source: trunk/doc/userguide.tex @ 1347

Last change on this file since 1347 was 1347, checked in by mar637, 17 years ago

move to use latex builder; doc updates for 2.2

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 79.2 KB
RevLine 
[534]1\documentclass[11pt]{article}
2\usepackage{a4}
[770]3\usepackage{calc}
[534]4\usepackage[dvips]{graphicx}
[794]5\usepackage{makeidx}
[534]6
7% Adjust the page size
8\addtolength{\oddsidemargin}{-0.4in}
9\addtolength{\evensidemargin}{+0.4in}
10\addtolength{\textwidth}{+0.8in}
11
12\setlength{\parindent}{0mm}
13\setlength{\parskip}{1ex}
14
[1217]15\title{ATNF Spectral Analysis Package\\User Guide v2.1\\DRAFT }
[534]16\author{Chris Phillips}
17
18\newcommand{\cmd}[1]{{\tt #1}}
19
[770]20\newcommand{\asaprc}[3]{
21  \begin{minipage}[t]{45mm}#1\end{minipage}
22  \begin{minipage}[t]{30mm}\raggedright #2\end{minipage}\hspace{3mm}
23  \begin{minipage}[t]{\textwidth-75mm}#3\end{minipage}
24}
25
[1217]26\newcommand{\commanddef}[3]{
27  \begin{minipage}[t]{27mm}\tt #1\end{minipage}\hspace{3mm}
28  \begin{minipage}[t]{\textwidth-30mm}#2 \\ \tt #3\end{minipage}
29}
30
31\newcommand{\bigcommanddef}[3]{
32  \begin{minipage}[t]{45mm}\tt #1\end{minipage}\hspace{3mm}
33  \begin{minipage}[t]{\textwidth-47mm}#2 \\ \tt #3\end{minipage}
34}
35
[794]36\makeindex
37
[534]38\begin{document}
39
40\maketitle
41
42\section{Introduction}
43
[544]44ASAP is a single dish spectral line processing package currently being
45developed by the ATNF. It is intended to process data from all ATNF
[770]46antennas, and can probably be used for other antennas if they can
[544]47produce ``Single Dish FITS'' format. It is based on the AIPS++
48package.
49
[1267]50This userguide has been updated for the ASAP 2.1. Please report any
[1217]51mistakes you find.
[534]52
[544]53\section{Installation and Running}
[534]54
[738]55Currently there are installations running on Linux machines at
[534]56
57\begin{itemize}
58\item Epping - use hosts {\tt draco} or {\tt hydra}
59\item Narrabri - use host {\tt kaputar}
[537]60\item Parkes - use host {\tt bourbon}
[534]61\item Mopra - use host {\tt minos}
62\end{itemize}
63
[1217]64Or use your own Linux desktop.
65
66{\em Note. ASAP2.1 only runs on ATNF Linux machines which have been
[1267]67updated to Debian Sarge and are using the ``DEBIANSarge''
[1217]68/usr/local. If your favourite machine has not been upgraded, send a
[1267]69request to your friendly IT support. At the time of writing asap 2.1
70does not run on hydra, bourbon or kaputar.}
[1217]71
[794]72\index{Running}To start asap log onto one of these Linux hosts and enter
[534]73
74\begin{verbatim}
75  > cd /my/data/directory
[966]76  > asap
[534]77\end{verbatim}
78
[1267]79This starts ASAP. To quit, you need to type \verb+^+-d (control-d) or
80type \cmd{\%Exit}.
[534]81
82\section{Interface}
83
[1064]84\index{Interface}ASAP is written in C++ and python. The user interface
85uses the ``ipython'' interactive shell, which is a simple interactive
86interface to python. The user does not need to understand python to
87use this, but certain aspects python affect what the user can do.  The
88current interface is object oriented.
[534]89
90\subsection {Integer Indices are 0-relative}
91
92Please note, all integer indices in ASAP and iPython are {\bf 0-relative}.
93
94\subsection{Objects}
[794]95\index{objects}
[534]96The ASAP interface is based around a number of ``objects'' which the
97user deals with. Objects range from the data which have been read from
98disk, to tools used for fitting functions to the data. The following
99main objects are used :
100
[1267]101\begin{tabular}{ll}
[534]102
[1267]103\cmd{scantable} & \parbox[t]{0.7\textwidth}{The data container (actual
104  spectra and header information)} \\
105\cmd{selector} & \parbox[t]{0.80\textwidth}{Allows the user to select
106  a subsection of the data, such as a specified or range of beam
107  numbers, IFs, etc.} \\
108\cmd{plotter} & A tool used to plot the spectral line data \\
109\cmd{fitter} & A tool used to fit functions to the spectral data \\
110\cmd{reader} & \parbox[t]{0.8\textwidth}{A tool which can be used to
111    read data from disks into a scantable object (advanced use).}\\
112\end{tabular}
113
[738]114There can be many objects of the same type. Each object is referred to
[534]115by a variable name made by the user. The name of this variable is not
[770]116important and can be set to whatever the user prefers (i.e. ``s'' and
[534]117``ParkesHOH-20052002'' are equivalent).  However, having a simple and
118consistent naming convention will help you a lot.
119
[544]120\subsection{Member Functions (functions)}
[534]121
[794]122\index{Functions!member}Following the object oriented approach,
123objects have associated ``member functions'' which can either be used
124to modify the data in some way or change global properties of the
125object. In this document member functions will be referred to simply
126as functions. From the command line, the user can execute these
127functions using the syntax:
[534]128\begin{verbatim}
[1259]129  ASAP>out = object.function(arguments)
[534]130\end{verbatim}
131
132Where \cmd{out} is the name of the returned variable (could be a new
[544]133scantable object, or a vector of data, or a status return),
134\cmd{object} is the object variable name (set by the user),
135\cmd{function} is the name of the member function and \cmd{arguments}
136is a list of arguments to the function. The arguments can be provided
137either though position or \cmd{name=}.  A mix of the two can be used.
138E.g.
[534]139
140\begin{verbatim}
[1259]141  ASAP>av = scans.average_time(msk,weight='tsys')
142  ASAP>av = scans.average_time(mask=msk,weight='tsys')
143  ASAP>av = scans.average_time(msk,tsys)
144  ASAP>scans.poly_baseline(mask=msk, order=0, insitu=True)
145  ASAP>scans.poly_baseline(msk,0,True)
146  ASAP>scans.poly_baseline(mask, insitu=True)
[534]147\end{verbatim}
148
149\subsection{Global Functions}
150
[794]151\index{Functions!global}It does not make sense to implement some functions as member
[544]152functions, typically functions which operate on more than one
153scantable (e.g. time averaging of many scans). These functions will
154always be referred to as global functions.
[534]155
[538]156\subsection{Interactive environment}
[534]157
[794]158\index{ipython!environment}ipython has a number of useful interactive
159features and a few things to be aware of for the new user.
[534]160
161\subsubsection{String completion}
162
[794]163\index{ipython!string completion}Tab completion is enabled for all
164function names. If you type the first few letters of a function name,
165then type {\tt <TAB>} the function name will be auto completed if it
166is un-ambiguous, or a list of possibilities will be
167given. Auto-completion works for the user object names as well as
168function names. It does not work for filenames, nor for function
169arguments.
[534]170
171Example
172\begin{verbatim}
[1259]173  ASAP>scans = scantable('MyData.rpf')
174  ASAP>scans.se<TAB>
175  ASAP>scans.set_in<TAB>
[971]176scans.set_cursor      scans.set_freqframe   scans.set_selection
177scans.set_doppler     scans.set_instrument  scans.set_unit
178scans.set_fluxunit    scans.set_restfreqs
179
[1259]180  ASAP>scans.set_instrument()
[534]181\end{verbatim}
182
[544]183\subsubsection{Leading Spaces}
184
[794]185\index{ipython!leading space}Python uses leading space to mark blocks
186of code. This means that it you start a command line with a space, the
187command generally will fail with an syntax error.
[544]188
[770]189\subsubsection{Variable Names}
190
[794]191\index{ipython!variable names}During normal data processing, the user
192will have to create named variables to hold spectra etc. These must
193conform to the normal python syntax, specifically they cannot contain
194``special'' characters such as \@ \$ etc and cannot start with a
195number (but can contain numbers).  Variable (and function) names are
196case sensitive.
[770]197
[534]198\subsubsection{Unix Interaction}
199
[794]200\index{ipython!unix interaction}Basic unix shell commands (\cmd{pwd},
201\cmd{ls}, \cmd{cd} etc) can be issued from within ASAP. This allows
202the user to do things like look at files in the current directory. The
203shell command ``\cmd{cd}'' works within ASAP, allowing the user to
204change between data directories. Unix programs cannot be run this way,
205but the shell escape ``$!$'' can be used to run arbitrary
206programs. E.g.
[534]207
208\begin{verbatim}
[1259]209  ASAP>pwd
210  ASAP>ls
211  ASAP>cd /my/data/directory
212  ASAP>! mozilla&
[534]213\end{verbatim}
214
215\subsection{Help}
216
[794]217\index{Help}ASAP has built in help for all functions. To get a list of
218functions type:
[534]219
[538]220\begin{verbatim}
[1259]221  ASAP>commands()
[538]222\end{verbatim}
223
224To get help on specific functions, the built in help needs to be given
225the object and function name. E.g.
226
227\begin{verbatim}
[1259]228  ASAP>help scantable.get_scan # or help(scantable.get_scan)
229  ASAP>help scantable.stats
230  ASAP>help plotter.plot
231  ASAP>help fitter.plot
[538]232
[1259]233  ASAP>scans = scantable('mydata.asap')
234  ASAP>help scans.get_scan # Same as above
[544]235\end{verbatim}
[538]236
[544]237Global functions just need their name
[538]238
[544]239\begin{verbatim}
[1259]240  ASAP>help average_time
[538]241\end{verbatim}
242
243Note that if you just type \cmd{help} the internal ipython help is
244invoked, which is probably {\em not} what you want. Type \verb+^+-d
245(control-d) to escape from this.
246
[738]247\subsection{Customisation - .asaprc}
[534]248
[794]249\index{.asaprc}ASAP use an \cmd{.asaprc} file to control the user's
250preference of default values for various functions arguments. This
251includes the defaults for arguments such as \cmd{insitu}, scantable
252\cmd{freqframe} and the plotters \cmd{set\_mode} values. The help on
253individual functions says which arguments can be set default values
254from the \cmd{.asaprc} file. To get a sample contents for the
[1064]255\cmd{.asaprc} file use the command \cmd{list\_rcparameters}.
[534]256
[538]257Common values include:
258\begin{verbatim}
259  # apply operations on the input scantable or return new one
260  insitu                     : False
261
[738]262  # default output format when saving scantable
[953]263  scantable.save             : ASAP
[538]264
265  # default frequency frame to set when function
266  # scantable.set_freqframe is called
[953]267  scantable.freqframe        : LSRK
[538]268
269  # auto averaging on read
270  scantable.autoaverage      : True
271\end{verbatim}
272
[953]273For a complete list of \cmd{.asaprc} values, see the Appendix.
[770]274
[534]275\section{Scantables}
[794]276\index{Scantables}
[534]277\subsection {Description}
278
279\subsubsection {Basic Structure}
280
[794]281\index{Scantable!structure}ASAP data handling works on objects called
282scantables.  A scantable holds your data, and also provides functions
283to operate upon it.
[534]284
285The building block of a scantable is an integration, which is a single
[1217]286row of a scantable. Each row contains just one spectrum for each beam,
287IF and polarisation. For example Parkes OH-multibeam data would
288normally contain 13 beams, 1 IF and 2 polarisations, Parkes
289methanol-multibeam data would contain 7 beams, 2 IFs and 2
[1259]290polarisations while the Mopra 8-GHz MOPS filterbank will produce one
[1217]291beam, many IFs, and 2-4 polarisations.
292
293All of the combinations of Beams/IFs an Polarisations are
[1259]294contained in separate rows. These rows are grouped in cycles (same time stamp).
[534]295
[1217]296A collection of cycles for one source is termed a scan (and each scan
297has a unique numeric identifier, the SCANNO). A scantable is then a
298collection of one or more scans. If you have scan-averaged your data
[1259]299in time, i.e. you have averaged all cycles within a scan, then each
[1217]300scan would hold just one (averaged) integration.
[534]301
[1217]302Many of the functions which work on scantables can either return a new
303scantable with modified data or change the scantable insitu. Which
[534]304method is used depends on the users preference. The default can be
305changed via the {\tt .asaprc} resource file.
306
[1259]307For example a Mopra scan with a  4s integration time, two IFs and
[1011]308dual polarisations has two (2s) cycles.
309\begin{verbatim}
[1064]310    SCANNO  CYCLENO BEAMNO IFNO POLNO
311    0       0       0      0    0
312    0       0       0      0    1
313    0       0       0      1    0
314    0       0       0      1    1
315    0       1       0      0    0
316    0       1       0      0    1
317    0       1       0      1    0
318    0       1       0      1    1
[1011]319\end{verbatim}
320
321
[534]322\subsubsection {Contents}
323
[794]324\index{Scantable!contents}A scantable has header information and data
[953]325(a scantable is actually an AIPS++ Table and it is generally stored in
326memory when you are manipulating it with ASAP.  You can save it to
327disk and then browse it with the AIPS++ Table browser if you know how
328to do that !).
[534]329
330The data are stored in columns (the length of a column is the number of
[1011]331rows/spectra of course).
[534]332
333Two important columns are those that describe the frequency setup.  We mention
[538]334them explicitly here because you need to be able to understand the presentation
[534]335of the frequency information and possibly how to manipulate it.
336
[1011]337These columns are called FREQ\_ID and MOLECULE\_ID.  They contain indices, for
[971]338each IF, pointing into tables with all of the frequency and rest-frequency
[1054]339information for that integration.
[534]340
341There are of course many other columns which contain the actual spectra,
[971]342the flags, the Tsys, the source names and so on.
[534]343
344There is also a function \cmd{summary} to list a summary of the scantable.
345You will find this very useful.
346
347Example:
348
349\begin{verbatim}
[1259]350  ASAP>scans = scantable('MyData.rpf')
351  ASAP>scans.summary()                # Brief listing
[544]352
353  # Equivalent to brief summary function call
[1259]354  ASAP>print scan
[534]355\end{verbatim}
356
[971]357The summary function gives you a scan-based summary, presenting the
[1054]358scantable as a cascading view of Beams and IFs. Note that the output
359of summary is redirected into your current pager specified by the
360\$PAGER environment variable. If you find the screen is reset to the
[1259]361original state when summary is finished (i.e. the output from summary
[1054]362disappears), you may need to set the \$LESS environment variable to
363include the \cmd{-X} option.
[534]364
[953]365\subsection{Data Selection}
366\label{sec:selection}
367
[966]368ASAP contains flexible data selection. Data can be selected based on
369IF, beam, polarisation, scan number as well as values such as
370Tsys. Advanced users can also make use of the AIPS++ TAQL language to
[971]371create selections based on almost any of the values recorded.
[953]372
[966]373Selection is based on a \cmd{selector} object. This object is created
374and various selection functions applied to it (\cmd{set\_ifs},
375\cmd{set\_beams} etc). The selection object then must be applied to a
376scantable using the \cmd{set\_selection} function. A single selection
377object can be created and setup then applied to multiple scantables.
[534]378
[966]379Once a selection has been applied, all following functions will only
380``see'' the selected spectra (including functions such as
381\cmd{summary}). The selection can then be reset and all spectra are
382visible. Note that if functions such as \cmd{copy} are run on a
383scantable with active selection, only the selected spectra are copied.
[534]384
[966]385The common selection functions are:
[534]386
[1267]387\begin{tabular}{ll}
[966]388
[1267]389\cmd{set\_beams} & Select beams by index number \\
390\cmd{set\_ifs} & Select ifs by index number \\
391\cmd{set\_name} & Select by source name. Can contain ``*'' as a
392wildcard, e.g. ``Orion*\_R''. \\
393\cmd{set\_ifs} & Select IFs by index number \\
[966]394
[1267]395\cmd{set\_polarisation} & \parbox[t]{0.73\textwidth}{Select by
396polarisation index or name. If polarisation names are given, the data
397will be on-the-fly onverted (for example from linears to Stokes). }\\
[966]398
[1267]399\cmd{set\_query} & Set query directly. For power users only! \\
400\cmd{set\_tsys} & Select data based on Tsys. Also example of user
401definable query. \\
402\cmd{reset} & Reset the selection to include all spectra. \\
403
404\end{tabular}
405
[966]406Note that all indices are zero based.
407
408Examples:
409
410\begin{verbatim}
[1259]411  ASAP>selection = selector()         # Create selection object
412  ASAP>selection.set_ifs(0)           # Just select the first IF
413  ASAP>scans.set_selection(selection) # Apply the selection
414  ASAP>print scans                    # Will just show the first IF
[966]415
[1259]416  ASAP>selection.set_ifs([0,1])       # Select the first two IFs
417  ASAP>selection.set_beams([1,3,5])   # Also select three of the beams
418  ASAP>scans.set_selection(selection) # Apply the selection
[966]419
[1259]420  ASAP>selection.set_name('G308*')     # Select by source name
[966]421
[1259]422  ASAP>selection.reset()              # Turn off selection
423  ASAP>scans.set_selection(selection) # Apply the reset selection
[966]424
[970]425\end{verbatim}
426
[534]427\subsection{State}
428
[794]429\index{Scantable!state}Each scantable contains "state"; these are
430properties applying to all of the data in the scantable.
[534]431
432Examples are the selection of beam, IF and polarisation,  spectral unit
[770]433(e.g. km/s), frequency reference frame (e.g. BARY) and velocity Doppler
[534]434type (e.g. RADIO).
435
436\subsubsection{Units, Doppler and Frequency Reference Frame}
437
438The information describing the frequency setup for each integration
439is stored fundamentally in frequency in the reference frame
[738]440of observation (E.g. TOPO).
[534]441
[544]442When required, this is converted to the desired reference frame
443(e.g. LSRK), Doppler (e.g. OPTICAL) and unit (e.g. km/s) on-the-fly.
444This is important, for example, when you are displaying the data or
[971]445fitting to it. The reference frame is set on file read to the value
446set in the user \cmd{.asaprc} file.
[534]447
448For units, the user has the choice of frequency, velocity or channel.
449The \cmd{set\_unit} function is used to set the current unit for a
450scantable. All functions will (where relevant) work with the selected
451unit until this changes. This is mainly important for fitting (the fits
[738]452can be computed in any of these units), plotting and mask creation.
[534]453
[544]454The velocity definition can be changed with the \cmd{set\_doppler}
455function, and the frequency reference frame can be changed with the
[534]456\cmd{set\_freqframe} function.
457
458Example usage:
459
460\begin{verbatim}
[1259]461  ASAP>scans = scantable('2004-11-23_1841-P484.rpf') # Read in the data
462  ASAP>scans.set_freqframe('LSRK')  # Use the LSR velocity frame
463  ASAP>scans.set_unit('km/s')        # Use velocity for plots etc from now on
464  ASAP>scans.set_doppler('OPTICAL')  # Use the optical velocity convention
465  ASAP>scans.set_unit('MHz')         # Use frequency in MHz from now on
[534]466\end{verbatim}
467
468
469\subsubsection{Rest Frequency}
470
[794]471\index{Scantable!rest frequency}ASAP reads the line rest frequency
472from the RPFITS file when reading the data. The values stored in the
473RPFITS file are not always correct and so there is a function
[953]474\cmd{set\_restfreq} to set the rest frequencies for the currently
475selected data.
[534]476
477For each integration, there is a rest-frequency per IF (the rest
478frequencies are just stored as a list with an index into them).
479There are a few ways to set the rest frequencies with this function.
480
[953]481If you specify just one rest frequency, then it is set for all IF.
[534]482
483\begin{verbatim}
[953]484  # Set all IFs
[1259]485  ASAP>scans.set_restfreqs(freqs=1.667359e9)
[534]486\end{verbatim}
487
[953]488If set a rest frequency for each IF, specify a list of frequencies (of
489length the number of IFs).  Regardless of the source, the rest
490frequency will be set for each IF to the corresponding value in the
[970]491provided list.
[534]492
493\begin{verbatim}
[770]494  # Set rest frequency for all IFs
[1259]495  ASAP>scans.set_restfreqs(freqs=[1.6654018e9,1.667359e9,])
[538]496
[534]497\end{verbatim}
498
[1267]499A predetermined ``line catalog'' can be used to set the rest
500frequency. See section \S \ref{sec:linecat}.
[953]501
[534]502
503\subsubsection{Masks}
504
[970]505\index{Masks}\index{Scantable!masks}
[534]506
[966]507Many tasks (fitting, baseline subtraction, statistics etc) should only
508be run on range of channels. Depending on the current ``unit'' setting
509this range is set directly as channels, velocity or frequency
510ranges. Internally these are converted into a simple boolean mask for
511each channel of the abscissa. This means that if the unit setting is
512later changed, previously created mask are still valid. (This is not
513true for functions which change the shape or shift the frequency
514axis).  You create masks with the function \cmd{create\_mask} and this
515specified the channels to be included in the selection. When setting
516the mask in velocity, the conversion from velocity to channels is
[1064]517based on the current selection, specified row and selected frequency
518reference frame.
[534]519
[966]520
521Note that for multi IF data with different number of channels per IF a
522single mask cannot be applied to different IFs. To use a mask on such
523data the selector should be applied to select all IFs with the same
524number of channels.
525
[534]526Example :
527\begin{verbatim}
528
529  # Select channel range for baselining
[1259]530  ASAP>scans.set_unit('channels')
531  ASAP>msk = scans.create_mask([100,400],[600,800])
[738]532
[534]533  # Select velocity range for fitting
[1259]534  ASAP>scans.set_unit('km/s')
535  ASAP>msk = scans.create_mask([-30,-10])
[534]536\end{verbatim}
537
[544]538Sometimes it is more convenient to specify the channels to be
539excluded, rather included.  You can do this with the ``invert''
540argument.
[534]541
542Example :
543\begin{verbatim}
[1259]544  ASAP>scans.set_unit('channels')
545  ASAP>msk = scans.create_mask([0,100],[900-1023], invert=True)
[534]546\end{verbatim}
547
[544]548By default \cmd{create\_mask} uses the frequency setup of the first row
549to convert velocities into a channel mask. If the rows in the data
550cover different velocity ranges, the scantable row to use should be
551specified:
552
553\begin{verbatim}
[1259]554  ASAP>scans.set_unit('km/s')
555  ASAP>msk = q.create_mask([-30,-10], row=5)
[544]556\end{verbatim}
557
[534]558Because the mask is stored in a simple python variable, the users is
559able to combine masks using simple arithmetic. To create a mask
560excluding the edge channels, a strong maser feature and a birdie in
561the middle of the band:
562
563\begin{verbatim}
[1259]564  ASAP>scans.set_unit('channels')
565  ASAP>msk1 = q.create_mask([0,100],[511,511],[900,1023],invert=True)
566  ASAP>scans.set_unit('km/s')
567  ASAP>msk2 = q.create_mask([-20,-10],invert=True)
[534]568
[1259]569  ASAP>mask = msk1 and msk2
[534]570\end{verbatim}
571
572
[953]573\subsection{Management}
574
575\index{Scantable!management}During processing it is possible to create
576a large number of scan tables. These all consume memory, so it is best
577to periodically remove unneeded scan tables. Use \cmd{list\_scans} to
578print a list of all scantables and \cmd{del} to remove unneeded ones.
579
580Example:
581
582\begin{verbatim}
[1259]583  ASAP>list_scans()
[953]584  The user created scantables are:
585  ['s', 'scans', 'av', 's2', 'ss']
586
[1259]587  ASAP>del s2
588  ASAP>del ss
[953]589\end{verbatim}
590
[534]591\section{Data Input}
592
[971]593\index{Reading data}Data can be loaded in one of two ways; using the
594reader object or via the scantable constructor. The scantable method
595is simpler but the reader allows the user more control on what is read.
[534]596
597\subsection{Scantable constructor}
598
[794]599\index{Scantable constructor}\index{Scantable!constructor}This loads
600all of the data from filename into the scantable object scans and
601averages all the data within a scan (i.e.  the resulting scantable
[534]602will have one row per scan).  The recognised input file formats are
603RPFITS, SDFITS (singledish fits), ASAP's scantable format and aips++
[738]604MeasurementSet2 format.
[534]605
606Example usage:
607
608\begin{verbatim}
[1259]609  ASAP>scan = scantable('2004-11-23_1841-P484.rpf')
[544]610
611  # Don't scan average the data
[1259]612  ASAP>scan = scantable('2004-11-23_1841-P484.rpf', average=False)
[534]613\end{verbatim}
614
615
616\subsection{Reader object}
617
[794]618\index{Reader object}\index{Scantable!reader object}For more control
619when reading data into ASAP, the reader object should be used.  This
[953]620has the option of only reading in a range of integrations, only a
621specified beam or IF and does not perform any scan averaging of the
622data, allowing analysis of the individual integrations.  Note that due
623to limitation of the RPFITS library, only one reader object can be
624open at one time reading RPFITS files.  To read multiple RPFITS files,
625the old reader must be destroyed before the new file is opened.
626However, multiple readers can be created and attached to SDFITS files.
[534]627
628
629Example usage:
630
631\begin{verbatim}
[1259]632  ASAP>r = reader('2003-03-16_082048_t0002.rpf')
633  ASAP>r.summary()
634  ASAP>scan = r.read()
635  ASAP>del r
[534]636\end{verbatim}
637
638\section{Basic Processing}
639
640In the following section, a simple data reduction to form a quotient
[544]641spectrum of a single source is followed.  It has been assume that the
642\cmd{.asaprc} file has {\em not} been used to change the \cmd{insitu}
643default value from \cmd{True}.
[534]644
[738]645\subsection{Auto quotient}
[794]646\index{Auto quotient}Quotients can be computed ``automatically''. This
647requires the data to have matching source/reference pairs or one
648reference for multiple sources. Auto quotient assumes reference scans
649have a trailing ``\_R'' in the source name for data from Parkes and
[1344]650Mopra, and a trailing ``e'' or ``w'' for data from Tidbinbilla.
[1347]651This functions has two \cmd{mode}s. \cmd{paired} (the deafault), which assumes
652matching adjacent pairs of source/reference scans and \cmd{time}, which finds
653the closest reference scan in time.
[534]654
[738]655\begin{verbatim}
[1259]656  ASAP>q = s.auto_quotient()
[738]657\end{verbatim}
658
[971]659By default the quotient spectra is calculated
660to preserve continuum emission. If you wish to remove the continuum
661contribution, use the \cmd{preserve} argument:
662
663\begin{verbatim}
[1259]664 ASAP>q = s.auto_quotient(preserve=True)
[971]665\end{verbatim}
666
[1217]667If this is not sufficient the following alternative method can be used.
[738]668
[1217]669\subsection{Separate reference and source observations}
670
671\index{Quotient spectra}Most data from ATNF observatories
672distinguishes on and off source data using the file name. This makes
673it easy to create two scantables with the source and reference
674data. As long as there was exactly one reference observation for each
675on source observation for following method will work.
676
677For Mopra and Parkes data:
678\begin{verbatim}
[1259]679  ASAP>r = scans.get_scan('*_R')
[1344]680  ASAP>s = scans.get_scan('*^_R')
[1217]681\end{verbatim}
682
683For Tidbinbilla data
684\begin{verbatim}
[1259]685  ASAP>r = scans.get_scan('*_[ew]')
686  ASAP>s = scans.get_scan('*_[^ew]')
[1217]687\end{verbatim}
688
[534]689\subsection{Time average separate scans}
690
[794]691\index{Time average}If you have observed the source with multiple
692source/reference cycles you will want to scan-average the quotient
693spectra together.
[534]694
695\begin{verbatim}
[1259]696 ASAP>av = q.average_time()
[534]697\end{verbatim}
698
[544]699If for some you want to average multiple sets of scantables together
700you can:
[534]701
702\begin{verbatim}
[1259]703 ASAP>av = average_time(q1, q2, q3)
[534]704\end{verbatim}
705
[544]706The default is to use integration time weighting. The alternative is
[1217]707to use none, variance, Tsys weighting, Tsys \& integration time or
708median averaging.
[534]709
[544]710\begin{verbatim}
[1259]711 ASAP>av = average_time(q, weight='tintsys')
[544]712\end{verbatim}
713
[534]714To use variance based weighting, you need to supply a mask saying which
715channel range you want it to calculate the variance from.
716
717\begin{verbatim}
[1259]718 ASAP>msk = scans.create_mask([200,400],[600,800])
719 ASAP>av = average_time(scans, mask=msk, weight='var')
[534]720\end{verbatim}
721
[953]722If you have not observed your data with Doppler tracking (or run
[1259]723\cmd{freq\_align} explicitly) you should align the data in frequency
[953]724before averaging.
[794]725
[953]726\begin{verbatim}
[1259]727 ASAP>av = scans.average_time(align=True)
[953]728\end{verbatim}
729
730Note that, if needed, you should run \cmd{gain\_el} and \cmd{opacity}
731before you average the data in time (\S \ref{sec:gainel} \&
732\ref{sec:freqalign}).
733
[534]734\subsection{Baseline fitting}
735
[794]736\index{Baseline fitting}To make a baseline fit, you must first create
737a mask of channels to use in the baseline fit.
[534]738
739\begin{verbatim}
[1259]740 ASAP>msk = scans.create_mask([100,400],[600,900])
741 ASAP>scans.poly_baseline(msk, order=1)
[534]742\end{verbatim}
743
744This will fit a first order polynomial to the selected channels and subtract
745this polynomial from the full spectra.
746
747\subsubsection{Auto-baselining}
748
[794]749\index{Auto-baseline}The function \cmd{auto\_poly\_baseline} can be used to automatically
[770]750baseline your data without having to specify channel ranges for the
751line free data. It automatically figures out the line-free emission
752and fits a polynomial baseline to that data. The user can use masks to
753fix the range of channels or velocity range for the fit as well as
754mark the band edge as invalid.
[534]755
756Simple example
757
758\begin{verbatim}
[1259]759  ASAP>scans.auto_poly_baseline(order=2,threshold=5)
[534]760\end{verbatim}
761
762\cmd{order} is the polynomial order for the fit. \cmd{threshold} is
763the SNR threshold to use to deliminate line emission from
[548]764signal. Generally the value of threshold is not too critical, however
765making this too large will compromise the fit (as it will include
766strong line features) and making it too small will mean it cannot find
767enough line free channels.
[534]768
[548]769
[534]770Other examples:
771
772\begin{verbatim}
773  # Don't try and fit the edge of the bandpass which is noisier
[1259]774  ASAP>scans.auto_poly_baseline(edge=(500,450),order=3,threshold=3)
[534]775
776  # Only fit a given region around the line
[1259]777  ASAP>scans.set_unit('km/s')
778  ASAP>msk = scans.create_mask([-60,-20])
779  ASAP>scans.auto_poly_baseline(mask=msk,order=3,threshold=3)
[534]780
781\end{verbatim}
782
783\subsection{Average the polarisations}
784
[794]785\index{average\_pol}If you are just interested in the highest SNR for total intensity you
[534]786will want to average the parallel polarisations together.
787
788\begin{verbatim}
[1259]789 ASAP>scans.average_pol()
[534]790\end{verbatim}
791
792\subsection{Calibration}
793
[794]794\index{Calibration}For most uses, calibration happens transparently as the input data
[534]795contains the Tsys measurements taken during observations. The nominal
796``Tsys'' values may be in Kelvin or Jansky. The user may wish to
797supply a Tsys correction or apply gain-elevation and opacity
798corrections.
799
800\subsubsection{Brightness Units}
801
[794]802\index{Brightness Units}RPFITS files do not contain any information as
803to whether the telescope calibration was in units of Kelvin or
804Janskys.  On reading the data a default value is set depending on the
805telescope and frequency of observation.  If this default is incorrect
806(you can see it in the listing from the \cmd{summary} function) the
807user can either override this value on reading the data or later.
808E.g:
[534]809
810\begin{verbatim}
[1259]811  ASAP>scans = scantable('2004-11-23_1841-P484.rpf', unit='Jy')
[534]812  # Or in two steps
[1259]813  ASAP>scans = scantable('2004-11-23_1841-P484.rpf')
814  ASAP>scans.set_fluxunit('Jy')
[534]815\end{verbatim}
816
[1217]817\subsubsection{Feed Polarisation}
818
819\index{Brightness Units}The RPFITS files also do not contain any
820information as to the feed polarisation. ASAP will set a default based
821on the antenna, but this will often be wrong the data has been read,
822the default can be changed using the \cmd{set\_feedtype} function with
823an argument of \cmd{'linear'} or \cmd{'circular'}.
824
825E.g:
826
827\begin{verbatim}
[1259]828  ASAP>scans = scantable('2004-11-23_1841-P484.rpf')
829  ASAP>scans.set_feedtype('circular')
[1217]830\end{verbatim}
831
[534]832\subsubsection{Tsys scaling}
833
[794]834\index{Tsys scaling}Sometime the nominal Tsys measurement at the
835telescope is wrong due to an incorrect noise diode calibration. This
836can easily be corrected for with the scale function. By default,
837\cmd{scale} only scans the spectra and not the corresponding Tsys.
[534]838
839\begin{verbatim}
[1259]840  ASAP>scans.scale(1.05, tsys=True)
[534]841\end{verbatim}
842
843\subsubsection{Unit Conversion}
844
[794]845\index{Unit conversion}To convert measurements in Kelvin to Jy (and
846vice versa) the global function \cmd{convert\_flux} is needed. This
847converts and scales the data from K to Jy or vice-versa depending on
848what the current brightness unit is set to. The function knows the
849basic parameters for some frequencies and telescopes, but the user may
850need to supply the aperture efficiency, telescope diameter or the Jy/K
851factor.
[534]852
853\begin{verbatim}
[1259]854  ASAP>scans.convert_flux()               # If efficency known
855  ASAP>scans.convert_flux(eta=0.48)       # If telescope diameter known
856  ASAP>scans.convert_flux(eta=0.48,d=35)  # Unknown telescope
857  ASAP>scans.convert_flux(jypk=15)        # Alternative
[534]858\end{verbatim}
859
860\subsubsection{Gain-Elevation and Opacity Corrections}
[794]861\label{sec:gainel}
[534]862
[794]863\index{Gain-elevation}As higher frequencies (particularly $>$20~GHz)
864it is important to make corrections for atmospheric opacity and
865gain-elevation effects.
[534]866
[794]867Note that currently the elevation is not written correctly into
[770]868Tidbinbilla rpfits files. This means that gain-elevation and opacity
[794]869corrections will not work unless these get recalculated.
[770]870
[794]871\begin{verbatim}
[1344]872  ASAP>scans.recalc_azel()                # recalculate az/el
873                                                                  # based on pointing
[794]874\end{verbatim}
875
[544]876Gain-elevation curves for some telescopes and frequencies are known to
[1347]877ASAP (currently only for Tidbinbilla at 20~GHz and Parkes at K-band).
878In these cases making gain-corrections is simple.  If the gain curve for your
879data is not known, the user can supply either a gain polynomial or text file
[534]880tabulating gain factors at a range of elevations (see \cmd{help
[544]881scantable.gain\_el}).
[534]882
883Examples:
884
885\begin{verbatim}
[1259]886  ASAP>scans.gain_el()   # If gain table known
887  ASAP>scans.gain_el(poly=[3.58788e-1,2.87243e-2,-3.219093e-4])
[534]888\end{verbatim}
889
[794]890\index{Opacity}Opacity corrections can be made with the global
891function \cmd{opacity}. This should work on all telescopes as long as
892a measurement of the opacity factor was made during the observation.
[534]893
894\begin{verbatim}
[1259]895  ASAP>scans.opacity(0.083)
[534]896\end{verbatim}
897
898Note that at 3~mm Mopra uses a paddle wheel for Tsys calibration,
899which takes opacity effects into account (to first order). ASAP
[544]900opacity corrections should not be used for Mopra 3-mm data.
[534]901
902\subsection{Frequency Frame Alignment}
[794]903\label{sec:freqalign}
[534]904
[1259]905\index{Frequency alignment}\index{Velocity alignment}When time
[794]906averaging a series of scans together, it is possible that the velocity
907scales are not exactly aligned.  This may be for many reasons such as
908not Doppler tracking the observations, errors in the Doppler tracking
909etc.  This mostly affects very long integrations or integrations
910averaged together from different days.  Before averaging such data
911together, they should be frequency aligned using \cmd{freq\_align}.
[534]912
913E.g.:
914
915\begin{verbatim}
[1259]916  ASAP>scans.freq_align()
917  ASAP>av = average_time(scans)
[534]918\end{verbatim}
919
[953]920{\em A Global freq\_align command will be made eventually}
[534]921
922To average together data taken on different days, which are in
923different scantables, each scantable must aligned to a common
924reference time then the scantables averaged. The simplest way of
925doing this is to allow ASAP to choose the reference time for the first
[738]926scantable then using this time for the subsequent scantables.
[534]927
928\begin{verbatim}
[1259]929  ASAP>scans1.freq_align() # Copy the refeference Epoch from the output
930  ASAP>scans2.freq_align(reftime='2004/11/23/18:43:35')
931  ASAP>scans3.freq_align(reftime='2004/11/23/18:43:35')
932  ASAP>av = average_time(scans1, scans2, scans3)
[534]933\end{verbatim}
934
935\section{Scantable manipulation}
936
[794]937\index{Scantable!manipulation}While it is very useful to have many
938independent sources within one scantable, it is often inconvenient for
939data processing. The \cmd{get\_scan} function can be used to create a
940new scantable with a selection of scans from a scantable. The
941selection can either be on the source name, with simple wildcard
[953]942matching or set of scan ids. Internally this uses the selector object,
943so for more complicated selection the selector should be used directly
944instead.
[534]945
946For example:
947
948\begin{verbatim}
[1259]949  ASAP>ss = scans.get_scan(10) # Get the 11th scan (zero based)
950  ASAP>ss = scans.get_scan(range(10)) # Get the first 10 scans
951  ASAP>ss = scans.get_scan(range(10,20)) # Get the next 10 scans
952  ASAP>ss = scans.get_scan([2,4,6,8,10]) # Get a selection of scans
[534]953
[1259]954  ASAP>ss = scans.get_scan('345p407') # Get a specific source
955  ASAP>ss = scans.get_scan('345*')    # Get a few sources
[534]956
[1259]957  ASAP>r = scans.get_scan('*_R') # Get all reference sources (Parkes/Mopra)
[1344]958  ASAP>s = scans.get_scan('*^_R') # Get all program sources (Parkes/Mopra)
[1259]959  ASAP>r = scans.get_scan('*[ew]')  # Get all reference sources (Tid)
960  ASAP>s = scans.get_scan('*[^ew]') # Get all program sources (Tid)
[534]961
962\end{verbatim}
963
964To copy a scantable the following does not work:
965
966\begin{verbatim}
[1259]967  ASAP>ss = scans
[534]968\end{verbatim}
969
[544]970as this just creates a reference to the original scantable. Any
971changes made to \cmd{ss} are also seen in \cmd{scans}. To duplicate a
[534]972scantable, use the copy function.
973
974\begin{verbatim}
[1259]975  ASAP>ss = scans.copy()
[534]976\end{verbatim}
977
978\section{Data Output}
979
[794]980\index{Scantable!save}\index{Saving data}ASAP can save scantables in a
981variety of formats, suitable for reading into other packages. The
982formats are:
[534]983
984\begin{itemize}
985\item[ASAP] This is the internal format used for ASAP. It is the only
[544]986  format that allows the user to restore the data, fits etc. without
987  loosing any information.  As mentioned before, the ASAP scantable is
988  an AIPS++ Table (a memory-based table).  This function just converts
989  it to a disk-based Table.  You can the access that Table with the
990  AIPS++ Table browser or any other AIPS++ tool.
[534]991
[544]992\item[SDFITS] The Single Dish FITS format. This format was designed to
993  for interchange between packages, but few packages actually can read
994  it.
[534]995
[1064]996%\item[FITS] This uses simple ``image'' fits to save the data, each row
997%  being written to a separate fits file. This format is suitable for
998%  importing the data into CLASS.
[534]999
1000\item[ASCII] A simple text based format suitable for the user to
1001processing using Perl or, Python, gnuplot etc.
1002
1003\item[MS2] Saves the data in an aips++ MeasurementSet V2 format.
1004You can also access this with the Table browser and other AIPS++
1005tools.
1006
1007\end{itemize}
1008
[738]1009The default output format can be set in the users {\tt .asaprc} file.
[534]1010Typical usages are:
1011
1012\begin{verbatim}
[1259]1013  ASAP>scans.save('myscans') # Save in default format
1014  ASAP>scans.save('myscans', overwrite=True) # Overwrite an existing file
[534]1015\end{verbatim}
1016
1017\section{Plotter}
1018
[1259]1019\index{Plotter}Scantable spectra can be plotted at any time. An
1020asapplotter object is used for plotting, meaning multiple plot windows
1021can be active at the same time. On start up a default asapplotter
1022object is created called ``plotter''. This would normally be used for
1023standard plotting.
[534]1024
[1259]1025The plotter, optionally, will run in a multi-panel mode and contain
[534]1026multiple plots per panel. The user must tell the plotter how they want
1027the data distributed. This is done using the set\_mode function. The
1028default can be set in the users {\tt .asaprc} file. The units (and frame
[538]1029etc) of the abscissa will be whatever has previously been set by
1030\cmd{set\_unit}, \cmd{set\_freqframe} etc.
[534]1031
1032Typical plotter usage would be:
1033
1034\begin{verbatim}
[1259]1035  ASAP>scans.set_unit('km/s')
[1344]1036  ASAP>plotter.set_mode(stacking='p', panelling='t')
[1259]1037  ASAP>plotter.plot(scans)
[534]1038\end{verbatim}
1039
1040This will plot multiple polarisation within each plot panel and each
[544]1041scan row in a separate panel.
[534]1042
[538]1043Other possibilities include:
[534]1044
1045\begin{verbatim}
1046  # Plot multiple IFs per panel
[1344]1047  ASAP>plotter.set_mode(stacking='i', panelling='t')
[538]1048
1049  # Plot multiple beams per panel
[1344]1050  ASAP>plotter.set_mode(stacking='b', panelling='t')
[538]1051
1052  # Plot one IF per panel, time stacked
[1259]1053  ASAP>plotter.set_mode('t', 'i')
[538]1054
1055  # Plot each scan in a seperate panel
[1259]1056  ASAP>plotter.set_mode('t', 's')
[538]1057
[534]1058\end{verbatim}
1059
[538]1060\subsection{Plot Selection}
1061\label{sec:plotter_cursor}
1062
[794]1063\index{Plotter!selection}The plotter can plot up to 25 panels and
1064stacked spectra per panel. If you have data larger than this (or for
1065your own sanity) you need to select a subset of this data. This is
[953]1066particularly true for multibeam or multi IF data. The selector object
[971]1067should be used for this purpose. Selection can either be applied to
[953]1068the scantable or directly to the plotter, the end result is the same.
[1259]1069You don't have to reset the scantable selection though, if you set
[971]1070the selection on the plotter.
[538]1071
1072Examples:
1073
1074\begin{verbatim}
[1259]1075  ASAP>selection = selector()
[538]1076  # Select second IF
[1259]1077  ASAP>selection.set_ifs(1)
1078  ASAP>plotter.set_selection(selection)
[538]1079
1080  # Select first 4 beams
[1259]1081  ASAP>selection.set_beams([0,1,2,3])
1082  ASAP>plotter.set_selection(selection)
[538]1083
[953]1084  # Select a few scans
[1259]1085  ASAP>selection.set_scans([2,4,6,10])
1086  ASAP>plotter.set_selection(selection)
[538]1087
1088  # Multiple selection
[1259]1089  ASAP>selection.set_ifs(1)
1090  ASAP>selection.set_scans([2,4,6,10])
1091  ASAP>plotter.set_selection(selection)
[953]1092
[538]1093\end{verbatim}
1094
[544]1095\subsection{Plot Control}
1096
[794]1097\index{Plotter!control}The plotter window has a row of buttons on the
1098lower left. These can be used to control the plotter (mostly for
1099zooming the individual plots). From left to right:
[534]1100
[1267]1101\begin{tabular}{ll}
[534]1102
[1267]1103Home & This will unzoom the plots to the original zoom factor \\
[534]1104
[1267]1105Plot history & \parbox[t]{0.8\textwidth}{(left and right arrow) The
1106plotter keeps a history of zoom settings. The left arrow sets the plot
1107zoom to the previous value. The right arrow returns back again. This
1108allows you, for example, to zoom in on one feature then return the
1109plot to how it was previously. }\\
[534]1110
[1267]1111Pan & \parbox[t]{0.8\textwidth}{(The Cross) This sets the cursor to
1112  pan, or scroll mode allowing you to shift the plot within the
1113  window. Useful when zoomed in on a feature. }\\
[534]1114
[1267]1115Zoom & \parbox[t]{0.8\textwidth}{(the letter with the magnifying
1116  glass) lets you draw a rectangle around a region of interest then
1117  zooms in on that region. Use the plot history to unzoom again.}\\
[534]1118
[1267]1119Adjust & \parbox[t]{0.8\textwidth}{(rectangle with 4 arrows) adjust
1120  subplot parameters (space at edge of plots)}\\
[953]1121
[1267]1122Save & \parbox[t]{0.8\textwidth}{(floppy disk). Save the plot as a
1123postscript or .png file}\\
[534]1124
[1267]1125\end{tabular}
1126
[794]1127You can also type ``g'' in the plot window to toggle on and off grid
1128lines. Typing 'l' turns on and off logarithmic Y-axis.
1129
[534]1130\subsection{Other control}
1131
1132The plotter has a number of functions to describe the layout of the
1133plot. These include \cmd{set\_legend}, \cmd{set\_layout} and \cmd{set\_title}.
1134
1135To set the exact velocity or channel range to be plotted use the
1136\cmd{set\_range} function. To reset to the default value, call
1137\cmd{set\_range} with no arguments. E.g.
1138
1139\begin{verbatim}
[1259]1140  ASAP>scans.set_unit('km/s')
1141  ASAP>plotter.plot(scans)
1142  ASAP>plotter.set_range(-150,-50)
1143  ASAP>plotter.set_range() # To reset
[534]1144\end{verbatim}
1145
[544]1146Both the range of the ``x'' and ``y'' axis can be set at once, if desired:
1147
1148\begin{verbatim}
[1259]1149  ASAP>plotter.set_range(-10,30,-1,6.6)
[544]1150\end{verbatim}
1151
[738]1152To save a hardcopy of the current plot, use the save function, e.g.
[534]1153
1154\begin{verbatim}
[1259]1155  ASAP>plotter.save('myplot.ps')
1156  ASAP>plotter.save('myplot.png', dpi=80)
[534]1157\end{verbatim}
1158
[1217]1159\subsection{Plotter Customisation}
1160
1161The plotter allows the user to change most properties such as text
[1259]1162size and colour. The \cmd{commands} function and {\cmd help\
[1217]1163asapplotter} list all the possible commands that can be used with the
1164plotter.
1165
1166\commanddef{set\_colors}{Change the default colours used for line
1167plotting. Colours can be given either by name, using the html standard
1168(e.g. red, blue or hotpink), or hexadecimal code (e.g. for black
1169\#000000). If less colours are specified than lines plotted , the
1170plotter cycles through the colours. Example:} {ASAP>
1171plotter.set\_colors('red blue green')\\ ASAP>
1172plotter.set\_colors(`\#0000 blue \#FF00FF')\\ }
1173
1174\commanddef{set\_linestyles}{Change the line styles used for
1175plots. Allowable values are 'line', 'dashed', 'dotted', 'dashdot',
1176'dashdotdot' and 'dashdashdot. Example: }{
[1259]1177  ASAP>plotter.set\_linestyles('line dash cotted datshot.)\\
1178  ASAP>plotter.set\_font(size=10)\\
[1217]1179}
1180
1181\commanddef{set\_font}{Change the font style and size. Example}{
[1259]1182  ASAP>plotter.set\_font(weight='bold')\\
1183  ASAP>plotter.set\_font(size=10)\\
1184  ASAP>plotter.set\_font(style='italic')\\
[1217]1185}
1186
[1259]1187\commanddef{set\_layout}{Change the multi-panel layout, i.e. now many
[1217]1188  rows and columns}{
[1259]1189  ASAP>plotter.set\_layout(3,2)
[1217]1190}
1191
1192\commanddef{set\_legend}{Set the position, size and optional value of the legend}{
[1259]1193  ASAP>plotter.set\_legend(fontsize=16)\\
1194  ASAP>plotter.set\_legend(mode=0)  \# ASAP chooses where to put the legend\\
1195  ASAP>plotter.set\_legend(mode=4)  \# Put legend on lower right\\
1196  ASAP>plotter.set\_legend(mode=-1) \# No legend\\
1197  ASAP>plotter.set\_legend(mp=['RR','LL']) \# Specify legend labels\\
1198  ASAP>plotter.set\_legend(mp=[r'\$\^\{12\}CO\$',r'\$\^\{13\}CO\$']) \# Latex labels
[1217]1199}
1200
1201\commanddef{set\_title}{Set the plot title. If multiple panels are
1202  plotted, multiple titles have to be specified}{
[1259]1203  ASAP>plotter.set\_title(`G323.12$-$1.79`)\\
1204  ASAP>plotter.set\_title([`SiO`, 'Methanol'], fontsize=18)\\
[1217]1205}
1206
1207\subsection{Plotter Annotations}
1208
[1259]1209The plotter allows various annotations (lines, arrows, text and
[1217]1210``spans'') to be added to the plot. These annotations are
1211``temporary'', when the plotter is next refreshed
1212(e.g. \cmd{plotter.plot} or \cmd{plotter.set\_range}) the annotations
1213will be removed.
1214
[1259]1215\bigcommanddef{arrow(x,y,x+dx,y+dy)}{Draw an arrow from a specified
[1217]1216\cmd{(x,y)} position to \cmd{(x+dx, y+dy)}. The values are in world
[1267]1217coordinates. Addition arguments which must be passed are {\cmd head\_width} and \cmd{head\_length}}{
1218  ASAP>plotter.arrow(-40,7,35,0,head\_width=0.2, head\_length=10)
[1217]1219}
1220
1221\bigcommanddef{axhline(y, xmin, xmax)}{Draw a horizontal line at the
[1259]1222specified \cmd{y} position (in world coordinates) between xmin and xmax
1223(in relative coordinates, i.e. 0.0 is the left hand edge of the plot
[1267]1224while 1.0 is the right side of the plot).}{
[1259]1225 ASAP>plotter.axhline(6.0,0.2,0.8)
[1217]1226}
1227
1228\bigcommanddef{avhline(x, ymin, ymax)}{Draw a vertical line at the
[1259]1229specified \cmd{x} position (in world coordinates) between \cmd{ymin}
1230and \cmd{ymax} (in relative coordinates, i.e. 0.0 is the left hand edge
[1217]1231of the plot while 1.0 is the right side of the plot).}{
[1259]1232 ASAP>plotter.axvline(-50.0,0.1,1.0)
[1217]1233}
1234
1235\bigcommanddef{axhspan(ymin, ymax, \\ \hspace*{20mm}xmin,
1236 xmax)}{Overlay a transparent colour rectangle. \cmd{ymin} and
[1259]1237 \cmd{ymax} are given in world coordinates while \cmd{xmin} and
[1217]1238 \cmd{xmax} are given in relative coordinates}{
[1259]1239ASAP>plotter.axhspan(2,4,0.25,0.75)
[1217]1240}
1241
1242\bigcommanddef{axvspan(xmin, xmax, \\ \hspace*{20mm} ymin,
1243 ymax)}{Overlay a transparent colour rectangle. \cmd{ymin} and
[1259]1244 \cmd{ymax} are given in relative coordinates while \cmd{xmin} and
[1217]1245 \cmd{xmax} are given in world coordinates}{
[1259]1246ASAP>plotter.axvspan(-50,60,0.2,0.5)
[1217]1247}
1248
1249\bigcommanddef{text(x, y, str)}{Place the string \cmd{str} at the
1250 given \cmd{(x,y)} position in world coordinates.}{
1251ASAP>plotter.text(-10,7,"CO")
1252}
1253
1254These functions all take a set of \cmd{kwargs} commands. These can be
1255used to set colour, linewidth fontsize etc. These are standard
1256matplotlib settings. Common ones include:
1257
1258\begin{tabular}{ll}
[1267]1259 \tt color, facecolor, edgecolor \\
1260 \tt width, linewidth \\
[1217]1261 \tt fontsize \\
1262 \tt fontname & Sans, Helvetica, Courier, Times etc\\
1263 \tt rotation & Text rotation (horizontal, vertical) \\
1264 \tt alpha & The alpha transparency on 0-1 scale\\
1265\end{tabular}
1266
1267Examples:
1268\begin{verbatim}
[1259]1269  ASAP>plotter.axhline(6.0,0.2,0.8, color='red', linewidth=3)
1270  ASAP>plotter.text(-10,7,"CO", fontsize=20)
[1217]1271\end{verbatim}
1272
[1259]1273\section{Line Catalog}
[1267]1274\label{sec:linecat}
1275\index{Linecatalog}ASAP can load and manipulate line catlogs to
1276retrieve rest frequencies for \cmd{set\_restfreqs} and for line
1277identification in the plotter. All line catalogs are loaded into a ``linecatalog'' object.
[1259]1278
[1267]1279No line catalogs are built into ASAP, the user must load a ASCII based
1280table (which can optionally be saved in an internal format) either of
1281the users own creation or a standard line catalog such as the JPL line
1282catalog or Lovas. The ATNF asap ftp area as copies of the JPL and
1283Lovas catalog in the appropriate format:
[1259]1284
[1267]1285\hspace{1cm}\cmd{ftp://ftp.atnf.csiro.au/pub/software/asap/data}
1286 
1287
[1259]1288\subsection{Loading a Line Catalog}
1289
[1267]1290\index{Linecatalog!loading}The ASCII text line catalog must have at
[1259]1291least 4 columns. The first four columns must contain (in order):
1292Molecule name, frequency in MHz, frequency error and ``intensity''
1293(any units). If the molecule name contains any spaces, they must be
1294wrapped in quotes \verb+""+.
1295
1296A sample from the JPL line catalog:
1297
1298\begin{verbatim}
1299     H2D+    3955.2551 228.8818  -7.1941 
1300     H2D+   12104.7712 177.1558  -6.0769 
1301     H2D+   45809.2731 118.3223  -3.9494 
1302     CH       701.6811    .0441  -7.1641 
1303     CH       724.7709    .0456  -7.3912 
1304     CH      3263.7940    .1000  -6.3501 
1305     CH      3335.4810    .1000  -6.0304 
1306\end{verbatim}
1307
1308To load a line catalog then save it in the internal format:
1309
1310\begin{verbatim}
1311  ASAP>jpl = linecatalog('jpl_pruned.txt')
1312  ASAP>jpl.save('jpl.tbl')
1313\end{verbatim}
1314
1315Later the saved line catalog can reloaded:
1316
1317\begin{verbatim}
1318  ASAP>jpl = linecatalog('jpl.tbl')
1319\end{verbatim}
1320
[1267]1321{\em NOTE:} Due to a bug in ipython, if you do not \cmd{del} the
1322linecatalog table before quiting asap, you will be left with temporary
1323files. It is safe to delete these once asap has finished.
1324
[1259]1325\subsection{Line selection}
1326
[1267]1327\index{Linecatalog!line selection}The linecatalog has a number of
[1259]1328selection functions to select a range of lines from a larger catalog
1329(the JPL catalog has $>$180000 lines for
1330example). \cmd{set\_frequency\_limits} selects on frequency range,
1331\cmd{set\_strength\_limits} selects on intensity while \cmd{set\_name}
[1267]1332selects on molecule name (wild cards allowed). The \cmd{summary}
1333function lists the currently selected lines.
[1259]1334
1335\begin{verbatim}
1336  ASAP>jpl = linecatalog('jpl.tbl')
1337  ASAP>jpl.set_frequency_limits(80,115,'GHz') # Lines for 3mm receiver
1338  ASAP>jpl.set_name('*OH')                    # Select all alcohols
1339  ASAP>jpl.set_name('OH')                     # Select only OH molecules
1340  ASAP>jpl.summary()
1341
1342  ASAP>jpl.reset()                            # Selections are accumulative
1343  ASAP>jpl.set_frequency_limits(80,115,'GHz')
1344  ASAP>jpl.set_strength_limits(-2,10)         # Select brightest lines
1345  ASAP>jpl.summary()
1346\end{verbatim}
1347
1348\subsection{Using Linecatalog}
1349
1350The line catalogs can be used for line overlays on the plotter or with
1351\cmd{set\_restfreq}.
1352
1353\subsubsection{Plotting linecatalog}
1354
[1267]1355\index{Linecatalog!plotting}
[1259]1356
1357The plotter \cmd{plot\_lines} function takes a line catalog as an
1358argument and overlays the lines on the spectrum. {\em Currently this
1359only works when plotting in units of frequency (Hz, GHz etc).} If a
1360large line catalog has been loaded (e.g. JPL) it is highly recommended
1361that you use the selection functions to narrow down the number of
1362lines.  By default the line catalog overlay is plotted assuming a line
1363velocity of 0.0. This can be set using the \cmd{doppler} argument (in
1364km/s). Each time \cmd{plot\_lines} is called the new lines are added
1365to any existing line catalog annotations. These are all removed after
1366the next call to \cmd{plotter.plot()}.
1367
1368\begin{verbatim}
1369  ASAP>jpl = linecatalog('jpl.tbl')
1370  ASAP>jpl.set_frequency_limits(23,24,'GHz')
1371  ASAP>data.set_unit('GHz')            # Only works with freq axis currently
1372  ASAP>plotter.plot(data)
1373  ASAP>plotter.plot_lines(jpl)
1374
1375  ASAP>plotter.plot()                  # Reset plotter
[1267]1376  ASAP>plotter.plot_lines(jpl,doppler=-10,location='Top')
1377                             # On top with -10 km/s velocity
[1259]1378\end{verbatim}
1379
1380\subsubsection{Setting Rest Frequencies}
1381
[1267]1382\index{Linecatalog!set\_restfreq}A linecatalog can be used as an
1383argument for \cmd{set\_restfreqs}. If a personal line catalog has been
1384used (which has the same size as the number of number of IFs) or
1385linecatalog selection has been used to reduce the number of entries,
1386the line catalog can be used directly as an argument to
1387\cmd{set\_restfreqs}, e.g.:
1388\begin{verbatim}
1389  ASAP>jpl = linecatalog('jpl.tbl')
1390  ASAP>jpl.set_frequency_limits(23.66,23.75,'GHz')
1391  ASAP>data = scantable('data.rpf')
1392  ASAP>data.set_restfreqs(jpl)
1393\end{verbatim}
[1259]1394
[1267]1395If a larger linecatalog is used, individual elements can be used. Use
1396the \cmd{summary} to get the index number of the rest frequency you
1397wish to use. E.g.:
1398
1399\begin{verbatim}
1400  ASAP>jpl.summary()
1401  ASAP>data.set_restfreqs([jpl[11],[jpl[21]])
1402\end{verbatim}
1403
1404For data with many IFs, such as from MOPS, the user it is recommended
1405that the user creates their own line cstalog for the data and use this
1406to set the rest frequency for each IF.
1407
[534]1408\section{Fitting}
1409
[794]1410\index{Fitting}Currently multicomponent Gaussian function is
1411available. This is done by creating a fitting object, setting up the
1412fit and actually fitting the data. Fitting can either be done on a
[966]1413single scantable selection or on an entire scantable using the
1414\cmd{auto\_fit} function. If single value fitting is used, and the
1415current selection includes multiple spectra (beams, IFs, scans etc)
[971]1416then the first spectrum in the scantable will be used for fitting.
[534]1417
1418\begin{verbatim}
[1259]1419 ASAP>f = fitter()
1420 ASAP>f.set_function(gauss=2) # Fit two Gaussians
1421 ASAP>f.set_scan(scans)
1422 ASAP>selection = selector()
1423 ASAP>selection.set_polarisations(1) # Fit the second polarisation
1424 ASAP>scans.set_selection(selection)
1425 ASAP>scans.set_unit('km/s')  # Make fit in velocity units
1426 ASAP>f.fit(1)                # Run the fit on the second row in the table
1427 ASAP>f.plot()                # Show fit in a plot window
1428 ASAP>f.get_parameters()      # Return the fit paramaters
[534]1429\end{verbatim}
1430
1431This auto-guesses the initial values of the fit and works well for data
1432without extra confusing features. Note that the fit is performed in
1433whatever unit the abscissa is set to.
1434
1435If you want to confine the fitting to a smaller range (e.g. to avoid
1436band edge effects or RFI you must set a mask.
1437
1438\begin{verbatim}
[1259]1439  ASAP>f = fitter()
1440  ASAP>f.set_function(gauss=2)
1441  ASAP>scans.set_unit('km/s')  # Set the mask in channel units
1442  ASAP>msk = s.create_mask([1800,2200])
1443  ASAP>scans.set_unit('km/s')  # Make fit in velocity units
1444  ASAP>f.set_scan(s,msk)
1445  ASAP>f.fit()
1446  ASAP>f.plot()
1447  ASAP>f.get_parameters()
[534]1448\end{verbatim}
1449
[544]1450If you wish, the initial parameter guesses can be specified and
1451specific parameters can be fixed:
[534]1452
1453\begin{verbatim}
[1259]1454  ASAP>f = fitter()
1455  ASAP>f.set_function(gauss=2)
1456  ASAP>f.set_scan(s,msk)
1457  ASAP>f.fit() # Fit using auto-estimates
[738]1458  # Set Peak, centre and fwhm for the second gaussian.
[534]1459  # Force the centre to be fixed
[1259]1460  ASAP>f.set_gauss_parameters(0.4,450,150,0,1,0,component=1)
1461  ASAP>f.fit() # Re-run the fit
[534]1462\end{verbatim}
1463
1464The fitter \cmd{plot} function has a number of options to either view
1465the fit residuals or the individual components (by default it plots
1466the sum of the model components).
1467
1468Examples:
1469
1470\begin{verbatim}
1471  # Plot the residual
[1259]1472  ASAP>f.plot(residual=True)
[534]1473
1474  # Plot the first 2 componentsa
[1259]1475  ASAP>f.plot(components=[0,1])
[534]1476
1477  # Plot the first and third component plus the model sum
[1259]1478  ASAP>f.plot(components=[-1,0,2])  # -1 means the compoment sum
[534]1479\end{verbatim}
1480
[544]1481\subsection{Fit saving}
1482
[794]1483\index{Fitter!Fit saving}One you are happy with your fit, it is
1484possible to store it as part of the scantable.
[544]1485
1486\begin{verbatim}
[1259]1487  ASAP>f.store_fit()
[544]1488\end{verbatim}
1489
1490This will be saved to disk with the data, if the ``ASAP'' file format
1491is selected. Multiple fits to the same data can be stored in the
[738]1492scantable.
[544]1493
1494The scantable function \cmd{get\_fit} can be used to retrieve the
1495stored fits. Currently the fit parameters are just printed to the
1496screen.
1497
1498\begin{verbatim}
[1259]1499  ASAP>scans.get_fit(4) # Print fits for row 4
[544]1500\end{verbatim}
1501
[1259]1502A fit can also be exported to an ASCII file using the \cmd{store\_fit}
1503function. Simply give the name of the output file requires as an
1504argument.
1505
1506\begin{verbatim}
1507  ASAP>f.store_fit('myfit.txt')
1508\end{verbatim}
1509
[534]1510\section{Polarisation}
1511
[794]1512\index{Polarisation}Currently ASAP only supports polarmetric analysis
1513on linearly polarised feeds and the cross polarisation products
[971]1514measured. Other cases will be added on an as needed basis.
[534]1515
[538]1516Conversions of linears to Stokes or Circular polarisations are done
[966]1517``on-the-fly''. Leakage cannot be corrected for nor are there routines
1518to calibrate position angle offsets.
[534]1519
[538]1520\subsection{Simple Calibration}
1521
[794]1522\index{Polarisation!calibration}It is possible that there is a phase
1523offset between polarisation which will effect the phase of the cross
1524polarisation correlation, and so give rise to spurious
1525polarisation. \cmd{rotate\_xyphase} can be used to correct for this
1526error. At this point, the user must know how to determine the size of
1527the phase offset themselves.
[538]1528
1529\begin{verbatim}
[1259]1530  ASAP>scans.rotate_xyphase(10.5)            # Degrees
[538]1531\end{verbatim}
1532
1533Note that if this function is run twice, the sum of the two values is
[546]1534applied because it is done in-situ.
[538]1535
[546]1536A correction for the receiver parallactic angle may need to be made,
[953]1537generally because of how it is mounted. Use \cmd{rotate\_linpolphase}
1538to correct the position angle. Running this function twice results in
1539the sum of the corrections being applied because it is applied
1540in-situ.
[538]1541
1542\begin{verbatim}
[1259]1543  ASAP>scans.rotate_linpolphase(-45) # Degrees; correct for receiver mounting
[953]1544\end{verbatim}
[538]1545
[953]1546If the sign of the complex correlation is wrong (this can happen
1547depending on the correlator configuration), use \cmd{invert\_phase} to
1548change take the complex conjugate of the complex correlation
1549term. This is always performed in-situ.
1550
1551\begin{verbatim}
[1259]1552  ASAP>scans.invert_phase()
[538]1553\end{verbatim}
1554
[953]1555Depending on how the correlator is configured, ``BA'' may be
[1259]1556correlated instead of ``AB''. Use \cmd{swap\_linears} to correct for
[953]1557this problem:
1558
1559\begin{verbatim}
[1259]1560  ASAP>scans.swap_linears()
[953]1561\end{verbatim}
1562
[1011]1563\subsection{Conversion}
1564\label{sec:polconv}
1565
[1064]1566Data can be permanently converted between linear and circular
1567polarisations and stokes.
1568
[1011]1569\begin{verbatim}
[1259]1570  ASAP>stokescans = linearscans.convert_pol("stokes")
[1011]1571\end{verbatim}
1572
1573
[538]1574\subsection{Plotting}
1575\label{sec:polplot}
1576
[953]1577\index{Polarisation!plotting}To plot Stokes values, a selector object
1578must be created and the set\_polarisation function used to select the
1579desired polarisation products.
1580
1581The values which can be plotted include a selection of [I,Q,U,V], [I,
1582Plinear, Pangle, V], [RR, LL] or [XX, YY, Real(XY),
[794]1583Imaginary(XY)]. (Plinear and Pangle are the percentage and position
[1011]1584angle of linear polarisation).
[538]1585
1586Example:
1587
1588\begin{verbatim}
[1259]1589  ASAP>selection = selector()
[970]1590
[1259]1591  ASAP>selection.set_polarisations(``I Q U V'')
[953]1592  ASAP  plotter.set_selection(selection);              # Select I, Q, U \& V
1593
[1259]1594  ASAP>selection.set_polarisations(``I Q'')
[953]1595  ASAP  plotter.set_selection(selection);              # Select just I \& Q
1596
[1259]1597  ASAP>selection.set_polarisations(``RR LL'')
[953]1598  ASAP  plotter.set_selection(selection);              # Select just RR \& LL
1599
[1259]1600  ASAP>selection.set_polarisations(``XX YY'')
[953]1601  ASAP  plotter.set_selection(selection);              # Select linears
1602
[1259]1603  ASAP>selection.set_polarisations(``I Plinear'')
[966]1604  ASAP  plotter.set_selection(selection);              # Fractional linear
[953]1605
[1259]1606  ASAP>selection.set_polarisations(``Pangle'')
[966]1607  ASAP  plotter.set_selection(selection);              # Position angle
1608
[538]1609\end{verbatim}
1610
[970]1611Scan, beam and IF selection are also available in the selector object as
[953]1612describe in section~\ref{sec:selection}.
[538]1613
[1217]1614\section{Specialised Processing}
1615
1616\subsection{Multibeam MX mode}
1617
1618MX mode is a specific observing approach with a multibeam where a
1619single source is observed cycling through each beam. The scans when
[1259]1620the beam is off source is used as a reference for the on-source
[1217]1621scan. The function \cmd{mx\_quotient} is used to make a quotient
1622spectrum from an MX cycle. This works averaging the ``off-source''
1623scans for each beam (either a median average or mean) and using this
1624as a reference scan in a normal quotient (for each beam). The final
1625spectrum for each beam is returned on a new scantable containing
1626single scan (it the scan numbers are re-labelled to be the same). Note
1627that the current version of \cmd{mx\_quotient} only handles a single
[1259]1628MX cycle, i.e. if each beam has observed the source multiple times you
[1217]1629will need to use the selector object multiple times to select a single
1630MX cycle, run \cmd{mx\_quotient} for each cycle then merge the
1631resulting scan tables back together.
1632
1633Example:
1634
1635\begin{verbatim}
[1259]1636  ASAP>scans = scantable('mydata.rpf')
1637  ASAP>q = scans.mx_quotient()
1638  ASAP>plotter.plot(q)
[1217]1639\end{verbatim}
1640
1641The function \cmd{average\_beam} averages multiple beam data
1642together. This is need if MX mode has been used to make a long
1643integration on a single source. E.g.
1644
1645\begin{verbatim}
[1259]1646  ASAP>av = q.average_beam()
[1217]1647\end{verbatim}
1648
1649\subsection{Frequency Switching}
1650
1651{\em FILL ME IN}
1652
[1259]1653\subsection{Disk Based Processing}
[1267]1654\index{Scantable!disk based}
[1259]1655
[1267]1656Normally scantables exist entirely in memory during an ASAP
1657session. This has the advantage of speed, but causes limits on the
[1259]1658size of the dataset which can be loaded. ASAP can use ``disk based''
[1267]1659scan tables which cache the bulk of the scantable on disk and require
1660significantly less memory usage.
[1259]1661
[1267]1662To use disk based tables you either need to change the default in your
[1344]1663\cmd{.asaprc} file, e.g.
[1267]1664\begin{verbatim}
1665   scantable.storage          : disk
1666\end{verbatim}
1667
1668or use set the ``\cmd{rc}'' value while running asap to change this
1669on-the-fly. E.g.
1670\begin{verbatim}
1671  ASAP>rc('scantable',storage='disk')
1672  ASAP>data = scantable('data.rpf')     # Loaded using disk based table
1673  ASAP>rc('scantable',storage='memory') # Memory tables will be used now
1674\end{verbatim}
1675
1676Changing the ``\cmd{rc}'' value affects the next time the
1677\cmd{scantable} constructor is called.
1678
[1259]1679{\bf NOTE: } Currently a bug in ipython means temporary files are not
1680cleaned up properly when you exit ASAP. If you use disk based scan
[1267]1681tables your directory will be left with 'tabXXXXX\_X' directories. These can
[1259]1682be safely removed if ASAP is not running.
1683
[770]1684\section{Scantable Mathematics}
1685
[794]1686\index{Scantable!maths}It is possible to to simple mathematics
1687directly on scantables from the command line using the \cmd{+, -, *,
1688/} operators as well as their cousins \cmd{+=, -= *=, /=}. This works
[971]1689between a scantable and a float. (Note that it does
[794]1690not work for integers).
[770]1691
[971]1692{\em Currently mathematics between two scantables is not available }
[966]1693
[1259]1694%  ASAP>sum = scan1+scan2
[534]1695\begin{verbatim}
[1259]1696  ASAP>scan2 = scan1+2.0
1697  ASAP>scan *= 1.05
[770]1698\end{verbatim}
1699
1700\section{Scripting}
1701
[1259]1702\index{Scripting}Because ASAP is based on python, it easy for the user
[794]1703write their own scripts and functions to process data. This is highly
1704recommended as most processing of user data could then be done in a
1705couple of steps using a few simple user defined functions. A Python
[1259]1706primer is beyond the scope of this userguide. See the ASAP home pages
[794]1707for a scripting tutorial or the main python website for comprehensive
1708documentation.
[770]1709
1710\hspace{1cm} http://www.atnf.csiro.au/computing/software/asap/tutorials
[953]1711
[1344]1712\hspace{1cm} http://svn.atnf.csiro.au/trac/asap/wiki
1713
[770]1714\hspace{1cm} http://www.python.org/doc/Introduction.html
1715
1716\subsection{Running scripts}
1717
[1259]1718The ASAP global function \cmd{execfile} reads the named text file and
[770]1719executes the contained python code. This file can either contain
1720function definitions which will be used in subsequent processing or
1721just a set of commands to process a specific dataset.
1722
[1344]1723As an alternative to run scripts without entering ASAP, create a script which
1724starts with.
1725
1726\begin{verbatim}
1727from asap import *
1728
1729<your code>
1730\end{verbatim}
1731
1732And run it with \cmd{python scriptname}.
1733
[770]1734\subsection{asapuserfuncs.py}
1735
1736The file $\sim$/.asap/asapuserfuncs.py is automatically read in when
[1259]1737ASAP is started. The user can use this to define a set of user
1738functions which are automatically available each time ASAP is
[770]1739used. The \cmd{execfile} function can be called from within this file.
1740
1741\section{Worked examples}
1742
1743In the following section a few examples of end-to-end processing of
[1259]1744some data in ASAP are given.
[770]1745
1746\subsection{Mopra}
[794]1747\index{Mopra}
[770]1748
[794]1749The following example is of some dual polarisation, position switched
[1259]1750data from Mopra. The source has been observed multiple times split
1751into a number of separate RPFITS files. To make the processing easier,
1752the first step is to \cmd{cat} the separate RPFITS files together and
1753load as a whole (future versions of ASAP will make this unnecessary).
[794]1754
1755
1756\begin{verbatim}
[1011]1757# get a list of the individual rpfits files in the current directory
1758myfiles = list_files()
[794]1759
1760# Load the data into a scantable
[1011]1761data = scantable(myfiles)
[794]1762print data
1763
1764# Form the quotient spectra
1765q = data.auto_quotient()
1766print q
1767
1768# Look at the spectra
1769plotter.plot(q)
1770
[1011]1771# Set unit and reference frame
[794]1772q.set_unit('km/s')
1773q.set_freqframe('LSRK')
1774
[966]1775# Average all scans in time, aligning in velocity
1776av = q.average_time(align=True)
[794]1777plotter.plot(av)
1778
1779# Remove the baseline
1780msk = av.create_mask([100,130],[160,200])
1781av.poly_baseline(msk,2)
1782
1783# Average the two polarisations together
1784iav = av.average_pol()
1785print iav
1786plotter.plot(iav)
1787
1788# Set a sensible velocity range on the plot
1789plotter.set_range(85,200)
1790
1791# Smooth the data a little
1792av.smooth('gauss',4)
1793plotter.plot()
1794
1795# Fit a guassian to the emission
1796f = fitter()
1797f.set_function(gauss=1)
1798f.set_scan(av)
1799f.fit()
1800
1801# View the fit
1802f.plot()
1803
1804# Get the fit parameters
1805f.get_parameters()
1806
1807\end{verbatim}
1808
1809
[770]1810\subsection{Parkes Polarimetry}
1811
[794]1812\index{Parkes}\index{Polarisation}The following example is processing
[1267]1813of some Parkes polarimetric observations of OH masers at
[794]18141.6~GHz. Because digital filters where used in the backend, the
1815baselines are stable enough not to require a quotient spectra. The
18164~MHz bandwidth is wide enough to observe both the 1665 and 1667~MHz
1817OH maser transitions. Each source was observed once for about 10
[1259]1818minutes. Tsys information was not written to the RPFITS file (a
[794]1819nominal 25K values was used), so the amplitudes need to be adjusted
1820based on a separate log file. A simple user function is used to
1821simplify this, contained in a file called mypol.py:
[770]1822
1823\begin{verbatim}
1824def xyscale(data,xtsys=1.0,ytsys=1.0,nomtsys=25.0) :
1825
[966]1826 selection = selector()
[971]1827 selection.set_polarisations(0)
[966]1828 data.set_selection(selection)
1829 data.scale(xtsys/nomtsys)
[770]1830
[971]1831 selection.set_polarisations(1)
[966]1832 data.set_selection(selection)
1833 data.scale(ytsys/nomtsys)
[770]1834
[971]1835 selection.set_polarisations(0)
[966]1836 data.set_selection(selection)
1837 data.scale((xtsys+ytsys)/(2*nomtsys))
[770]1838
[971]1839 selection.set_polarisations(0)
[966]1840 data.set_selection(selection)
1841 data.scale((xtsys+ytsys)/(2*nomtsys))
[770]1842\end{verbatim}
1843
[1259]1844The typical ASAP session would be
[770]1845
1846\begin{verbatim}
[794]1847
[770]1848# Remind ourself the name of the rpfits files
[794]1849ls
[770]1850
1851# Load data from an rpfits file
1852d1665 = scantable('2005-10-27_0154-P484.rpf')
1853
1854# Check what we have just loaded
[1011]1855d1665.summary()
[770]1856
1857# View the data in velocity
1858d1665.set_unit('km/s')
1859d1665.set_freqframe('LSRK')
1860
1861# Correct for the known phase offset in the crosspol data
1862d1665.rotate_xyphase(-4)
1863
[794]1864# Create a copy of the data and set the rest frequency to the 1667 MHz
[770]1865# transition
1866d1667 = d1665.copy()
[966]1867d1667.set_restfreqs([1667.3590], 'MHz')
1868d1667.summary()
[770]1869
1870# Copy out the scan we wish to process
1871g351_5 = d1665.get_scan('351p160')
1872g351_7 = d1667.get_scan('351p160')
1873
[966]1874# Baseline both
1875msk = g351_5.create_mask([-30,-25],[-5,0])
1876g351_5.poly_baseline(msk,order=1)
1877msk = g351_7.create_mask([-30,-25],[-5,0])
1878g351_7.poly_baseline(msk,order=1)
[770]1879
[966]1880
1881# Plot the data. The plotter can only plot a single scantable
1882# So we must merge the two tables first
1883
1884plotscans = merge(g351_5, g351_7)
1885
1886plotter.plot(plotscans) # Only shows one panel
1887
[770]1888# Tell the plotter to stack polarisation and panel scans
1889plotter.set_mode('p','s')
1890
1891# Correct for the Tsys using our predefined function
[971]1892execfile('mypol.py') # Read in the function xyscale
[770]1893xyscale(g351_5,23.2,22.7) # Execute it on the data
1894xyscale(g351_7,23.2,22.7)
1895
1896# Only plot the velocity range of interest
1897plotter.set_range(-30,10)
1898
1899# Update the plot with the baselined data
1900plotter.plot()
1901
1902# Look at the various polarisation products
[966]1903selection = selector()
1904selection.set_polarisations(``RR LL'')
1905plotter.set_selection(selection)
1906selection.set_polarisations(``I Plinear'')
1907plotter.set_selection(selection)
1908selection.set_polarisations(``I Q U V'')
1909plotter.set_selection(selection)
[770]1910
1911# Save the plot as postscript
[966]1912plotter.save('g351_stokes.ps')
[770]1913
1914# Save the process spectra
[966]1915plotscans.save('g351.asap')
[770]1916
1917\end{verbatim}
1918
1919\subsection{Tidbinbilla}
1920
[794]1921\index{Tidbinbilla}The following example is processing of some
1922Tidbinbilla observations of NH$_3$ at 12~mm. Tidbinbilla has (at the
1923time of observations) a single polarisation, but can process two IFs
1924simultaneously. In the example, the first half of the observation was
1925observing the (1,1) and (2,2) transitions simultaneously). The second
1926half observed only the (4,4) transition due to bandwidth
1927limitations. The data is position switched, observing first an
1928reference to the west, then the source twice and finally reference to
[1347]1929the east. Important to note, that \cmd{auto\_quotient} should be executed
1930using the \cmd{mode} `time'.
[770]1931
1932\begin{verbatim}
1933
1934# Load the rpfits file and inspect
1935d = scantable('2003-03-16_082048_t0002.rpf')
1936print d
1937
1938# Make the quotient spectra
[1347]1939q = d.auto_quotient(mode='time')
[770]1940print q
1941
[966]1942del d
1943
[770]1944# Plot/select in velocity
1945q.set_freqframe('LSRK')
1946q.set_unit('km/s')
1947
[966]1948# Correct for gain/el effects
1949
1950q.recalc_azel()  # Tid does not write the elevation
1951q.gain_el()
1952q.opacity(0.05)
1953
[770]1954# Seperate data from the (1,1)&(2,2) and (4,4) transitions
[971]1955g1 = q.get_scan(range(6))     # scans 0..5
1956g2 = q.get_scan(range(6,12))  # scans 6..11
[770]1957
[794]1958# Align data in velocity
[966]1959g1.freq_align()
1960g2.freq_align()
[770]1961
1962# Average individual scans
1963a1 = g1.average_time()
1964a2 = g2.average_time()
1965
[1011]1966# Rpfits file only contains a single rest frequency. Set both
[966]1967a1.set_restfreqs([23694.4700e6,23722.6336e6])
[770]1968
[966]1969plotter.plot(a1)
[1011]1970plotter.set_mode('i','t')
[770]1971
1972a1.auto_poly_baseline()
1973
1974plotter.plot()
1975
1976a1.smooth('gauss',5)
1977plotter.plot()
1978
[966]1979
[770]1980\end{verbatim}
1981
1982\newpage
1983
1984\section{Appendix}
1985
1986\subsection{Function Summary}
1987
[794]1988\index{Functions!summary}%
[770]1989\begin{verbatim}
[1267]1990   [The scan container]
[534]1991        scantable           - a container for integrations/scans
1992                              (can open asap/rpfits/sdfits and ms files)
1993            copy            - returns a copy of a scan
1994            get_scan        - gets a specific scan out of a scantable
[1011]1995                              (by name or number)
[1217]1996            drop_scan       - drops a specific scan out of a scantable
1997                              (by number)
[1011]1998            set_selection   - set a new subselection of the data
1999            get_selection   - get the current selection object
[534]2000            summary         - print info about the scantable contents
2001            stats           - get specified statistic of the spectra in
2002                              the scantable
2003            stddev          - get the standard deviation of the spectra
2004                              in the scantable
2005            get_tsys        - get the TSys
2006            get_time        - get the timestamps of the integrations
[1011]2007            get_sourcename  - get the source names of the scans
[794]2008            get_azimuth     - get the azimuth of the scans
2009            get_elevation   - get the elevation of the scans
2010            get_parangle    - get the parallactic angle of the scans
[1011]2011            get_unit        - get the current unit
[534]2012            set_unit        - set the abcissa unit to be used from this
2013                              point on
2014            get_abcissa     - get the abcissa values and name for a given
2015                              row (time)
[1267]2016            get_column_names - get the names of the columns in the scantable
2017                               for use with selector.set_query
[534]2018            set_freqframe   - set the frame info for the Spectral Axis
2019                              (e.g. 'LSRK')
2020            set_doppler     - set the doppler to be used from this point on
[1011]2021            set_dirframe    - set the frame for the direction on the sky
[534]2022            set_instrument  - set the instrument name
[1217]2023            set_feedtype    - set the feed type
[534]2024            get_fluxunit    - get the brightness flux unit
2025            set_fluxunit    - set the brightness flux unit
2026            create_mask     - return an mask in the current unit
2027                              for the given region. The specified regions
2028                              are NOT masked
2029            get_restfreqs   - get the current list of rest frequencies
2030            set_restfreqs   - set a list of rest frequencies
[1217]2031            flag            - flag selected channels in the data
2032            save            - save the scantable to disk as either 'ASAP',
2033                              'SDFITS' or 'ASCII'
[534]2034            nbeam,nif,nchan,npol - the number of beams/IFs/Pols/Chans
[1011]2035            nscan           - the number of scans in the scantable
2036            nrow            - te number of spectra in the scantable
[534]2037            history         - print the history of the scantable
[544]2038            get_fit         - get a fit which has been stored witnh the data
[738]2039            average_time    - return the (weighted) time average of a scan
[534]2040                              or a list of scans
2041            average_pol     - average the polarisations together.
[1217]2042            average_beam    - average the beams together.
[1011]2043            convert_pol     - convert to a different polarisation type
[738]2044            auto_quotient   - return the on/off quotient with
[1217]2045                              automatic detection of the on/off scans (closest
2046                              in time off is selected)
2047            mx_quotient     - Form a quotient using MX data (off beams)
2048            scale, *, /     - return a scan scaled by a given factor
2049            add, +, -       - return a scan with given value added
[534]2050            bin             - return a scan with binned channels
2051            resample        - return a scan with resampled channels
2052            smooth          - return the spectrally smoothed scan
2053            poly_baseline   - fit a polynomial baseline to all Beams/IFs/Pols
[738]2054            auto_poly_baseline - automatically fit a polynomial baseline
[794]2055            recalc_azel     - recalculate azimuth and elevation based on
2056                              the pointing
[534]2057            gain_el         - apply gain-elevation correction
2058            opacity         - apply opacity correction
2059            convert_flux    - convert to and from Jy and Kelvin brightness
2060                              units
2061            freq_align      - align spectra in frequency frame
[1217]2062            invert_phase    - Invert the phase of the cross-correlation
2063            swap_linears    - Swap XX and YY
[534]2064            rotate_xyphase  - rotate XY phase of cross correlation
2065            rotate_linpolphase - rotate the phase of the complex
2066                                 polarization O=Q+iU correlation
[1011]2067            freq_switch     - perform frequency switching on the data
2068            stats           - Determine the specified statistic, e.g. 'min'
2069                              'max', 'rms' etc.
2070            stddev          - Determine the standard deviation of the current
2071                              beam/if/pol
[1217]2072     [Selection]
2073         selector              - a selection object to set a subset of a scantable
[1267]2074           set_cycles         - set (a list of) cycles by index
[1217]2075            set_beams          - set (a list of) beamss by index
2076            set_ifs            - set (a list of) ifs by index
2077            set_polarisations  - set (a list of) polarisations by name
2078                                 or by index
2079            set_names          - set a selection by name (wildcards allowed)
2080            set_tsys           - set a selection by tsys thresholds
[1267]2081            set_query          - set a selection by SQL-like query, e.g. BEAMNO==1
[1217]2082            reset              - unset all selections
2083            +                  - merge to selections
[1011]2084
[534]2085     [Math] Mainly functions which operate on more than one scantable
2086
[738]2087            average_time    - return the (weighted) time average
[534]2088                              of a list of scans
2089            quotient        - return the on/off quotient
[544]2090            simple_math     - simple mathematical operations on two scantables,
2091                              'add', 'sub', 'mul', 'div'
[1217]2092            quotient        - build quotient of the given on and off scans
2093                              (matched pairs and 1 off/n on are valid)
2094            merge           - merge a list of scantables
2095
2096     [Line Catalog]
2097        linecatalog              - a linecatalog wrapper, taking an ASCII or
2098                                   internal format table
2099            summary              - print a summary of the current selection
2100            set_name             - select a subset by name pattern, e.g. '*OH*'
2101            set_strength_limits  - select a subset by line strength limits
2102            set_frequency_limits - select a subset by frequency limits
2103            reset                - unset all selections
2104            save                 - save the current subset to a table (internal
2105                                   format)
2106            get_row              - get the name and frequency from a specific
2107                                   row in the table
[534]2108     [Fitting]
2109        fitter
2110            auto_fit        - return a scan where the function is
2111                              applied to all Beams/IFs/Pols.
2112            commit          - return a new scan where the fits have been
2113                              commited.
2114            fit             - execute the actual fitting process
[1011]2115            store_fit       - store the fit parameters in the data (scantable)
[534]2116            get_chi2        - get the Chi^2
2117            set_scan        - set the scantable to be fit
2118            set_function    - set the fitting function
2119            set_parameters  - set the parameters for the function(s), and
2120                              set if they should be held fixed during fitting
[544]2121            set_gauss_parameters - same as above but specialised for individual
2122                                   gaussian components
[534]2123            get_parameters  - get the fitted parameters
2124            plot            - plot the resulting fit and/or components and
2125                              residual
2126    [Plotter]
2127        asapplotter         - a plotter for asap, default plotter is
2128                              called 'plotter'
[1011]2129            plot            - plot a scantable
[1217]2130            plot_lines      - plot a linecatalog overlay
[534]2131            save            - save the plot to a file ('png' ,'ps' or 'eps')
2132            set_mode        - set the state of the plotter, i.e.
2133                              what is to be plotted 'colour stacked'
2134                              and what 'panelled'
[1011]2135            set_selection   - only plot a selected part of the data
2136            set_range       - set a 'zoom' window [xmin,xmax,ymin,ymax]
[534]2137            set_legend      - specify user labels for the legend indeces
2138            set_title       - specify user labels for the panel indeces
[1011]2139            set_abcissa     - specify a user label for the abcissa
[534]2140            set_ordinate    - specify a user label for the ordinate
2141            set_layout      - specify the multi-panel layout (rows,cols)
[1011]2142            set_colors      - specify a set of colours to use
2143            set_linestyles  - specify a set of linestyles to use if only
2144                              using one color
[1217]2145            set_font        - set general font properties, e.g. 'family'
2146            set_histogram   - plot in historam style
[1011]2147            set_mask        - set a plotting mask for a specific polarization
[1217]2148            text            - draw text annotations either in data or relative
2149                              coordinates
2150            arrow           - draw arrow annotations either in data or relative
2151                              coordinates
[1267]2152            axhline,axvline - draw horizontal/vertical lines
2153            axhspan,axvspan - draw horizontal/vertical regions
2154
2155        xyplotter           - matplotlib/pylab plotting functions
2156
2157    [Reading files]
2158        reader              - access rpfits/sdfits files
[1217]2159            arrow           - draw arrow annotations either in data or relative
2160                              coordinates
2161            axhline,axvline - draw horizontal/vertical lines
2162            axhspan,axvspan - draw horizontal/vertical regions
[738]2163
[1217]2164        xyplotter           - matplotlib/pylab plotting functions
2165
[534]2166    [Reading files]
2167        reader              - access rpfits/sdfits files
[1011]2168            open            - attach reader to a file
2169            close           - detach reader from file
[534]2170            read            - read in integrations
2171            summary         - list info about all integrations
2172
2173    [General]
2174        commands            - this command
2175        print               - print details about a variable
2176        list_scans          - list all scantables created bt the user
[1011]2177        list_files          - list all files readable by asap (default rpf)
[534]2178        del                 - delete the given variable from memory
2179        range               - create a list of values, e.g.
2180                              range(3) = [0,1,2], range(2,5) = [2,3,4]
2181        help                - print help for one of the listed functions
[538]2182        execfile            - execute an asap script, e.g. execfile('myscript')
[544]2183        list_rcparameters   - print out a list of possible values to be
[1217]2184                              put into .asaprc
2185        rc                  - set rc parameters from within asap
[534]2186        mask_and,mask_or,
2187        mask_not            - boolean operations on masks created with
2188                              scantable.create_mask
2189\end{verbatim}
2190
2191\subsection{ASCII output format}
2192
2193\subsection{.asaprc settings}
[794]2194\index{.asaprc}
[971]2195\asaprc{verbose}{{\bf True}/False}{Print verbose output, good to disable in scripts}
[770]2196
2197\asaprc{insitu}{{\bf True}/False}{Apply operations on the input
2198scantable or return new one}
2199
2200\asaprc{useplotter}{{\bf True}/False}{Preload a default plotter}
2201
2202\asaprc{plotter.gui}{{\bf True}/False}{Do we want a GUI or plot to a
2203file}
2204
2205\asaprc{plotter.stacking}{{\bf Pol} Beam IF Scan Time}{Default mode for
2206colour stacking}
2207
2208\asaprc{plotter.panelling}{Pol Beam IF {\bf Scan} Time}{Default mode
2209for panelling}
2210
2211\asaprc{plotter.ganged}{{\bf True}/False}{Push panels together, to
2212share axislabels}
2213
2214\asaprc{plotter.decimate}{True/{\bf False}}{Decimate the number of
2215points plotted by a factor of nchan/1024}
2216
[1217]2217\asaprc{plotter.histogram}{True/{\bf False}}{Plot spectrum using
2218histogram rather than lines.}
[770]2219
[1217]2220\asaprc{plotter.colours}{}{Set default colours for plotting}
2221
2222\asaprc{plotter.colours}{}{Set default line styles}
2223
2224\asaprc{plotter.papersze}{{\bf A4}}{}
2225
[770]2226% scantable
[1280]2227\asaprc{scantable.save}{{\bf ASAP} SDFITS ASCII MS2}{Default output
[794]2228format when saving}
[770]2229
2230\asaprc{scantable.autoaverage}{{\bf True}/False}{Auto averaging on
2231read}
2232
2233\asaprc{scantable.freqframe}{{\bf LSRK} TOPO BARY etc}{default
2234frequency frame to set when function scantable.set\_freqframe is
[971]2235called or the data is imported}
[770]2236
[1217]2237\asaprc{scantable.verbosesummary}{True/{\bf False}}{Control the level
2238of information printed by summary}
2239
2240\asaprc{scantable.storage}{{\bf memory}/disk}{Storage of scantables in
2241memory of via based disk tables}
2242
[953]2243\subsection{Installation}
2244
[1267]2245\index{Installation}
[953]2246
[1267]2247Please refer to the asap wiki for instructions on downloading and/or
2248building asap from source.
[953]2249
[1267]2250\hspace{1cm}\cmd{http://www.atnf.csiro.au/computing/software/asap/}
[953]2251
[794]2252\printindex
2253
[534]2254\end{document}
[770]2255
Note: See TracBrowser for help on using the repository browser.