIFSel][1] = 0.0f;
|
---|
| 1398 | }
|
---|
| 1399 |
|
---|
[1757] | 1400 | if (firstIF) {
|
---|
| 1401 | if (sc_.sc_ant <= anten_.nant) {
|
---|
| 1402 | // No extra syscal information present.
|
---|
| 1403 | iMBuff->extraSysCal = 0;
|
---|
| 1404 | iMBuff->azimuth = 0.0f;
|
---|
| 1405 | iMBuff->elevation = 0.0f;
|
---|
| 1406 | iMBuff->parAngle = 0.0f;
|
---|
| 1407 | iMBuff->focusAxi = 0.0f;
|
---|
| 1408 | iMBuff->focusTan = 0.0f;
|
---|
| 1409 | iMBuff->focusRot = 0.0f;
|
---|
| 1410 | iMBuff->temp = 0.0f;
|
---|
| 1411 | iMBuff->pressure = 0.0f;
|
---|
| 1412 | iMBuff->humidity = 0.0f;
|
---|
| 1413 | iMBuff->windSpeed = 0.0f;
|
---|
| 1414 | iMBuff->windAz = 0.0f;
|
---|
| 1415 | strcpy(iMBuff->tcalTime, " ");
|
---|
| 1416 | iMBuff->refBeam = 0;
|
---|
[1325] | 1417 |
|
---|
[1757] | 1418 | } else {
|
---|
| 1419 | // Additional information for Parkes Multibeam data.
|
---|
| 1420 | int iOff = scq*(sc_.sc_ant - 1) - 1;
|
---|
| 1421 | iMBuff->extraSysCal = 1;
|
---|
[1325] | 1422 |
|
---|
[1757] | 1423 | iMBuff->azimuth = sc_.sc_cal[iOff + 2];
|
---|
| 1424 | iMBuff->elevation = sc_.sc_cal[iOff + 3];
|
---|
| 1425 | iMBuff->parAngle = sc_.sc_cal[iOff + 4];
|
---|
[1325] | 1426 |
|
---|
[1757] | 1427 | iMBuff->focusAxi = sc_.sc_cal[iOff + 5] * 1e-3;
|
---|
| 1428 | iMBuff->focusTan = sc_.sc_cal[iOff + 6] * 1e-3;
|
---|
| 1429 | iMBuff->focusRot = sc_.sc_cal[iOff + 7];
|
---|
| 1430 |
|
---|
| 1431 | iMBuff->temp = sc_.sc_cal[iOff + 8];
|
---|
| 1432 | iMBuff->pressure = sc_.sc_cal[iOff + 9];
|
---|
| 1433 | iMBuff->humidity = sc_.sc_cal[iOff + 10];
|
---|
| 1434 | iMBuff->windSpeed = sc_.sc_cal[iOff + 11];
|
---|
| 1435 | iMBuff->windAz = sc_.sc_cal[iOff + 12];
|
---|
| 1436 |
|
---|
| 1437 | char *tcalTime = iMBuff->tcalTime;
|
---|
| 1438 | sprintf(tcalTime, "%-16.16s", (char *)(&sc_.sc_cal[iOff+13]));
|
---|
| 1439 | tcalTime[16] = '\0';
|
---|
| 1440 |
|
---|
[1325] | 1441 | #ifndef AIPS_LITTLE_ENDIAN
|
---|
[1757] | 1442 | // Do byte swapping on the ASCII date string.
|
---|
| 1443 | for (int j = 0; j < 16; j += 4) {
|
---|
| 1444 | char ctmp;
|
---|
| 1445 | ctmp = tcalTime[j];
|
---|
| 1446 | tcalTime[j] = tcalTime[j+3];
|
---|
| 1447 | tcalTime[j+3] = ctmp;
|
---|
| 1448 | ctmp = tcalTime[j+1];
|
---|
| 1449 | tcalTime[j+1] = tcalTime[j+2];
|
---|
| 1450 | tcalTime[j+2] = ctmp;
|
---|
| 1451 | }
|
---|
[1325] | 1452 | #endif
|
---|
| 1453 |
|
---|
[1757] | 1454 | // Reference beam number.
|
---|
| 1455 | float refbeam = sc_.sc_cal[iOff + 17];
|
---|
| 1456 | if (refbeam > 0.0f || refbeam < 100.0f) {
|
---|
| 1457 | iMBuff->refBeam = int(refbeam);
|
---|
| 1458 | } else {
|
---|
| 1459 | iMBuff->refBeam = 0;
|
---|
| 1460 | }
|
---|
[1325] | 1461 | }
|
---|
| 1462 | }
|
---|
| 1463 | }
|
---|
| 1464 | }
|
---|
| 1465 |
|
---|
| 1466 | return 0;
|
---|
| 1467 | }
|
---|
| 1468 |
|
---|
| 1469 | //-------------------------------------------------------- MBFITSreader::rpget
|
---|
| 1470 |
|
---|
| 1471 | // Read the next data record from the RPFITS file.
|
---|
| 1472 |
|
---|
| 1473 | int MBFITSreader::rpget(int syscalonly, int &EOS)
|
---|
| 1474 | {
|
---|
[1757] | 1475 | const string methodName = "rpget()" ;
|
---|
| 1476 | LogIO os( LogOrigin( className, methodName, WHERE ) ) ;
|
---|
| 1477 |
|
---|
[1325] | 1478 | EOS = 0;
|
---|
| 1479 |
|
---|
| 1480 | int retries = 0;
|
---|
| 1481 |
|
---|
| 1482 | // Allow 10 read errors.
|
---|
| 1483 | int numErr = 0;
|
---|
| 1484 |
|
---|
[1757] | 1485 | int jstat = 0;
|
---|
[1325] | 1486 | while (numErr < 10) {
|
---|
| 1487 | int lastjstat = jstat;
|
---|
| 1488 |
|
---|
[1757] | 1489 | switch(rpfitsin(jstat)) {
|
---|
[1325] | 1490 | case -1:
|
---|
| 1491 | // Read failed; retry.
|
---|
| 1492 | numErr++;
|
---|
[1757] | 1493 | os << LogIO::WARN << "RPFITS read failed - retrying." << LogIO::POST ;
|
---|
[1325] | 1494 | jstat = 0;
|
---|
| 1495 | break;
|
---|
| 1496 |
|
---|
| 1497 | case 0:
|
---|
| 1498 | // Successful read.
|
---|
| 1499 | if (lastjstat == 0) {
|
---|
[1757] | 1500 | if (cBaseline == -1) {
|
---|
[1325] | 1501 | // Syscal data.
|
---|
| 1502 | if (syscalonly) {
|
---|
| 1503 | return 0;
|
---|
| 1504 | }
|
---|
| 1505 |
|
---|
| 1506 | } else {
|
---|
| 1507 | if (!syscalonly) {
|
---|
| 1508 | return 0;
|
---|
| 1509 | }
|
---|
| 1510 | }
|
---|
| 1511 | }
|
---|
| 1512 |
|
---|
| 1513 | // Last operation was to read header or FG table; now read data.
|
---|
| 1514 | break;
|
---|
| 1515 |
|
---|
| 1516 | case 1:
|
---|
| 1517 | // Encountered header while trying to read data; read it.
|
---|
| 1518 | EOS = 1;
|
---|
| 1519 | jstat = -1;
|
---|
| 1520 | break;
|
---|
| 1521 |
|
---|
| 1522 | case 2:
|
---|
| 1523 | // End of scan; read past it.
|
---|
| 1524 | jstat = 0;
|
---|
| 1525 | break;
|
---|
| 1526 |
|
---|
| 1527 | case 3:
|
---|
| 1528 | // End-of-file; retry applies to real-time mode.
|
---|
| 1529 | if (retries++ >= cRetry) {
|
---|
| 1530 | return -1;
|
---|
| 1531 | }
|
---|
| 1532 |
|
---|
| 1533 | sleep(10);
|
---|
| 1534 | jstat = 0;
|
---|
| 1535 | break;
|
---|
| 1536 |
|
---|
| 1537 | case 4:
|
---|
| 1538 | // Encountered FG table while trying to read data; read it.
|
---|
| 1539 | jstat = -1;
|
---|
| 1540 | break;
|
---|
| 1541 |
|
---|
| 1542 | case 5:
|
---|
| 1543 | // Illegal data at end of block after close/reopen operation; retry.
|
---|
| 1544 | jstat = 0;
|
---|
| 1545 | break;
|
---|
| 1546 |
|
---|
| 1547 | default:
|
---|
| 1548 | // Shouldn't reach here.
|
---|
[1757] | 1549 | sprintf(cMsg, "Unrecognized RPFITSIN return code: %d "
|
---|
| 1550 | "(retrying).", jstat);
|
---|
| 1551 | os << LogIO::WARN << cMsg << LogIO::POST ;
|
---|
[1325] | 1552 | jstat = 0;
|
---|
| 1553 | break;
|
---|
| 1554 | }
|
---|
| 1555 | }
|
---|
| 1556 |
|
---|
[1757] | 1557 | os << LogIO::SEVERE << "RPFITS read failed too many times." << LogIO::POST ;
|
---|
[1325] | 1558 | return 2;
|
---|
| 1559 | }
|
---|
| 1560 |
|
---|
[1757] | 1561 | //----------------------------------------------------- MBFITSreader::rpfitsin
|
---|
| 1562 |
|
---|
| 1563 | // Wrapper around RPFITSIN that reports errors. Returned RPFITSIN subroutine
|
---|
| 1564 | // arguments are captured as MBFITSreader member variables.
|
---|
| 1565 |
|
---|
| 1566 | int MBFITSreader::rpfitsin(int &jstat)
|
---|
| 1567 |
|
---|
| 1568 | {
|
---|
| 1569 | rpfitsin_(&jstat, cVis, cWgt, &cBaseline, &cUTC, &cU, &cV, &cW, &cFlag,
|
---|
| 1570 | &cBin, &cIFno, &cSrcNo);
|
---|
| 1571 |
|
---|
| 1572 | // Handle messages from RPFITSIN.
|
---|
| 1573 | /**
|
---|
| 1574 | if (names_.errmsg[0] != ' ') {
|
---|
| 1575 | int i;
|
---|
| 1576 | for (i = 80; i > 0; i--) {
|
---|
| 1577 | if (names_.errmsg[i-1] != ' ') break;
|
---|
| 1578 | }
|
---|
| 1579 |
|
---|
| 1580 | sprintf(cMsg, "WARNING: Cycle %d:%03d, RPFITSIN reported -\n"
|
---|
| 1581 | " %.*s", cScanNo, cCycleNo, i, names_.errmsg);
|
---|
| 1582 | logMsg(cMsg);
|
---|
| 1583 | }
|
---|
| 1584 | **/
|
---|
| 1585 | return jstat;
|
---|
| 1586 | }
|
---|
| 1587 |
|
---|
| 1588 | //------------------------------------------------------- MBFITSreader::fixPos
|
---|
| 1589 |
|
---|
| 1590 | // Check and, if necessary, repair a position timestamp.
|
---|
| 1591 | //
|
---|
| 1592 | // Problems with the position timestamp manifest themselves via the scan rate:
|
---|
| 1593 | //
|
---|
| 1594 | // 1) Zero scan rate pairs, 1997/02/28 to 1998/01/07
|
---|
| 1595 | //
|
---|
| 1596 | // These occur because the position timestamp for the first integration
|
---|
| 1597 | // of the pair is erroneous; the value recorded is t/1000, where t is the
|
---|
| 1598 | // true value.
|
---|
| 1599 | // Earliest known: 97-02-28_1725_132653-42_258a.hpf
|
---|
| 1600 | // Latest known: 98-01-02_1923_095644-50_165c.hpf
|
---|
| 1601 | // (time range chosen to encompass observing runs).
|
---|
| 1602 | //
|
---|
| 1603 | // 2) Slow-fast scan rate pairs (0.013 - 0.020 deg/s),
|
---|
| 1604 | // 1997/03/28 to 1998/01/07.
|
---|
| 1605 | //
|
---|
| 1606 | // The UTC position timestamp is 1.0s later than it should be (never
|
---|
| 1607 | // earlier), almost certainly arising from an error in the telescope
|
---|
| 1608 | // control system.
|
---|
| 1609 | // Earliest known: 97-03-28_0150_010420-74_008d.hpf
|
---|
| 1610 | // Latest known: 98-01-04_1502_065150-02_177c.hpf
|
---|
| 1611 | // (time range chosen to encompass observing runs).
|
---|
| 1612 | //
|
---|
| 1613 | // 3) Slow-fast scan rate pairs (0.015 - 0.018 deg/s),
|
---|
| 1614 | // 1999/05/20 to 2001/07/12 (HIPASS and ZOA),
|
---|
| 1615 | // 2001/09/02 to 2001/12/04 (HIPASS and ZOA),
|
---|
| 1616 | // 2002/03/28 to 2002/05/13 (ZOA only),
|
---|
| 1617 | // 2003/04/26 to 2003/06/09 (ZOA only).
|
---|
| 1618 | // Earliest known: 1999-05-20_1818_175720-50_297e.hpf
|
---|
| 1619 | // Latest known: 2001-12-04_1814_065531p14_173e.hpf (HIPASS)
|
---|
| 1620 | // 2003-06-09_1924_352-085940_-6c.hpf (ZOA)
|
---|
| 1621 | //
|
---|
| 1622 | // Caused by the Linux signalling NaN problem. IEEE "signalling" NaNs
|
---|
| 1623 | // are silently transformed to "quiet" NaNs during assignment by setting
|
---|
| 1624 | // bit 22. This affected RPFITS because of its use of VAX-format
|
---|
| 1625 | // floating-point numbers which, with their permuted bytes, may sometimes
|
---|
| 1626 | // appear as signalling NaNs.
|
---|
| 1627 | //
|
---|
| 1628 | // The problem arose when the linux correlator came online and was
|
---|
| 1629 | // fixed with a workaround to the RPFITS library (repeated episodes
|
---|
| 1630 | // are probably due to use of an older version of the library). It
|
---|
| 1631 | // should not have affected the data significantly because of the
|
---|
| 1632 | // low relative error, which ranges from 0.0000038 to 0.0000076, but
|
---|
| 1633 | // it is important for the computation of scan rates which requires
|
---|
| 1634 | // taking the difference of two large UTC timestamps, one or other
|
---|
| 1635 | // of which will have 0.5s added to it.
|
---|
| 1636 | //
|
---|
| 1637 | // The return value identifies which, if any, of these problems was repaired.
|
---|
| 1638 |
|
---|
| 1639 | int MBFITSreader::fixw(
|
---|
| 1640 | const char *datobs,
|
---|
| 1641 | int cycleNo,
|
---|
| 1642 | int beamNo,
|
---|
| 1643 | double avRate[2],
|
---|
| 1644 | double thisRA,
|
---|
| 1645 | double thisDec,
|
---|
| 1646 | double thisUTC,
|
---|
| 1647 | double nextRA,
|
---|
| 1648 | double nextDec,
|
---|
| 1649 | float &nextUTC)
|
---|
| 1650 | {
|
---|
| 1651 | if (strcmp(datobs, "2003-06-09") > 0) {
|
---|
| 1652 | return 0;
|
---|
| 1653 |
|
---|
| 1654 | } else if (strcmp(datobs, "1998-01-07") <= 0) {
|
---|
| 1655 | if (nextUTC < thisUTC && (nextUTC + 86400.0) > (thisUTC + 600.0)) {
|
---|
| 1656 | // Possible scaling problem.
|
---|
| 1657 | double diff = nextUTC*1000.0 - thisUTC;
|
---|
| 1658 | if (0.0 < diff && diff < 600.0) {
|
---|
| 1659 | nextUTC *= 1000.0;
|
---|
| 1660 | return 1;
|
---|
| 1661 | } else {
|
---|
| 1662 | // Irreparable.
|
---|
| 1663 | return -1;
|
---|
| 1664 | }
|
---|
| 1665 | }
|
---|
| 1666 |
|
---|
| 1667 | if (cycleNo > 2) {
|
---|
| 1668 | if (beamNo == 1) {
|
---|
| 1669 | // This test is only reliable for beam 1.
|
---|
| 1670 | double dUTC = nextUTC - thisUTC;
|
---|
| 1671 | if (dUTC < 0.0) dUTC += 86400.0;
|
---|
| 1672 |
|
---|
| 1673 | // Guard against RA cycling through 24h in either direction.
|
---|
| 1674 | if (fabs(nextRA - thisRA) > PI) {
|
---|
| 1675 | if (nextRA < thisRA) {
|
---|
| 1676 | nextRA += TWOPI;
|
---|
| 1677 | } else {
|
---|
| 1678 | nextRA -= TWOPI;
|
---|
| 1679 | }
|
---|
| 1680 | }
|
---|
| 1681 |
|
---|
| 1682 | double dRA = (nextRA - thisRA) * cos(nextDec);
|
---|
| 1683 | double dDec = nextDec - thisDec;
|
---|
| 1684 | double arc = sqrt(dRA*dRA + dDec*dDec);
|
---|
| 1685 |
|
---|
| 1686 | double averate = sqrt(avRate[0]*avRate[0] + avRate[1]*avRate[1]);
|
---|
| 1687 | double diff1 = fabs(averate - arc/(dUTC-1.0));
|
---|
| 1688 | double diff2 = fabs(averate - arc/dUTC);
|
---|
| 1689 | if ((diff1 < diff2) && (diff1 < 0.05*averate)) {
|
---|
| 1690 | nextUTC -= 1.0;
|
---|
| 1691 | cCode5 = cycleNo;
|
---|
| 1692 | return 2;
|
---|
| 1693 | } else {
|
---|
| 1694 | cCode5 = 0;
|
---|
| 1695 | }
|
---|
| 1696 |
|
---|
| 1697 | } else {
|
---|
| 1698 | if (cycleNo == cCode5) {
|
---|
| 1699 | nextUTC -= 1.0;
|
---|
| 1700 | return 2;
|
---|
| 1701 | }
|
---|
| 1702 | }
|
---|
| 1703 | }
|
---|
| 1704 |
|
---|
| 1705 | } else if ((strcmp(datobs, "1999-05-20") >= 0 &&
|
---|
| 1706 | strcmp(datobs, "2001-07-12") <= 0) ||
|
---|
| 1707 | (strcmp(datobs, "2001-09-02") >= 0 &&
|
---|
| 1708 | strcmp(datobs, "2001-12-04") <= 0) ||
|
---|
| 1709 | (strcmp(datobs, "2002-03-28") >= 0 &&
|
---|
| 1710 | strcmp(datobs, "2002-05-13") <= 0) ||
|
---|
| 1711 | (strcmp(datobs, "2003-04-26") >= 0 &&
|
---|
| 1712 | strcmp(datobs, "2003-06-09") <= 0)) {
|
---|
| 1713 | // Signalling NaN problem, e.g. 1999-07-26_1839_011106-74_009c.hpf.
|
---|
| 1714 | // Position timestamps should always be an integral number of seconds.
|
---|
| 1715 | double resid = nextUTC - int(nextUTC);
|
---|
| 1716 | if (resid == 0.5) {
|
---|
| 1717 | nextUTC -= 0.5;
|
---|
| 1718 | return 3;
|
---|
| 1719 | }
|
---|
| 1720 | }
|
---|
| 1721 |
|
---|
| 1722 | return 0;
|
---|
| 1723 | }
|
---|
| 1724 |
|
---|
[1325] | 1725 | //-------------------------------------------------------- MBFITSreader::close
|
---|
| 1726 |
|
---|
| 1727 | // Close the input file.
|
---|
| 1728 |
|
---|
| 1729 | void MBFITSreader::close(void)
|
---|
| 1730 | {
|
---|
| 1731 | if (cMBopen) {
|
---|
[1757] | 1732 | int jstat = 1;
|
---|
| 1733 | rpfitsin_(&jstat, cVis, cWgt, &cBaseline, &cUTC, &cU, &cV, &cW, &cFlag,
|
---|
| 1734 | &cBin, &cIFno, &cSrcNo);
|
---|
[1325] | 1735 |
|
---|
| 1736 | if (cBeams) delete [] cBeams;
|
---|
| 1737 | if (cIFs) delete [] cIFs;
|
---|
| 1738 | if (cNChan) delete [] cNChan;
|
---|
| 1739 | if (cNPol) delete [] cNPol;
|
---|
| 1740 | if (cHaveXPol) delete [] cHaveXPol;
|
---|
| 1741 | if (cStartChan) delete [] cStartChan;
|
---|
| 1742 | if (cEndChan) delete [] cEndChan;
|
---|
| 1743 | if (cRefChan) delete [] cRefChan;
|
---|
| 1744 |
|
---|
[1757] | 1745 | if (cVis) delete [] cVis;
|
---|
| 1746 | if (cWgt) delete [] cWgt;
|
---|
[1325] | 1747 |
|
---|
| 1748 | if (cBeamSel) delete [] cBeamSel;
|
---|
| 1749 | if (cIFSel) delete [] cIFSel;
|
---|
| 1750 | if (cChanOff) delete [] cChanOff;
|
---|
| 1751 | if (cXpolOff) delete [] cXpolOff;
|
---|
| 1752 | if (cBuffer) delete [] cBuffer;
|
---|
| 1753 | if (cPosUTC) delete [] cPosUTC;
|
---|
| 1754 |
|
---|
| 1755 | cMBopen = 0;
|
---|
| 1756 | }
|
---|
| 1757 | }
|
---|
[1757] | 1758 |
|
---|
| 1759 | //-------------------------------------------------------------------- utcDiff
|
---|
| 1760 |
|
---|
| 1761 | // Subtract two UTCs (s) allowing for any plausible number of cycles through
|
---|
| 1762 | // 86400s, returning a result in the range [-43200, +43200]s.
|
---|
| 1763 |
|
---|
| 1764 | double MBFITSreader::utcDiff(double utc1, double utc2)
|
---|
| 1765 | {
|
---|
| 1766 | double diff = utc1 - utc2;
|
---|
| 1767 |
|
---|
| 1768 | if (diff > 43200.0) {
|
---|
| 1769 | diff -= 86400.0;
|
---|
| 1770 | while (diff > 43200.0) diff -= 86400.0;
|
---|
| 1771 | } else if (diff < -43200.0) {
|
---|
| 1772 | diff += 86400.0;
|
---|
| 1773 | while (diff < -43200.0) diff += 86400.0;
|
---|
| 1774 | }
|
---|
| 1775 |
|
---|
| 1776 | return diff;
|
---|
| 1777 | }
|
---|
| 1778 |
|
---|
| 1779 | //------------------------------------------------------- scanRate & applyRate
|
---|
| 1780 |
|
---|
| 1781 | // Compute and apply the scan rate corrected for grid convergence. (ra0,dec0)
|
---|
| 1782 | // are the coordinates of the central beam, assumed to be the tracking centre.
|
---|
| 1783 | // The rate computed in RA will be a rate of change of angular distance in the
|
---|
| 1784 | // direction of increasing RA at the position of the central beam. Similarly
|
---|
| 1785 | // for declination. Angles in radian, time in s.
|
---|
| 1786 |
|
---|
| 1787 | void MBFITSreader::scanRate(
|
---|
| 1788 | double ra0,
|
---|
| 1789 | double dec0,
|
---|
| 1790 | double ra1,
|
---|
| 1791 | double dec1,
|
---|
| 1792 | double ra2,
|
---|
| 1793 | double dec2,
|
---|
| 1794 | double dt,
|
---|
| 1795 | double &raRate,
|
---|
| 1796 | double &decRate)
|
---|
| 1797 | {
|
---|
| 1798 | // Transform to a system where the central beam lies on the equator at 12h.
|
---|
| 1799 | eulerx(ra1, dec1, ra0+HALFPI, -dec0, -HALFPI, ra1, dec1);
|
---|
| 1800 | eulerx(ra2, dec2, ra0+HALFPI, -dec0, -HALFPI, ra2, dec2);
|
---|
| 1801 |
|
---|
| 1802 | raRate = (ra2 - ra1) / dt;
|
---|
| 1803 | decRate = (dec2 - dec1) / dt;
|
---|
| 1804 | }
|
---|
| 1805 |
|
---|
| 1806 |
|
---|
| 1807 | void MBFITSreader::applyRate(
|
---|
| 1808 | double ra0,
|
---|
| 1809 | double dec0,
|
---|
| 1810 | double ra1,
|
---|
| 1811 | double dec1,
|
---|
| 1812 | double raRate,
|
---|
| 1813 | double decRate,
|
---|
| 1814 | double dt,
|
---|
| 1815 | double &ra2,
|
---|
| 1816 | double &dec2)
|
---|
| 1817 | {
|
---|
| 1818 | // Transform to a system where the central beam lies on the equator at 12h.
|
---|
| 1819 | eulerx(ra1, dec1, ra0+HALFPI, -dec0, -HALFPI, ra1, dec1);
|
---|
| 1820 |
|
---|
| 1821 | ra2 = ra1 + (raRate * dt);
|
---|
| 1822 | dec2 = dec1 + (decRate * dt);
|
---|
| 1823 |
|
---|
| 1824 | // Transform back.
|
---|
| 1825 | eulerx(ra2, dec2, -HALFPI, dec0, ra0+HALFPI, ra2, dec2);
|
---|
| 1826 | }
|
---|
| 1827 |
|
---|
| 1828 | //--------------------------------------------------------------------- eulerx
|
---|
| 1829 |
|
---|
| 1830 | void MBFITSreader::eulerx(
|
---|
| 1831 | double lng0,
|
---|
| 1832 | double lat0,
|
---|
| 1833 | double phi0,
|
---|
| 1834 | double theta,
|
---|
| 1835 | double phi,
|
---|
| 1836 | double &lng1,
|
---|
| 1837 | double &lat1)
|
---|
| 1838 |
|
---|
| 1839 | // Applies the Euler angle based transformation of spherical coordinates.
|
---|
| 1840 | //
|
---|
| 1841 | // phi0 Longitude of the ascending node in the old system, radians. The
|
---|
| 1842 | // ascending node is the point of intersection of the equators of
|
---|
| 1843 | // the two systems such that the equator of the new system crosses
|
---|
| 1844 | // from south to north as viewed in the old system.
|
---|
| 1845 | //
|
---|
| 1846 | // theta Angle between the poles of the two systems, radians. THETA is
|
---|
| 1847 | // positive for a positive rotation about the ascending node.
|
---|
| 1848 | //
|
---|
| 1849 | // phi Longitude of the ascending node in the new system, radians.
|
---|
| 1850 |
|
---|
| 1851 | {
|
---|
| 1852 | // Compute intermediaries.
|
---|
| 1853 | double lng0p = lng0 - phi0;
|
---|
| 1854 | double slng0p = sin(lng0p);
|
---|
| 1855 | double clng0p = cos(lng0p);
|
---|
| 1856 | double slat0 = sin(lat0);
|
---|
| 1857 | double clat0 = cos(lat0);
|
---|
| 1858 | double ctheta = cos(theta);
|
---|
| 1859 | double stheta = sin(theta);
|
---|
| 1860 |
|
---|
| 1861 | double x = clat0*clng0p;
|
---|
| 1862 | double y = clat0*slng0p*ctheta + slat0*stheta;
|
---|
| 1863 |
|
---|
| 1864 | // Longitude in the new system.
|
---|
| 1865 | if (x != 0.0 || y != 0.0) {
|
---|
| 1866 | lng1 = phi + atan2(y, x);
|
---|
| 1867 | } else {
|
---|
| 1868 | // Longitude at the poles in the new system is consistent with that
|
---|
| 1869 | // specified in the old system.
|
---|
| 1870 | lng1 = phi + lng0p;
|
---|
| 1871 | }
|
---|
| 1872 | lng1 = fmod(lng1, TWOPI);
|
---|
| 1873 | if (lng1 < 0.0) lng1 += TWOPI;
|
---|
| 1874 |
|
---|
| 1875 | lat1 = asin(slat0*ctheta - clat0*stheta*slng0p);
|
---|
| 1876 | }
|
---|