source: trunk/doc/userguide.tex@ 970

Last change on this file since 970 was 970, checked in by mar637, 19 years ago

fixed misplacement of \end{verbatim}

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 62.5 KB
Line 
1\documentclass[11pt]{article}
2\usepackage{a4}
3\usepackage{calc}
4\usepackage[dvips]{graphicx}
5\usepackage{makeidx}
6
7% Adjust the page size
8\addtolength{\oddsidemargin}{-0.4in}
9\addtolength{\evensidemargin}{+0.4in}
10\addtolength{\textwidth}{+0.8in}
11
12\setlength{\parindent}{0mm}
13\setlength{\parskip}{1ex}
14
15\title{ATNF Spectral Analysis Package\\User Guide }
16\author{Chris Phillips}
17
18\newcommand{\cmd}[1]{{\tt #1}}
19
20\newcommand{\asaprc}[3]{
21 \begin{minipage}[t]{45mm}#1\end{minipage}
22 \begin{minipage}[t]{30mm}\raggedright #2\end{minipage}\hspace{3mm}
23 \begin{minipage}[t]{\textwidth-75mm}#3\end{minipage}
24}
25
26\makeindex
27
28
29\begin{document}
30
31\maketitle
32
33\section{Introduction}
34
35ASAP is a single dish spectral line processing package currently being
36developed by the ATNF. It is intended to process data from all ATNF
37antennas, and can probably be used for other antennas if they can
38produce ``Single Dish FITS'' format. It is based on the AIPS++
39package.
40
41This useeguide is currently being updated for the ASAP 2.0 release
42which has a number of significant changes which affect the user
43interface. Please report any mistakes you find in this userguide.
44
45\section{Installation and Running}
46
47Currently there are installations running on Linux machines at
48
49\begin{itemize}
50\item Epping - use hosts {\tt draco} or {\tt hydra}
51\item Narrabri - use host {\tt kaputar}
52\item Parkes - use host {\tt bourbon}
53\item Mopra - use host {\tt minos}
54\end{itemize}
55
56\index{Running}To start asap log onto one of these Linux hosts and enter
57
58\begin{verbatim}
59 > cd /my/data/directory
60 > asap
61\end{verbatim}
62
63This starts the ASAP. To quit, you need to type \verb+^+-d
64(control-d).
65
66\section{Interface}
67
68\index{Interface}ASAP is written in C++ and python. The user interface uses the
69``ipython'' interactive shell, which is a simple interactive interface
70to python. The user does not need to understand python to use this,
71but certain aspects python affect what the user can do. The current
72interface is object oriented. In the future, we will build a
73functional (non object oriented) shell on top of this to ease
74interactive use.
75
76\subsection {Integer Indices are 0-relative}
77
78Please note, all integer indices in ASAP and iPython are {\bf 0-relative}.
79
80\subsection{Objects}
81\index{objects}
82The ASAP interface is based around a number of ``objects'' which the
83user deals with. Objects range from the data which have been read from
84disk, to tools used for fitting functions to the data. The following
85main objects are used :
86
87\begin{itemize}
88 \item[\cmd{scantable}] The data container (actual spectra and header
89 information)
90 \item[\cmd{selector}] Allows the user to select a subsection of the
91 data, such as a specified or ramge of beam numbers, IFs, etc.
92 \item[\cmd{plotter}] A tool used to plot the spectral line data
93 \item[\cmd{fitter}] A tool used to fit functions to the spectral data
94 \item[\cmd{reader}] A tool which can be used to read data from disks
95 into a scantable object.
96\end{itemize}
97
98There can be many objects of the same type. Each object is referred to
99by a variable name made by the user. The name of this variable is not
100important and can be set to whatever the user prefers (i.e. ``s'' and
101``ParkesHOH-20052002'' are equivalent). However, having a simple and
102consistent naming convention will help you a lot.
103
104\subsection{Member Functions (functions)}
105
106\index{Functions!member}Following the object oriented approach,
107objects have associated ``member functions'' which can either be used
108to modify the data in some way or change global properties of the
109object. In this document member functions will be referred to simply
110as functions. From the command line, the user can execute these
111functions using the syntax:
112\begin{verbatim}
113 ASAP> out = object.function(arguments)
114\end{verbatim}
115
116Where \cmd{out} is the name of the returned variable (could be a new
117scantable object, or a vector of data, or a status return),
118\cmd{object} is the object variable name (set by the user),
119\cmd{function} is the name of the member function and \cmd{arguments}
120is a list of arguments to the function. The arguments can be provided
121either though position or \cmd{name=}. A mix of the two can be used.
122E.g.
123
124\begin{verbatim}
125 ASAP> av = scans.average_time(msk,weight='tsys')
126 ASAP> av = scans.average_time(mask=msk,weight='tsys')
127 ASAP> av = scans.average_time(msk,tsys)
128 ASAP> scans.polybaseline(mask=msk, order=0, insitu=True)
129 ASAP> scans.polybaseline(msk,0,True)
130 ASAP> scans.polybaseline(mask, insitu=True)
131\end{verbatim}
132
133\subsection{Global Functions}
134
135\index{Functions!global}It does not make sense to implement some functions as member
136functions, typically functions which operate on more than one
137scantable (e.g. time averaging of many scans). These functions will
138always be referred to as global functions.
139
140\subsection{Interactive environment}
141
142\index{ipython!environment}ipython has a number of useful interactive
143features and a few things to be aware of for the new user.
144
145\subsubsection{String completion}
146
147\index{ipython!string completion}Tab completion is enabled for all
148function names. If you type the first few letters of a function name,
149then type {\tt <TAB>} the function name will be auto completed if it
150is un-ambiguous, or a list of possibilities will be
151given. Auto-completion works for the user object names as well as
152function names. It does not work for filenames, nor for function
153arguments.
154
155Example
156\begin{verbatim}
157 ASAP> scans = scantable('MyData.rpf')
158 ASAP> scans.se<TAB>
159scans.set_cursor scans.set_freqframe scans.set_unit scans.setpol
160scans.set_doppler scans.set_instrument scans.setbeam
161scans.set_fluxunit scans.set_restfreqs scans.setif
162 ASAP> scans.set_in<TAB>
163 ASAP> scans.set_instrument()
164\end{verbatim}
165
166\subsubsection{Leading Spaces}
167
168\index{ipython!leading space}Python uses leading space to mark blocks
169of code. This means that it you start a command line with a space, the
170command generally will fail with an syntax error.
171
172\subsubsection{Variable Names}
173
174\index{ipython!variable names}During normal data processing, the user
175will have to create named variables to hold spectra etc. These must
176conform to the normal python syntax, specifically they cannot contain
177``special'' characters such as \@ \$ etc and cannot start with a
178number (but can contain numbers). Variable (and function) names are
179case sensitive.
180
181\subsubsection{Unix Interaction}
182
183\index{ipython!unix interaction}Basic unix shell commands (\cmd{pwd},
184\cmd{ls}, \cmd{cd} etc) can be issued from within ASAP. This allows
185the user to do things like look at files in the current directory. The
186shell command ``\cmd{cd}'' works within ASAP, allowing the user to
187change between data directories. Unix programs cannot be run this way,
188but the shell escape ``$!$'' can be used to run arbitrary
189programs. E.g.
190
191\begin{verbatim}
192 ASAP> pwd
193 ASAP> ls
194 ASAP> cd /my/data/directory
195 ASAP> ! mozilla&
196\end{verbatim}
197
198\subsection{Help}
199
200\index{Help}ASAP has built in help for all functions. To get a list of
201functions type:
202
203\begin{verbatim}
204 ASAP> commands()
205\end{verbatim}
206
207To get help on specific functions, the built in help needs to be given
208the object and function name. E.g.
209
210\begin{verbatim}
211 ASAP> help scantable.get_scan
212 ASAP> help scantable.stats
213 ASAP> help plotter.plot
214 ASAP> help fitter.plot
215
216 ASAP> scans = scantable('mydata.asap')
217 ASAP> help scans.get_scan # Same as above
218\end{verbatim}
219
220Global functions just need their name
221
222\begin{verbatim}
223 ASAP> help average_time
224\end{verbatim}
225
226Note that if you just type \cmd{help} the internal ipython help is
227invoked, which is probably {\em not} what you want. Type \verb+^+-d
228(control-d) to escape from this.
229
230\subsection{Customisation - .asaprc}
231
232\index{.asaprc}ASAP use an \cmd{.asaprc} file to control the user's
233preference of default values for various functions arguments. This
234includes the defaults for arguments such as \cmd{insitu}, scantable
235\cmd{freqframe} and the plotters \cmd{set\_mode} values. The help on
236individual functions says which arguments can be set default values
237from the \cmd{.asaprc} file. To get a sample contents for the
238\cmd{.asaprc} file use then command \cmd{list\_rcparameters}.
239
240Common values include:
241\begin{verbatim}
242 # apply operations on the input scantable or return new one
243 insitu : False
244
245 # default output format when saving scantable
246 scantable.save : ASAP
247
248 # default frequency frame to set when function
249 # scantable.set_freqframe is called
250 scantable.freqframe : LSRK
251
252 # auto averaging on read
253 scantable.autoaverage : True
254\end{verbatim}
255
256For a complete list of \cmd{.asaprc} values, see the Appendix.
257
258\section{Scantables}
259\index{Scantables}
260\subsection {Description}
261
262\subsubsection {Basic Structure}
263
264\index{Scantable!structure}ASAP data handling works on objects called
265scantables. A scantable holds your data, and also provides functions
266to operate upon it.
267
268{\bf [MALTE: Could you please reword this??]}
269
270The building block of a scantable is an integration, which is a single
271row of a scantable. Each row contains spectra for each beam, IF and
272polarisation. For example Parkes multibeam data would contain many
273beams, one IF and 2-4 polarisations, while the new Mopra 8-GHz
274filterbank will eventually produce one beam, many IFs, and 2-4
275polarisations.
276
277A collection of sequential integrations (rows) for one source is termed
278a scan (and each scan has a unique numeric identifier, the ScanID). A
279scantable is then a collection of one or more scans. If you have
280scan-averaged your data in time, then each scan would hold just one
281(averaged) integration.
282
283Many of the functions which work on scantables can either return a
284new scantable with modified data or change the scantable insitu. Which
285method is used depends on the users preference. The default can be
286changed via the {\tt .asaprc} resource file.
287
288\subsubsection {Contents}
289
290\index{Scantable!contents}A scantable has header information and data
291(a scantable is actually an AIPS++ Table and it is generally stored in
292memory when you are manipulating it with ASAP. You can save it to
293disk and then browse it with the AIPS++ Table browser if you know how
294to do that !).
295
296The data are stored in columns (the length of a column is the number of
297rows/integrations of course).
298
299{\bf [MALTE: Is this outdated??]}
300
301Two important columns are those that describe the frequency setup. We mention
302them explicitly here because you need to be able to understand the presentation
303of the frequency information and possibly how to manipulate it.
304
305These columns are called FreqID and RestFreqID. They contain indices, for
306each IF, pointing into tables with all of the frequency information for that
307integration. More on these below when we discuss the \cmd{summary} function
308in the next subsection.
309
310There are of course many other columns which contain the actual spectra,
311the flags, the Tsys, the source names and so on, but those are a little
312more transparently handled.
313
314There is also a function \cmd{summary} to list a summary of the scantable.
315You will find this very useful.
316
317Example:
318
319\begin{verbatim}
320 ASAP> scans = scantable('MyData.rpf')
321 ASAP> scans.summary() # Brief listing
322 ASAP> scans.summary(verbose=True) # Include frequency information
323
324 # Equivalent to brief summary function call
325 ASAP> print scan
326\end{verbatim}
327
328Most of what the \cmd{summary} function prints out is obvious. However,
329it also prints out the FreqIDs and RestFreqIDs to which we alluded above.
330These are the last column of the listing.
331
332The summary function gives you a scan-based summary. So it lists all of
333the FreqIDs and RestFreqIDs that it encountered for each scan. If you'd
334like to see what each FreqID actually means, then set the verbose
335argument to True and the frequency table will be listed at the end.
336FreqID of 3 say, refers to the fourth row of the frequency table (ASAP
337is 0-relative). The list of rest frequencies, to which the RestFreqIDs
338refer, is always listed.
339
340\subsection{Data Selection}
341\label{sec:selection}
342
343ASAP contains flexible data selection. Data can be selected based on
344IF, beam, polarisation, scan number as well as values such as
345Tsys. Advanced users can also make use of the AIPS++ TAQL language to
346create selections based on almost any of the standard header values.
347
348Selection is based on a \cmd{selector} object. This object is created
349and various selection functions applied to it (\cmd{set\_ifs},
350\cmd{set\_beams} etc). The selection object then must be applied to a
351scantable using the \cmd{set\_selection} function. A single selection
352object can be created and setup then applied to multiple scantables.
353
354Once a selection has been applied, all following functions will only
355``see'' the selected spectra (including functions such as
356\cmd{summary}). The selection can then be reset and all spectra are
357visible. Note that if functions such as \cmd{copy} are run on a
358scantable with active selection, only the selected spectra are copied.
359
360The common selection functions are:
361
362\begin{itemize}
363
364\item[\cmd{set\_beams}] Select beams by index number
365\item[\cmd{set\_ifs}] Select ifs by index number
366\item[\cmd{set\_name}] Select by source name. Can contain ``*'' as a
367wildcard, e.g. ``Orion*\_R''.
368\item[\cmd{set\_ifs}] Select ifs by index number
369\item[\cmd{set\_polarisation}] Select but polarisation index or
370name. If polarisation names are given, the data will be on-the-fly
371converted (for example from linears to Stokes). Not all conversions
372are currently supported.
373\item[\cmd{set\_query}] Set query directly. For power users only!
374\item[\cmd{set\_tsys}] Select data based on Tsys. Also example of user
375definable query.
376\item[\cmd{reset}] Reset the selection to include all spectra.
377
378
379Note that all indices are zero based.
380
381Examples:
382
383\begin{verbatim}
384 ASAP> selection = selector() # Create selection object
385 ASAP> selection.set_ifs(0) # Just select the first IF
386 ASAP> scans.set_selection(selection) # Apply the selection
387 ASAP> print scans # Will just show the first IF
388
389 ASAP> selection.set_ifs([0,1]) # Select the first two IFs
390 ASAP> selection.set_beams([1,3,5]) # Also select three of the beams
391 ASAP> scans.set_selection(selection) # Apply the selection
392
393 ASAP> selection.set_name('G308*') # Select by source name
394
395 ASAP> selection.reset() # Turn off selection
396 ASAP> scans.set_selection(selection) # Apply the reset selection
397
398\end{verbatim}
399
400\end{itemize}
401
402\subsection{State}
403
404\index{Scantable!state}Each scantable contains "state"; these are
405properties applying to all of the data in the scantable.
406
407Examples are the selection of beam, IF and polarisation, spectral unit
408(e.g. km/s), frequency reference frame (e.g. BARY) and velocity Doppler
409type (e.g. RADIO).
410
411\subsubsection{Units, Doppler and Frequency Reference Frame}
412
413The information describing the frequency setup for each integration
414is stored fundamentally in frequency in the reference frame
415of observation (E.g. TOPO).
416
417When required, this is converted to the desired reference frame
418(e.g. LSRK), Doppler (e.g. OPTICAL) and unit (e.g. km/s) on-the-fly.
419This is important, for example, when you are displaying the data or
420fitting to it.
421
422For units, the user has the choice of frequency, velocity or channel.
423The \cmd{set\_unit} function is used to set the current unit for a
424scantable. All functions will (where relevant) work with the selected
425unit until this changes. This is mainly important for fitting (the fits
426can be computed in any of these units), plotting and mask creation.
427
428The velocity definition can be changed with the \cmd{set\_doppler}
429function, and the frequency reference frame can be changed with the
430\cmd{set\_freqframe} function.
431
432Example usage:
433
434\begin{verbatim}
435 ASAP> scans = scantable('2004-11-23_1841-P484.rpf') # Read in the data
436 ASAP> scans.set_freqframe('LSRK') # Use the LSR velocity frame
437 ASAP> scans.set_unit('km/s') # Use velocity for plots etc from now on
438 ASAP> scans.set_doppler('OPTICAL') # Use the optical velocity convention
439 ASAP> scans.set_unit('MHz') # Use frequency in MHz from now on
440\end{verbatim}
441
442
443\subsubsection{Rest Frequency}
444
445\index{Scantable!rest frequency}ASAP reads the line rest frequency
446from the RPFITS file when reading the data. The values stored in the
447RPFITS file are not always correct and so there is a function
448\cmd{set\_restfreq} to set the rest frequencies for the currently
449selected data.
450
451For each integration, there is a rest-frequency per IF (the rest
452frequencies are just stored as a list with an index into them).
453There are a few ways to set the rest frequencies with this function.
454
455If you specify just one rest frequency, then it is set for all IF.
456
457\begin{verbatim}
458 # Set all IFs
459 ASAP> scans.set_restfreqs(freqs=1.667359e9)
460\end{verbatim}
461
462If set a rest frequency for each IF, specify a list of frequencies (of
463length the number of IFs). Regardless of the source, the rest
464frequency will be set for each IF to the corresponding value in the
465provided list.
466
467\begin{verbatim}
468 # Set rest frequency for all IFs
469 ASAP> scans.set_restfreqs(freqs=[1.6654018e9,1.667359e9,])
470
471\end{verbatim}
472
473{\em Currently this is not implemented}
474
475In both of the above modes, you can also specify the rest frequencies via
476names in a known list rather than by their values.
477
478Examples:
479
480\begin{verbatim}
481 ASAP> scans.set_restfreqs(freqs=['OH1665','OH1667'])
482\end{verbatim}
483
484
485\subsubsection{Masks}
486
487\index{Masks}\index{Scantable!masks}
488
489Many tasks (fitting, baseline subtraction, statistics etc) should only
490be run on range of channels. Depending on the current ``unit'' setting
491this range is set directly as channels, velocity or frequency
492ranges. Internally these are converted into a simple boolean mask for
493each channel of the abscissa. This means that if the unit setting is
494later changed, previously created mask are still valid. (This is not
495true for functions which change the shape or shift the frequency
496axis). You create masks with the function \cmd{create\_mask} and this
497specified the channels to be included in the selection. When setting
498the mask in velocity, the conversion from velocity to channels is
499based on the current cursor setting, selected row and selected
500frequency reference frame.
501
502
503Note that for multi IF data with different number of channels per IF a
504single mask cannot be applied to different IFs. To use a mask on such
505data the selector should be applied to select all IFs with the same
506number of channels.
507
508Example :
509\begin{verbatim}
510
511 # Select channel range for baselining
512 ASAP> scans.set_unit('channels')
513 ASAP> msk = scans.create_mask([100,400],[600,800])
514
515 # Select velocity range for fitting
516 ASAP> scans.set_unit('km/s')
517 ASAP> msk = scans.create_mask([-30,-10])
518\end{verbatim}
519
520Sometimes it is more convenient to specify the channels to be
521excluded, rather included. You can do this with the ``invert''
522argument.
523
524Example :
525\begin{verbatim}
526 ASAP> scans.set_unit('channels')
527 ASAP> msk = scans.create_mask([0,100],[900-1023], invert=True)
528\end{verbatim}
529
530By default \cmd{create\_mask} uses the frequency setup of the first row
531to convert velocities into a channel mask. If the rows in the data
532cover different velocity ranges, the scantable row to use should be
533specified:
534
535\begin{verbatim}
536 ASAP> scans.set_unit('km/s')
537 ASAP> msk = q.create_mask([-30,-10], row=5)
538\end{verbatim}
539
540Because the mask is stored in a simple python variable, the users is
541able to combine masks using simple arithmetic. To create a mask
542excluding the edge channels, a strong maser feature and a birdie in
543the middle of the band:
544
545\begin{verbatim}
546 ASAP> scans.set_unit('channels')
547 ASAP> msk1 = q.create_mask([0,100],[511,511],[900,1023],invert=True)
548 ASAP> scans.set_unit('km/s')
549 ASAP> msk2 = q.create_mask([-20,-10],invert=True)
550
551 ASAP> mask = msk1 and msk2
552\end{verbatim}
553
554
555\subsection{Management}
556
557\index{Scantable!management}During processing it is possible to create
558a large number of scan tables. These all consume memory, so it is best
559to periodically remove unneeded scan tables. Use \cmd{list\_scans} to
560print a list of all scantables and \cmd{del} to remove unneeded ones.
561
562Example:
563
564\begin{verbatim}
565 ASAP> list_scans()
566 The user created scantables are:
567 ['s', 'scans', 'av', 's2', 'ss']
568
569 ASAP> del s2
570 ASAP> del ss
571\end{verbatim}
572
573\section{Data Input}
574
575\index{Reading data}Data can be loaded in one of two ways; using the reader object or via
576the scantable constructor. The scantable method is simpler but the
577reader allow the user more control on what is read.
578
579\subsection{Scantable constructor}
580
581\index{Scantable constructor}\index{Scantable!constructor}This loads
582all of the data from filename into the scantable object scans and
583averages all the data within a scan (i.e. the resulting scantable
584will have one row per scan). The recognised input file formats are
585RPFITS, SDFITS (singledish fits), ASAP's scantable format and aips++
586MeasurementSet2 format.
587
588Example usage:
589
590\begin{verbatim}
591 ASAP> scan = scantable('2004-11-23_1841-P484.rpf')
592
593 # Don't scan average the data
594 ASAP> scan = scantable('2004-11-23_1841-P484.rpf', average=False)
595\end{verbatim}
596
597
598\subsection{Reader object}
599
600\index{Reader object}\index{Scantable!reader object}For more control
601when reading data into ASAP, the reader object should be used. This
602has the option of only reading in a range of integrations, only a
603specified beam or IF and does not perform any scan averaging of the
604data, allowing analysis of the individual integrations. Note that due
605to limitation of the RPFITS library, only one reader object can be
606open at one time reading RPFITS files. To read multiple RPFITS files,
607the old reader must be destroyed before the new file is opened.
608However, multiple readers can be created and attached to SDFITS files.
609
610
611Example usage:
612
613\begin{verbatim}
614 ASAP> r = reader('2003-03-16_082048_t0002.rpf')
615 ASAP> r.summary()
616 ASAP> scan = r.read()
617 ASAP> s = r.read(range(100)) # To read in the first 100 integrations
618 ASAP> del r
619\end{verbatim}
620
621\section{Basic Processing}
622
623In the following section, a simple data reduction to form a quotient
624spectrum of a single source is followed. It has been assume that the
625\cmd{.asaprc} file has {\em not} been used to change the \cmd{insitu}
626default value from \cmd{True}.
627
628\subsection{Auto quotient}
629\index{Auto quotient}Quotients can be computed ``automatically''. This
630requires the data to have matching source/reference pairs or one
631reference for multiple sources. Auto quotient assumes reference scans
632have a trailing ``\_R'' in the source name for data from Parkes and
633Mopra, and a trailing ``e'' or ``w'' for data fro, Tidbinbilla.
634
635\begin{verbatim}
636 ASAP> q = s.auto_quotient()
637\end{verbatim}
638
639%If this is not sufficient the following alternative method can be used.
640%
641%\subsection{Separate reference and source observations}
642%
643%\index{Quotient spectra}Most data from ATNF observatories
644%distinguishes on and off source data using the file name. This makes
645%it easy to create two scantables with the source and reference
646%data. As long as there was exactly one reference observation for each
647%on source observation for following method will work.
648%
649%For Mopra and Parkes data:
650%\begin{verbatim}
651% ASAP> r = scans.get_scan('*_R')
652% ASAP> s = scans.get_scan('*_S')
653%\end{verbatim}
654%
655%For Tidbinbilla data
656%\begin{verbatim}
657% ASAP> r = scans.get_scan('*_[ew]')
658% ASAP> s = scans.get_scan('*_[^ew]')
659%\end{verbatim}
660%
661%\subsection{Make the quotient spectra}
662%
663%Use the quotient function
664%
665%\begin{verbatim}
666% ASAP> q = s.quotient(r)
667%\end{verbatim}
668%
669%This uses the rows in scantable \cmd{r} as reference spectra for the
670%rows in scantable \cmd{s}. Scantable \cmd{r} must have either 1 row
671%(which is applied to all rows in \cmd{s}) or both scantables must have
672%the same number of rows. By default the quotient spectra is calculated
673%to preserve continuum emission. If you wish to remove the continuum
674%contribution, use the \cmd{preserve} argument:
675%
676%\begin{verbatim}
677% ASAP> q = s.quotient(r, preserve=True)
678%\end{verbatim}
679
680\subsection{Time average separate scans}
681
682\index{Time average}If you have observed the source with multiple
683source/reference cycles you will want to scan-average the quotient
684spectra together.
685
686\begin{verbatim}
687 ASAP> av = q.average_time()
688\end{verbatim}
689
690If for some you want to average multiple sets of scantables together
691you can:
692
693\begin{verbatim}
694 ASAP> av = average_time(q1, q2, q3)
695\end{verbatim}
696
697The default is to use integration time weighting. The alternative is
698to use none, variance, Tsys weighting or Tsys \& integration time.
699
700\begin{verbatim}
701 ASAP> av = average_time(q, weight='tintsys')
702\end{verbatim}
703
704To use variance based weighting, you need to supply a mask saying which
705channel range you want it to calculate the variance from.
706
707\begin{verbatim}
708 ASAP> msk = scans.create_mask([200,400],[600,800])
709 ASAP> av = average_time(scans, mask=msk, weight='var')
710\end{verbatim}
711
712If you have not observed your data with Doppler tracking (or run
713\cmd{freq\_align} explicitally) you should align the data in frequency
714before averaging.
715
716\begin{verbatim}
717 ASAP> av = scans.average_time(align=True)
718\end{verbatim}
719
720Note that, if needed, you should run \cmd{gain\_el} and \cmd{opacity}
721before you average the data in time (\S \ref{sec:gainel} \&
722\ref{sec:freqalign}).
723
724\subsection{Baseline fitting}
725
726\index{Baseline fitting}To make a baseline fit, you must first create
727a mask of channels to use in the baseline fit.
728
729\begin{verbatim}
730 ASAP> msk = scans.create_mask([100,400],[600,900])
731 ASAP> scans.poly_baseline(msk, 1)
732\end{verbatim}
733
734This will fit a first order polynomial to the selected channels and subtract
735this polynomial from the full spectra.
736
737\subsubsection{Auto-baselining}
738
739\index{Auto-baseline}The function \cmd{auto\_poly\_baseline} can be used to automatically
740baseline your data without having to specify channel ranges for the
741line free data. It automatically figures out the line-free emission
742and fits a polynomial baseline to that data. The user can use masks to
743fix the range of channels or velocity range for the fit as well as
744mark the band edge as invalid.
745
746Simple example
747
748\begin{verbatim}
749 ASAP> scans.auto_poly_baseline(order=2,threshold=5)
750\end{verbatim}
751
752\cmd{order} is the polynomial order for the fit. \cmd{threshold} is
753the SNR threshold to use to deliminate line emission from
754signal. Generally the value of threshold is not too critical, however
755making this too large will compromise the fit (as it will include
756strong line features) and making it too small will mean it cannot find
757enough line free channels.
758
759
760Other examples:
761
762\begin{verbatim}
763 # Don't try and fit the edge of the bandpass which is noisier
764 ASAP> scans.auto_poly_baseline(edge=(500,450),order=3,threshold=3)
765
766 # Only fit a given region around the line
767 ASAP> scans.set_unit('km/s')
768 ASAP> msk = scans.create_mask((-60,-20))
769 ASAP> scans.auto_poly_baseline(mask=msk,order=3,threshold=3)
770
771\end{verbatim}
772
773\subsection{Average the polarisations}
774
775\index{average\_pol}If you are just interested in the highest SNR for total intensity you
776will want to average the parallel polarisations together.
777
778\begin{verbatim}
779 ASAP> scans.average_pol()
780\end{verbatim}
781
782\subsection{Calibration}
783
784\index{Calibration}For most uses, calibration happens transparently as the input data
785contains the Tsys measurements taken during observations. The nominal
786``Tsys'' values may be in Kelvin or Jansky. The user may wish to
787supply a Tsys correction or apply gain-elevation and opacity
788corrections.
789
790\subsubsection{Brightness Units}
791
792\index{Brightness Units}RPFITS files do not contain any information as
793to whether the telescope calibration was in units of Kelvin or
794Janskys. On reading the data a default value is set depending on the
795telescope and frequency of observation. If this default is incorrect
796(you can see it in the listing from the \cmd{summary} function) the
797user can either override this value on reading the data or later.
798E.g:
799
800\begin{verbatim}
801 ASAP> scans = scantable(('2004-11-23_1841-P484.rpf', unit='Jy')
802 # Or in two steps
803 ASAP> scans = scantable(('2004-11-23_1841-P484.rpf')
804 ASAP> scans.set_fluxunit('Jy)
805\end{verbatim}
806
807\subsubsection{Tsys scaling}
808
809\index{Tsys scaling}Sometime the nominal Tsys measurement at the
810telescope is wrong due to an incorrect noise diode calibration. This
811can easily be corrected for with the scale function. By default,
812\cmd{scale} only scans the spectra and not the corresponding Tsys.
813
814\begin{verbatim}
815 ASAP> scans.scale(1.05, tsys=True)
816\end{verbatim}
817
818\subsubsection{Unit Conversion}
819
820\index{Unit conversion}To convert measurements in Kelvin to Jy (and
821vice versa) the global function \cmd{convert\_flux} is needed. This
822converts and scales the data from K to Jy or vice-versa depending on
823what the current brightness unit is set to. The function knows the
824basic parameters for some frequencies and telescopes, but the user may
825need to supply the aperture efficiency, telescope diameter or the Jy/K
826factor.
827
828\begin{verbatim}
829 ASAP> scans.convert_flux() # If efficency known
830 ASAP> scans.convert_flux(eta=0.48) # If telescope diameter known
831 ASAP> scans.convert_flux(eta=0.48,d=35) # Unknown telescope
832 ASAP> scans.convert_flux(jypk=15) # Alternative
833\end{verbatim}
834
835\subsubsection{Gain-Elevation and Opacity Corrections}
836\label{sec:gainel}
837
838\index{Gain-elevation}As higher frequencies (particularly $>$20~GHz)
839it is important to make corrections for atmospheric opacity and
840gain-elevation effects.
841
842Note that currently the elevation is not written correctly into
843Tidbinbilla rpfits files. This means that gain-elevation and opacity
844corrections will not work unless these get recalculated.
845
846\begin{verbatim}
847 ASAP> scans.recalc_azel() # recalculate az/el based on pointing
848\end{verbatim}
849
850Gain-elevation curves for some telescopes and frequencies are known to
851ASAP (currently only for Tidbinbilla at 20~GHz). In these cases
852making gain-corrections is simple. If the gain curve for your data is
853not known, the user can supply either a gain polynomial or text file
854tabulating gain factors at a range of elevations (see \cmd{help
855scantable.gain\_el}).
856
857Examples:
858
859\begin{verbatim}
860 ASAP> scans.gain_el() # If gain table known
861 ASAP> scans.gain_el(poly=[3.58788e-1,2.87243e-2,-3.219093e-4])
862\end{verbatim}
863
864\index{Opacity}Opacity corrections can be made with the global
865function \cmd{opacity}. This should work on all telescopes as long as
866a measurement of the opacity factor was made during the observation.
867
868\begin{verbatim}
869 ASAP> scans.opacity(0.083)
870\end{verbatim}
871
872Note that at 3~mm Mopra uses a paddle wheel for Tsys calibration,
873which takes opacity effects into account (to first order). ASAP
874opacity corrections should not be used for Mopra 3-mm data.
875
876\subsection{Frequency Frame Alignment}
877\label{sec:freqalign}
878
879\index{Frequency alignment}\index{Velicity alignment}When time
880averaging a series of scans together, it is possible that the velocity
881scales are not exactly aligned. This may be for many reasons such as
882not Doppler tracking the observations, errors in the Doppler tracking
883etc. This mostly affects very long integrations or integrations
884averaged together from different days. Before averaging such data
885together, they should be frequency aligned using \cmd{freq\_align}.
886
887E.g.:
888
889\begin{verbatim}
890 ASAP> scans.freq_align()
891 ASAP> av = average_time(scans)
892\end{verbatim}
893
894{\em A Global freq\_align command will be made eventually}
895
896To average together data taken on different days, which are in
897different scantables, each scantable must aligned to a common
898reference time then the scantables averaged. The simplest way of
899doing this is to allow ASAP to choose the reference time for the first
900scantable then using this time for the subsequent scantables.
901
902\begin{verbatim}
903 ASAP> scans1.freq_align() # Copy the refeference Epoch from the output
904 ASAP> scans2.freq_align(reftime='2004/11/23/18:43:35')
905 ASAP> scans3.freq_align(reftime='2004/11/23/18:43:35')
906 ASAP> av = average_time(scans1, scans2, scans3)
907\end{verbatim}
908
909\section{Scantable manipulation}
910
911\index{Scantable!manipulation}While it is very useful to have many
912independent sources within one scantable, it is often inconvenient for
913data processing. The \cmd{get\_scan} function can be used to create a
914new scantable with a selection of scans from a scantable. The
915selection can either be on the source name, with simple wildcard
916matching or set of scan ids. Internally this uses the selector object,
917so for more complicated selection the selector should be used directly
918instead.
919
920For example:
921
922\begin{verbatim}
923 ASAP> ss = scans.get_scan(10) # Get the 11th scan (zero based)
924 ASAP> ss = scans.get_scan(range(10)) # Get the first 10 scans
925 ASAP> ss = scans.get_scan(range(10,20)) # Get the next 10 scans
926 ASAP> ss = scans.get_scan([2,4,6,8,10]) # Get a selection of scans
927
928 ASAP> ss = scans.get_scan('345p407') # Get a specific source
929 ASAP> ss = scans.get_scan('345*') # Get a few sources
930
931 ASAP> r = scans.get_scan('*_R') # Get all reference sources (Parkes/Mopra)
932 ASAP> s = scans.get_scan('*_S') # Get all program sources (Parkes/Mopra)
933 ASAP> r = scans.get_scan('*[ew]') # Get all reference sources (Tid)
934 ASAP> s = scans.get_scan('*[^ew]') # Get all program sources (Tid)
935
936\end{verbatim}
937
938To copy a scantable the following does not work:
939
940\begin{verbatim}
941 ASAP> ss = scans
942\end{verbatim}
943
944as this just creates a reference to the original scantable. Any
945changes made to \cmd{ss} are also seen in \cmd{scans}. To duplicate a
946scantable, use the copy function.
947
948\begin{verbatim}
949 ASAP> ss = scans.copy()
950\end{verbatim}
951
952\section{Data Output}
953
954\index{Scantable!save}\index{Saving data}ASAP can save scantables in a
955variety of formats, suitable for reading into other packages. The
956formats are:
957
958{\em Currently only raw ASAP output is available. Other formats will be added soon}
959
960\begin{itemize}
961\item[ASAP] This is the internal format used for ASAP. It is the only
962 format that allows the user to restore the data, fits etc. without
963 loosing any information. As mentioned before, the ASAP scantable is
964 an AIPS++ Table (a memory-based table). This function just converts
965 it to a disk-based Table. You can the access that Table with the
966 AIPS++ Table browser or any other AIPS++ tool.
967
968\item[SDFITS] The Single Dish FITS format. This format was designed to
969 for interchange between packages, but few packages actually can read
970 it.
971
972\item[FITS] This uses simple ``image'' fits to save the data, each row
973 being written to a separate fits file. This format is suitable for
974 importing the data into CLASS.
975
976\item[ASCII] A simple text based format suitable for the user to
977processing using Perl or, Python, gnuplot etc.
978
979\item[MS2] Saves the data in an aips++ MeasurementSet V2 format.
980You can also access this with the Table browser and other AIPS++
981tools.
982
983\end{itemize}
984
985The default output format can be set in the users {\tt .asaprc} file.
986Typical usages are:
987
988\begin{verbatim}
989 ASAP> scans.save('myscans') # Save in default format
990 ASAP> scans.save('myscans', 'FITS') # Save as FITS for exporting into CLASS
991
992 ASAP> scans.save('myscans', stokes=True) # Convert raw polarisations into Stokes
993 ASAP> scans.save('myscans', overwrite=True) # Overwrite an existing file
994\end{verbatim}
995
996
997\section{Plotter}
998
999\index{Plotter}Scantable spectra can be plotted at any time. An asapplotter object is
1000used for plotting, meaning multiple plot windows can be active at the
1001same time. On start up a default asapplotter object is created called
1002``plotter''. This would normally be used for standard plotting.
1003
1004The plotter, optionally, will run in a multipanel mode and contain
1005multiple plots per panel. The user must tell the plotter how they want
1006the data distributed. This is done using the set\_mode function. The
1007default can be set in the users {\tt .asaprc} file. The units (and frame
1008etc) of the abscissa will be whatever has previously been set by
1009\cmd{set\_unit}, \cmd{set\_freqframe} etc.
1010
1011Typical plotter usage would be:
1012
1013\begin{verbatim}
1014 ASAP> scans.set_unit('km/s')
1015 ASAP> plotter.set_mode(stacking='p',panelling='t')
1016 ASAP> plotter.plot(scans)
1017\end{verbatim}
1018
1019This will plot multiple polarisation within each plot panel and each
1020scan row in a separate panel.
1021
1022Other possibilities include:
1023
1024\begin{verbatim}
1025 # Plot multiple IFs per panel
1026 ASAP> plotter.set_mode(stacking='i',panelling='t')
1027
1028 # Plot multiple beams per panel
1029 ASAP> plotter.set_mode(stacking='b',panelling='t')
1030
1031 # Plot one IF per panel, time stacked
1032 ASAP> plotter.set_mode('t', 'i')
1033
1034 # Plot each scan in a seperate panel
1035 ASAP> plotter.set_mode('t', 's')
1036
1037\end{verbatim}
1038
1039\subsection{Plot Selection}
1040\label{sec:plotter_cursor}
1041
1042\index{Plotter!selection}The plotter can plot up to 25 panels and
1043stacked spectra per panel. If you have data larger than this (or for
1044your own sanity) you need to select a subset of this data. This is
1045particularly true for multibeam or multi IF data. The selector object
1046should be used for this purpose. Selection can either be applide to
1047the scantable or directly to the plotter, the end result is the same.
1048
1049Examples:
1050
1051\begin{verbatim}
1052 ASAP> selection = selector()
1053 # Select second IF
1054 ASAP> selection.set_ifs(1)
1055 ASAP> plotter.set_selection(selection)
1056
1057 # Select first 4 beams
1058 ASAP> selection.set_beams([0,1,2,3])
1059 ASAP> plotter.set_selection(selection)
1060
1061 # Select a few scans
1062 ASAP> selection.set_scans([2,4,6,10])
1063 ASAP> plotter.set_selection(selection)
1064
1065 # Multiple selection
1066 ASAP> selection.set_ifs(1)
1067 ASAP> selection.set_scans([2,4,6,10])
1068 ASAP> plotter.set_selection(selection)
1069
1070\end{verbatim}
1071
1072\subsection{Plot Control}
1073
1074\index{Plotter!control}The plotter window has a row of buttons on the
1075lower left. These can be used to control the plotter (mostly for
1076zooming the individual plots). From left to right:
1077
1078\begin{itemize}
1079
1080\item[Home] This will unzoom the plots to the original zoom factor
1081
1082\item[Plot history] (left and right arrow). The plotter keeps a
1083history of zoom settings. The left arrow sets the plot zoom to the
1084previous value. The right arrow returns back again. This allows you,
1085for example, to zoom in on one feature then return the plot to how it
1086was previously.
1087
1088\item[Pan] (The Cross) This sets the cursor to pan, or scroll mode
1089 allowing you to shift the plot within the window. Useful when
1090 zoomed in on a feature.
1091
1092\item[Zoom] (the letter with the magnifying glass) lets you draw a
1093 rectangle around a region of interest then zooms in on that
1094 region. Use the plot history to unzoom again.
1095
1096\item[Adjust] (rectangle with 4 arrows) adjust subplot paramaters
1097 (space at edge of plots)
1098
1099\item[Save] (floppy disk). Save the plot as a postscript or .png file
1100
1101You can also type ``g'' in the plot window to toggle on and off grid
1102lines. Typing 'l' turns on and off logarithmic Y-axis.
1103
1104\end{itemize}
1105
1106\subsection{Other control}
1107
1108The plotter has a number of functions to describe the layout of the
1109plot. These include \cmd{set\_legend}, \cmd{set\_layout} and \cmd{set\_title}.
1110
1111To set the exact velocity or channel range to be plotted use the
1112\cmd{set\_range} function. To reset to the default value, call
1113\cmd{set\_range} with no arguments. E.g.
1114
1115\begin{verbatim}
1116 ASAP> scans.set_unit('km/s')
1117 ASAP> plotter.plot(scans)
1118 ASAP> plotter.set_range(-150,-50)
1119 ASAP> plotter.set_range() # To reset
1120\end{verbatim}
1121
1122Both the range of the ``x'' and ``y'' axis can be set at once, if desired:
1123
1124\begin{verbatim}
1125 ASAP> plotter.set_range(-10,30,-1,6.6)
1126\end{verbatim}
1127
1128To save a hardcopy of the current plot, use the save function, e.g.
1129
1130\begin{verbatim}
1131 ASAP> plotter.save('myplot.ps')
1132\end{verbatim}
1133
1134\section{Fitting}
1135
1136\index{Fitting}Currently multicomponent Gaussian function is
1137available. This is done by creating a fitting object, setting up the
1138fit and actually fitting the data. Fitting can either be done on a
1139single scantable selection or on an entire scantable using the
1140\cmd{auto\_fit} function. If single value fitting is used, and the
1141current selection includes multiple spectra (beams, IFs, scans etc)
1142then the first spectra in the scantable will be used for fitting.
1143
1144\begin{verbatim}
1145 ASAP> f = fitter()
1146 ASAP> f.set_function(gauss=2) # Fit two Gaussians
1147 ASAP> f.set_scan(scans)
1148 ASAP> selection = selector()
1149 ASAP> selection.set_polarisation(1) # Fit the second polarisation
1150 ASAP> scans.set_selection(selection)
1151 ASAP> scans.set_unit('km/s') # Make fit in velocity units
1152 ASAP> f.fit(1) # Run the fit on the second row in the table
1153 ASAP> f.plot() # Show fit in a plot window
1154 ASAP> f.get_parameters() # Return the fit paramaters
1155\end{verbatim}
1156
1157This auto-guesses the initial values of the fit and works well for data
1158without extra confusing features. Note that the fit is performed in
1159whatever unit the abscissa is set to.
1160
1161If you want to confine the fitting to a smaller range (e.g. to avoid
1162band edge effects or RFI you must set a mask.
1163
1164\begin{verbatim}
1165 ASAP> f = fitter()
1166 ASAP> f.set_function(gauss=2)
1167 ASAP> scans.set_unit('km/s') # Set the mask in channel units
1168 ASAP> msk = s.create_mask([1800,2200])
1169 ASAP> scans.set_unit('km/s') # Make fit in velocity units
1170 ASAP> f.set_scan(s,msk)
1171 ASAP> f.fit()
1172 ASAP> f.plot()
1173 ASAP> f.get_parameters()
1174\end{verbatim}
1175
1176If you wish, the initial parameter guesses can be specified and
1177specific parameters can be fixed:
1178
1179\begin{verbatim}
1180 ASAP> f = fitter()
1181 ASAP> f.set_function(gauss=2)
1182 ASAP> f.set_scan(s,msk)
1183 ASAP> f.fit() # Fit using auto-estimates
1184 # Set Peak, centre and fwhm for the second gaussian.
1185 # Force the centre to be fixed
1186 ASAP> f.set_gauss_parameters(0.4,450,150,0,1,0,component=1)
1187 ASAP> f.fit() # Re-run the fit
1188\end{verbatim}
1189
1190The fitter \cmd{plot} function has a number of options to either view
1191the fit residuals or the individual components (by default it plots
1192the sum of the model components).
1193
1194Examples:
1195
1196\begin{verbatim}
1197 # Plot the residual
1198 ASAP> f.plot(residual=True)
1199
1200 # Plot the first 2 componentsa
1201 ASAP> f.plot(components=[0,1])
1202
1203 # Plot the first and third component plus the model sum
1204 ASAP> f.plot(components=[-1,0,2]) # -1 means the compoment sum
1205\end{verbatim}
1206
1207\subsection{Fit saving}
1208
1209\index{Fitter!Fit saving}One you are happy with your fit, it is
1210possible to store it as part of the scantable.
1211
1212\begin{verbatim}
1213 ASAP> f.storefit()
1214\end{verbatim}
1215
1216This will be saved to disk with the data, if the ``ASAP'' file format
1217is selected. Multiple fits to the same data can be stored in the
1218scantable.
1219
1220The scantable function \cmd{get\_fit} can be used to retrieve the
1221stored fits. Currently the fit parameters are just printed to the
1222screen.
1223
1224\begin{verbatim}
1225 ASAP> scans.get_fit(4) # Print fits for row 4
1226\end{verbatim}
1227
1228\section{Polarisation}
1229
1230\index{Polarisation}Currently ASAP only supports polarmetric analysis
1231on linearly polarised feeds and the cross polarisation products
1232measured. Other cases will be added on an as needed basic.
1233
1234Conversions of linears to Stokes or Circular polarisations are done
1235``on-the-fly''. Leakage cannot be corrected for nor are there routines
1236to calibrate position angle offsets.
1237
1238\subsection{Simple Calibration}
1239
1240\index{Polarisation!calibration}It is possible that there is a phase
1241offset between polarisation which will effect the phase of the cross
1242polarisation correlation, and so give rise to spurious
1243polarisation. \cmd{rotate\_xyphase} can be used to correct for this
1244error. At this point, the user must know how to determine the size of
1245the phase offset themselves.
1246
1247\begin{verbatim}
1248 ASAP> scans.rotate_xyphase(10.5) # Degrees
1249\end{verbatim}
1250
1251Note that if this function is run twice, the sum of the two values is
1252applied because it is done in-situ.
1253
1254A correction for the receiver parallactic angle may need to be made,
1255generally because of how it is mounted. Use \cmd{rotate\_linpolphase}
1256to correct the position angle. Running this function twice results in
1257the sum of the corrections being applied because it is applied
1258in-situ.
1259
1260\begin{verbatim}
1261 ASAP> scans.rotate_linpolphase(-45) # Degrees; correct for receiver mounting
1262\end{verbatim}
1263
1264If the sign of the complex correlation is wrong (this can happen
1265depending on the correlator configuration), use \cmd{invert\_phase} to
1266change take the complex conjugate of the complex correlation
1267term. This is always performed in-situ.
1268
1269\begin{verbatim}
1270 ASAP> scans.invert_phase()
1271\end{verbatim}
1272
1273Depending on how the correlator is configured, ``BA'' may be
1274correlated insead of ``AB''. Use \cmd{swap\_linears} to correct for
1275this problem:
1276
1277\begin{verbatim}
1278 ASAP> scans.swap_linears()
1279\end{verbatim}
1280
1281\subsection{Plotting}
1282\label{sec:polplot}
1283
1284\index{Polarisation!plotting}To plot Stokes values, a selector object
1285must be created and the set\_polarisation function used to select the
1286desired polarisation products.
1287
1288The values which can be plotted include a selection of [I,Q,U,V], [I,
1289Plinear, Pangle, V], [RR, LL] or [XX, YY, Real(XY),
1290Imaginary(XY)]. (Plinear and Pangle are the percentage and position
1291angle of linear polarisation). Conversion to circular polarisations
1292are currently not available.
1293
1294Example:
1295
1296\begin{verbatim}
1297 ASAP> selection = selector()
1298
1299 ASAP> selection.set_polarisations([``I Q U V''])
1300 ASAP plotter.set_selection(selection); # Select I, Q, U \& V
1301
1302 ASAP> selection.set_polarisations([``I Q'')
1303 ASAP plotter.set_selection(selection); # Select just I \& Q
1304
1305 ASAP> selection.set_polarisations([``RR LL'')
1306 ASAP plotter.set_selection(selection); # Select just RR \& LL
1307
1308 ASAP> selection.set_polarisations([``XX YY'')
1309 ASAP plotter.set_selection(selection); # Select linears
1310
1311 ASAP> selection.set_polarisations([``I Plinear'')
1312 ASAP plotter.set_selection(selection); # Fractional linear
1313
1314[[MALTE: This does not work]]
1315
1316 ASAP> selection.set_polarisations([``Pangle'')
1317 ASAP plotter.set_selection(selection); # Position angle
1318
1319\end{verbatim}
1320
1321Scan, beam and IF selection are also available in the selector object as
1322describe in section~\ref{sec:selection}.
1323
1324\subsection{Saving}
1325
1326\index{Polarisation!saving}When saving data using the \cmd{save}
1327function, the \cmd{stokes} argument can be used to save the data as
1328Stoke values when saving in FITS format.
1329
1330Example:
1331
1332\begin{verbatim}
1333 ASAP> scans.save('myscan.sdfits', 'SDFITS', stokes=True)
1334\end{verbatim}
1335
1336\section{Scantable Mathematics}
1337
1338\index{Scantable!maths}It is possible to to simple mathematics
1339directly on scantables from the command line using the \cmd{+, -, *,
1340/} operators as well as their cousins \cmd{+=, -= *=, /=}. This works
1341between two scantables or a scantable and a float. (Note that it does
1342not work for integers).
1343
1344{\em Currently mathematics between two scan tables is not available }
1345
1346\begin{verbatim}
1347% ASAP> sum = scan1+scan2
1348 ASAP> scan2 = scan1+2.0
1349 ASAP> scan *= 1.05
1350\end{verbatim}
1351
1352\section{Scripting}
1353
1354\index{Scripting}Because asap is based on python, it easy for the user
1355write their own scripts and functions to process data. This is highly
1356recommended as most processing of user data could then be done in a
1357couple of steps using a few simple user defined functions. A Python
1358primer is beyond the scope of this userguide. See the asap home pages
1359for a scripting tutorial or the main python website for comprehensive
1360documentation.
1361
1362\hspace{1cm} http://www.atnf.csiro.au/computing/software/asap/tutorials
1363
1364\hspace{1cm} http://www.python.org/doc/Introduction.html
1365
1366\subsection{Running scripts}
1367
1368The asap global function \cmd{execfile} reads the named text file and
1369executes the contained python code. This file can either contain
1370function definitions which will be used in subsequent processing or
1371just a set of commands to process a specific dataset.
1372
1373\subsection{asapuserfuncs.py}
1374
1375The file $\sim$/.asap/asapuserfuncs.py is automatically read in when
1376asap is started. The user can use this to define a set of user
1377functions which are automatically available each time asap is
1378used. The \cmd{execfile} function can be called from within this file.
1379
1380\section{Worked examples}
1381
1382In the following section a few examples of end-to-end processing of
1383some data in asap are given.
1384
1385\subsection{Mopra}
1386\index{Mopra}
1387
1388The following example is of some dual polarisation, position switched
1389data from Mopra. The source has been observed mulitple times split
1390into a number of seperate rpfits files. To make the processing easier,
1391the first step is to \cmd{cat} the seeprate rpfits files together and
1392load as a whole (future versions of asap will make this unnecessary).
1393
1394
1395\begin{verbatim}
1396# Concatenate the individual rpfits files together before loading
1397!cat 2005-06*.rpf > data.rpf
1398
1399# Load the data into a scantable
1400data = scantable('data.rpf')
1401print data
1402
1403# Form the quotient spectra
1404q = data.auto_quotient()
1405print q
1406
1407# Look at the spectra
1408plotter.plot(q)
1409
1410# Set reference frame
1411q.set_unit('km/s')
1412q.set_freqframe('LSRK')
1413
1414# Average all scans in time, aligning in velocity
1415av = q.average_time(align=True)
1416plotter.plot(av)
1417
1418# Remove the baseline
1419msk = av.create_mask([100,130],[160,200])
1420av.poly_baseline(msk,2)
1421
1422# Average the two polarisations together
1423iav = av.average_pol()
1424print iav
1425plotter.plot(iav)
1426
1427# Set a sensible velocity range on the plot
1428plotter.set_range(85,200)
1429
1430# Smooth the data a little
1431av.smooth('gauss',4)
1432plotter.plot()
1433
1434# Fit a guassian to the emission
1435f = fitter()
1436f.set_function(gauss=1)
1437f.set_scan(av)
1438f.fit()
1439
1440# View the fit
1441f.plot()
1442
1443# Get the fit parameters
1444f.get_parameters()
1445
1446\end{verbatim}
1447
1448
1449\subsection{Parkes Polarimetry}
1450
1451\index{Parkes}\index{Polarisation}The following example is processing
1452of some Parkes polarmetric observations of OH masers at
14531.6~GHz. Because digital filters where used in the backend, the
1454baselines are stable enough not to require a quotient spectra. The
14554~MHz bandwidth is wide enough to observe both the 1665 and 1667~MHz
1456OH maser transitions. Each source was observed once for about 10
1457minutes. Tsys information was not written to the rpfits file (a
1458nominal 25K values was used), so the amplitudes need to be adjusted
1459based on a separate log file. A simple user function is used to
1460simplify this, contained in a file called mypol.py:
1461
1462\begin{verbatim}
1463def xyscale(data,xtsys=1.0,ytsys=1.0,nomtsys=25.0) :
1464
1465 selection = selector()
1466 selection.set_polarisation(0)
1467 data.set_selection(selection)
1468 data.scale(xtsys/nomtsys)
1469
1470 selection.set_polarisation(1)
1471 data.set_selection(selection)
1472 data.scale(ytsys/nomtsys)
1473
1474 selection.set_polarisation(0)
1475 data.set_selection(selection)
1476 data.scale((xtsys+ytsys)/(2*nomtsys))
1477
1478 selection.set_polarisation(0)
1479 data.set_selection(selection)
1480 data.scale((xtsys+ytsys)/(2*nomtsys))
1481\end{verbatim}
1482
1483The typical asap session would be
1484
1485\begin{verbatim}
1486
1487# Remind ourself the name of the rpfits files
1488ls
1489
1490# Load data from an rpfits file
1491d1665 = scantable('2005-10-27_0154-P484.rpf')
1492
1493# Check what we have just loaded
1494d1665.summary
1495
1496# View the data in velocity
1497d1665.set_unit('km/s')
1498d1665.set_freqframe('LSRK')
1499
1500# Correct for the known phase offset in the crosspol data
1501d1665.rotate_xyphase(-4)
1502
1503# Create a copy of the data and set the rest frequency to the 1667 MHz
1504# transition
1505d1667 = d1665.copy()
1506d1667.set_restfreqs([1667.3590], 'MHz')
1507d1667.summary()
1508
1509# Copy out the scan we wish to process
1510g351_5 = d1665.get_scan('351p160')
1511g351_7 = d1667.get_scan('351p160')
1512
1513# Baseline both
1514msk = g351_5.create_mask([-30,-25],[-5,0])
1515g351_5.poly_baseline(msk,order=1)
1516msk = g351_7.create_mask([-30,-25],[-5,0])
1517g351_7.poly_baseline(msk,order=1)
1518
1519
1520# Plot the data. The plotter can only plot a single scantable
1521# So we must merge the two tables first
1522
1523plotscans = merge(g351_5, g351_7)
1524
1525plotter.plot(plotscans) # Only shows one panel
1526
1527# Tell the plotter to stack polarisation and panel scans
1528plotter.set_mode('p','s')
1529
1530# Correct for the Tsys using our predefined function
1531execfile('mypol.py') # Read in the function
1532xyscale(g351_5,23.2,22.7) # Execute it on the data
1533xyscale(g351_7,23.2,22.7)
1534
1535# Only plot the velocity range of interest
1536plotter.set_range(-30,10)
1537
1538# Update the plot with the baselined data
1539plotter.plot()
1540
1541# Look at the various polarisation products
1542selection = selector()
1543selection.set_polarisations(``RR LL'')
1544plotter.set_selection(selection)
1545selection.set_polarisations(``I Plinear'')
1546plotter.set_selection(selection)
1547selection.set_polarisations(``I Q U V'')
1548plotter.set_selection(selection)
1549
1550# Save the plot as postscript
1551plotter.save('g351_stokes.ps')
1552
1553# Save the process spectra
1554plotscans.save('g351.asap')
1555
1556\end{verbatim}
1557
1558\subsection{Tidbinbilla}
1559
1560\index{Tidbinbilla}The following example is processing of some
1561Tidbinbilla observations of NH$_3$ at 12~mm. Tidbinbilla has (at the
1562time of observations) a single polarisation, but can process two IFs
1563simultaneously. In the example, the first half of the observation was
1564observing the (1,1) and (2,2) transitions simultaneously). The second
1565half observed only the (4,4) transition due to bandwidth
1566limitations. The data is position switched, observing first an
1567reference to the west, then the source twice and finally reference to
1568the east.
1569
1570\begin{verbatim}
1571
1572# Load the rpfits file and inspect
1573d = scantable('2003-03-16_082048_t0002.rpf')
1574print d
1575
1576# Make the quotient spectra
1577q = d.auto_quotient()
1578print q
1579
1580del d
1581
1582# Plot/select in velocity
1583q.set_freqframe('LSRK')
1584q.set_unit('km/s')
1585
1586# Correct for gain/el effects
1587
1588q.recalc_azel() # Tid does not write the elevation
1589q.gain_el()
1590q.opacity(0.05)
1591
1592# Seperate data from the (1,1)&(2,2) and (4,4) transitions
1593g1 = q.get_scan(range(6)) # Rows 0..5
1594g2 = q.get_scan(range(6,12)) # Rows 6..11
1595
1596# Align data in velocity
1597g1.freq_align()
1598g2.freq_align()
1599
1600# Average individual scans
1601a1 = g1.average_time()
1602a2 = g2.average_time()
1603
1604# Rpfits file only contrains a single rest frequency. Set both
1605a1.set_restfreqs([23694.4700e6,23722.6336e6])
1606
1607plotter.plot(a1)
1608plotter.set_mode('i','s')
1609
1610a1.auto_poly_baseline()
1611
1612plotter.plot()
1613
1614a1.smooth('gauss',5)
1615plotter.plot()
1616
1617
1618\end{verbatim}
1619
1620\newpage
1621
1622\section{Appendix}
1623
1624\subsection{Function Summary}
1625
1626\index{Functions!summary}%
1627\begin{verbatim}
1628 [The scan container]
1629 scantable - a container for integrations/scans
1630 (can open asap/rpfits/sdfits and ms files)
1631 copy - returns a copy of a scan
1632 get_scan - gets a specific scan out of a scantable
1633 summary - print info about the scantable contents
1634 set_cursor - set a specific Beam/IF/Pol 'cursor' for
1635 further use
1636 get_cursor - print out the current cursor position
1637 stats - get specified statistic of the spectra in
1638 the scantable
1639 stddev - get the standard deviation of the spectra
1640 in the scantable
1641 get_tsys - get the TSys
1642 get_time - get the timestamps of the integrations
1643 get_azimuth - get the azimuth of the scans
1644 get_elevation - get the elevation of the scans
1645 get_parangle - get the parallactic angle of the scans
1646 get_unit - get the currnt unit
1647 set_unit - set the abcissa unit to be used from this
1648 point on
1649 get_abcissa - get the abcissa values and name for a given
1650 row (time)
1651 set_freqframe - set the frame info for the Spectral Axis
1652 (e.g. 'LSRK')
1653 set_doppler - set the doppler to be used from this point on
1654 set_instrument - set the instrument name
1655 get_fluxunit - get the brightness flux unit
1656 set_fluxunit - set the brightness flux unit
1657 create_mask - return an mask in the current unit
1658 for the given region. The specified regions
1659 are NOT masked
1660 get_restfreqs - get the current list of rest frequencies
1661 set_restfreqs - set a list of rest frequencies
1662 lines - print list of known spectral lines
1663 flag_spectrum - flag a whole Beam/IF/Pol
1664 save - save the scantable to disk as either 'ASAP'
1665 or 'SDFITS'
1666 nbeam,nif,nchan,npol - the number of beams/IFs/Pols/Chans
1667 history - print the history of the scantable
1668 get_fit - get a fit which has been stored witnh the data
1669 average_time - return the (weighted) time average of a scan
1670 or a list of scans
1671 average_pol - average the polarisations together.
1672 The dimension won't be reduced and
1673 all polarisations will contain the
1674 averaged spectrum.
1675 auto_quotient - return the on/off quotient with
1676 automatic detection of the on/off scans
1677 quotient - return the on/off quotient
1678 scale - return a scan scaled by a given factor
1679 add - return a scan with given value added
1680 bin - return a scan with binned channels
1681 resample - return a scan with resampled channels
1682 smooth - return the spectrally smoothed scan
1683 poly_baseline - fit a polynomial baseline to all Beams/IFs/Pols
1684 auto_poly_baseline - automatically fit a polynomial baseline
1685 recalc_azel - recalculate azimuth and elevation based on
1686 the pointing
1687 gain_el - apply gain-elevation correction
1688 opacity - apply opacity correction
1689 convert_flux - convert to and from Jy and Kelvin brightness
1690 units
1691 freq_align - align spectra in frequency frame
1692 rotate_xyphase - rotate XY phase of cross correlation
1693 rotate_linpolphase - rotate the phase of the complex
1694 polarization O=Q+iU correlation
1695 [Math] Mainly functions which operate on more than one scantable
1696
1697 average_time - return the (weighted) time average
1698 of a list of scans
1699 quotient - return the on/off quotient
1700 simple_math - simple mathematical operations on two scantables,
1701 'add', 'sub', 'mul', 'div'
1702 [Fitting]
1703 fitter
1704 auto_fit - return a scan where the function is
1705 applied to all Beams/IFs/Pols.
1706 commit - return a new scan where the fits have been
1707 commited.
1708 fit - execute the actual fitting process
1709 store_fit - store the fit paramaters in the data (scantable)
1710 get_chi2 - get the Chi^2
1711 set_scan - set the scantable to be fit
1712 set_function - set the fitting function
1713 set_parameters - set the parameters for the function(s), and
1714 set if they should be held fixed during fitting
1715 set_gauss_parameters - same as above but specialised for individual
1716 gaussian components
1717 get_parameters - get the fitted parameters
1718 plot - plot the resulting fit and/or components and
1719 residual
1720 [Plotter]
1721 asapplotter - a plotter for asap, default plotter is
1722 called 'plotter'
1723 plot - plot a (list of) scantable
1724 save - save the plot to a file ('png' ,'ps' or 'eps')
1725 set_mode - set the state of the plotter, i.e.
1726 what is to be plotted 'colour stacked'
1727 and what 'panelled'
1728 set_cursor - only plot a selected part of the data
1729 set_range - set a 'zoom' window
1730 set_legend - specify user labels for the legend indeces
1731 set_title - specify user labels for the panel indeces
1732 set_ordinate - specify a user label for the ordinate
1733 set_abcissa - specify a user label for the abcissa
1734 set_layout - specify the multi-panel layout (rows,cols)
1735
1736 [Reading files]
1737 reader - access rpfits/sdfits files
1738 read - read in integrations
1739 summary - list info about all integrations
1740
1741 [General]
1742 commands - this command
1743 print - print details about a variable
1744 list_scans - list all scantables created bt the user
1745 del - delete the given variable from memory
1746 range - create a list of values, e.g.
1747 range(3) = [0,1,2], range(2,5) = [2,3,4]
1748 help - print help for one of the listed functions
1749 execfile - execute an asap script, e.g. execfile('myscript')
1750 list_rcparameters - print out a list of possible values to be
1751 put into \$HOME/.asaprc
1752 mask_and,mask_or,
1753 mask_not - boolean operations on masks created with
1754 scantable.create_mask
1755
1756 Note:
1757 How to use this with help:
1758 # function 'summary'
1759 [xxx] is just a category
1760 Every 'sub-level' in this list should be replaces by a '.' Period when
1761 using help
1762 Example:
1763 ASAP> help scantable # to get info on ths scantable
1764 ASAP> help scantable.summary # to get help on the scantable's
1765 ASAP> help average_time
1766
1767\end{verbatim}
1768
1769\subsection{ASCII output format}
1770
1771\subsection{.asaprc settings}
1772\index{.asaprc}
1773\asaprc{verbose}{{\bf True}/False}{Print verbose output}
1774
1775\asaprc{insitu}{{\bf True}/False}{Apply operations on the input
1776scantable or return new one}
1777
1778% plotting
1779
1780\asaprc{useplotter}{{\bf True}/False}{Preload a default plotter}
1781
1782\asaprc{plotter.gui}{{\bf True}/False}{Do we want a GUI or plot to a
1783file}
1784
1785\asaprc{plotter.stacking}{{\bf Pol} Beam IF Scan Time}{Default mode for
1786colour stacking}
1787
1788\asaprc{plotter.panelling}{Pol Beam IF {\bf Scan} Time}{Default mode
1789for panelling}
1790
1791\asaprc{plotter.ganged}{{\bf True}/False}{Push panels together, to
1792share axislabels}
1793
1794\asaprc{plotter.decimate}{True/{\bf False}}{Decimate the number of
1795points plotted by a factor of nchan/1024}
1796
1797% default colours/linestyles
1798%\asaprc{plotter.colours}{.}{.}
1799%\asaprc{plotter.linestyles{.}{.}
1800
1801% scantable
1802\asaprc{scantable.save}{{\bf ASAP} SDFITS FITS ASCII MS2}{Default output
1803format when saving}
1804
1805\asaprc{scantable.autoaverage}{{\bf True}/False}{Auto averaging on
1806read}
1807
1808\asaprc{scantable.freqframe}{{\bf LSRK} TOPO BARY etc}{default
1809frequency frame to set when function scantable.set\_freqframe is
1810called}
1811
1812\asaprc{scantable.plotter}{{\bf True}/False}{Use internal plotter}
1813
1814\asaprc{scantable.verbosesummary}{True/{\bf False}}{Control the level
1815of information printed by summary}
1816
1817\subsection{Installation}
1818
1819\index{Installation}ASAP depends on a number of third-party libraries which you must
1820have installed before attempting to build ASAP. These are:
1821
1822\begin{itemize}
1823\item AIPS++
1824\item Boost
1825\item Matplotlib
1826\item python/ipython
1827\end{itemize}
1828
1829Debian Linux is currently supported and we intend also
1830to support other popular Linux flavours, Solaris and Mac.
1831
1832Of the dependencies, AIPS++ is the most complex to install.
1833
1834\printindex
1835
1836\end{document}
1837
Note: See TracBrowser for help on using the repository browser.