1 | \documentclass[11pt]{article}
|
---|
2 | \usepackage{a4}
|
---|
3 | \usepackage{calc}
|
---|
4 | \usepackage[dvips]{graphicx}
|
---|
5 | \usepackage{makeidx}
|
---|
6 |
|
---|
7 | % Adjust the page size
|
---|
8 | \addtolength{\oddsidemargin}{-0.4in}
|
---|
9 | \addtolength{\evensidemargin}{+0.4in}
|
---|
10 | \addtolength{\textwidth}{+0.8in}
|
---|
11 |
|
---|
12 | \setlength{\parindent}{0mm}
|
---|
13 | \setlength{\parskip}{1ex}
|
---|
14 |
|
---|
15 | \title{ATNF Spectral Analysis Package\\User Guide v2.1\\DRAFT }
|
---|
16 | \author{Chris Phillips}
|
---|
17 |
|
---|
18 | \newcommand{\cmd}[1]{{\tt #1}}
|
---|
19 |
|
---|
20 | \newcommand{\asaprc}[3]{
|
---|
21 | \begin{minipage}[t]{45mm}#1\end{minipage}
|
---|
22 | \begin{minipage}[t]{30mm}\raggedright #2\end{minipage}\hspace{3mm}
|
---|
23 | \begin{minipage}[t]{\textwidth-75mm}#3\end{minipage}
|
---|
24 | }
|
---|
25 |
|
---|
26 | \newcommand{\commanddef}[3]{
|
---|
27 | \begin{minipage}[t]{27mm}\tt #1\end{minipage}\hspace{3mm}
|
---|
28 | \begin{minipage}[t]{\textwidth-30mm}#2 \\ \tt #3\end{minipage}
|
---|
29 | }
|
---|
30 |
|
---|
31 | \newcommand{\bigcommanddef}[3]{
|
---|
32 | \begin{minipage}[t]{45mm}\tt #1\end{minipage}\hspace{3mm}
|
---|
33 | \begin{minipage}[t]{\textwidth-47mm}#2 \\ \tt #3\end{minipage}
|
---|
34 | }
|
---|
35 |
|
---|
36 | \makeindex
|
---|
37 |
|
---|
38 | \begin{document}
|
---|
39 |
|
---|
40 | \maketitle
|
---|
41 |
|
---|
42 | \section{Introduction}
|
---|
43 |
|
---|
44 | ASAP is a single dish spectral line processing package currently being
|
---|
45 | developed by the ATNF. It is intended to process data from all ATNF
|
---|
46 | antennas, and can probably be used for other antennas if they can
|
---|
47 | produce ``Single Dish FITS'' format. It is based on the AIPS++
|
---|
48 | package.
|
---|
49 |
|
---|
50 | This userguide is being updated for the ASAP 2.1. Please report any
|
---|
51 | mistakes you find.
|
---|
52 |
|
---|
53 | \section{Installation and Running}
|
---|
54 |
|
---|
55 | Currently there are installations running on Linux machines at
|
---|
56 |
|
---|
57 | \begin{itemize}
|
---|
58 | \item Epping - use hosts {\tt draco} or {\tt hydra}
|
---|
59 | \item Narrabri - use host {\tt kaputar}
|
---|
60 | \item Parkes - use host {\tt bourbon}
|
---|
61 | \item Mopra - use host {\tt minos}
|
---|
62 | \end{itemize}
|
---|
63 |
|
---|
64 | Or use your own Linux desktop.
|
---|
65 |
|
---|
66 | {\em Note. ASAP2.1 only runs on ATNF Linux machines which have been
|
---|
67 | updated to Debian Sarge and are using the ``DEBIANsarge''
|
---|
68 | /usr/local. If your favourite machine has not been upgraded, send a
|
---|
69 | request your your friendly IT support.}
|
---|
70 |
|
---|
71 | \index{Running}To start asap log onto one of these Linux hosts and enter
|
---|
72 |
|
---|
73 | \begin{verbatim}
|
---|
74 | > cd /my/data/directory
|
---|
75 | > asap
|
---|
76 | \end{verbatim}
|
---|
77 |
|
---|
78 | This starts the ASAP. To quit, you need to type \verb+^+-d
|
---|
79 | (control-d) or type \cmd{\%Exit}.
|
---|
80 |
|
---|
81 | \section{Interface}
|
---|
82 |
|
---|
83 | \index{Interface}ASAP is written in C++ and python. The user interface
|
---|
84 | uses the ``ipython'' interactive shell, which is a simple interactive
|
---|
85 | interface to python. The user does not need to understand python to
|
---|
86 | use this, but certain aspects python affect what the user can do. The
|
---|
87 | current interface is object oriented.
|
---|
88 |
|
---|
89 | \subsection {Integer Indices are 0-relative}
|
---|
90 |
|
---|
91 | Please note, all integer indices in ASAP and iPython are {\bf 0-relative}.
|
---|
92 |
|
---|
93 | \subsection{Objects}
|
---|
94 | \index{objects}
|
---|
95 | The ASAP interface is based around a number of ``objects'' which the
|
---|
96 | user deals with. Objects range from the data which have been read from
|
---|
97 | disk, to tools used for fitting functions to the data. The following
|
---|
98 | main objects are used :
|
---|
99 |
|
---|
100 | \begin{itemize}
|
---|
101 | \item[\cmd{scantable}] The data container (actual spectra and header
|
---|
102 | information)
|
---|
103 | \item[\cmd{selector}] Allows the user to select a subsection of the
|
---|
104 | data, such as a specified or range of beam numbers, IFs, etc.
|
---|
105 | \item[\cmd{plotter}] A tool used to plot the spectral line data
|
---|
106 | \item[\cmd{fitter}] A tool used to fit functions to the spectral data
|
---|
107 | \item[\cmd{reader}] A tool which can be used to read data from disks
|
---|
108 | into a scantable object (advanced use).
|
---|
109 | \end{itemize}
|
---|
110 |
|
---|
111 | There can be many objects of the same type. Each object is referred to
|
---|
112 | by a variable name made by the user. The name of this variable is not
|
---|
113 | important and can be set to whatever the user prefers (i.e. ``s'' and
|
---|
114 | ``ParkesHOH-20052002'' are equivalent). However, having a simple and
|
---|
115 | consistent naming convention will help you a lot.
|
---|
116 |
|
---|
117 | \subsection{Member Functions (functions)}
|
---|
118 |
|
---|
119 | \index{Functions!member}Following the object oriented approach,
|
---|
120 | objects have associated ``member functions'' which can either be used
|
---|
121 | to modify the data in some way or change global properties of the
|
---|
122 | object. In this document member functions will be referred to simply
|
---|
123 | as functions. From the command line, the user can execute these
|
---|
124 | functions using the syntax:
|
---|
125 | \begin{verbatim}
|
---|
126 | ASAP> out = object.function(arguments)
|
---|
127 | \end{verbatim}
|
---|
128 |
|
---|
129 | Where \cmd{out} is the name of the returned variable (could be a new
|
---|
130 | scantable object, or a vector of data, or a status return),
|
---|
131 | \cmd{object} is the object variable name (set by the user),
|
---|
132 | \cmd{function} is the name of the member function and \cmd{arguments}
|
---|
133 | is a list of arguments to the function. The arguments can be provided
|
---|
134 | either though position or \cmd{name=}. A mix of the two can be used.
|
---|
135 | E.g.
|
---|
136 |
|
---|
137 | \begin{verbatim}
|
---|
138 | ASAP> av = scans.average_time(msk,weight='tsys')
|
---|
139 | ASAP> av = scans.average_time(mask=msk,weight='tsys')
|
---|
140 | ASAP> av = scans.average_time(msk,tsys)
|
---|
141 | ASAP> scans.poly_baseline(mask=msk, order=0, insitu=True)
|
---|
142 | ASAP> scans.poly_baseline(msk,0,True)
|
---|
143 | ASAP> scans.poly_baseline(mask, insitu=True)
|
---|
144 | \end{verbatim}
|
---|
145 |
|
---|
146 | \subsection{Global Functions}
|
---|
147 |
|
---|
148 | \index{Functions!global}It does not make sense to implement some functions as member
|
---|
149 | functions, typically functions which operate on more than one
|
---|
150 | scantable (e.g. time averaging of many scans). These functions will
|
---|
151 | always be referred to as global functions.
|
---|
152 |
|
---|
153 | \subsection{Interactive environment}
|
---|
154 |
|
---|
155 | \index{ipython!environment}ipython has a number of useful interactive
|
---|
156 | features and a few things to be aware of for the new user.
|
---|
157 |
|
---|
158 | \subsubsection{String completion}
|
---|
159 |
|
---|
160 | \index{ipython!string completion}Tab completion is enabled for all
|
---|
161 | function names. If you type the first few letters of a function name,
|
---|
162 | then type {\tt <TAB>} the function name will be auto completed if it
|
---|
163 | is un-ambiguous, or a list of possibilities will be
|
---|
164 | given. Auto-completion works for the user object names as well as
|
---|
165 | function names. It does not work for filenames, nor for function
|
---|
166 | arguments.
|
---|
167 |
|
---|
168 | Example
|
---|
169 | \begin{verbatim}
|
---|
170 | ASAP> scans = scantable('MyData.rpf')
|
---|
171 | ASAP> scans.se<TAB>
|
---|
172 | ASAP> scans.set_in<TAB>
|
---|
173 | scans.set_cursor scans.set_freqframe scans.set_selection
|
---|
174 | scans.set_doppler scans.set_instrument scans.set_unit
|
---|
175 | scans.set_fluxunit scans.set_restfreqs
|
---|
176 |
|
---|
177 | ASAP> scans.set_instrument()
|
---|
178 | \end{verbatim}
|
---|
179 |
|
---|
180 | \subsubsection{Leading Spaces}
|
---|
181 |
|
---|
182 | \index{ipython!leading space}Python uses leading space to mark blocks
|
---|
183 | of code. This means that it you start a command line with a space, the
|
---|
184 | command generally will fail with an syntax error.
|
---|
185 |
|
---|
186 | \subsubsection{Variable Names}
|
---|
187 |
|
---|
188 | \index{ipython!variable names}During normal data processing, the user
|
---|
189 | will have to create named variables to hold spectra etc. These must
|
---|
190 | conform to the normal python syntax, specifically they cannot contain
|
---|
191 | ``special'' characters such as \@ \$ etc and cannot start with a
|
---|
192 | number (but can contain numbers). Variable (and function) names are
|
---|
193 | case sensitive.
|
---|
194 |
|
---|
195 | \subsubsection{Unix Interaction}
|
---|
196 |
|
---|
197 | \index{ipython!unix interaction}Basic unix shell commands (\cmd{pwd},
|
---|
198 | \cmd{ls}, \cmd{cd} etc) can be issued from within ASAP. This allows
|
---|
199 | the user to do things like look at files in the current directory. The
|
---|
200 | shell command ``\cmd{cd}'' works within ASAP, allowing the user to
|
---|
201 | change between data directories. Unix programs cannot be run this way,
|
---|
202 | but the shell escape ``$!$'' can be used to run arbitrary
|
---|
203 | programs. E.g.
|
---|
204 |
|
---|
205 | \begin{verbatim}
|
---|
206 | ASAP> pwd
|
---|
207 | ASAP> ls
|
---|
208 | ASAP> cd /my/data/directory
|
---|
209 | ASAP> ! mozilla&
|
---|
210 | \end{verbatim}
|
---|
211 |
|
---|
212 | \subsection{Help}
|
---|
213 |
|
---|
214 | \index{Help}ASAP has built in help for all functions. To get a list of
|
---|
215 | functions type:
|
---|
216 |
|
---|
217 | \begin{verbatim}
|
---|
218 | ASAP> commands()
|
---|
219 | \end{verbatim}
|
---|
220 |
|
---|
221 | To get help on specific functions, the built in help needs to be given
|
---|
222 | the object and function name. E.g.
|
---|
223 |
|
---|
224 | \begin{verbatim}
|
---|
225 | ASAP> help scantable.get_scan # or help(scantable.get_scan)
|
---|
226 | ASAP> help scantable.stats
|
---|
227 | ASAP> help plotter.plot
|
---|
228 | ASAP> help fitter.plot
|
---|
229 |
|
---|
230 | ASAP> scans = scantable('mydata.asap')
|
---|
231 | ASAP> help scans.get_scan # Same as above
|
---|
232 | \end{verbatim}
|
---|
233 |
|
---|
234 | Global functions just need their name
|
---|
235 |
|
---|
236 | \begin{verbatim}
|
---|
237 | ASAP> help average_time
|
---|
238 | \end{verbatim}
|
---|
239 |
|
---|
240 | Note that if you just type \cmd{help} the internal ipython help is
|
---|
241 | invoked, which is probably {\em not} what you want. Type \verb+^+-d
|
---|
242 | (control-d) to escape from this.
|
---|
243 |
|
---|
244 | \subsection{Customisation - .asaprc}
|
---|
245 |
|
---|
246 | \index{.asaprc}ASAP use an \cmd{.asaprc} file to control the user's
|
---|
247 | preference of default values for various functions arguments. This
|
---|
248 | includes the defaults for arguments such as \cmd{insitu}, scantable
|
---|
249 | \cmd{freqframe} and the plotters \cmd{set\_mode} values. The help on
|
---|
250 | individual functions says which arguments can be set default values
|
---|
251 | from the \cmd{.asaprc} file. To get a sample contents for the
|
---|
252 | \cmd{.asaprc} file use the command \cmd{list\_rcparameters}.
|
---|
253 |
|
---|
254 | Common values include:
|
---|
255 | \begin{verbatim}
|
---|
256 | # apply operations on the input scantable or return new one
|
---|
257 | insitu : False
|
---|
258 |
|
---|
259 | # default output format when saving scantable
|
---|
260 | scantable.save : ASAP
|
---|
261 |
|
---|
262 | # default frequency frame to set when function
|
---|
263 | # scantable.set_freqframe is called
|
---|
264 | scantable.freqframe : LSRK
|
---|
265 |
|
---|
266 | # auto averaging on read
|
---|
267 | scantable.autoaverage : True
|
---|
268 | \end{verbatim}
|
---|
269 |
|
---|
270 | For a complete list of \cmd{.asaprc} values, see the Appendix.
|
---|
271 |
|
---|
272 | \section{Scantables}
|
---|
273 | \index{Scantables}
|
---|
274 | \subsection {Description}
|
---|
275 |
|
---|
276 | \subsubsection {Basic Structure}
|
---|
277 |
|
---|
278 | \index{Scantable!structure}ASAP data handling works on objects called
|
---|
279 | scantables. A scantable holds your data, and also provides functions
|
---|
280 | to operate upon it.
|
---|
281 |
|
---|
282 | The building block of a scantable is an integration, which is a single
|
---|
283 | row of a scantable. Each row contains just one spectrum for each beam,
|
---|
284 | IF and polarisation. For example Parkes OH-multibeam data would
|
---|
285 | normally contain 13 beams, 1 IF and 2 polarisations, Parkes
|
---|
286 | methanol-multibeam data would contain 7 beams, 2 IFs and 2
|
---|
287 | polarisations while the Mopra 8-GHz MOPDS filterbank will produce one
|
---|
288 | beam, many IFs, and 2-4 polarisations.
|
---|
289 |
|
---|
290 | All of the combinations of Beams/IFs an Polarisations are
|
---|
291 | contained in seperate rows. These rows are grouped in cycles (same time stamp).
|
---|
292 |
|
---|
293 | A collection of cycles for one source is termed a scan (and each scan
|
---|
294 | has a unique numeric identifier, the SCANNO). A scantable is then a
|
---|
295 | collection of one or more scans. If you have scan-averaged your data
|
---|
296 | in time, i.e. you have averegaed all cycles within a scan, then each
|
---|
297 | scan would hold just one (averaged) integration.
|
---|
298 |
|
---|
299 | Many of the functions which work on scantables can either return a new
|
---|
300 | scantable with modified data or change the scantable insitu. Which
|
---|
301 | method is used depends on the users preference. The default can be
|
---|
302 | changed via the {\tt .asaprc} resource file.
|
---|
303 |
|
---|
304 | For example a Mopra scan with a 4s intergration time, two IFs and
|
---|
305 | dual polarisations has two (2s) cycles.
|
---|
306 | \begin{verbatim}
|
---|
307 | SCANNO CYCLENO BEAMNO IFNO POLNO
|
---|
308 | 0 0 0 0 0
|
---|
309 | 0 0 0 0 1
|
---|
310 | 0 0 0 1 0
|
---|
311 | 0 0 0 1 1
|
---|
312 | 0 1 0 0 0
|
---|
313 | 0 1 0 0 1
|
---|
314 | 0 1 0 1 0
|
---|
315 | 0 1 0 1 1
|
---|
316 | \end{verbatim}
|
---|
317 |
|
---|
318 |
|
---|
319 | \subsubsection {Contents}
|
---|
320 |
|
---|
321 | \index{Scantable!contents}A scantable has header information and data
|
---|
322 | (a scantable is actually an AIPS++ Table and it is generally stored in
|
---|
323 | memory when you are manipulating it with ASAP. You can save it to
|
---|
324 | disk and then browse it with the AIPS++ Table browser if you know how
|
---|
325 | to do that !).
|
---|
326 |
|
---|
327 | The data are stored in columns (the length of a column is the number of
|
---|
328 | rows/spectra of course).
|
---|
329 |
|
---|
330 | Two important columns are those that describe the frequency setup. We mention
|
---|
331 | them explicitly here because you need to be able to understand the presentation
|
---|
332 | of the frequency information and possibly how to manipulate it.
|
---|
333 |
|
---|
334 | These columns are called FREQ\_ID and MOLECULE\_ID. They contain indices, for
|
---|
335 | each IF, pointing into tables with all of the frequency and rest-frequency
|
---|
336 | information for that integration.
|
---|
337 |
|
---|
338 | There are of course many other columns which contain the actual spectra,
|
---|
339 | the flags, the Tsys, the source names and so on.
|
---|
340 |
|
---|
341 | There is also a function \cmd{summary} to list a summary of the scantable.
|
---|
342 | You will find this very useful.
|
---|
343 |
|
---|
344 | Example:
|
---|
345 |
|
---|
346 | \begin{verbatim}
|
---|
347 | ASAP> scans = scantable('MyData.rpf')
|
---|
348 | ASAP> scans.summary() # Brief listing
|
---|
349 |
|
---|
350 | # Equivalent to brief summary function call
|
---|
351 | ASAP> print scan
|
---|
352 | \end{verbatim}
|
---|
353 |
|
---|
354 | The summary function gives you a scan-based summary, presenting the
|
---|
355 | scantable as a cascading view of Beams and IFs. Note that the output
|
---|
356 | of summary is redirected into your current pager specified by the
|
---|
357 | \$PAGER environment variable. If you find the screen is reset to the
|
---|
358 | original state when summary is finished (ie the output from summary
|
---|
359 | disappears), you may need to set the \$LESS environment variable to
|
---|
360 | include the \cmd{-X} option.
|
---|
361 |
|
---|
362 | \subsection{Data Selection}
|
---|
363 | \label{sec:selection}
|
---|
364 |
|
---|
365 | ASAP contains flexible data selection. Data can be selected based on
|
---|
366 | IF, beam, polarisation, scan number as well as values such as
|
---|
367 | Tsys. Advanced users can also make use of the AIPS++ TAQL language to
|
---|
368 | create selections based on almost any of the values recorded.
|
---|
369 |
|
---|
370 | Selection is based on a \cmd{selector} object. This object is created
|
---|
371 | and various selection functions applied to it (\cmd{set\_ifs},
|
---|
372 | \cmd{set\_beams} etc). The selection object then must be applied to a
|
---|
373 | scantable using the \cmd{set\_selection} function. A single selection
|
---|
374 | object can be created and setup then applied to multiple scantables.
|
---|
375 |
|
---|
376 | Once a selection has been applied, all following functions will only
|
---|
377 | ``see'' the selected spectra (including functions such as
|
---|
378 | \cmd{summary}). The selection can then be reset and all spectra are
|
---|
379 | visible. Note that if functions such as \cmd{copy} are run on a
|
---|
380 | scantable with active selection, only the selected spectra are copied.
|
---|
381 |
|
---|
382 | The common selection functions are:
|
---|
383 |
|
---|
384 | \begin{itemize}
|
---|
385 |
|
---|
386 | \item[\cmd{set\_beams}] Select beams by index number
|
---|
387 | \item[\cmd{set\_ifs}] Select ifs by index number
|
---|
388 | \item[\cmd{set\_name}] Select by source name. Can contain ``*'' as a
|
---|
389 | wildcard, e.g. ``Orion*\_R''.
|
---|
390 | \item[\cmd{set\_ifs}] Select IFs by index number
|
---|
391 | \item[\cmd{set\_polarisation}] Select by polarisation index or
|
---|
392 | name. If polarisation names are given, the data will be on-the-fly
|
---|
393 | converted (for example from linears to Stokes).
|
---|
394 | \item[\cmd{set\_query}] Set query directly. For power users only!
|
---|
395 | \item[\cmd{set\_tsys}] Select data based on Tsys. Also example of user
|
---|
396 | definable query.
|
---|
397 | \item[\cmd{reset}] Reset the selection to include all spectra.
|
---|
398 |
|
---|
399 |
|
---|
400 | Note that all indices are zero based.
|
---|
401 |
|
---|
402 | Examples:
|
---|
403 |
|
---|
404 | \begin{verbatim}
|
---|
405 | ASAP> selection = selector() # Create selection object
|
---|
406 | ASAP> selection.set_ifs(0) # Just select the first IF
|
---|
407 | ASAP> scans.set_selection(selection) # Apply the selection
|
---|
408 | ASAP> print scans # Will just show the first IF
|
---|
409 |
|
---|
410 | ASAP> selection.set_ifs([0,1]) # Select the first two IFs
|
---|
411 | ASAP> selection.set_beams([1,3,5]) # Also select three of the beams
|
---|
412 | ASAP> scans.set_selection(selection) # Apply the selection
|
---|
413 |
|
---|
414 | ASAP> selection.set_name('G308*') # Select by source name
|
---|
415 |
|
---|
416 | ASAP> selection.reset() # Turn off selection
|
---|
417 | ASAP> scans.set_selection(selection) # Apply the reset selection
|
---|
418 |
|
---|
419 | \end{verbatim}
|
---|
420 |
|
---|
421 | \end{itemize}
|
---|
422 |
|
---|
423 | \subsection{State}
|
---|
424 |
|
---|
425 | \index{Scantable!state}Each scantable contains "state"; these are
|
---|
426 | properties applying to all of the data in the scantable.
|
---|
427 |
|
---|
428 | Examples are the selection of beam, IF and polarisation, spectral unit
|
---|
429 | (e.g. km/s), frequency reference frame (e.g. BARY) and velocity Doppler
|
---|
430 | type (e.g. RADIO).
|
---|
431 |
|
---|
432 | \subsubsection{Units, Doppler and Frequency Reference Frame}
|
---|
433 |
|
---|
434 | The information describing the frequency setup for each integration
|
---|
435 | is stored fundamentally in frequency in the reference frame
|
---|
436 | of observation (E.g. TOPO).
|
---|
437 |
|
---|
438 | When required, this is converted to the desired reference frame
|
---|
439 | (e.g. LSRK), Doppler (e.g. OPTICAL) and unit (e.g. km/s) on-the-fly.
|
---|
440 | This is important, for example, when you are displaying the data or
|
---|
441 | fitting to it. The reference frame is set on file read to the value
|
---|
442 | set in the user \cmd{.asaprc} file.
|
---|
443 |
|
---|
444 | For units, the user has the choice of frequency, velocity or channel.
|
---|
445 | The \cmd{set\_unit} function is used to set the current unit for a
|
---|
446 | scantable. All functions will (where relevant) work with the selected
|
---|
447 | unit until this changes. This is mainly important for fitting (the fits
|
---|
448 | can be computed in any of these units), plotting and mask creation.
|
---|
449 |
|
---|
450 | The velocity definition can be changed with the \cmd{set\_doppler}
|
---|
451 | function, and the frequency reference frame can be changed with the
|
---|
452 | \cmd{set\_freqframe} function.
|
---|
453 |
|
---|
454 | Example usage:
|
---|
455 |
|
---|
456 | \begin{verbatim}
|
---|
457 | ASAP> scans = scantable('2004-11-23_1841-P484.rpf') # Read in the data
|
---|
458 | ASAP> scans.set_freqframe('LSRK') # Use the LSR velocity frame
|
---|
459 | ASAP> scans.set_unit('km/s') # Use velocity for plots etc from now on
|
---|
460 | ASAP> scans.set_doppler('OPTICAL') # Use the optical velocity convention
|
---|
461 | ASAP> scans.set_unit('MHz') # Use frequency in MHz from now on
|
---|
462 | \end{verbatim}
|
---|
463 |
|
---|
464 |
|
---|
465 | \subsubsection{Rest Frequency}
|
---|
466 |
|
---|
467 | \index{Scantable!rest frequency}ASAP reads the line rest frequency
|
---|
468 | from the RPFITS file when reading the data. The values stored in the
|
---|
469 | RPFITS file are not always correct and so there is a function
|
---|
470 | \cmd{set\_restfreq} to set the rest frequencies for the currently
|
---|
471 | selected data.
|
---|
472 |
|
---|
473 | For each integration, there is a rest-frequency per IF (the rest
|
---|
474 | frequencies are just stored as a list with an index into them).
|
---|
475 | There are a few ways to set the rest frequencies with this function.
|
---|
476 |
|
---|
477 | If you specify just one rest frequency, then it is set for all IF.
|
---|
478 |
|
---|
479 | \begin{verbatim}
|
---|
480 | # Set all IFs
|
---|
481 | ASAP> scans.set_restfreqs(freqs=1.667359e9)
|
---|
482 | \end{verbatim}
|
---|
483 |
|
---|
484 | If set a rest frequency for each IF, specify a list of frequencies (of
|
---|
485 | length the number of IFs). Regardless of the source, the rest
|
---|
486 | frequency will be set for each IF to the corresponding value in the
|
---|
487 | provided list.
|
---|
488 |
|
---|
489 | \begin{verbatim}
|
---|
490 | # Set rest frequency for all IFs
|
---|
491 | ASAP> scans.set_restfreqs(freqs=[1.6654018e9,1.667359e9,])
|
---|
492 |
|
---|
493 | \end{verbatim}
|
---|
494 |
|
---|
495 | {\em Currently the following is not implemented
|
---|
496 |
|
---|
497 | In both of the above modes, you can also specify the rest frequencies via
|
---|
498 | names in a known list rather than by their values.
|
---|
499 |
|
---|
500 | Examples:
|
---|
501 |
|
---|
502 | \begin{verbatim}
|
---|
503 | ASAP> scans.set_restfreqs(freqs=['OH1665','OH1667'])
|
---|
504 | \end{verbatim}
|
---|
505 | }
|
---|
506 |
|
---|
507 | \subsubsection{Masks}
|
---|
508 |
|
---|
509 | \index{Masks}\index{Scantable!masks}
|
---|
510 |
|
---|
511 | Many tasks (fitting, baseline subtraction, statistics etc) should only
|
---|
512 | be run on range of channels. Depending on the current ``unit'' setting
|
---|
513 | this range is set directly as channels, velocity or frequency
|
---|
514 | ranges. Internally these are converted into a simple boolean mask for
|
---|
515 | each channel of the abscissa. This means that if the unit setting is
|
---|
516 | later changed, previously created mask are still valid. (This is not
|
---|
517 | true for functions which change the shape or shift the frequency
|
---|
518 | axis). You create masks with the function \cmd{create\_mask} and this
|
---|
519 | specified the channels to be included in the selection. When setting
|
---|
520 | the mask in velocity, the conversion from velocity to channels is
|
---|
521 | based on the current selection, specified row and selected frequency
|
---|
522 | reference frame.
|
---|
523 |
|
---|
524 |
|
---|
525 | Note that for multi IF data with different number of channels per IF a
|
---|
526 | single mask cannot be applied to different IFs. To use a mask on such
|
---|
527 | data the selector should be applied to select all IFs with the same
|
---|
528 | number of channels.
|
---|
529 |
|
---|
530 | Example :
|
---|
531 | \begin{verbatim}
|
---|
532 |
|
---|
533 | # Select channel range for baselining
|
---|
534 | ASAP> scans.set_unit('channels')
|
---|
535 | ASAP> msk = scans.create_mask([100,400],[600,800])
|
---|
536 |
|
---|
537 | # Select velocity range for fitting
|
---|
538 | ASAP> scans.set_unit('km/s')
|
---|
539 | ASAP> msk = scans.create_mask([-30,-10])
|
---|
540 | \end{verbatim}
|
---|
541 |
|
---|
542 | Sometimes it is more convenient to specify the channels to be
|
---|
543 | excluded, rather included. You can do this with the ``invert''
|
---|
544 | argument.
|
---|
545 |
|
---|
546 | Example :
|
---|
547 | \begin{verbatim}
|
---|
548 | ASAP> scans.set_unit('channels')
|
---|
549 | ASAP> msk = scans.create_mask([0,100],[900-1023], invert=True)
|
---|
550 | \end{verbatim}
|
---|
551 |
|
---|
552 | By default \cmd{create\_mask} uses the frequency setup of the first row
|
---|
553 | to convert velocities into a channel mask. If the rows in the data
|
---|
554 | cover different velocity ranges, the scantable row to use should be
|
---|
555 | specified:
|
---|
556 |
|
---|
557 | \begin{verbatim}
|
---|
558 | ASAP> scans.set_unit('km/s')
|
---|
559 | ASAP> msk = q.create_mask([-30,-10], row=5)
|
---|
560 | \end{verbatim}
|
---|
561 |
|
---|
562 | Because the mask is stored in a simple python variable, the users is
|
---|
563 | able to combine masks using simple arithmetic. To create a mask
|
---|
564 | excluding the edge channels, a strong maser feature and a birdie in
|
---|
565 | the middle of the band:
|
---|
566 |
|
---|
567 | \begin{verbatim}
|
---|
568 | ASAP> scans.set_unit('channels')
|
---|
569 | ASAP> msk1 = q.create_mask([0,100],[511,511],[900,1023],invert=True)
|
---|
570 | ASAP> scans.set_unit('km/s')
|
---|
571 | ASAP> msk2 = q.create_mask([-20,-10],invert=True)
|
---|
572 |
|
---|
573 | ASAP> mask = msk1 and msk2
|
---|
574 | \end{verbatim}
|
---|
575 |
|
---|
576 |
|
---|
577 | \subsection{Management}
|
---|
578 |
|
---|
579 | \index{Scantable!management}During processing it is possible to create
|
---|
580 | a large number of scan tables. These all consume memory, so it is best
|
---|
581 | to periodically remove unneeded scan tables. Use \cmd{list\_scans} to
|
---|
582 | print a list of all scantables and \cmd{del} to remove unneeded ones.
|
---|
583 |
|
---|
584 | Example:
|
---|
585 |
|
---|
586 | \begin{verbatim}
|
---|
587 | ASAP> list_scans()
|
---|
588 | The user created scantables are:
|
---|
589 | ['s', 'scans', 'av', 's2', 'ss']
|
---|
590 |
|
---|
591 | ASAP> del s2
|
---|
592 | ASAP> del ss
|
---|
593 | \end{verbatim}
|
---|
594 |
|
---|
595 | \section{Data Input}
|
---|
596 |
|
---|
597 | \index{Reading data}Data can be loaded in one of two ways; using the
|
---|
598 | reader object or via the scantable constructor. The scantable method
|
---|
599 | is simpler but the reader allows the user more control on what is read.
|
---|
600 |
|
---|
601 | \subsection{Scantable constructor}
|
---|
602 |
|
---|
603 | \index{Scantable constructor}\index{Scantable!constructor}This loads
|
---|
604 | all of the data from filename into the scantable object scans and
|
---|
605 | averages all the data within a scan (i.e. the resulting scantable
|
---|
606 | will have one row per scan). The recognised input file formats are
|
---|
607 | RPFITS, SDFITS (singledish fits), ASAP's scantable format and aips++
|
---|
608 | MeasurementSet2 format.
|
---|
609 |
|
---|
610 | Example usage:
|
---|
611 |
|
---|
612 | \begin{verbatim}
|
---|
613 | ASAP> scan = scantable('2004-11-23_1841-P484.rpf')
|
---|
614 |
|
---|
615 | # Don't scan average the data
|
---|
616 | ASAP> scan = scantable('2004-11-23_1841-P484.rpf', average=False)
|
---|
617 | \end{verbatim}
|
---|
618 |
|
---|
619 |
|
---|
620 | \subsection{Reader object}
|
---|
621 |
|
---|
622 | \index{Reader object}\index{Scantable!reader object}For more control
|
---|
623 | when reading data into ASAP, the reader object should be used. This
|
---|
624 | has the option of only reading in a range of integrations, only a
|
---|
625 | specified beam or IF and does not perform any scan averaging of the
|
---|
626 | data, allowing analysis of the individual integrations. Note that due
|
---|
627 | to limitation of the RPFITS library, only one reader object can be
|
---|
628 | open at one time reading RPFITS files. To read multiple RPFITS files,
|
---|
629 | the old reader must be destroyed before the new file is opened.
|
---|
630 | However, multiple readers can be created and attached to SDFITS files.
|
---|
631 |
|
---|
632 |
|
---|
633 | Example usage:
|
---|
634 |
|
---|
635 | \begin{verbatim}
|
---|
636 | ASAP> r = reader('2003-03-16_082048_t0002.rpf')
|
---|
637 | ASAP> r.summary()
|
---|
638 | ASAP> scan = r.read()
|
---|
639 | ASAP> del r
|
---|
640 | \end{verbatim}
|
---|
641 |
|
---|
642 | \section{Basic Processing}
|
---|
643 |
|
---|
644 | In the following section, a simple data reduction to form a quotient
|
---|
645 | spectrum of a single source is followed. It has been assume that the
|
---|
646 | \cmd{.asaprc} file has {\em not} been used to change the \cmd{insitu}
|
---|
647 | default value from \cmd{True}.
|
---|
648 |
|
---|
649 | \subsection{Auto quotient}
|
---|
650 | \index{Auto quotient}Quotients can be computed ``automatically''. This
|
---|
651 | requires the data to have matching source/reference pairs or one
|
---|
652 | reference for multiple sources. Auto quotient assumes reference scans
|
---|
653 | have a trailing ``\_R'' in the source name for data from Parkes and
|
---|
654 | Mopra, and a trailing ``e'' or ``w'' for data fro, Tidbinbilla.
|
---|
655 |
|
---|
656 | \begin{verbatim}
|
---|
657 | ASAP> q = s.auto_quotient()
|
---|
658 | \end{verbatim}
|
---|
659 |
|
---|
660 | By default the quotient spectra is calculated
|
---|
661 | to preserve continuum emission. If you wish to remove the continuum
|
---|
662 | contribution, use the \cmd{preserve} argument:
|
---|
663 |
|
---|
664 | \begin{verbatim}
|
---|
665 | ASAP> q = s.auto_quotient(preserve=True)
|
---|
666 | \end{verbatim}
|
---|
667 |
|
---|
668 | If this is not sufficient the following alternative method can be used.
|
---|
669 |
|
---|
670 | \subsection{Separate reference and source observations}
|
---|
671 |
|
---|
672 | \index{Quotient spectra}Most data from ATNF observatories
|
---|
673 | distinguishes on and off source data using the file name. This makes
|
---|
674 | it easy to create two scantables with the source and reference
|
---|
675 | data. As long as there was exactly one reference observation for each
|
---|
676 | on source observation for following method will work.
|
---|
677 |
|
---|
678 | For Mopra and Parkes data:
|
---|
679 | \begin{verbatim}
|
---|
680 | ASAP> r = scans.get_scan('*_R')
|
---|
681 | ASAP> s = scans.get_scan('*_S')
|
---|
682 | \end{verbatim}
|
---|
683 |
|
---|
684 | For Tidbinbilla data
|
---|
685 | \begin{verbatim}
|
---|
686 | ASAP> r = scans.get_scan('*_[ew]')
|
---|
687 | ASAP> s = scans.get_scan('*_[^ew]')
|
---|
688 | \end{verbatim}
|
---|
689 |
|
---|
690 | \subsection{Make the quotient spectra}
|
---|
691 |
|
---|
692 | Use the quotient function
|
---|
693 |
|
---|
694 | \begin{verbatim}
|
---|
695 | ASAP> q = s.quotient(r)
|
---|
696 | \end{verbatim}
|
---|
697 |
|
---|
698 | This uses the rows in scantable \cmd{r} as reference spectra for the
|
---|
699 | rows in scantable \cmd{s}. Scantable \cmd{r} must have either 1 row
|
---|
700 | (which is applied to all rows in \cmd{s}) or both scantables must have
|
---|
701 | the same number of rows.
|
---|
702 |
|
---|
703 | \subsection{Time average separate scans}
|
---|
704 |
|
---|
705 | \index{Time average}If you have observed the source with multiple
|
---|
706 | source/reference cycles you will want to scan-average the quotient
|
---|
707 | spectra together.
|
---|
708 |
|
---|
709 | \begin{verbatim}
|
---|
710 | ASAP> av = q.average_time()
|
---|
711 | \end{verbatim}
|
---|
712 |
|
---|
713 | If for some you want to average multiple sets of scantables together
|
---|
714 | you can:
|
---|
715 |
|
---|
716 | \begin{verbatim}
|
---|
717 | ASAP> av = average_time(q1, q2, q3)
|
---|
718 | \end{verbatim}
|
---|
719 |
|
---|
720 | The default is to use integration time weighting. The alternative is
|
---|
721 | to use none, variance, Tsys weighting, Tsys \& integration time or
|
---|
722 | median averaging.
|
---|
723 |
|
---|
724 | \begin{verbatim}
|
---|
725 | ASAP> av = average_time(q, weight='tintsys')
|
---|
726 | \end{verbatim}
|
---|
727 |
|
---|
728 | To use variance based weighting, you need to supply a mask saying which
|
---|
729 | channel range you want it to calculate the variance from.
|
---|
730 |
|
---|
731 | \begin{verbatim}
|
---|
732 | ASAP> msk = scans.create_mask([200,400],[600,800])
|
---|
733 | ASAP> av = average_time(scans, mask=msk, weight='var')
|
---|
734 | \end{verbatim}
|
---|
735 |
|
---|
736 | If you have not observed your data with Doppler tracking (or run
|
---|
737 | \cmd{freq\_align} explicitally) you should align the data in frequency
|
---|
738 | before averaging.
|
---|
739 |
|
---|
740 | \begin{verbatim}
|
---|
741 | ASAP> av = scans.average_time(align=True)
|
---|
742 | \end{verbatim}
|
---|
743 |
|
---|
744 | Note that, if needed, you should run \cmd{gain\_el} and \cmd{opacity}
|
---|
745 | before you average the data in time (\S \ref{sec:gainel} \&
|
---|
746 | \ref{sec:freqalign}).
|
---|
747 |
|
---|
748 | \subsection{Baseline fitting}
|
---|
749 |
|
---|
750 | \index{Baseline fitting}To make a baseline fit, you must first create
|
---|
751 | a mask of channels to use in the baseline fit.
|
---|
752 |
|
---|
753 | \begin{verbatim}
|
---|
754 | ASAP> msk = scans.create_mask([100,400],[600,900])
|
---|
755 | ASAP> scans.poly_baseline(msk, order=1)
|
---|
756 | \end{verbatim}
|
---|
757 |
|
---|
758 | This will fit a first order polynomial to the selected channels and subtract
|
---|
759 | this polynomial from the full spectra.
|
---|
760 |
|
---|
761 | \subsubsection{Auto-baselining}
|
---|
762 |
|
---|
763 | \index{Auto-baseline}The function \cmd{auto\_poly\_baseline} can be used to automatically
|
---|
764 | baseline your data without having to specify channel ranges for the
|
---|
765 | line free data. It automatically figures out the line-free emission
|
---|
766 | and fits a polynomial baseline to that data. The user can use masks to
|
---|
767 | fix the range of channels or velocity range for the fit as well as
|
---|
768 | mark the band edge as invalid.
|
---|
769 |
|
---|
770 | Simple example
|
---|
771 |
|
---|
772 | \begin{verbatim}
|
---|
773 | ASAP> scans.auto_poly_baseline(order=2,threshold=5)
|
---|
774 | \end{verbatim}
|
---|
775 |
|
---|
776 | \cmd{order} is the polynomial order for the fit. \cmd{threshold} is
|
---|
777 | the SNR threshold to use to deliminate line emission from
|
---|
778 | signal. Generally the value of threshold is not too critical, however
|
---|
779 | making this too large will compromise the fit (as it will include
|
---|
780 | strong line features) and making it too small will mean it cannot find
|
---|
781 | enough line free channels.
|
---|
782 |
|
---|
783 |
|
---|
784 | Other examples:
|
---|
785 |
|
---|
786 | \begin{verbatim}
|
---|
787 | # Don't try and fit the edge of the bandpass which is noisier
|
---|
788 | ASAP> scans.auto_poly_baseline(edge=(500,450),order=3,threshold=3)
|
---|
789 |
|
---|
790 | # Only fit a given region around the line
|
---|
791 | ASAP> scans.set_unit('km/s')
|
---|
792 | ASAP> msk = scans.create_mask([-60,-20])
|
---|
793 | ASAP> scans.auto_poly_baseline(mask=msk,order=3,threshold=3)
|
---|
794 |
|
---|
795 | \end{verbatim}
|
---|
796 |
|
---|
797 | \subsection{Average the polarisations}
|
---|
798 |
|
---|
799 | \index{average\_pol}If you are just interested in the highest SNR for total intensity you
|
---|
800 | will want to average the parallel polarisations together.
|
---|
801 |
|
---|
802 | \begin{verbatim}
|
---|
803 | ASAP> scans.average_pol()
|
---|
804 | \end{verbatim}
|
---|
805 |
|
---|
806 | \subsection{Calibration}
|
---|
807 |
|
---|
808 | \index{Calibration}For most uses, calibration happens transparently as the input data
|
---|
809 | contains the Tsys measurements taken during observations. The nominal
|
---|
810 | ``Tsys'' values may be in Kelvin or Jansky. The user may wish to
|
---|
811 | supply a Tsys correction or apply gain-elevation and opacity
|
---|
812 | corrections.
|
---|
813 |
|
---|
814 | \subsubsection{Brightness Units}
|
---|
815 |
|
---|
816 | \index{Brightness Units}RPFITS files do not contain any information as
|
---|
817 | to whether the telescope calibration was in units of Kelvin or
|
---|
818 | Janskys. On reading the data a default value is set depending on the
|
---|
819 | telescope and frequency of observation. If this default is incorrect
|
---|
820 | (you can see it in the listing from the \cmd{summary} function) the
|
---|
821 | user can either override this value on reading the data or later.
|
---|
822 | E.g:
|
---|
823 |
|
---|
824 | \begin{verbatim}
|
---|
825 | ASAP> scans = scantable('2004-11-23_1841-P484.rpf', unit='Jy')
|
---|
826 | # Or in two steps
|
---|
827 | ASAP> scans = scantable('2004-11-23_1841-P484.rpf')
|
---|
828 | ASAP> scans.set_fluxunit('Jy')
|
---|
829 | \end{verbatim}
|
---|
830 |
|
---|
831 | \subsubsection{Feed Polarisation}
|
---|
832 |
|
---|
833 | \index{Brightness Units}The RPFITS files also do not contain any
|
---|
834 | information as to the feed polarisation. ASAP will set a default based
|
---|
835 | on the antenna, but this will often be wrong the data has been read,
|
---|
836 | the default can be changed using the \cmd{set\_feedtype} function with
|
---|
837 | an argument of \cmd{'linear'} or \cmd{'circular'}.
|
---|
838 |
|
---|
839 | E.g:
|
---|
840 |
|
---|
841 | \begin{verbatim}
|
---|
842 | ASAP> scans = scantable('2004-11-23_1841-P484.rpf')
|
---|
843 | ASAP> scans.set_feedtype('circular')
|
---|
844 | \end{verbatim}
|
---|
845 |
|
---|
846 | \subsubsection{Tsys scaling}
|
---|
847 |
|
---|
848 | \index{Tsys scaling}Sometime the nominal Tsys measurement at the
|
---|
849 | telescope is wrong due to an incorrect noise diode calibration. This
|
---|
850 | can easily be corrected for with the scale function. By default,
|
---|
851 | \cmd{scale} only scans the spectra and not the corresponding Tsys.
|
---|
852 |
|
---|
853 | \begin{verbatim}
|
---|
854 | ASAP> scans.scale(1.05, tsys=True)
|
---|
855 | \end{verbatim}
|
---|
856 |
|
---|
857 | \subsubsection{Unit Conversion}
|
---|
858 |
|
---|
859 | \index{Unit conversion}To convert measurements in Kelvin to Jy (and
|
---|
860 | vice versa) the global function \cmd{convert\_flux} is needed. This
|
---|
861 | converts and scales the data from K to Jy or vice-versa depending on
|
---|
862 | what the current brightness unit is set to. The function knows the
|
---|
863 | basic parameters for some frequencies and telescopes, but the user may
|
---|
864 | need to supply the aperture efficiency, telescope diameter or the Jy/K
|
---|
865 | factor.
|
---|
866 |
|
---|
867 | \begin{verbatim}
|
---|
868 | ASAP> scans.convert_flux() # If efficency known
|
---|
869 | ASAP> scans.convert_flux(eta=0.48) # If telescope diameter known
|
---|
870 | ASAP> scans.convert_flux(eta=0.48,d=35) # Unknown telescope
|
---|
871 | ASAP> scans.convert_flux(jypk=15) # Alternative
|
---|
872 | \end{verbatim}
|
---|
873 |
|
---|
874 | \subsubsection{Gain-Elevation and Opacity Corrections}
|
---|
875 | \label{sec:gainel}
|
---|
876 |
|
---|
877 | \index{Gain-elevation}As higher frequencies (particularly $>$20~GHz)
|
---|
878 | it is important to make corrections for atmospheric opacity and
|
---|
879 | gain-elevation effects.
|
---|
880 |
|
---|
881 | Note that currently the elevation is not written correctly into
|
---|
882 | Tidbinbilla rpfits files. This means that gain-elevation and opacity
|
---|
883 | corrections will not work unless these get recalculated.
|
---|
884 |
|
---|
885 | \begin{verbatim}
|
---|
886 | ASAP> scans.recalc_azel() # recalculate az/el based on pointing
|
---|
887 | \end{verbatim}
|
---|
888 |
|
---|
889 | Gain-elevation curves for some telescopes and frequencies are known to
|
---|
890 | ASAP (currently only for Tidbinbilla at 20~GHz). In these cases
|
---|
891 | making gain-corrections is simple. If the gain curve for your data is
|
---|
892 | not known, the user can supply either a gain polynomial or text file
|
---|
893 | tabulating gain factors at a range of elevations (see \cmd{help
|
---|
894 | scantable.gain\_el}).
|
---|
895 |
|
---|
896 | Examples:
|
---|
897 |
|
---|
898 | \begin{verbatim}
|
---|
899 | ASAP> scans.gain_el() # If gain table known
|
---|
900 | ASAP> scans.gain_el(poly=[3.58788e-1,2.87243e-2,-3.219093e-4])
|
---|
901 | \end{verbatim}
|
---|
902 |
|
---|
903 | \index{Opacity}Opacity corrections can be made with the global
|
---|
904 | function \cmd{opacity}. This should work on all telescopes as long as
|
---|
905 | a measurement of the opacity factor was made during the observation.
|
---|
906 |
|
---|
907 | \begin{verbatim}
|
---|
908 | ASAP> scans.opacity(0.083)
|
---|
909 | \end{verbatim}
|
---|
910 |
|
---|
911 | Note that at 3~mm Mopra uses a paddle wheel for Tsys calibration,
|
---|
912 | which takes opacity effects into account (to first order). ASAP
|
---|
913 | opacity corrections should not be used for Mopra 3-mm data.
|
---|
914 |
|
---|
915 | \subsection{Frequency Frame Alignment}
|
---|
916 | \label{sec:freqalign}
|
---|
917 |
|
---|
918 | \index{Frequency alignment}\index{Velicity alignment}When time
|
---|
919 | averaging a series of scans together, it is possible that the velocity
|
---|
920 | scales are not exactly aligned. This may be for many reasons such as
|
---|
921 | not Doppler tracking the observations, errors in the Doppler tracking
|
---|
922 | etc. This mostly affects very long integrations or integrations
|
---|
923 | averaged together from different days. Before averaging such data
|
---|
924 | together, they should be frequency aligned using \cmd{freq\_align}.
|
---|
925 |
|
---|
926 | E.g.:
|
---|
927 |
|
---|
928 | \begin{verbatim}
|
---|
929 | ASAP> scans.freq_align()
|
---|
930 | ASAP> av = average_time(scans)
|
---|
931 | \end{verbatim}
|
---|
932 |
|
---|
933 | {\em A Global freq\_align command will be made eventually}
|
---|
934 |
|
---|
935 | To average together data taken on different days, which are in
|
---|
936 | different scantables, each scantable must aligned to a common
|
---|
937 | reference time then the scantables averaged. The simplest way of
|
---|
938 | doing this is to allow ASAP to choose the reference time for the first
|
---|
939 | scantable then using this time for the subsequent scantables.
|
---|
940 |
|
---|
941 | \begin{verbatim}
|
---|
942 | ASAP> scans1.freq_align() # Copy the refeference Epoch from the output
|
---|
943 | ASAP> scans2.freq_align(reftime='2004/11/23/18:43:35')
|
---|
944 | ASAP> scans3.freq_align(reftime='2004/11/23/18:43:35')
|
---|
945 | ASAP> av = average_time(scans1, scans2, scans3)
|
---|
946 | \end{verbatim}
|
---|
947 |
|
---|
948 | \section{Scantable manipulation}
|
---|
949 |
|
---|
950 | \index{Scantable!manipulation}While it is very useful to have many
|
---|
951 | independent sources within one scantable, it is often inconvenient for
|
---|
952 | data processing. The \cmd{get\_scan} function can be used to create a
|
---|
953 | new scantable with a selection of scans from a scantable. The
|
---|
954 | selection can either be on the source name, with simple wildcard
|
---|
955 | matching or set of scan ids. Internally this uses the selector object,
|
---|
956 | so for more complicated selection the selector should be used directly
|
---|
957 | instead.
|
---|
958 |
|
---|
959 | For example:
|
---|
960 |
|
---|
961 | \begin{verbatim}
|
---|
962 | ASAP> ss = scans.get_scan(10) # Get the 11th scan (zero based)
|
---|
963 | ASAP> ss = scans.get_scan(range(10)) # Get the first 10 scans
|
---|
964 | ASAP> ss = scans.get_scan(range(10,20)) # Get the next 10 scans
|
---|
965 | ASAP> ss = scans.get_scan([2,4,6,8,10]) # Get a selection of scans
|
---|
966 |
|
---|
967 | ASAP> ss = scans.get_scan('345p407') # Get a specific source
|
---|
968 | ASAP> ss = scans.get_scan('345*') # Get a few sources
|
---|
969 |
|
---|
970 | ASAP> r = scans.get_scan('*_R') # Get all reference sources (Parkes/Mopra)
|
---|
971 | ASAP> s = scans.get_scan('*_S') # Get all program sources (Parkes/Mopra)
|
---|
972 | ASAP> r = scans.get_scan('*[ew]') # Get all reference sources (Tid)
|
---|
973 | ASAP> s = scans.get_scan('*[^ew]') # Get all program sources (Tid)
|
---|
974 |
|
---|
975 | \end{verbatim}
|
---|
976 |
|
---|
977 | To copy a scantable the following does not work:
|
---|
978 |
|
---|
979 | \begin{verbatim}
|
---|
980 | ASAP> ss = scans
|
---|
981 | \end{verbatim}
|
---|
982 |
|
---|
983 | as this just creates a reference to the original scantable. Any
|
---|
984 | changes made to \cmd{ss} are also seen in \cmd{scans}. To duplicate a
|
---|
985 | scantable, use the copy function.
|
---|
986 |
|
---|
987 | \begin{verbatim}
|
---|
988 | ASAP> ss = scans.copy()
|
---|
989 | \end{verbatim}
|
---|
990 |
|
---|
991 | \section{Data Output}
|
---|
992 |
|
---|
993 | \index{Scantable!save}\index{Saving data}ASAP can save scantables in a
|
---|
994 | variety of formats, suitable for reading into other packages. The
|
---|
995 | formats are:
|
---|
996 |
|
---|
997 | \begin{itemize}
|
---|
998 | \item[ASAP] This is the internal format used for ASAP. It is the only
|
---|
999 | format that allows the user to restore the data, fits etc. without
|
---|
1000 | loosing any information. As mentioned before, the ASAP scantable is
|
---|
1001 | an AIPS++ Table (a memory-based table). This function just converts
|
---|
1002 | it to a disk-based Table. You can the access that Table with the
|
---|
1003 | AIPS++ Table browser or any other AIPS++ tool.
|
---|
1004 |
|
---|
1005 | \item[SDFITS] The Single Dish FITS format. This format was designed to
|
---|
1006 | for interchange between packages, but few packages actually can read
|
---|
1007 | it.
|
---|
1008 |
|
---|
1009 | %\item[FITS] This uses simple ``image'' fits to save the data, each row
|
---|
1010 | % being written to a separate fits file. This format is suitable for
|
---|
1011 | % importing the data into CLASS.
|
---|
1012 |
|
---|
1013 | \item[ASCII] A simple text based format suitable for the user to
|
---|
1014 | processing using Perl or, Python, gnuplot etc.
|
---|
1015 |
|
---|
1016 | \item[MS2] Saves the data in an aips++ MeasurementSet V2 format.
|
---|
1017 | You can also access this with the Table browser and other AIPS++
|
---|
1018 | tools.
|
---|
1019 |
|
---|
1020 | \end{itemize}
|
---|
1021 |
|
---|
1022 | The default output format can be set in the users {\tt .asaprc} file.
|
---|
1023 | Typical usages are:
|
---|
1024 |
|
---|
1025 | \begin{verbatim}
|
---|
1026 | ASAP> scans.save('myscans') # Save in default format
|
---|
1027 | ASAP> scans.save('myscans', 'FITS') # Save as FITS for exporting into CLASS
|
---|
1028 | ASAP> scans.save('myscans', overwrite=True) # Overwrite an existing file
|
---|
1029 | \end{verbatim}
|
---|
1030 |
|
---|
1031 | \section{Plotter}
|
---|
1032 |
|
---|
1033 | \index{Plotter}Scantable spectra can be plotted at any time. An asapplotter object is
|
---|
1034 | used for plotting, meaning multiple plot windows can be active at the
|
---|
1035 | same time. On start up a default asapplotter object is created called
|
---|
1036 | ``plotter''. This would normally be used for standard plotting.
|
---|
1037 |
|
---|
1038 | The plotter, optionally, will run in a multipanel mode and contain
|
---|
1039 | multiple plots per panel. The user must tell the plotter how they want
|
---|
1040 | the data distributed. This is done using the set\_mode function. The
|
---|
1041 | default can be set in the users {\tt .asaprc} file. The units (and frame
|
---|
1042 | etc) of the abscissa will be whatever has previously been set by
|
---|
1043 | \cmd{set\_unit}, \cmd{set\_freqframe} etc.
|
---|
1044 |
|
---|
1045 | Typical plotter usage would be:
|
---|
1046 |
|
---|
1047 | \begin{verbatim}
|
---|
1048 | ASAP> scans.set_unit('km/s')
|
---|
1049 | ASAP> plotter.set_mode(stacking='p',panelling='t')
|
---|
1050 | ASAP> plotter.plot(scans)
|
---|
1051 | \end{verbatim}
|
---|
1052 |
|
---|
1053 | This will plot multiple polarisation within each plot panel and each
|
---|
1054 | scan row in a separate panel.
|
---|
1055 |
|
---|
1056 | Other possibilities include:
|
---|
1057 |
|
---|
1058 | \begin{verbatim}
|
---|
1059 | # Plot multiple IFs per panel
|
---|
1060 | ASAP> plotter.set_mode(stacking='i',panelling='t')
|
---|
1061 |
|
---|
1062 | # Plot multiple beams per panel
|
---|
1063 | ASAP> plotter.set_mode(stacking='b',panelling='t')
|
---|
1064 |
|
---|
1065 | # Plot one IF per panel, time stacked
|
---|
1066 | ASAP> plotter.set_mode('t', 'i')
|
---|
1067 |
|
---|
1068 | # Plot each scan in a seperate panel
|
---|
1069 | ASAP> plotter.set_mode('t', 's')
|
---|
1070 |
|
---|
1071 | \end{verbatim}
|
---|
1072 |
|
---|
1073 | \subsection{Plot Selection}
|
---|
1074 | \label{sec:plotter_cursor}
|
---|
1075 |
|
---|
1076 | \index{Plotter!selection}The plotter can plot up to 25 panels and
|
---|
1077 | stacked spectra per panel. If you have data larger than this (or for
|
---|
1078 | your own sanity) you need to select a subset of this data. This is
|
---|
1079 | particularly true for multibeam or multi IF data. The selector object
|
---|
1080 | should be used for this purpose. Selection can either be applied to
|
---|
1081 | the scantable or directly to the plotter, the end result is the same.
|
---|
1082 | You don't have to reset the scantable slection though, if you set
|
---|
1083 | the selection on the plotter.
|
---|
1084 |
|
---|
1085 | Examples:
|
---|
1086 |
|
---|
1087 | \begin{verbatim}
|
---|
1088 | ASAP> selection = selector()
|
---|
1089 | # Select second IF
|
---|
1090 | ASAP> selection.set_ifs(1)
|
---|
1091 | ASAP> plotter.set_selection(selection)
|
---|
1092 |
|
---|
1093 | # Select first 4 beams
|
---|
1094 | ASAP> selection.set_beams([0,1,2,3])
|
---|
1095 | ASAP> plotter.set_selection(selection)
|
---|
1096 |
|
---|
1097 | # Select a few scans
|
---|
1098 | ASAP> selection.set_scans([2,4,6,10])
|
---|
1099 | ASAP> plotter.set_selection(selection)
|
---|
1100 |
|
---|
1101 | # Multiple selection
|
---|
1102 | ASAP> selection.set_ifs(1)
|
---|
1103 | ASAP> selection.set_scans([2,4,6,10])
|
---|
1104 | ASAP> plotter.set_selection(selection)
|
---|
1105 |
|
---|
1106 | \end{verbatim}
|
---|
1107 |
|
---|
1108 | \subsection{Plot Control}
|
---|
1109 |
|
---|
1110 | \index{Plotter!control}The plotter window has a row of buttons on the
|
---|
1111 | lower left. These can be used to control the plotter (mostly for
|
---|
1112 | zooming the individual plots). From left to right:
|
---|
1113 |
|
---|
1114 | \begin{itemize}
|
---|
1115 |
|
---|
1116 | \item[Home] This will unzoom the plots to the original zoom factor
|
---|
1117 |
|
---|
1118 | \item[Plot history] (left and right arrow). The plotter keeps a
|
---|
1119 | history of zoom settings. The left arrow sets the plot zoom to the
|
---|
1120 | previous value. The right arrow returns back again. This allows you,
|
---|
1121 | for example, to zoom in on one feature then return the plot to how it
|
---|
1122 | was previously.
|
---|
1123 |
|
---|
1124 | \item[Pan] (The Cross) This sets the cursor to pan, or scroll mode
|
---|
1125 | allowing you to shift the plot within the window. Useful when
|
---|
1126 | zoomed in on a feature.
|
---|
1127 |
|
---|
1128 | \item[Zoom] (the letter with the magnifying glass) lets you draw a
|
---|
1129 | rectangle around a region of interest then zooms in on that
|
---|
1130 | region. Use the plot history to unzoom again.
|
---|
1131 |
|
---|
1132 | \item[Adjust] (rectangle with 4 arrows) adjust subplot paramaters
|
---|
1133 | (space at edge of plots)
|
---|
1134 |
|
---|
1135 | \item[Save] (floppy disk). Save the plot as a postscript or .png file
|
---|
1136 |
|
---|
1137 | You can also type ``g'' in the plot window to toggle on and off grid
|
---|
1138 | lines. Typing 'l' turns on and off logarithmic Y-axis.
|
---|
1139 |
|
---|
1140 | \end{itemize}
|
---|
1141 |
|
---|
1142 | \subsection{Other control}
|
---|
1143 |
|
---|
1144 | The plotter has a number of functions to describe the layout of the
|
---|
1145 | plot. These include \cmd{set\_legend}, \cmd{set\_layout} and \cmd{set\_title}.
|
---|
1146 |
|
---|
1147 | To set the exact velocity or channel range to be plotted use the
|
---|
1148 | \cmd{set\_range} function. To reset to the default value, call
|
---|
1149 | \cmd{set\_range} with no arguments. E.g.
|
---|
1150 |
|
---|
1151 | \begin{verbatim}
|
---|
1152 | ASAP> scans.set_unit('km/s')
|
---|
1153 | ASAP> plotter.plot(scans)
|
---|
1154 | ASAP> plotter.set_range(-150,-50)
|
---|
1155 | ASAP> plotter.set_range() # To reset
|
---|
1156 | \end{verbatim}
|
---|
1157 |
|
---|
1158 | Both the range of the ``x'' and ``y'' axis can be set at once, if desired:
|
---|
1159 |
|
---|
1160 | \begin{verbatim}
|
---|
1161 | ASAP> plotter.set_range(-10,30,-1,6.6)
|
---|
1162 | \end{verbatim}
|
---|
1163 |
|
---|
1164 | To save a hardcopy of the current plot, use the save function, e.g.
|
---|
1165 |
|
---|
1166 | \begin{verbatim}
|
---|
1167 | ASAP> plotter.save('myplot.ps')
|
---|
1168 | ASAP> plotter.save('myplot.png', dpi=80)
|
---|
1169 | \end{verbatim}
|
---|
1170 |
|
---|
1171 | \subsection{Plotter Customisation}
|
---|
1172 |
|
---|
1173 | The plotter allows the user to change most properties such as text
|
---|
1174 | size and colour. The \cmd{commands} funcation and {\cmd help\
|
---|
1175 | asapplotter} list all the possible commands that can be used with the
|
---|
1176 | plotter.
|
---|
1177 |
|
---|
1178 | \commanddef{set\_colors}{Change the default colours used for line
|
---|
1179 | plotting. Colours can be given either by name, using the html standard
|
---|
1180 | (e.g. red, blue or hotpink), or hexadecimal code (e.g. for black
|
---|
1181 | \#000000). If less colours are specified than lines plotted , the
|
---|
1182 | plotter cycles through the colours. Example:} {ASAP>
|
---|
1183 | plotter.set\_colors('red blue green')\\ ASAP>
|
---|
1184 | plotter.set\_colors(`\#0000 blue \#FF00FF')\\ }
|
---|
1185 |
|
---|
1186 | \commanddef{set\_linestyles}{Change the line styles used for
|
---|
1187 | plots. Allowable values are 'line', 'dashed', 'dotted', 'dashdot',
|
---|
1188 | 'dashdotdot' and 'dashdashdot. Example: }{
|
---|
1189 | ASAP> plotter.set\_linestyles('line dash cotted datshot.)\\
|
---|
1190 | ASAP> plotter.set\_font(size=10)\\
|
---|
1191 | }
|
---|
1192 |
|
---|
1193 | \commanddef{set\_font}{Change the font style and size. Example}{
|
---|
1194 | ASAP> plotter.set\_font(weight='bold')\\
|
---|
1195 | ASAP> plotter.set\_font(size=10)\\
|
---|
1196 | ASAP> plotter.set\_font(style='italic')\\
|
---|
1197 | }
|
---|
1198 |
|
---|
1199 | \commanddef{set\_layout}{Change the multi-panel layout, ie now many
|
---|
1200 | rows and columns}{
|
---|
1201 | ASAP> plotter.set\_layout(3,2)
|
---|
1202 | }
|
---|
1203 |
|
---|
1204 | \commanddef{set\_legend}{Set the position, size and optional value of the legend}{
|
---|
1205 | ASAP> plotter.set\_legend(fontsize=16)\\
|
---|
1206 | ASAP> plotter.set\_legend(mode=0) \# ASAP chooses where to put the legend\\
|
---|
1207 | ASAP> plotter.set\_legend(mode=4) \# Put legend on lower right\\
|
---|
1208 | ASAP> plotter.set\_legend(mode=-1) \# No legend\\
|
---|
1209 | ASAP> plotter.set\_legend(mp=['RR','LL']) \# Specify legend labels\\
|
---|
1210 | ASAP> plotter.set\_legend(mp=[r'\$\^\{12\}CO\$',r'\$\^\{13\}CO\$']) \# Latex labels
|
---|
1211 | }
|
---|
1212 |
|
---|
1213 | \commanddef{set\_title}{Set the plot title. If multiple panels are
|
---|
1214 | plotted, multiple titles have to be specified}{
|
---|
1215 | ASAP> plotter.set\_title(`G323.12$-$1.79`)\\
|
---|
1216 | ASAP> plotter.set\_title([`SiO`, 'Methanol'], fontsize=18)\\
|
---|
1217 | }
|
---|
1218 |
|
---|
1219 | \subsection{Plotter Annotations}
|
---|
1220 |
|
---|
1221 | The plotter allows various annontations (lines, arrows, text and
|
---|
1222 | ``spans'') to be added to the plot. These annotations are
|
---|
1223 | ``temporary'', when the plotter is next refreshed
|
---|
1224 | (e.g. \cmd{plotter.plot} or \cmd{plotter.set\_range}) the annotations
|
---|
1225 | will be removed.
|
---|
1226 |
|
---|
1227 | \bigcommanddef{arrow(x,y,x+dx,y+dy)}{Draw an arrow from a specifed
|
---|
1228 | \cmd{(x,y)} position to \cmd{(x+dx, y+dy)}. The values are in world
|
---|
1229 | coordinates. \em {HOW TO SET ARROW HEAD??}}{
|
---|
1230 | ASAP> plotter.arrow(-40,7,35,0)
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | \bigcommanddef{axhline(y, xmin, xmax)}{Draw a horizontal line at the
|
---|
1234 | specifed \cmd{y} position (in world coordinates) between xmin and xmax
|
---|
1235 | (in relative coordinates, ie 0.0 is the left hand edge of the plot
|
---|
1236 | while 1.0 is the right side of the plot.}{
|
---|
1237 | ASAP> plotter.axhline(6.0,0.2,0.8)
|
---|
1238 | }
|
---|
1239 |
|
---|
1240 | \bigcommanddef{avhline(x, ymin, ymax)}{Draw a vertical line at the
|
---|
1241 | specifed \cmd{x} position (in world coordinates) between \cmd{ymin}
|
---|
1242 | and \cmd{ymax} (in relative coordinates, ie 0.0 is the left hand edge
|
---|
1243 | of the plot while 1.0 is the right side of the plot).}{
|
---|
1244 | ASAP> plotter.axvline(-50.0,0.1,1.0)
|
---|
1245 | }
|
---|
1246 |
|
---|
1247 | \bigcommanddef{axhspan(ymin, ymax, \\ \hspace*{20mm}xmin,
|
---|
1248 | xmax)}{Overlay a transparent colour rectangle. \cmd{ymin} and
|
---|
1249 | \cmd{ymax} are given in world coordnates while \cmd{xmin} and
|
---|
1250 | \cmd{xmax} are given in relative coordinates}{
|
---|
1251 | ASAP> plotter.axhspan(2,4,0.25,0.75)
|
---|
1252 | }
|
---|
1253 |
|
---|
1254 | \bigcommanddef{axvspan(xmin, xmax, \\ \hspace*{20mm} ymin,
|
---|
1255 | ymax)}{Overlay a transparent colour rectangle. \cmd{ymin} and
|
---|
1256 | \cmd{ymax} are given in relative coordnates while \cmd{xmin} and
|
---|
1257 | \cmd{xmax} are given in world coordinates}{
|
---|
1258 | ASAP> plotter.axvspan(-50,60,0.2,0.5)
|
---|
1259 | }
|
---|
1260 |
|
---|
1261 | \bigcommanddef{text(x, y, str)}{Place the string \cmd{str} at the
|
---|
1262 | given \cmd{(x,y)} position in world coordinates.}{
|
---|
1263 | ASAP>plotter.text(-10,7,"CO")
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 |
|
---|
1267 |
|
---|
1268 | These functions all take a set of \cmd{kwargs} commands. These can be
|
---|
1269 | used to set colour, linewidth fontsize etc. These are standard
|
---|
1270 | matplotlib settings. Common ones include:
|
---|
1271 |
|
---|
1272 | \begin{tabular}{ll}
|
---|
1273 | \tt color \\
|
---|
1274 | \tt linewidth \\
|
---|
1275 | \tt fontsize \\
|
---|
1276 | \tt fontname & Sans, Helvetica, Courier, Times etc\\
|
---|
1277 | \tt rotation & Text rotation (horizontal, vertical) \\
|
---|
1278 | \tt alpha & The alpha transparency on 0-1 scale\\
|
---|
1279 | \end{tabular}
|
---|
1280 |
|
---|
1281 | Examples:
|
---|
1282 | \begin{verbatim}
|
---|
1283 | ASAP> plotter.axhline(6.0,0.2,0.8, color='red', linewidth=3)
|
---|
1284 | ASAP> plotter.text(-10,7,"CO", fontsize=20)
|
---|
1285 | \end{verbatim}
|
---|
1286 |
|
---|
1287 | \section{Fitting}
|
---|
1288 |
|
---|
1289 | \index{Fitting}Currently multicomponent Gaussian function is
|
---|
1290 | available. This is done by creating a fitting object, setting up the
|
---|
1291 | fit and actually fitting the data. Fitting can either be done on a
|
---|
1292 | single scantable selection or on an entire scantable using the
|
---|
1293 | \cmd{auto\_fit} function. If single value fitting is used, and the
|
---|
1294 | current selection includes multiple spectra (beams, IFs, scans etc)
|
---|
1295 | then the first spectrum in the scantable will be used for fitting.
|
---|
1296 |
|
---|
1297 | \begin{verbatim}
|
---|
1298 | ASAP> f = fitter()
|
---|
1299 | ASAP> f.set_function(gauss=2) # Fit two Gaussians
|
---|
1300 | ASAP> f.set_scan(scans)
|
---|
1301 | ASAP> selection = selector()
|
---|
1302 | ASAP> selection.set_polarisations(1) # Fit the second polarisation
|
---|
1303 | ASAP> scans.set_selection(selection)
|
---|
1304 | ASAP> scans.set_unit('km/s') # Make fit in velocity units
|
---|
1305 | ASAP> f.fit(1) # Run the fit on the second row in the table
|
---|
1306 | ASAP> f.plot() # Show fit in a plot window
|
---|
1307 | ASAP> f.get_parameters() # Return the fit paramaters
|
---|
1308 | \end{verbatim}
|
---|
1309 |
|
---|
1310 | This auto-guesses the initial values of the fit and works well for data
|
---|
1311 | without extra confusing features. Note that the fit is performed in
|
---|
1312 | whatever unit the abscissa is set to.
|
---|
1313 |
|
---|
1314 | If you want to confine the fitting to a smaller range (e.g. to avoid
|
---|
1315 | band edge effects or RFI you must set a mask.
|
---|
1316 |
|
---|
1317 | \begin{verbatim}
|
---|
1318 | ASAP> f = fitter()
|
---|
1319 | ASAP> f.set_function(gauss=2)
|
---|
1320 | ASAP> scans.set_unit('km/s') # Set the mask in channel units
|
---|
1321 | ASAP> msk = s.create_mask([1800,2200])
|
---|
1322 | ASAP> scans.set_unit('km/s') # Make fit in velocity units
|
---|
1323 | ASAP> f.set_scan(s,msk)
|
---|
1324 | ASAP> f.fit()
|
---|
1325 | ASAP> f.plot()
|
---|
1326 | ASAP> f.get_parameters()
|
---|
1327 | \end{verbatim}
|
---|
1328 |
|
---|
1329 | If you wish, the initial parameter guesses can be specified and
|
---|
1330 | specific parameters can be fixed:
|
---|
1331 |
|
---|
1332 | \begin{verbatim}
|
---|
1333 | ASAP> f = fitter()
|
---|
1334 | ASAP> f.set_function(gauss=2)
|
---|
1335 | ASAP> f.set_scan(s,msk)
|
---|
1336 | ASAP> f.fit() # Fit using auto-estimates
|
---|
1337 | # Set Peak, centre and fwhm for the second gaussian.
|
---|
1338 | # Force the centre to be fixed
|
---|
1339 | ASAP> f.set_gauss_parameters(0.4,450,150,0,1,0,component=1)
|
---|
1340 | ASAP> f.fit() # Re-run the fit
|
---|
1341 | \end{verbatim}
|
---|
1342 |
|
---|
1343 | The fitter \cmd{plot} function has a number of options to either view
|
---|
1344 | the fit residuals or the individual components (by default it plots
|
---|
1345 | the sum of the model components).
|
---|
1346 |
|
---|
1347 | Examples:
|
---|
1348 |
|
---|
1349 | \begin{verbatim}
|
---|
1350 | # Plot the residual
|
---|
1351 | ASAP> f.plot(residual=True)
|
---|
1352 |
|
---|
1353 | # Plot the first 2 componentsa
|
---|
1354 | ASAP> f.plot(components=[0,1])
|
---|
1355 |
|
---|
1356 | # Plot the first and third component plus the model sum
|
---|
1357 | ASAP> f.plot(components=[-1,0,2]) # -1 means the compoment sum
|
---|
1358 | \end{verbatim}
|
---|
1359 |
|
---|
1360 | \subsection{Fit saving}
|
---|
1361 |
|
---|
1362 | \index{Fitter!Fit saving}One you are happy with your fit, it is
|
---|
1363 | possible to store it as part of the scantable.
|
---|
1364 |
|
---|
1365 | \begin{verbatim}
|
---|
1366 | ASAP> f.storefit()
|
---|
1367 | \end{verbatim}
|
---|
1368 |
|
---|
1369 | This will be saved to disk with the data, if the ``ASAP'' file format
|
---|
1370 | is selected. Multiple fits to the same data can be stored in the
|
---|
1371 | scantable.
|
---|
1372 |
|
---|
1373 | The scantable function \cmd{get\_fit} can be used to retrieve the
|
---|
1374 | stored fits. Currently the fit parameters are just printed to the
|
---|
1375 | screen.
|
---|
1376 |
|
---|
1377 | \begin{verbatim}
|
---|
1378 | ASAP> scans.get_fit(4) # Print fits for row 4
|
---|
1379 | \end{verbatim}
|
---|
1380 |
|
---|
1381 | \section{Polarisation}
|
---|
1382 |
|
---|
1383 | \index{Polarisation}Currently ASAP only supports polarmetric analysis
|
---|
1384 | on linearly polarised feeds and the cross polarisation products
|
---|
1385 | measured. Other cases will be added on an as needed basis.
|
---|
1386 |
|
---|
1387 | Conversions of linears to Stokes or Circular polarisations are done
|
---|
1388 | ``on-the-fly''. Leakage cannot be corrected for nor are there routines
|
---|
1389 | to calibrate position angle offsets.
|
---|
1390 |
|
---|
1391 | \subsection{Simple Calibration}
|
---|
1392 |
|
---|
1393 | \index{Polarisation!calibration}It is possible that there is a phase
|
---|
1394 | offset between polarisation which will effect the phase of the cross
|
---|
1395 | polarisation correlation, and so give rise to spurious
|
---|
1396 | polarisation. \cmd{rotate\_xyphase} can be used to correct for this
|
---|
1397 | error. At this point, the user must know how to determine the size of
|
---|
1398 | the phase offset themselves.
|
---|
1399 |
|
---|
1400 | \begin{verbatim}
|
---|
1401 | ASAP> scans.rotate_xyphase(10.5) # Degrees
|
---|
1402 | \end{verbatim}
|
---|
1403 |
|
---|
1404 | Note that if this function is run twice, the sum of the two values is
|
---|
1405 | applied because it is done in-situ.
|
---|
1406 |
|
---|
1407 | A correction for the receiver parallactic angle may need to be made,
|
---|
1408 | generally because of how it is mounted. Use \cmd{rotate\_linpolphase}
|
---|
1409 | to correct the position angle. Running this function twice results in
|
---|
1410 | the sum of the corrections being applied because it is applied
|
---|
1411 | in-situ.
|
---|
1412 |
|
---|
1413 | \begin{verbatim}
|
---|
1414 | ASAP> scans.rotate_linpolphase(-45) # Degrees; correct for receiver mounting
|
---|
1415 | \end{verbatim}
|
---|
1416 |
|
---|
1417 | If the sign of the complex correlation is wrong (this can happen
|
---|
1418 | depending on the correlator configuration), use \cmd{invert\_phase} to
|
---|
1419 | change take the complex conjugate of the complex correlation
|
---|
1420 | term. This is always performed in-situ.
|
---|
1421 |
|
---|
1422 | \begin{verbatim}
|
---|
1423 | ASAP> scans.invert_phase()
|
---|
1424 | \end{verbatim}
|
---|
1425 |
|
---|
1426 | Depending on how the correlator is configured, ``BA'' may be
|
---|
1427 | correlated insead of ``AB''. Use \cmd{swap\_linears} to correct for
|
---|
1428 | this problem:
|
---|
1429 |
|
---|
1430 | \begin{verbatim}
|
---|
1431 | ASAP> scans.swap_linears()
|
---|
1432 | \end{verbatim}
|
---|
1433 |
|
---|
1434 | \subsection{Conversion}
|
---|
1435 | \label{sec:polconv}
|
---|
1436 |
|
---|
1437 | Data can be permanently converted between linear and circular
|
---|
1438 | polarisations and stokes.
|
---|
1439 |
|
---|
1440 | \begin{verbatim}
|
---|
1441 | ASAP> stokescans = linearscans.convert_pol("stokes")
|
---|
1442 | \end{verbatim}
|
---|
1443 |
|
---|
1444 |
|
---|
1445 | \subsection{Plotting}
|
---|
1446 | \label{sec:polplot}
|
---|
1447 |
|
---|
1448 | \index{Polarisation!plotting}To plot Stokes values, a selector object
|
---|
1449 | must be created and the set\_polarisation function used to select the
|
---|
1450 | desired polarisation products.
|
---|
1451 |
|
---|
1452 | The values which can be plotted include a selection of [I,Q,U,V], [I,
|
---|
1453 | Plinear, Pangle, V], [RR, LL] or [XX, YY, Real(XY),
|
---|
1454 | Imaginary(XY)]. (Plinear and Pangle are the percentage and position
|
---|
1455 | angle of linear polarisation).
|
---|
1456 |
|
---|
1457 | Example:
|
---|
1458 |
|
---|
1459 | \begin{verbatim}
|
---|
1460 | ASAP> selection = selector()
|
---|
1461 |
|
---|
1462 | ASAP> selection.set_polarisations(``I Q U V'')
|
---|
1463 | ASAP plotter.set_selection(selection); # Select I, Q, U \& V
|
---|
1464 |
|
---|
1465 | ASAP> selection.set_polarisations(``I Q'')
|
---|
1466 | ASAP plotter.set_selection(selection); # Select just I \& Q
|
---|
1467 |
|
---|
1468 | ASAP> selection.set_polarisations(``RR LL'')
|
---|
1469 | ASAP plotter.set_selection(selection); # Select just RR \& LL
|
---|
1470 |
|
---|
1471 | ASAP> selection.set_polarisations(``XX YY'')
|
---|
1472 | ASAP plotter.set_selection(selection); # Select linears
|
---|
1473 |
|
---|
1474 | ASAP> selection.set_polarisations(``I Plinear'')
|
---|
1475 | ASAP plotter.set_selection(selection); # Fractional linear
|
---|
1476 |
|
---|
1477 | ASAP> selection.set_polarisations(``Pangle'')
|
---|
1478 | ASAP plotter.set_selection(selection); # Position angle
|
---|
1479 |
|
---|
1480 | \end{verbatim}
|
---|
1481 |
|
---|
1482 | Scan, beam and IF selection are also available in the selector object as
|
---|
1483 | describe in section~\ref{sec:selection}.
|
---|
1484 |
|
---|
1485 | \subsection{Saving}
|
---|
1486 |
|
---|
1487 | \index{Polarisation!saving}When saving data using the \cmd{save}
|
---|
1488 | function, the \cmd{stokes} argument can be used to save the data as
|
---|
1489 | Stoke values when saving in FITS format.
|
---|
1490 |
|
---|
1491 | Example:
|
---|
1492 |
|
---|
1493 | \begin{verbatim}
|
---|
1494 | ASAP> scans.save('myscan.sdfits', 'SDFITS', stokes=True)
|
---|
1495 | \end{verbatim}
|
---|
1496 |
|
---|
1497 | \section{Specialised Processing}
|
---|
1498 |
|
---|
1499 | \subsection{Multibeam MX mode}
|
---|
1500 |
|
---|
1501 | MX mode is a specific observing approach with a multibeam where a
|
---|
1502 | single source is observed cycling through each beam. The scans when
|
---|
1503 | the beam is off source is used as a reference for the onsource
|
---|
1504 | scan. The function \cmd{mx\_quotient} is used to make a quotient
|
---|
1505 | spectrum from an MX cycle. This works averaging the ``off-source''
|
---|
1506 | scans for each beam (either a median average or mean) and using this
|
---|
1507 | as a reference scan in a normal quotient (for each beam). The final
|
---|
1508 | spectrum for each beam is returned on a new scantable containing
|
---|
1509 | single scan (it the scan numbers are re-labelled to be the same). Note
|
---|
1510 | that the current version of \cmd{mx\_quotient} only handles a single
|
---|
1511 | MX cycle, ie if each beam has observed the source multiple times you
|
---|
1512 | will need to use the selector object multiple times to select a single
|
---|
1513 | MX cycle, run \cmd{mx\_quotient} for each cycle then merge the
|
---|
1514 | resulting scan tables back together.
|
---|
1515 |
|
---|
1516 | Example:
|
---|
1517 |
|
---|
1518 | \begin{verbatim}
|
---|
1519 | ASAP> scans = scantable('mydata.rpf')
|
---|
1520 | ASAP> q = scans.mx_quotient()
|
---|
1521 | ASAP> plotter.plot(q)
|
---|
1522 | \end{verbatim}
|
---|
1523 |
|
---|
1524 | The function \cmd{average\_beam} averages multiple beam data
|
---|
1525 | together. This is need if MX mode has been used to make a long
|
---|
1526 | integration on a single source. E.g.
|
---|
1527 |
|
---|
1528 | \begin{verbatim}
|
---|
1529 | ASAP> av = q.average_beam()
|
---|
1530 | \end{verbatim}
|
---|
1531 |
|
---|
1532 | \subsection{Frequency Switching}
|
---|
1533 |
|
---|
1534 | {\em FILL ME IN}
|
---|
1535 |
|
---|
1536 | \section{Scantable Mathematics}
|
---|
1537 |
|
---|
1538 | \index{Scantable!maths}It is possible to to simple mathematics
|
---|
1539 | directly on scantables from the command line using the \cmd{+, -, *,
|
---|
1540 | /} operators as well as their cousins \cmd{+=, -= *=, /=}. This works
|
---|
1541 | between a scantable and a float. (Note that it does
|
---|
1542 | not work for integers).
|
---|
1543 |
|
---|
1544 | {\em Currently mathematics between two scantables is not available }
|
---|
1545 |
|
---|
1546 | % ASAP> sum = scan1+scan2
|
---|
1547 | \begin{verbatim}
|
---|
1548 | ASAP> scan2 = scan1+2.0
|
---|
1549 | ASAP> scan *= 1.05
|
---|
1550 | \end{verbatim}
|
---|
1551 |
|
---|
1552 | \section{Scripting}
|
---|
1553 |
|
---|
1554 | \index{Scripting}Because asap is based on python, it easy for the user
|
---|
1555 | write their own scripts and functions to process data. This is highly
|
---|
1556 | recommended as most processing of user data could then be done in a
|
---|
1557 | couple of steps using a few simple user defined functions. A Python
|
---|
1558 | primer is beyond the scope of this userguide. See the asap home pages
|
---|
1559 | for a scripting tutorial or the main python website for comprehensive
|
---|
1560 | documentation.
|
---|
1561 |
|
---|
1562 | \hspace{1cm} http://www.atnf.csiro.au/computing/software/asap/tutorials
|
---|
1563 |
|
---|
1564 | \hspace{1cm} http://www.python.org/doc/Introduction.html
|
---|
1565 |
|
---|
1566 | \subsection{Running scripts}
|
---|
1567 |
|
---|
1568 | The asap global function \cmd{execfile} reads the named text file and
|
---|
1569 | executes the contained python code. This file can either contain
|
---|
1570 | function definitions which will be used in subsequent processing or
|
---|
1571 | just a set of commands to process a specific dataset.
|
---|
1572 |
|
---|
1573 | \subsection{asapuserfuncs.py}
|
---|
1574 |
|
---|
1575 | The file $\sim$/.asap/asapuserfuncs.py is automatically read in when
|
---|
1576 | asap is started. The user can use this to define a set of user
|
---|
1577 | functions which are automatically available each time asap is
|
---|
1578 | used. The \cmd{execfile} function can be called from within this file.
|
---|
1579 |
|
---|
1580 | \section{Worked examples}
|
---|
1581 |
|
---|
1582 | In the following section a few examples of end-to-end processing of
|
---|
1583 | some data in asap are given.
|
---|
1584 |
|
---|
1585 | \subsection{Mopra}
|
---|
1586 | \index{Mopra}
|
---|
1587 |
|
---|
1588 | The following example is of some dual polarisation, position switched
|
---|
1589 | data from Mopra. The source has been observed mulitple times split
|
---|
1590 | into a number of seperate rpfits files. To make the processing easier,
|
---|
1591 | the first step is to \cmd{cat} the seeprate rpfits files together and
|
---|
1592 | load as a whole (future versions of asap will make this unnecessary).
|
---|
1593 |
|
---|
1594 |
|
---|
1595 | \begin{verbatim}
|
---|
1596 | # get a list of the individual rpfits files in the current directory
|
---|
1597 | myfiles = list_files()
|
---|
1598 |
|
---|
1599 | # Load the data into a scantable
|
---|
1600 | data = scantable(myfiles)
|
---|
1601 | print data
|
---|
1602 |
|
---|
1603 | # Form the quotient spectra
|
---|
1604 | q = data.auto_quotient()
|
---|
1605 | print q
|
---|
1606 |
|
---|
1607 | # Look at the spectra
|
---|
1608 | plotter.plot(q)
|
---|
1609 |
|
---|
1610 | # Set unit and reference frame
|
---|
1611 | q.set_unit('km/s')
|
---|
1612 | q.set_freqframe('LSRK')
|
---|
1613 |
|
---|
1614 | # Average all scans in time, aligning in velocity
|
---|
1615 | av = q.average_time(align=True)
|
---|
1616 | plotter.plot(av)
|
---|
1617 |
|
---|
1618 | # Remove the baseline
|
---|
1619 | msk = av.create_mask([100,130],[160,200])
|
---|
1620 | av.poly_baseline(msk,2)
|
---|
1621 |
|
---|
1622 | # Average the two polarisations together
|
---|
1623 | iav = av.average_pol()
|
---|
1624 | print iav
|
---|
1625 | plotter.plot(iav)
|
---|
1626 |
|
---|
1627 | # Set a sensible velocity range on the plot
|
---|
1628 | plotter.set_range(85,200)
|
---|
1629 |
|
---|
1630 | # Smooth the data a little
|
---|
1631 | av.smooth('gauss',4)
|
---|
1632 | plotter.plot()
|
---|
1633 |
|
---|
1634 | # Fit a guassian to the emission
|
---|
1635 | f = fitter()
|
---|
1636 | f.set_function(gauss=1)
|
---|
1637 | f.set_scan(av)
|
---|
1638 | f.fit()
|
---|
1639 |
|
---|
1640 | # View the fit
|
---|
1641 | f.plot()
|
---|
1642 |
|
---|
1643 | # Get the fit parameters
|
---|
1644 | f.get_parameters()
|
---|
1645 |
|
---|
1646 | \end{verbatim}
|
---|
1647 |
|
---|
1648 |
|
---|
1649 | \subsection{Parkes Polarimetry}
|
---|
1650 |
|
---|
1651 | \index{Parkes}\index{Polarisation}The following example is processing
|
---|
1652 | of some Parkes polarmetric observations of OH masers at
|
---|
1653 | 1.6~GHz. Because digital filters where used in the backend, the
|
---|
1654 | baselines are stable enough not to require a quotient spectra. The
|
---|
1655 | 4~MHz bandwidth is wide enough to observe both the 1665 and 1667~MHz
|
---|
1656 | OH maser transitions. Each source was observed once for about 10
|
---|
1657 | minutes. Tsys information was not written to the rpfits file (a
|
---|
1658 | nominal 25K values was used), so the amplitudes need to be adjusted
|
---|
1659 | based on a separate log file. A simple user function is used to
|
---|
1660 | simplify this, contained in a file called mypol.py:
|
---|
1661 |
|
---|
1662 | \begin{verbatim}
|
---|
1663 | def xyscale(data,xtsys=1.0,ytsys=1.0,nomtsys=25.0) :
|
---|
1664 |
|
---|
1665 | selection = selector()
|
---|
1666 | selection.set_polarisations(0)
|
---|
1667 | data.set_selection(selection)
|
---|
1668 | data.scale(xtsys/nomtsys)
|
---|
1669 |
|
---|
1670 | selection.set_polarisations(1)
|
---|
1671 | data.set_selection(selection)
|
---|
1672 | data.scale(ytsys/nomtsys)
|
---|
1673 |
|
---|
1674 | selection.set_polarisations(0)
|
---|
1675 | data.set_selection(selection)
|
---|
1676 | data.scale((xtsys+ytsys)/(2*nomtsys))
|
---|
1677 |
|
---|
1678 | selection.set_polarisations(0)
|
---|
1679 | data.set_selection(selection)
|
---|
1680 | data.scale((xtsys+ytsys)/(2*nomtsys))
|
---|
1681 | \end{verbatim}
|
---|
1682 |
|
---|
1683 | The typical asap session would be
|
---|
1684 |
|
---|
1685 | \begin{verbatim}
|
---|
1686 |
|
---|
1687 | # Remind ourself the name of the rpfits files
|
---|
1688 | ls
|
---|
1689 |
|
---|
1690 | # Load data from an rpfits file
|
---|
1691 | d1665 = scantable('2005-10-27_0154-P484.rpf')
|
---|
1692 |
|
---|
1693 | # Check what we have just loaded
|
---|
1694 | d1665.summary()
|
---|
1695 |
|
---|
1696 | # View the data in velocity
|
---|
1697 | d1665.set_unit('km/s')
|
---|
1698 | d1665.set_freqframe('LSRK')
|
---|
1699 |
|
---|
1700 | # Correct for the known phase offset in the crosspol data
|
---|
1701 | d1665.rotate_xyphase(-4)
|
---|
1702 |
|
---|
1703 | # Create a copy of the data and set the rest frequency to the 1667 MHz
|
---|
1704 | # transition
|
---|
1705 | d1667 = d1665.copy()
|
---|
1706 | d1667.set_restfreqs([1667.3590], 'MHz')
|
---|
1707 | d1667.summary()
|
---|
1708 |
|
---|
1709 | # Copy out the scan we wish to process
|
---|
1710 | g351_5 = d1665.get_scan('351p160')
|
---|
1711 | g351_7 = d1667.get_scan('351p160')
|
---|
1712 |
|
---|
1713 | # Baseline both
|
---|
1714 | msk = g351_5.create_mask([-30,-25],[-5,0])
|
---|
1715 | g351_5.poly_baseline(msk,order=1)
|
---|
1716 | msk = g351_7.create_mask([-30,-25],[-5,0])
|
---|
1717 | g351_7.poly_baseline(msk,order=1)
|
---|
1718 |
|
---|
1719 |
|
---|
1720 | # Plot the data. The plotter can only plot a single scantable
|
---|
1721 | # So we must merge the two tables first
|
---|
1722 |
|
---|
1723 | plotscans = merge(g351_5, g351_7)
|
---|
1724 |
|
---|
1725 | plotter.plot(plotscans) # Only shows one panel
|
---|
1726 |
|
---|
1727 | # Tell the plotter to stack polarisation and panel scans
|
---|
1728 | plotter.set_mode('p','s')
|
---|
1729 |
|
---|
1730 | # Correct for the Tsys using our predefined function
|
---|
1731 | execfile('mypol.py') # Read in the function xyscale
|
---|
1732 | xyscale(g351_5,23.2,22.7) # Execute it on the data
|
---|
1733 | xyscale(g351_7,23.2,22.7)
|
---|
1734 |
|
---|
1735 | # Only plot the velocity range of interest
|
---|
1736 | plotter.set_range(-30,10)
|
---|
1737 |
|
---|
1738 | # Update the plot with the baselined data
|
---|
1739 | plotter.plot()
|
---|
1740 |
|
---|
1741 | # Look at the various polarisation products
|
---|
1742 | selection = selector()
|
---|
1743 | selection.set_polarisations(``RR LL'')
|
---|
1744 | plotter.set_selection(selection)
|
---|
1745 | selection.set_polarisations(``I Plinear'')
|
---|
1746 | plotter.set_selection(selection)
|
---|
1747 | selection.set_polarisations(``I Q U V'')
|
---|
1748 | plotter.set_selection(selection)
|
---|
1749 |
|
---|
1750 | # Save the plot as postscript
|
---|
1751 | plotter.save('g351_stokes.ps')
|
---|
1752 |
|
---|
1753 | # Save the process spectra
|
---|
1754 | plotscans.save('g351.asap')
|
---|
1755 |
|
---|
1756 | \end{verbatim}
|
---|
1757 |
|
---|
1758 | \subsection{Tidbinbilla}
|
---|
1759 |
|
---|
1760 | \index{Tidbinbilla}The following example is processing of some
|
---|
1761 | Tidbinbilla observations of NH$_3$ at 12~mm. Tidbinbilla has (at the
|
---|
1762 | time of observations) a single polarisation, but can process two IFs
|
---|
1763 | simultaneously. In the example, the first half of the observation was
|
---|
1764 | observing the (1,1) and (2,2) transitions simultaneously). The second
|
---|
1765 | half observed only the (4,4) transition due to bandwidth
|
---|
1766 | limitations. The data is position switched, observing first an
|
---|
1767 | reference to the west, then the source twice and finally reference to
|
---|
1768 | the east.
|
---|
1769 |
|
---|
1770 | \begin{verbatim}
|
---|
1771 |
|
---|
1772 | # Load the rpfits file and inspect
|
---|
1773 | d = scantable('2003-03-16_082048_t0002.rpf')
|
---|
1774 | print d
|
---|
1775 |
|
---|
1776 | # Make the quotient spectra
|
---|
1777 | q = d.auto_quotient()
|
---|
1778 | print q
|
---|
1779 |
|
---|
1780 | del d
|
---|
1781 |
|
---|
1782 | # Plot/select in velocity
|
---|
1783 | q.set_freqframe('LSRK')
|
---|
1784 | q.set_unit('km/s')
|
---|
1785 |
|
---|
1786 | # Correct for gain/el effects
|
---|
1787 |
|
---|
1788 | q.recalc_azel() # Tid does not write the elevation
|
---|
1789 | q.gain_el()
|
---|
1790 | q.opacity(0.05)
|
---|
1791 |
|
---|
1792 | # Seperate data from the (1,1)&(2,2) and (4,4) transitions
|
---|
1793 | g1 = q.get_scan(range(6)) # scans 0..5
|
---|
1794 | g2 = q.get_scan(range(6,12)) # scans 6..11
|
---|
1795 |
|
---|
1796 | # Align data in velocity
|
---|
1797 | g1.freq_align()
|
---|
1798 | g2.freq_align()
|
---|
1799 |
|
---|
1800 | # Average individual scans
|
---|
1801 | a1 = g1.average_time()
|
---|
1802 | a2 = g2.average_time()
|
---|
1803 |
|
---|
1804 | # Rpfits file only contains a single rest frequency. Set both
|
---|
1805 | a1.set_restfreqs([23694.4700e6,23722.6336e6])
|
---|
1806 |
|
---|
1807 | plotter.plot(a1)
|
---|
1808 | plotter.set_mode('i','t')
|
---|
1809 |
|
---|
1810 | a1.auto_poly_baseline()
|
---|
1811 |
|
---|
1812 | plotter.plot()
|
---|
1813 |
|
---|
1814 | a1.smooth('gauss',5)
|
---|
1815 | plotter.plot()
|
---|
1816 |
|
---|
1817 |
|
---|
1818 | \end{verbatim}
|
---|
1819 |
|
---|
1820 | \newpage
|
---|
1821 |
|
---|
1822 | \section{Appendix}
|
---|
1823 |
|
---|
1824 | \subsection{Function Summary}
|
---|
1825 |
|
---|
1826 | \index{Functions!summary}%
|
---|
1827 | \begin{verbatim}
|
---|
1828 |
|
---|
1829 | [The scan container]
|
---|
1830 | scantable - a container for integrations/scans
|
---|
1831 | (can open asap/rpfits/sdfits and ms files)
|
---|
1832 | copy - returns a copy of a scan
|
---|
1833 | get_scan - gets a specific scan out of a scantable
|
---|
1834 | (by name or number)
|
---|
1835 | drop_scan - drops a specific scan out of a scantable
|
---|
1836 | (by number)
|
---|
1837 | set_selection - set a new subselection of the data
|
---|
1838 | get_selection - get the current selection object
|
---|
1839 | summary - print info about the scantable contents
|
---|
1840 | stats - get specified statistic of the spectra in
|
---|
1841 | the scantable
|
---|
1842 | stddev - get the standard deviation of the spectra
|
---|
1843 | in the scantable
|
---|
1844 | get_tsys - get the TSys
|
---|
1845 | get_time - get the timestamps of the integrations
|
---|
1846 | get_sourcename - get the source names of the scans
|
---|
1847 | get_azimuth - get the azimuth of the scans
|
---|
1848 | get_elevation - get the elevation of the scans
|
---|
1849 | get_parangle - get the parallactic angle of the scans
|
---|
1850 | get_unit - get the current unit
|
---|
1851 | set_unit - set the abcissa unit to be used from this
|
---|
1852 | point on
|
---|
1853 | get_abcissa - get the abcissa values and name for a given
|
---|
1854 | row (time)
|
---|
1855 | set_freqframe - set the frame info for the Spectral Axis
|
---|
1856 | (e.g. 'LSRK')
|
---|
1857 | set_doppler - set the doppler to be used from this point on
|
---|
1858 | set_dirframe - set the frame for the direction on the sky
|
---|
1859 | set_instrument - set the instrument name
|
---|
1860 | set_feedtype - set the feed type
|
---|
1861 | get_fluxunit - get the brightness flux unit
|
---|
1862 | set_fluxunit - set the brightness flux unit
|
---|
1863 | create_mask - return an mask in the current unit
|
---|
1864 | for the given region. The specified regions
|
---|
1865 | are NOT masked
|
---|
1866 | get_restfreqs - get the current list of rest frequencies
|
---|
1867 | set_restfreqs - set a list of rest frequencies
|
---|
1868 | flag - flag selected channels in the data
|
---|
1869 | lag_flag - flag specified frequency in the data
|
---|
1870 | save - save the scantable to disk as either 'ASAP',
|
---|
1871 | 'SDFITS' or 'ASCII'
|
---|
1872 | nbeam,nif,nchan,npol - the number of beams/IFs/Pols/Chans
|
---|
1873 | nscan - the number of scans in the scantable
|
---|
1874 | nrow - te number of spectra in the scantable
|
---|
1875 | history - print the history of the scantable
|
---|
1876 | get_fit - get a fit which has been stored witnh the data
|
---|
1877 | average_time - return the (weighted) time average of a scan
|
---|
1878 | or a list of scans
|
---|
1879 | average_pol - average the polarisations together.
|
---|
1880 | average_beam - average the beams together.
|
---|
1881 | convert_pol - convert to a different polarisation type
|
---|
1882 | auto_quotient - return the on/off quotient with
|
---|
1883 | automatic detection of the on/off scans (closest
|
---|
1884 | in time off is selected)
|
---|
1885 | mx_quotient - Form a quotient using MX data (off beams)
|
---|
1886 | scale, *, / - return a scan scaled by a given factor
|
---|
1887 | add, +, - - return a scan with given value added
|
---|
1888 | bin - return a scan with binned channels
|
---|
1889 | resample - return a scan with resampled channels
|
---|
1890 | smooth - return the spectrally smoothed scan
|
---|
1891 | poly_baseline - fit a polynomial baseline to all Beams/IFs/Pols
|
---|
1892 | auto_poly_baseline - automatically fit a polynomial baseline
|
---|
1893 | recalc_azel - recalculate azimuth and elevation based on
|
---|
1894 | the pointing
|
---|
1895 | gain_el - apply gain-elevation correction
|
---|
1896 | opacity - apply opacity correction
|
---|
1897 | convert_flux - convert to and from Jy and Kelvin brightness
|
---|
1898 | units
|
---|
1899 | freq_align - align spectra in frequency frame
|
---|
1900 | invert_phase - Invert the phase of the cross-correlation
|
---|
1901 | swap_linears - Swap XX and YY
|
---|
1902 | rotate_xyphase - rotate XY phase of cross correlation
|
---|
1903 | rotate_linpolphase - rotate the phase of the complex
|
---|
1904 | polarization O=Q+iU correlation
|
---|
1905 | freq_switch - perform frequency switching on the data
|
---|
1906 | stats - Determine the specified statistic, e.g. 'min'
|
---|
1907 | 'max', 'rms' etc.
|
---|
1908 | stddev - Determine the standard deviation of the current
|
---|
1909 | beam/if/pol
|
---|
1910 | [Selection]
|
---|
1911 | selector - a selection object to set a subset of a scantable
|
---|
1912 | set_scans - set (a list of) scans by index
|
---|
1913 | set_cycles - set (a list of) cycles by index
|
---|
1914 | set_beams - set (a list of) beamss by index
|
---|
1915 | set_ifs - set (a list of) ifs by index
|
---|
1916 | set_polarisations - set (a list of) polarisations by name
|
---|
1917 | or by index
|
---|
1918 | set_names - set a selection by name (wildcards allowed)
|
---|
1919 | set_tsys - set a selection by tsys thresholds
|
---|
1920 | reset - unset all selections
|
---|
1921 | + - merge to selections
|
---|
1922 |
|
---|
1923 | [Math] Mainly functions which operate on more than one scantable
|
---|
1924 |
|
---|
1925 | average_time - return the (weighted) time average
|
---|
1926 | of a list of scans
|
---|
1927 | quotient - return the on/off quotient
|
---|
1928 | simple_math - simple mathematical operations on two scantables,
|
---|
1929 | 'add', 'sub', 'mul', 'div'
|
---|
1930 | quotient - build quotient of the given on and off scans
|
---|
1931 | (matched pairs and 1 off/n on are valid)
|
---|
1932 | merge - merge a list of scantables
|
---|
1933 |
|
---|
1934 | [Line Catalog]
|
---|
1935 | linecatalog - a linecatalog wrapper, taking an ASCII or
|
---|
1936 | internal format table
|
---|
1937 | summary - print a summary of the current selection
|
---|
1938 | set_name - select a subset by name pattern, e.g. '*OH*'
|
---|
1939 | set_strength_limits - select a subset by line strength limits
|
---|
1940 | set_frequency_limits - select a subset by frequency limits
|
---|
1941 | reset - unset all selections
|
---|
1942 | save - save the current subset to a table (internal
|
---|
1943 | format)
|
---|
1944 | get_row - get the name and frequency from a specific
|
---|
1945 | row in the table
|
---|
1946 | [Fitting]
|
---|
1947 | fitter
|
---|
1948 | auto_fit - return a scan where the function is
|
---|
1949 | applied to all Beams/IFs/Pols.
|
---|
1950 | commit - return a new scan where the fits have been
|
---|
1951 | commited.
|
---|
1952 | fit - execute the actual fitting process
|
---|
1953 | store_fit - store the fit parameters in the data (scantable)
|
---|
1954 | get_chi2 - get the Chi^2
|
---|
1955 | set_scan - set the scantable to be fit
|
---|
1956 | set_function - set the fitting function
|
---|
1957 | set_parameters - set the parameters for the function(s), and
|
---|
1958 | set if they should be held fixed during fitting
|
---|
1959 | set_gauss_parameters - same as above but specialised for individual
|
---|
1960 | gaussian components
|
---|
1961 | get_parameters - get the fitted parameters
|
---|
1962 | plot - plot the resulting fit and/or components and
|
---|
1963 | residual
|
---|
1964 | [Plotter]
|
---|
1965 | asapplotter - a plotter for asap, default plotter is
|
---|
1966 | called 'plotter'
|
---|
1967 | plot - plot a scantable
|
---|
1968 | plot_lines - plot a linecatalog overlay
|
---|
1969 | save - save the plot to a file ('png' ,'ps' or 'eps')
|
---|
1970 | set_mode - set the state of the plotter, i.e.
|
---|
1971 | what is to be plotted 'colour stacked'
|
---|
1972 | and what 'panelled'
|
---|
1973 | set_selection - only plot a selected part of the data
|
---|
1974 | set_range - set a 'zoom' window [xmin,xmax,ymin,ymax]
|
---|
1975 | set_legend - specify user labels for the legend indeces
|
---|
1976 | set_title - specify user labels for the panel indeces
|
---|
1977 | set_abcissa - specify a user label for the abcissa
|
---|
1978 | set_ordinate - specify a user label for the ordinate
|
---|
1979 | set_layout - specify the multi-panel layout (rows,cols)
|
---|
1980 | set_colors - specify a set of colours to use
|
---|
1981 | set_linestyles - specify a set of linestyles to use if only
|
---|
1982 | using one color
|
---|
1983 | set_font - set general font properties, e.g. 'family'
|
---|
1984 | set_histogram - plot in historam style
|
---|
1985 | set_mask - set a plotting mask for a specific polarization
|
---|
1986 | text - draw text annotations either in data or relative
|
---|
1987 | coordinates
|
---|
1988 | arrow - draw arrow annotations either in data or relative
|
---|
1989 | coordinates
|
---|
1990 | set_abcissa - specify a user label for the abcissa
|
---|
1991 | set_ordinate - specify a user label for the ordinate
|
---|
1992 | set_layout - specify the multi-panel layout (rows,cols)
|
---|
1993 | set_colors - specify a set of colours to use
|
---|
1994 | set_linestyles - specify a set of linestyles to use if only
|
---|
1995 | using one color
|
---|
1996 | set_font - set general font properties, e.g. 'family'
|
---|
1997 | set_histogram - plot in historam style
|
---|
1998 | set_mask - set a plotting mask for a specific polarization
|
---|
1999 | text - draw text annotations either in data or relative
|
---|
2000 | coordinates
|
---|
2001 | arrow - draw arrow annotations either in data or relative
|
---|
2002 | coordinates
|
---|
2003 | axhline,axvline - draw horizontal/vertical lines
|
---|
2004 | axhspan,axvspan - draw horizontal/vertical regions
|
---|
2005 |
|
---|
2006 | xyplotter - matplotlib/pylab plotting functions
|
---|
2007 |
|
---|
2008 | [Reading files]
|
---|
2009 | reader - access rpfits/sdfits files
|
---|
2010 | open - attach reader to a file
|
---|
2011 | close - detach reader from file
|
---|
2012 | read - read in integrations
|
---|
2013 | summary - list info about all integrations
|
---|
2014 |
|
---|
2015 | [General]
|
---|
2016 | commands - this command
|
---|
2017 | print - print details about a variable
|
---|
2018 | list_scans - list all scantables created bt the user
|
---|
2019 | list_files - list all files readable by asap (default rpf)
|
---|
2020 | del - delete the given variable from memory
|
---|
2021 | range - create a list of values, e.g.
|
---|
2022 | range(3) = [0,1,2], range(2,5) = [2,3,4]
|
---|
2023 | help - print help for one of the listed functions
|
---|
2024 | execfile - execute an asap script, e.g. execfile('myscript')
|
---|
2025 | list_rcparameters - print out a list of possible values to be
|
---|
2026 | put into .asaprc
|
---|
2027 | rc - set rc parameters from within asap
|
---|
2028 | mask_and,mask_or,
|
---|
2029 | mask_not - boolean operations on masks created with
|
---|
2030 | scantable.create_mask
|
---|
2031 | \end{verbatim}
|
---|
2032 |
|
---|
2033 | \subsection{ASCII output format}
|
---|
2034 |
|
---|
2035 | \subsection{.asaprc settings}
|
---|
2036 | \index{.asaprc}
|
---|
2037 | \asaprc{verbose}{{\bf True}/False}{Print verbose output, good to disable in scripts}
|
---|
2038 |
|
---|
2039 | \asaprc{insitu}{{\bf True}/False}{Apply operations on the input
|
---|
2040 | scantable or return new one}
|
---|
2041 |
|
---|
2042 | \asaprc{useplotter}{{\bf True}/False}{Preload a default plotter}
|
---|
2043 |
|
---|
2044 | \asaprc{plotter.gui}{{\bf True}/False}{Do we want a GUI or plot to a
|
---|
2045 | file}
|
---|
2046 |
|
---|
2047 | \asaprc{plotter.stacking}{{\bf Pol} Beam IF Scan Time}{Default mode for
|
---|
2048 | colour stacking}
|
---|
2049 |
|
---|
2050 | \asaprc{plotter.panelling}{Pol Beam IF {\bf Scan} Time}{Default mode
|
---|
2051 | for panelling}
|
---|
2052 |
|
---|
2053 | \asaprc{plotter.ganged}{{\bf True}/False}{Push panels together, to
|
---|
2054 | share axislabels}
|
---|
2055 |
|
---|
2056 | \asaprc{plotter.decimate}{True/{\bf False}}{Decimate the number of
|
---|
2057 | points plotted by a factor of nchan/1024}
|
---|
2058 |
|
---|
2059 | \asaprc{plotter.histogram}{True/{\bf False}}{Plot spectrum using
|
---|
2060 | histogram rather than lines.}
|
---|
2061 |
|
---|
2062 | {\em MALTE TO FIX}
|
---|
2063 |
|
---|
2064 | \asaprc{plotter.colours}{}{Set default colours for plotting}
|
---|
2065 |
|
---|
2066 | \asaprc{plotter.colours}{}{Set default line styles}
|
---|
2067 |
|
---|
2068 | \asaprc{plotter.papersze}{{\bf A4}}{}
|
---|
2069 |
|
---|
2070 | % scantable
|
---|
2071 | \asaprc{scantable.save}{{\bf ASAP} SDFITS FITS ASCII MS2}{Default output
|
---|
2072 | format when saving}
|
---|
2073 |
|
---|
2074 | \asaprc{scantable.autoaverage}{{\bf True}/False}{Auto averaging on
|
---|
2075 | read}
|
---|
2076 |
|
---|
2077 | \asaprc{scantable.freqframe}{{\bf LSRK} TOPO BARY etc}{default
|
---|
2078 | frequency frame to set when function scantable.set\_freqframe is
|
---|
2079 | called or the data is imported}
|
---|
2080 |
|
---|
2081 | \asaprc{scantable.verbosesummary}{True/{\bf False}}{Control the level
|
---|
2082 | of information printed by summary}
|
---|
2083 |
|
---|
2084 | \asaprc{scantable.storage}{{\bf memory}/disk}{Storage of scantables in
|
---|
2085 | memory of via based disk tables}
|
---|
2086 |
|
---|
2087 | \subsection{Installation}
|
---|
2088 |
|
---|
2089 | \index{Installation}ASAP depends on a number of third-party libraries which you must
|
---|
2090 | have installed before attempting to build ASAP. These are:
|
---|
2091 |
|
---|
2092 | \begin{itemize}
|
---|
2093 | \item AIPS++
|
---|
2094 | \item Boost
|
---|
2095 | \item Matplotlib
|
---|
2096 | \item python/ipython
|
---|
2097 | \end{itemize}
|
---|
2098 |
|
---|
2099 | Debian Linux is currently supported and we intend also
|
---|
2100 | to support other popular Linux flavours, Solaris and Mac.
|
---|
2101 |
|
---|
2102 | Of the dependencies, AIPS++ is the most complex to install.
|
---|
2103 |
|
---|
2104 | \printindex
|
---|
2105 |
|
---|
2106 | \end{document}
|
---|
2107 |
|
---|