source: trunk/doc/userguide.tex@ 1264

Last change on this file since 1264 was 1259, checked in by mar637, 18 years ago

Merge from Release2.1.0b tag

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 77.8 KB
RevLine 
[534]1\documentclass[11pt]{article}
2\usepackage{a4}
[770]3\usepackage{calc}
[534]4\usepackage[dvips]{graphicx}
[794]5\usepackage{makeidx}
[534]6
7% Adjust the page size
8\addtolength{\oddsidemargin}{-0.4in}
9\addtolength{\evensidemargin}{+0.4in}
10\addtolength{\textwidth}{+0.8in}
11
12\setlength{\parindent}{0mm}
13\setlength{\parskip}{1ex}
14
[1217]15\title{ATNF Spectral Analysis Package\\User Guide v2.1\\DRAFT }
[534]16\author{Chris Phillips}
17
18\newcommand{\cmd}[1]{{\tt #1}}
19
[770]20\newcommand{\asaprc}[3]{
21 \begin{minipage}[t]{45mm}#1\end{minipage}
22 \begin{minipage}[t]{30mm}\raggedright #2\end{minipage}\hspace{3mm}
23 \begin{minipage}[t]{\textwidth-75mm}#3\end{minipage}
24}
25
[1217]26\newcommand{\commanddef}[3]{
27 \begin{minipage}[t]{27mm}\tt #1\end{minipage}\hspace{3mm}
28 \begin{minipage}[t]{\textwidth-30mm}#2 \\ \tt #3\end{minipage}
29}
30
31\newcommand{\bigcommanddef}[3]{
32 \begin{minipage}[t]{45mm}\tt #1\end{minipage}\hspace{3mm}
33 \begin{minipage}[t]{\textwidth-47mm}#2 \\ \tt #3\end{minipage}
34}
35
[794]36\makeindex
37
[534]38\begin{document}
39
40\maketitle
41
42\section{Introduction}
43
[544]44ASAP is a single dish spectral line processing package currently being
45developed by the ATNF. It is intended to process data from all ATNF
[770]46antennas, and can probably be used for other antennas if they can
[544]47produce ``Single Dish FITS'' format. It is based on the AIPS++
48package.
49
[1217]50This userguide is being updated for the ASAP 2.1. Please report any
51mistakes you find.
[534]52
[544]53\section{Installation and Running}
[534]54
[738]55Currently there are installations running on Linux machines at
[534]56
57\begin{itemize}
58\item Epping - use hosts {\tt draco} or {\tt hydra}
59\item Narrabri - use host {\tt kaputar}
[537]60\item Parkes - use host {\tt bourbon}
[534]61\item Mopra - use host {\tt minos}
62\end{itemize}
63
[1217]64Or use your own Linux desktop.
65
66{\em Note. ASAP2.1 only runs on ATNF Linux machines which have been
67updated to Debian Sarge and are using the ``DEBIANsarge''
68/usr/local. If your favourite machine has not been upgraded, send a
69request your your friendly IT support.}
70
[794]71\index{Running}To start asap log onto one of these Linux hosts and enter
[534]72
73\begin{verbatim}
74 > cd /my/data/directory
[966]75 > asap
[534]76\end{verbatim}
77
[544]78This starts the ASAP. To quit, you need to type \verb+^+-d
[971]79(control-d) or type \cmd{\%Exit}.
[534]80
81\section{Interface}
82
[1064]83\index{Interface}ASAP is written in C++ and python. The user interface
84uses the ``ipython'' interactive shell, which is a simple interactive
85interface to python. The user does not need to understand python to
86use this, but certain aspects python affect what the user can do. The
87current interface is object oriented.
[534]88
89\subsection {Integer Indices are 0-relative}
90
91Please note, all integer indices in ASAP and iPython are {\bf 0-relative}.
92
93\subsection{Objects}
[794]94\index{objects}
[534]95The ASAP interface is based around a number of ``objects'' which the
96user deals with. Objects range from the data which have been read from
97disk, to tools used for fitting functions to the data. The following
98main objects are used :
99
100\begin{itemize}
[544]101 \item[\cmd{scantable}] The data container (actual spectra and header
102 information)
[953]103 \item[\cmd{selector}] Allows the user to select a subsection of the
[1064]104 data, such as a specified or range of beam numbers, IFs, etc.
[953]105 \item[\cmd{plotter}] A tool used to plot the spectral line data
[544]106 \item[\cmd{fitter}] A tool used to fit functions to the spectral data
107 \item[\cmd{reader}] A tool which can be used to read data from disks
[971]108 into a scantable object (advanced use).
[534]109\end{itemize}
110
[738]111There can be many objects of the same type. Each object is referred to
[534]112by a variable name made by the user. The name of this variable is not
[770]113important and can be set to whatever the user prefers (i.e. ``s'' and
[534]114``ParkesHOH-20052002'' are equivalent). However, having a simple and
115consistent naming convention will help you a lot.
116
[544]117\subsection{Member Functions (functions)}
[534]118
[794]119\index{Functions!member}Following the object oriented approach,
120objects have associated ``member functions'' which can either be used
121to modify the data in some way or change global properties of the
122object. In this document member functions will be referred to simply
123as functions. From the command line, the user can execute these
124functions using the syntax:
[534]125\begin{verbatim}
[1259]126 ASAP>out = object.function(arguments)
[534]127\end{verbatim}
128
129Where \cmd{out} is the name of the returned variable (could be a new
[544]130scantable object, or a vector of data, or a status return),
131\cmd{object} is the object variable name (set by the user),
132\cmd{function} is the name of the member function and \cmd{arguments}
133is a list of arguments to the function. The arguments can be provided
134either though position or \cmd{name=}. A mix of the two can be used.
135E.g.
[534]136
137\begin{verbatim}
[1259]138 ASAP>av = scans.average_time(msk,weight='tsys')
139 ASAP>av = scans.average_time(mask=msk,weight='tsys')
140 ASAP>av = scans.average_time(msk,tsys)
141 ASAP>scans.poly_baseline(mask=msk, order=0, insitu=True)
142 ASAP>scans.poly_baseline(msk,0,True)
143 ASAP>scans.poly_baseline(mask, insitu=True)
[534]144\end{verbatim}
145
146\subsection{Global Functions}
147
[794]148\index{Functions!global}It does not make sense to implement some functions as member
[544]149functions, typically functions which operate on more than one
150scantable (e.g. time averaging of many scans). These functions will
151always be referred to as global functions.
[534]152
[538]153\subsection{Interactive environment}
[534]154
[794]155\index{ipython!environment}ipython has a number of useful interactive
156features and a few things to be aware of for the new user.
[534]157
158\subsubsection{String completion}
159
[794]160\index{ipython!string completion}Tab completion is enabled for all
161function names. If you type the first few letters of a function name,
162then type {\tt <TAB>} the function name will be auto completed if it
163is un-ambiguous, or a list of possibilities will be
164given. Auto-completion works for the user object names as well as
165function names. It does not work for filenames, nor for function
166arguments.
[534]167
168Example
169\begin{verbatim}
[1259]170 ASAP>scans = scantable('MyData.rpf')
171 ASAP>scans.se<TAB>
172 ASAP>scans.set_in<TAB>
[971]173scans.set_cursor scans.set_freqframe scans.set_selection
174scans.set_doppler scans.set_instrument scans.set_unit
175scans.set_fluxunit scans.set_restfreqs
176
[1259]177 ASAP>scans.set_instrument()
[534]178\end{verbatim}
179
[544]180\subsubsection{Leading Spaces}
181
[794]182\index{ipython!leading space}Python uses leading space to mark blocks
183of code. This means that it you start a command line with a space, the
184command generally will fail with an syntax error.
[544]185
[770]186\subsubsection{Variable Names}
187
[794]188\index{ipython!variable names}During normal data processing, the user
189will have to create named variables to hold spectra etc. These must
190conform to the normal python syntax, specifically they cannot contain
191``special'' characters such as \@ \$ etc and cannot start with a
192number (but can contain numbers). Variable (and function) names are
193case sensitive.
[770]194
[534]195\subsubsection{Unix Interaction}
196
[794]197\index{ipython!unix interaction}Basic unix shell commands (\cmd{pwd},
198\cmd{ls}, \cmd{cd} etc) can be issued from within ASAP. This allows
199the user to do things like look at files in the current directory. The
200shell command ``\cmd{cd}'' works within ASAP, allowing the user to
201change between data directories. Unix programs cannot be run this way,
202but the shell escape ``$!$'' can be used to run arbitrary
203programs. E.g.
[534]204
205\begin{verbatim}
[1259]206 ASAP>pwd
207 ASAP>ls
208 ASAP>cd /my/data/directory
209 ASAP>! mozilla&
[534]210\end{verbatim}
211
212\subsection{Help}
213
[794]214\index{Help}ASAP has built in help for all functions. To get a list of
215functions type:
[534]216
[538]217\begin{verbatim}
[1259]218 ASAP>commands()
[538]219\end{verbatim}
220
221To get help on specific functions, the built in help needs to be given
222the object and function name. E.g.
223
224\begin{verbatim}
[1259]225 ASAP>help scantable.get_scan # or help(scantable.get_scan)
226 ASAP>help scantable.stats
227 ASAP>help plotter.plot
228 ASAP>help fitter.plot
[538]229
[1259]230 ASAP>scans = scantable('mydata.asap')
231 ASAP>help scans.get_scan # Same as above
[544]232\end{verbatim}
[538]233
[544]234Global functions just need their name
[538]235
[544]236\begin{verbatim}
[1259]237 ASAP>help average_time
[538]238\end{verbatim}
239
240Note that if you just type \cmd{help} the internal ipython help is
241invoked, which is probably {\em not} what you want. Type \verb+^+-d
242(control-d) to escape from this.
243
[738]244\subsection{Customisation - .asaprc}
[534]245
[794]246\index{.asaprc}ASAP use an \cmd{.asaprc} file to control the user's
247preference of default values for various functions arguments. This
248includes the defaults for arguments such as \cmd{insitu}, scantable
249\cmd{freqframe} and the plotters \cmd{set\_mode} values. The help on
250individual functions says which arguments can be set default values
251from the \cmd{.asaprc} file. To get a sample contents for the
[1064]252\cmd{.asaprc} file use the command \cmd{list\_rcparameters}.
[534]253
[538]254Common values include:
255\begin{verbatim}
256 # apply operations on the input scantable or return new one
257 insitu : False
258
[738]259 # default output format when saving scantable
[953]260 scantable.save : ASAP
[538]261
262 # default frequency frame to set when function
263 # scantable.set_freqframe is called
[953]264 scantable.freqframe : LSRK
[538]265
266 # auto averaging on read
267 scantable.autoaverage : True
268\end{verbatim}
269
[953]270For a complete list of \cmd{.asaprc} values, see the Appendix.
[770]271
[534]272\section{Scantables}
[794]273\index{Scantables}
[534]274\subsection {Description}
275
276\subsubsection {Basic Structure}
277
[794]278\index{Scantable!structure}ASAP data handling works on objects called
279scantables. A scantable holds your data, and also provides functions
280to operate upon it.
[534]281
282The building block of a scantable is an integration, which is a single
[1217]283row of a scantable. Each row contains just one spectrum for each beam,
284IF and polarisation. For example Parkes OH-multibeam data would
285normally contain 13 beams, 1 IF and 2 polarisations, Parkes
286methanol-multibeam data would contain 7 beams, 2 IFs and 2
[1259]287polarisations while the Mopra 8-GHz MOPS filterbank will produce one
[1217]288beam, many IFs, and 2-4 polarisations.
289
290All of the combinations of Beams/IFs an Polarisations are
[1259]291contained in separate rows. These rows are grouped in cycles (same time stamp).
[534]292
[1217]293A collection of cycles for one source is termed a scan (and each scan
294has a unique numeric identifier, the SCANNO). A scantable is then a
295collection of one or more scans. If you have scan-averaged your data
[1259]296in time, i.e. you have averaged all cycles within a scan, then each
[1217]297scan would hold just one (averaged) integration.
[534]298
[1217]299Many of the functions which work on scantables can either return a new
300scantable with modified data or change the scantable insitu. Which
[534]301method is used depends on the users preference. The default can be
302changed via the {\tt .asaprc} resource file.
303
[1259]304For example a Mopra scan with a 4s integration time, two IFs and
[1011]305dual polarisations has two (2s) cycles.
306\begin{verbatim}
[1064]307 SCANNO CYCLENO BEAMNO IFNO POLNO
308 0 0 0 0 0
309 0 0 0 0 1
310 0 0 0 1 0
311 0 0 0 1 1
312 0 1 0 0 0
313 0 1 0 0 1
314 0 1 0 1 0
315 0 1 0 1 1
[1011]316\end{verbatim}
317
318
[534]319\subsubsection {Contents}
320
[794]321\index{Scantable!contents}A scantable has header information and data
[953]322(a scantable is actually an AIPS++ Table and it is generally stored in
323memory when you are manipulating it with ASAP. You can save it to
324disk and then browse it with the AIPS++ Table browser if you know how
325to do that !).
[534]326
327The data are stored in columns (the length of a column is the number of
[1011]328rows/spectra of course).
[534]329
330Two important columns are those that describe the frequency setup. We mention
[538]331them explicitly here because you need to be able to understand the presentation
[534]332of the frequency information and possibly how to manipulate it.
333
[1011]334These columns are called FREQ\_ID and MOLECULE\_ID. They contain indices, for
[971]335each IF, pointing into tables with all of the frequency and rest-frequency
[1054]336information for that integration.
[534]337
338There are of course many other columns which contain the actual spectra,
[971]339the flags, the Tsys, the source names and so on.
[534]340
341There is also a function \cmd{summary} to list a summary of the scantable.
342You will find this very useful.
343
344Example:
345
346\begin{verbatim}
[1259]347 ASAP>scans = scantable('MyData.rpf')
348 ASAP>scans.summary() # Brief listing
[544]349
350 # Equivalent to brief summary function call
[1259]351 ASAP>print scan
[534]352\end{verbatim}
353
[971]354The summary function gives you a scan-based summary, presenting the
[1054]355scantable as a cascading view of Beams and IFs. Note that the output
356of summary is redirected into your current pager specified by the
357\$PAGER environment variable. If you find the screen is reset to the
[1259]358original state when summary is finished (i.e. the output from summary
[1054]359disappears), you may need to set the \$LESS environment variable to
360include the \cmd{-X} option.
[534]361
[953]362\subsection{Data Selection}
363\label{sec:selection}
364
[966]365ASAP contains flexible data selection. Data can be selected based on
366IF, beam, polarisation, scan number as well as values such as
367Tsys. Advanced users can also make use of the AIPS++ TAQL language to
[971]368create selections based on almost any of the values recorded.
[953]369
[966]370Selection is based on a \cmd{selector} object. This object is created
371and various selection functions applied to it (\cmd{set\_ifs},
372\cmd{set\_beams} etc). The selection object then must be applied to a
373scantable using the \cmd{set\_selection} function. A single selection
374object can be created and setup then applied to multiple scantables.
[534]375
[966]376Once a selection has been applied, all following functions will only
377``see'' the selected spectra (including functions such as
378\cmd{summary}). The selection can then be reset and all spectra are
379visible. Note that if functions such as \cmd{copy} are run on a
380scantable with active selection, only the selected spectra are copied.
[534]381
[966]382The common selection functions are:
[534]383
[966]384\begin{itemize}
385
386\item[\cmd{set\_beams}] Select beams by index number
387\item[\cmd{set\_ifs}] Select ifs by index number
388\item[\cmd{set\_name}] Select by source name. Can contain ``*'' as a
389wildcard, e.g. ``Orion*\_R''.
[1064]390\item[\cmd{set\_ifs}] Select IFs by index number
391\item[\cmd{set\_polarisation}] Select by polarisation index or
[966]392name. If polarisation names are given, the data will be on-the-fly
[971]393converted (for example from linears to Stokes).
[966]394\item[\cmd{set\_query}] Set query directly. For power users only!
395\item[\cmd{set\_tsys}] Select data based on Tsys. Also example of user
396definable query.
397\item[\cmd{reset}] Reset the selection to include all spectra.
398
399
400Note that all indices are zero based.
401
402Examples:
403
404\begin{verbatim}
[1259]405 ASAP>selection = selector() # Create selection object
406 ASAP>selection.set_ifs(0) # Just select the first IF
407 ASAP>scans.set_selection(selection) # Apply the selection
408 ASAP>print scans # Will just show the first IF
[966]409
[1259]410 ASAP>selection.set_ifs([0,1]) # Select the first two IFs
411 ASAP>selection.set_beams([1,3,5]) # Also select three of the beams
412 ASAP>scans.set_selection(selection) # Apply the selection
[966]413
[1259]414 ASAP>selection.set_name('G308*') # Select by source name
[966]415
[1259]416 ASAP>selection.reset() # Turn off selection
417 ASAP>scans.set_selection(selection) # Apply the reset selection
[966]418
[970]419\end{verbatim}
420
[966]421\end{itemize}
422
[534]423\subsection{State}
424
[794]425\index{Scantable!state}Each scantable contains "state"; these are
426properties applying to all of the data in the scantable.
[534]427
428Examples are the selection of beam, IF and polarisation, spectral unit
[770]429(e.g. km/s), frequency reference frame (e.g. BARY) and velocity Doppler
[534]430type (e.g. RADIO).
431
432\subsubsection{Units, Doppler and Frequency Reference Frame}
433
434The information describing the frequency setup for each integration
435is stored fundamentally in frequency in the reference frame
[738]436of observation (E.g. TOPO).
[534]437
[544]438When required, this is converted to the desired reference frame
439(e.g. LSRK), Doppler (e.g. OPTICAL) and unit (e.g. km/s) on-the-fly.
440This is important, for example, when you are displaying the data or
[971]441fitting to it. The reference frame is set on file read to the value
442set in the user \cmd{.asaprc} file.
[534]443
444For units, the user has the choice of frequency, velocity or channel.
445The \cmd{set\_unit} function is used to set the current unit for a
446scantable. All functions will (where relevant) work with the selected
447unit until this changes. This is mainly important for fitting (the fits
[738]448can be computed in any of these units), plotting and mask creation.
[534]449
[544]450The velocity definition can be changed with the \cmd{set\_doppler}
451function, and the frequency reference frame can be changed with the
[534]452\cmd{set\_freqframe} function.
453
454Example usage:
455
456\begin{verbatim}
[1259]457 ASAP>scans = scantable('2004-11-23_1841-P484.rpf') # Read in the data
458 ASAP>scans.set_freqframe('LSRK') # Use the LSR velocity frame
459 ASAP>scans.set_unit('km/s') # Use velocity for plots etc from now on
460 ASAP>scans.set_doppler('OPTICAL') # Use the optical velocity convention
461 ASAP>scans.set_unit('MHz') # Use frequency in MHz from now on
[534]462\end{verbatim}
463
464
465\subsubsection{Rest Frequency}
466
[794]467\index{Scantable!rest frequency}ASAP reads the line rest frequency
468from the RPFITS file when reading the data. The values stored in the
469RPFITS file are not always correct and so there is a function
[953]470\cmd{set\_restfreq} to set the rest frequencies for the currently
471selected data.
[534]472
473For each integration, there is a rest-frequency per IF (the rest
474frequencies are just stored as a list with an index into them).
475There are a few ways to set the rest frequencies with this function.
476
[953]477If you specify just one rest frequency, then it is set for all IF.
[534]478
479\begin{verbatim}
[953]480 # Set all IFs
[1259]481 ASAP>scans.set_restfreqs(freqs=1.667359e9)
[534]482\end{verbatim}
483
[953]484If set a rest frequency for each IF, specify a list of frequencies (of
485length the number of IFs). Regardless of the source, the rest
486frequency will be set for each IF to the corresponding value in the
[970]487provided list.
[534]488
489\begin{verbatim}
[770]490 # Set rest frequency for all IFs
[1259]491 ASAP>scans.set_restfreqs(freqs=[1.6654018e9,1.667359e9,])
[538]492
[534]493\end{verbatim}
494
[1217]495{\em Currently the following is not implemented
[953]496
[534]497In both of the above modes, you can also specify the rest frequencies via
498names in a known list rather than by their values.
499
500Examples:
501
502\begin{verbatim}
[1259]503 ASAP>scans.set_restfreqs(freqs=['OH1665','OH1667'])
[534]504\end{verbatim}
[1217]505}
[534]506
507\subsubsection{Masks}
508
[970]509\index{Masks}\index{Scantable!masks}
[534]510
[966]511Many tasks (fitting, baseline subtraction, statistics etc) should only
512be run on range of channels. Depending on the current ``unit'' setting
513this range is set directly as channels, velocity or frequency
514ranges. Internally these are converted into a simple boolean mask for
515each channel of the abscissa. This means that if the unit setting is
516later changed, previously created mask are still valid. (This is not
517true for functions which change the shape or shift the frequency
518axis). You create masks with the function \cmd{create\_mask} and this
519specified the channels to be included in the selection. When setting
520the mask in velocity, the conversion from velocity to channels is
[1064]521based on the current selection, specified row and selected frequency
522reference frame.
[534]523
[966]524
525Note that for multi IF data with different number of channels per IF a
526single mask cannot be applied to different IFs. To use a mask on such
527data the selector should be applied to select all IFs with the same
528number of channels.
529
[534]530Example :
531\begin{verbatim}
532
533 # Select channel range for baselining
[1259]534 ASAP>scans.set_unit('channels')
535 ASAP>msk = scans.create_mask([100,400],[600,800])
[738]536
[534]537 # Select velocity range for fitting
[1259]538 ASAP>scans.set_unit('km/s')
539 ASAP>msk = scans.create_mask([-30,-10])
[534]540\end{verbatim}
541
[544]542Sometimes it is more convenient to specify the channels to be
543excluded, rather included. You can do this with the ``invert''
544argument.
[534]545
546Example :
547\begin{verbatim}
[1259]548 ASAP>scans.set_unit('channels')
549 ASAP>msk = scans.create_mask([0,100],[900-1023], invert=True)
[534]550\end{verbatim}
551
[544]552By default \cmd{create\_mask} uses the frequency setup of the first row
553to convert velocities into a channel mask. If the rows in the data
554cover different velocity ranges, the scantable row to use should be
555specified:
556
557\begin{verbatim}
[1259]558 ASAP>scans.set_unit('km/s')
559 ASAP>msk = q.create_mask([-30,-10], row=5)
[544]560\end{verbatim}
561
[534]562Because the mask is stored in a simple python variable, the users is
563able to combine masks using simple arithmetic. To create a mask
564excluding the edge channels, a strong maser feature and a birdie in
565the middle of the band:
566
567\begin{verbatim}
[1259]568 ASAP>scans.set_unit('channels')
569 ASAP>msk1 = q.create_mask([0,100],[511,511],[900,1023],invert=True)
570 ASAP>scans.set_unit('km/s')
571 ASAP>msk2 = q.create_mask([-20,-10],invert=True)
[534]572
[1259]573 ASAP>mask = msk1 and msk2
[534]574\end{verbatim}
575
576
[953]577\subsection{Management}
578
579\index{Scantable!management}During processing it is possible to create
580a large number of scan tables. These all consume memory, so it is best
581to periodically remove unneeded scan tables. Use \cmd{list\_scans} to
582print a list of all scantables and \cmd{del} to remove unneeded ones.
583
584Example:
585
586\begin{verbatim}
[1259]587 ASAP>list_scans()
[953]588 The user created scantables are:
589 ['s', 'scans', 'av', 's2', 'ss']
590
[1259]591 ASAP>del s2
592 ASAP>del ss
[953]593\end{verbatim}
594
[534]595\section{Data Input}
596
[971]597\index{Reading data}Data can be loaded in one of two ways; using the
598reader object or via the scantable constructor. The scantable method
599is simpler but the reader allows the user more control on what is read.
[534]600
601\subsection{Scantable constructor}
602
[794]603\index{Scantable constructor}\index{Scantable!constructor}This loads
604all of the data from filename into the scantable object scans and
605averages all the data within a scan (i.e. the resulting scantable
[534]606will have one row per scan). The recognised input file formats are
607RPFITS, SDFITS (singledish fits), ASAP's scantable format and aips++
[738]608MeasurementSet2 format.
[534]609
610Example usage:
611
612\begin{verbatim}
[1259]613 ASAP>scan = scantable('2004-11-23_1841-P484.rpf')
[544]614
615 # Don't scan average the data
[1259]616 ASAP>scan = scantable('2004-11-23_1841-P484.rpf', average=False)
[534]617\end{verbatim}
618
619
620\subsection{Reader object}
621
[794]622\index{Reader object}\index{Scantable!reader object}For more control
623when reading data into ASAP, the reader object should be used. This
[953]624has the option of only reading in a range of integrations, only a
625specified beam or IF and does not perform any scan averaging of the
626data, allowing analysis of the individual integrations. Note that due
627to limitation of the RPFITS library, only one reader object can be
628open at one time reading RPFITS files. To read multiple RPFITS files,
629the old reader must be destroyed before the new file is opened.
630However, multiple readers can be created and attached to SDFITS files.
[534]631
632
633Example usage:
634
635\begin{verbatim}
[1259]636 ASAP>r = reader('2003-03-16_082048_t0002.rpf')
637 ASAP>r.summary()
638 ASAP>scan = r.read()
639 ASAP>del r
[534]640\end{verbatim}
641
642\section{Basic Processing}
643
644In the following section, a simple data reduction to form a quotient
[544]645spectrum of a single source is followed. It has been assume that the
646\cmd{.asaprc} file has {\em not} been used to change the \cmd{insitu}
647default value from \cmd{True}.
[534]648
[738]649\subsection{Auto quotient}
[794]650\index{Auto quotient}Quotients can be computed ``automatically''. This
651requires the data to have matching source/reference pairs or one
652reference for multiple sources. Auto quotient assumes reference scans
653have a trailing ``\_R'' in the source name for data from Parkes and
654Mopra, and a trailing ``e'' or ``w'' for data fro, Tidbinbilla.
[534]655
[738]656\begin{verbatim}
[1259]657 ASAP>q = s.auto_quotient()
[738]658\end{verbatim}
659
[971]660By default the quotient spectra is calculated
661to preserve continuum emission. If you wish to remove the continuum
662contribution, use the \cmd{preserve} argument:
663
664\begin{verbatim}
[1259]665 ASAP>q = s.auto_quotient(preserve=True)
[971]666\end{verbatim}
667
[1217]668If this is not sufficient the following alternative method can be used.
[738]669
[1217]670\subsection{Separate reference and source observations}
671
672\index{Quotient spectra}Most data from ATNF observatories
673distinguishes on and off source data using the file name. This makes
674it easy to create two scantables with the source and reference
675data. As long as there was exactly one reference observation for each
676on source observation for following method will work.
677
678For Mopra and Parkes data:
679\begin{verbatim}
[1259]680 ASAP>r = scans.get_scan('*_R')
681 ASAP>s = scans.get_scan('*_S')
[1217]682\end{verbatim}
683
684For Tidbinbilla data
685\begin{verbatim}
[1259]686 ASAP>r = scans.get_scan('*_[ew]')
687 ASAP>s = scans.get_scan('*_[^ew]')
[1217]688\end{verbatim}
689
690\subsection{Make the quotient spectra}
691
692Use the quotient function
693
694\begin{verbatim}
[1259]695 ASAP>q = s.quotient(r)
[1217]696\end{verbatim}
697
698This uses the rows in scantable \cmd{r} as reference spectra for the
699rows in scantable \cmd{s}. Scantable \cmd{r} must have either 1 row
700(which is applied to all rows in \cmd{s}) or both scantables must have
701the same number of rows.
702
[534]703\subsection{Time average separate scans}
704
[794]705\index{Time average}If you have observed the source with multiple
706source/reference cycles you will want to scan-average the quotient
707spectra together.
[534]708
709\begin{verbatim}
[1259]710 ASAP>av = q.average_time()
[534]711\end{verbatim}
712
[544]713If for some you want to average multiple sets of scantables together
714you can:
[534]715
716\begin{verbatim}
[1259]717 ASAP>av = average_time(q1, q2, q3)
[534]718\end{verbatim}
719
[544]720The default is to use integration time weighting. The alternative is
[1217]721to use none, variance, Tsys weighting, Tsys \& integration time or
722median averaging.
[534]723
[544]724\begin{verbatim}
[1259]725 ASAP>av = average_time(q, weight='tintsys')
[544]726\end{verbatim}
727
[534]728To use variance based weighting, you need to supply a mask saying which
729channel range you want it to calculate the variance from.
730
731\begin{verbatim}
[1259]732 ASAP>msk = scans.create_mask([200,400],[600,800])
733 ASAP>av = average_time(scans, mask=msk, weight='var')
[534]734\end{verbatim}
735
[953]736If you have not observed your data with Doppler tracking (or run
[1259]737\cmd{freq\_align} explicitly) you should align the data in frequency
[953]738before averaging.
[794]739
[953]740\begin{verbatim}
[1259]741 ASAP>av = scans.average_time(align=True)
[953]742\end{verbatim}
743
744Note that, if needed, you should run \cmd{gain\_el} and \cmd{opacity}
745before you average the data in time (\S \ref{sec:gainel} \&
746\ref{sec:freqalign}).
747
[534]748\subsection{Baseline fitting}
749
[794]750\index{Baseline fitting}To make a baseline fit, you must first create
751a mask of channels to use in the baseline fit.
[534]752
753\begin{verbatim}
[1259]754 ASAP>msk = scans.create_mask([100,400],[600,900])
755 ASAP>scans.poly_baseline(msk, order=1)
[534]756\end{verbatim}
757
758This will fit a first order polynomial to the selected channels and subtract
759this polynomial from the full spectra.
760
761\subsubsection{Auto-baselining}
762
[794]763\index{Auto-baseline}The function \cmd{auto\_poly\_baseline} can be used to automatically
[770]764baseline your data without having to specify channel ranges for the
765line free data. It automatically figures out the line-free emission
766and fits a polynomial baseline to that data. The user can use masks to
767fix the range of channels or velocity range for the fit as well as
768mark the band edge as invalid.
[534]769
770Simple example
771
772\begin{verbatim}
[1259]773 ASAP>scans.auto_poly_baseline(order=2,threshold=5)
[534]774\end{verbatim}
775
776\cmd{order} is the polynomial order for the fit. \cmd{threshold} is
777the SNR threshold to use to deliminate line emission from
[548]778signal. Generally the value of threshold is not too critical, however
779making this too large will compromise the fit (as it will include
780strong line features) and making it too small will mean it cannot find
781enough line free channels.
[534]782
[548]783
[534]784Other examples:
785
786\begin{verbatim}
787 # Don't try and fit the edge of the bandpass which is noisier
[1259]788 ASAP>scans.auto_poly_baseline(edge=(500,450),order=3,threshold=3)
[534]789
790 # Only fit a given region around the line
[1259]791 ASAP>scans.set_unit('km/s')
792 ASAP>msk = scans.create_mask([-60,-20])
793 ASAP>scans.auto_poly_baseline(mask=msk,order=3,threshold=3)
[534]794
795\end{verbatim}
796
797\subsection{Average the polarisations}
798
[794]799\index{average\_pol}If you are just interested in the highest SNR for total intensity you
[534]800will want to average the parallel polarisations together.
801
802\begin{verbatim}
[1259]803 ASAP>scans.average_pol()
[534]804\end{verbatim}
805
806\subsection{Calibration}
807
[794]808\index{Calibration}For most uses, calibration happens transparently as the input data
[534]809contains the Tsys measurements taken during observations. The nominal
810``Tsys'' values may be in Kelvin or Jansky. The user may wish to
811supply a Tsys correction or apply gain-elevation and opacity
812corrections.
813
814\subsubsection{Brightness Units}
815
[794]816\index{Brightness Units}RPFITS files do not contain any information as
817to whether the telescope calibration was in units of Kelvin or
818Janskys. On reading the data a default value is set depending on the
819telescope and frequency of observation. If this default is incorrect
820(you can see it in the listing from the \cmd{summary} function) the
821user can either override this value on reading the data or later.
822E.g:
[534]823
824\begin{verbatim}
[1259]825 ASAP>scans = scantable('2004-11-23_1841-P484.rpf', unit='Jy')
[534]826 # Or in two steps
[1259]827 ASAP>scans = scantable('2004-11-23_1841-P484.rpf')
828 ASAP>scans.set_fluxunit('Jy')
[534]829\end{verbatim}
830
[1217]831\subsubsection{Feed Polarisation}
832
833\index{Brightness Units}The RPFITS files also do not contain any
834information as to the feed polarisation. ASAP will set a default based
835on the antenna, but this will often be wrong the data has been read,
836the default can be changed using the \cmd{set\_feedtype} function with
837an argument of \cmd{'linear'} or \cmd{'circular'}.
838
839E.g:
840
841\begin{verbatim}
[1259]842 ASAP>scans = scantable('2004-11-23_1841-P484.rpf')
843 ASAP>scans.set_feedtype('circular')
[1217]844\end{verbatim}
845
[534]846\subsubsection{Tsys scaling}
847
[794]848\index{Tsys scaling}Sometime the nominal Tsys measurement at the
849telescope is wrong due to an incorrect noise diode calibration. This
850can easily be corrected for with the scale function. By default,
851\cmd{scale} only scans the spectra and not the corresponding Tsys.
[534]852
853\begin{verbatim}
[1259]854 ASAP>scans.scale(1.05, tsys=True)
[534]855\end{verbatim}
856
857\subsubsection{Unit Conversion}
858
[794]859\index{Unit conversion}To convert measurements in Kelvin to Jy (and
860vice versa) the global function \cmd{convert\_flux} is needed. This
861converts and scales the data from K to Jy or vice-versa depending on
862what the current brightness unit is set to. The function knows the
863basic parameters for some frequencies and telescopes, but the user may
864need to supply the aperture efficiency, telescope diameter or the Jy/K
865factor.
[534]866
867\begin{verbatim}
[1259]868 ASAP>scans.convert_flux() # If efficency known
869 ASAP>scans.convert_flux(eta=0.48) # If telescope diameter known
870 ASAP>scans.convert_flux(eta=0.48,d=35) # Unknown telescope
871 ASAP>scans.convert_flux(jypk=15) # Alternative
[534]872\end{verbatim}
873
874\subsubsection{Gain-Elevation and Opacity Corrections}
[794]875\label{sec:gainel}
[534]876
[794]877\index{Gain-elevation}As higher frequencies (particularly $>$20~GHz)
878it is important to make corrections for atmospheric opacity and
879gain-elevation effects.
[534]880
[794]881Note that currently the elevation is not written correctly into
[770]882Tidbinbilla rpfits files. This means that gain-elevation and opacity
[794]883corrections will not work unless these get recalculated.
[770]884
[794]885\begin{verbatim}
[1259]886 ASAP>scans.recalc_azel() # recalculate az/el based on pointing
[794]887\end{verbatim}
888
[544]889Gain-elevation curves for some telescopes and frequencies are known to
[794]890ASAP (currently only for Tidbinbilla at 20~GHz). In these cases
891making gain-corrections is simple. If the gain curve for your data is
892not known, the user can supply either a gain polynomial or text file
[534]893tabulating gain factors at a range of elevations (see \cmd{help
[544]894scantable.gain\_el}).
[534]895
896Examples:
897
898\begin{verbatim}
[1259]899 ASAP>scans.gain_el() # If gain table known
900 ASAP>scans.gain_el(poly=[3.58788e-1,2.87243e-2,-3.219093e-4])
[534]901\end{verbatim}
902
[794]903\index{Opacity}Opacity corrections can be made with the global
904function \cmd{opacity}. This should work on all telescopes as long as
905a measurement of the opacity factor was made during the observation.
[534]906
907\begin{verbatim}
[1259]908 ASAP>scans.opacity(0.083)
[534]909\end{verbatim}
910
911Note that at 3~mm Mopra uses a paddle wheel for Tsys calibration,
912which takes opacity effects into account (to first order). ASAP
[544]913opacity corrections should not be used for Mopra 3-mm data.
[534]914
915\subsection{Frequency Frame Alignment}
[794]916\label{sec:freqalign}
[534]917
[1259]918\index{Frequency alignment}\index{Velocity alignment}When time
[794]919averaging a series of scans together, it is possible that the velocity
920scales are not exactly aligned. This may be for many reasons such as
921not Doppler tracking the observations, errors in the Doppler tracking
922etc. This mostly affects very long integrations or integrations
923averaged together from different days. Before averaging such data
924together, they should be frequency aligned using \cmd{freq\_align}.
[534]925
926E.g.:
927
928\begin{verbatim}
[1259]929 ASAP>scans.freq_align()
930 ASAP>av = average_time(scans)
[534]931\end{verbatim}
932
[953]933{\em A Global freq\_align command will be made eventually}
[534]934
935To average together data taken on different days, which are in
936different scantables, each scantable must aligned to a common
937reference time then the scantables averaged. The simplest way of
938doing this is to allow ASAP to choose the reference time for the first
[738]939scantable then using this time for the subsequent scantables.
[534]940
941\begin{verbatim}
[1259]942 ASAP>scans1.freq_align() # Copy the refeference Epoch from the output
943 ASAP>scans2.freq_align(reftime='2004/11/23/18:43:35')
944 ASAP>scans3.freq_align(reftime='2004/11/23/18:43:35')
945 ASAP>av = average_time(scans1, scans2, scans3)
[534]946\end{verbatim}
947
948\section{Scantable manipulation}
949
[794]950\index{Scantable!manipulation}While it is very useful to have many
951independent sources within one scantable, it is often inconvenient for
952data processing. The \cmd{get\_scan} function can be used to create a
953new scantable with a selection of scans from a scantable. The
954selection can either be on the source name, with simple wildcard
[953]955matching or set of scan ids. Internally this uses the selector object,
956so for more complicated selection the selector should be used directly
957instead.
[534]958
959For example:
960
961\begin{verbatim}
[1259]962 ASAP>ss = scans.get_scan(10) # Get the 11th scan (zero based)
963 ASAP>ss = scans.get_scan(range(10)) # Get the first 10 scans
964 ASAP>ss = scans.get_scan(range(10,20)) # Get the next 10 scans
965 ASAP>ss = scans.get_scan([2,4,6,8,10]) # Get a selection of scans
[534]966
[1259]967 ASAP>ss = scans.get_scan('345p407') # Get a specific source
968 ASAP>ss = scans.get_scan('345*') # Get a few sources
[534]969
[1259]970 ASAP>r = scans.get_scan('*_R') # Get all reference sources (Parkes/Mopra)
971 ASAP>s = scans.get_scan('*_S') # Get all program sources (Parkes/Mopra)
972 ASAP>r = scans.get_scan('*[ew]') # Get all reference sources (Tid)
973 ASAP>s = scans.get_scan('*[^ew]') # Get all program sources (Tid)
[534]974
975\end{verbatim}
976
977To copy a scantable the following does not work:
978
979\begin{verbatim}
[1259]980 ASAP>ss = scans
[534]981\end{verbatim}
982
[544]983as this just creates a reference to the original scantable. Any
984changes made to \cmd{ss} are also seen in \cmd{scans}. To duplicate a
[534]985scantable, use the copy function.
986
987\begin{verbatim}
[1259]988 ASAP>ss = scans.copy()
[534]989\end{verbatim}
990
991\section{Data Output}
992
[794]993\index{Scantable!save}\index{Saving data}ASAP can save scantables in a
994variety of formats, suitable for reading into other packages. The
995formats are:
[534]996
997\begin{itemize}
998\item[ASAP] This is the internal format used for ASAP. It is the only
[544]999 format that allows the user to restore the data, fits etc. without
1000 loosing any information. As mentioned before, the ASAP scantable is
1001 an AIPS++ Table (a memory-based table). This function just converts
1002 it to a disk-based Table. You can the access that Table with the
1003 AIPS++ Table browser or any other AIPS++ tool.
[534]1004
[544]1005\item[SDFITS] The Single Dish FITS format. This format was designed to
1006 for interchange between packages, but few packages actually can read
1007 it.
[534]1008
[1064]1009%\item[FITS] This uses simple ``image'' fits to save the data, each row
1010% being written to a separate fits file. This format is suitable for
1011% importing the data into CLASS.
[534]1012
1013\item[ASCII] A simple text based format suitable for the user to
1014processing using Perl or, Python, gnuplot etc.
1015
1016\item[MS2] Saves the data in an aips++ MeasurementSet V2 format.
1017You can also access this with the Table browser and other AIPS++
1018tools.
1019
1020\end{itemize}
1021
[738]1022The default output format can be set in the users {\tt .asaprc} file.
[534]1023Typical usages are:
1024
1025\begin{verbatim}
[1259]1026 ASAP>scans.save('myscans') # Save in default format
1027 ASAP>scans.save('myscans', 'FITS') # Save as FITS for exporting into CLASS
1028 ASAP>scans.save('myscans', overwrite=True) # Overwrite an existing file
[534]1029\end{verbatim}
1030
1031\section{Plotter}
1032
[1259]1033\index{Plotter}Scantable spectra can be plotted at any time. An
1034asapplotter object is used for plotting, meaning multiple plot windows
1035can be active at the same time. On start up a default asapplotter
1036object is created called ``plotter''. This would normally be used for
1037standard plotting.
[534]1038
[1259]1039The plotter, optionally, will run in a multi-panel mode and contain
[534]1040multiple plots per panel. The user must tell the plotter how they want
1041the data distributed. This is done using the set\_mode function. The
1042default can be set in the users {\tt .asaprc} file. The units (and frame
[538]1043etc) of the abscissa will be whatever has previously been set by
1044\cmd{set\_unit}, \cmd{set\_freqframe} etc.
[534]1045
1046Typical plotter usage would be:
1047
1048\begin{verbatim}
[1259]1049 ASAP>scans.set_unit('km/s')
1050 ASAP>plotter.set_mode(stacking='p',panelling='t')
1051 ASAP>plotter.plot(scans)
[534]1052\end{verbatim}
1053
1054This will plot multiple polarisation within each plot panel and each
[544]1055scan row in a separate panel.
[534]1056
[538]1057Other possibilities include:
[534]1058
1059\begin{verbatim}
1060 # Plot multiple IFs per panel
[1259]1061 ASAP>plotter.set_mode(stacking='i',panelling='t')
[538]1062
1063 # Plot multiple beams per panel
[1259]1064 ASAP>plotter.set_mode(stacking='b',panelling='t')
[538]1065
1066 # Plot one IF per panel, time stacked
[1259]1067 ASAP>plotter.set_mode('t', 'i')
[538]1068
1069 # Plot each scan in a seperate panel
[1259]1070 ASAP>plotter.set_mode('t', 's')
[538]1071
[534]1072\end{verbatim}
1073
[538]1074\subsection{Plot Selection}
1075\label{sec:plotter_cursor}
1076
[794]1077\index{Plotter!selection}The plotter can plot up to 25 panels and
1078stacked spectra per panel. If you have data larger than this (or for
1079your own sanity) you need to select a subset of this data. This is
[953]1080particularly true for multibeam or multi IF data. The selector object
[971]1081should be used for this purpose. Selection can either be applied to
[953]1082the scantable or directly to the plotter, the end result is the same.
[1259]1083You don't have to reset the scantable selection though, if you set
[971]1084the selection on the plotter.
[538]1085
1086Examples:
1087
1088\begin{verbatim}
[1259]1089 ASAP>selection = selector()
[538]1090 # Select second IF
[1259]1091 ASAP>selection.set_ifs(1)
1092 ASAP>plotter.set_selection(selection)
[538]1093
1094 # Select first 4 beams
[1259]1095 ASAP>selection.set_beams([0,1,2,3])
1096 ASAP>plotter.set_selection(selection)
[538]1097
[953]1098 # Select a few scans
[1259]1099 ASAP>selection.set_scans([2,4,6,10])
1100 ASAP>plotter.set_selection(selection)
[538]1101
1102 # Multiple selection
[1259]1103 ASAP>selection.set_ifs(1)
1104 ASAP>selection.set_scans([2,4,6,10])
1105 ASAP>plotter.set_selection(selection)
[953]1106
[538]1107\end{verbatim}
1108
[544]1109\subsection{Plot Control}
1110
[794]1111\index{Plotter!control}The plotter window has a row of buttons on the
1112lower left. These can be used to control the plotter (mostly for
1113zooming the individual plots). From left to right:
[534]1114
1115\begin{itemize}
1116
1117\item[Home] This will unzoom the plots to the original zoom factor
1118
1119\item[Plot history] (left and right arrow). The plotter keeps a
1120history of zoom settings. The left arrow sets the plot zoom to the
1121previous value. The right arrow returns back again. This allows you,
1122for example, to zoom in on one feature then return the plot to how it
1123was previously.
1124
1125\item[Pan] (The Cross) This sets the cursor to pan, or scroll mode
[953]1126 allowing you to shift the plot within the window. Useful when
1127 zoomed in on a feature.
[534]1128
1129\item[Zoom] (the letter with the magnifying glass) lets you draw a
[953]1130 rectangle around a region of interest then zooms in on that
1131 region. Use the plot history to unzoom again.
[534]1132
[1259]1133\item[Adjust] (rectangle with 4 arrows) adjust subplot parameters
[953]1134 (space at edge of plots)
1135
[534]1136\item[Save] (floppy disk). Save the plot as a postscript or .png file
1137
[794]1138You can also type ``g'' in the plot window to toggle on and off grid
1139lines. Typing 'l' turns on and off logarithmic Y-axis.
1140
[534]1141\end{itemize}
1142
1143\subsection{Other control}
1144
1145The plotter has a number of functions to describe the layout of the
1146plot. These include \cmd{set\_legend}, \cmd{set\_layout} and \cmd{set\_title}.
1147
1148To set the exact velocity or channel range to be plotted use the
1149\cmd{set\_range} function. To reset to the default value, call
1150\cmd{set\_range} with no arguments. E.g.
1151
1152\begin{verbatim}
[1259]1153 ASAP>scans.set_unit('km/s')
1154 ASAP>plotter.plot(scans)
1155 ASAP>plotter.set_range(-150,-50)
1156 ASAP>plotter.set_range() # To reset
[534]1157\end{verbatim}
1158
[544]1159Both the range of the ``x'' and ``y'' axis can be set at once, if desired:
1160
1161\begin{verbatim}
[1259]1162 ASAP>plotter.set_range(-10,30,-1,6.6)
[544]1163\end{verbatim}
1164
[738]1165To save a hardcopy of the current plot, use the save function, e.g.
[534]1166
1167\begin{verbatim}
[1259]1168 ASAP>plotter.save('myplot.ps')
1169 ASAP>plotter.save('myplot.png', dpi=80)
[534]1170\end{verbatim}
1171
[1217]1172\subsection{Plotter Customisation}
1173
1174The plotter allows the user to change most properties such as text
[1259]1175size and colour. The \cmd{commands} function and {\cmd help\
[1217]1176asapplotter} list all the possible commands that can be used with the
1177plotter.
1178
1179\commanddef{set\_colors}{Change the default colours used for line
1180plotting. Colours can be given either by name, using the html standard
1181(e.g. red, blue or hotpink), or hexadecimal code (e.g. for black
1182\#000000). If less colours are specified than lines plotted , the
1183plotter cycles through the colours. Example:} {ASAP>
1184plotter.set\_colors('red blue green')\\ ASAP>
1185plotter.set\_colors(`\#0000 blue \#FF00FF')\\ }
1186
1187\commanddef{set\_linestyles}{Change the line styles used for
1188plots. Allowable values are 'line', 'dashed', 'dotted', 'dashdot',
1189'dashdotdot' and 'dashdashdot. Example: }{
[1259]1190 ASAP>plotter.set\_linestyles('line dash cotted datshot.)\\
1191 ASAP>plotter.set\_font(size=10)\\
[1217]1192}
1193
1194\commanddef{set\_font}{Change the font style and size. Example}{
[1259]1195 ASAP>plotter.set\_font(weight='bold')\\
1196 ASAP>plotter.set\_font(size=10)\\
1197 ASAP>plotter.set\_font(style='italic')\\
[1217]1198}
1199
[1259]1200\commanddef{set\_layout}{Change the multi-panel layout, i.e. now many
[1217]1201 rows and columns}{
[1259]1202 ASAP>plotter.set\_layout(3,2)
[1217]1203}
1204
1205\commanddef{set\_legend}{Set the position, size and optional value of the legend}{
[1259]1206 ASAP>plotter.set\_legend(fontsize=16)\\
1207 ASAP>plotter.set\_legend(mode=0) \# ASAP chooses where to put the legend\\
1208 ASAP>plotter.set\_legend(mode=4) \# Put legend on lower right\\
1209 ASAP>plotter.set\_legend(mode=-1) \# No legend\\
1210 ASAP>plotter.set\_legend(mp=['RR','LL']) \# Specify legend labels\\
1211 ASAP>plotter.set\_legend(mp=[r'\$\^\{12\}CO\$',r'\$\^\{13\}CO\$']) \# Latex labels
[1217]1212}
1213
1214\commanddef{set\_title}{Set the plot title. If multiple panels are
1215 plotted, multiple titles have to be specified}{
[1259]1216 ASAP>plotter.set\_title(`G323.12$-$1.79`)\\
1217 ASAP>plotter.set\_title([`SiO`, 'Methanol'], fontsize=18)\\
[1217]1218}
1219
1220\subsection{Plotter Annotations}
1221
[1259]1222The plotter allows various annotations (lines, arrows, text and
[1217]1223``spans'') to be added to the plot. These annotations are
1224``temporary'', when the plotter is next refreshed
1225(e.g. \cmd{plotter.plot} or \cmd{plotter.set\_range}) the annotations
1226will be removed.
1227
[1259]1228\bigcommanddef{arrow(x,y,x+dx,y+dy)}{Draw an arrow from a specified
[1217]1229\cmd{(x,y)} position to \cmd{(x+dx, y+dy)}. The values are in world
1230coordinates. \em {HOW TO SET ARROW HEAD??}}{
[1259]1231 ASAP>plotter.arrow(-40,7,35,0)
[1217]1232}
1233
1234\bigcommanddef{axhline(y, xmin, xmax)}{Draw a horizontal line at the
[1259]1235specified \cmd{y} position (in world coordinates) between xmin and xmax
1236(in relative coordinates, i.e. 0.0 is the left hand edge of the plot
[1217]1237while 1.0 is the right side of the plot.}{
[1259]1238 ASAP>plotter.axhline(6.0,0.2,0.8)
[1217]1239}
1240
1241\bigcommanddef{avhline(x, ymin, ymax)}{Draw a vertical line at the
[1259]1242specified \cmd{x} position (in world coordinates) between \cmd{ymin}
1243and \cmd{ymax} (in relative coordinates, i.e. 0.0 is the left hand edge
[1217]1244of the plot while 1.0 is the right side of the plot).}{
[1259]1245 ASAP>plotter.axvline(-50.0,0.1,1.0)
[1217]1246}
1247
1248\bigcommanddef{axhspan(ymin, ymax, \\ \hspace*{20mm}xmin,
1249 xmax)}{Overlay a transparent colour rectangle. \cmd{ymin} and
[1259]1250 \cmd{ymax} are given in world coordinates while \cmd{xmin} and
[1217]1251 \cmd{xmax} are given in relative coordinates}{
[1259]1252ASAP>plotter.axhspan(2,4,0.25,0.75)
[1217]1253}
1254
1255\bigcommanddef{axvspan(xmin, xmax, \\ \hspace*{20mm} ymin,
1256 ymax)}{Overlay a transparent colour rectangle. \cmd{ymin} and
[1259]1257 \cmd{ymax} are given in relative coordinates while \cmd{xmin} and
[1217]1258 \cmd{xmax} are given in world coordinates}{
[1259]1259ASAP>plotter.axvspan(-50,60,0.2,0.5)
[1217]1260}
1261
1262\bigcommanddef{text(x, y, str)}{Place the string \cmd{str} at the
1263 given \cmd{(x,y)} position in world coordinates.}{
1264ASAP>plotter.text(-10,7,"CO")
1265}
1266
1267
1268
1269These functions all take a set of \cmd{kwargs} commands. These can be
1270used to set colour, linewidth fontsize etc. These are standard
1271matplotlib settings. Common ones include:
1272
1273\begin{tabular}{ll}
1274 \tt color \\
1275 \tt linewidth \\
1276 \tt fontsize \\
1277 \tt fontname & Sans, Helvetica, Courier, Times etc\\
1278 \tt rotation & Text rotation (horizontal, vertical) \\
1279 \tt alpha & The alpha transparency on 0-1 scale\\
1280\end{tabular}
1281
1282Examples:
1283\begin{verbatim}
[1259]1284 ASAP>plotter.axhline(6.0,0.2,0.8, color='red', linewidth=3)
1285 ASAP>plotter.text(-10,7,"CO", fontsize=20)
[1217]1286\end{verbatim}
1287
[1259]1288\section{Line Catalog}
1289
1290\index{Linecatalog}ASAP can load and manipulate line catlogs to retrieve rest frequencies
1291for \cmd{set\_restfreqs} and for line identification in the
1292plotter. No line catalogs are built into ASAP, the user must load a
1293ASCII based table (which can optionally be saved in an internal
1294format) either of the users own creation or a standard line catalog
1295such as the JPL line catalog or Lovas. The ATNF asap ftp area as
1296copies of the JPL and Lovas catalog in the appropriate format. All
1297line catalogs are loaded into a ``linecatalog'' object.
1298
1299\subsection{Loading a Line Catalog}
1300
1301\index{Linecatalog|loading}The ASCII text line catalog must have at
1302least 4 columns. The first four columns must contain (in order):
1303Molecule name, frequency in MHz, frequency error and ``intensity''
1304(any units). If the molecule name contains any spaces, they must be
1305wrapped in quotes \verb+""+.
1306
1307A sample from the JPL line catalog:
1308
1309\begin{verbatim}
1310 H2D+ 3955.2551 228.8818 -7.1941
1311 H2D+ 12104.7712 177.1558 -6.0769
1312 H2D+ 45809.2731 118.3223 -3.9494
1313 CH 701.6811 .0441 -7.1641
1314 CH 724.7709 .0456 -7.3912
1315 CH 3263.7940 .1000 -6.3501
1316 CH 3335.4810 .1000 -6.0304
1317\end{verbatim}
1318
1319To load a line catalog then save it in the internal format:
1320
1321\begin{verbatim}
1322 ASAP>jpl = linecatalog('jpl_pruned.txt')
1323 ASAP>jpl.save('jpl.tbl')
1324\end{verbatim}
1325
1326Later the saved line catalog can reloaded:
1327
1328\begin{verbatim}
1329 ASAP>jpl = linecatalog('jpl.tbl')
1330\end{verbatim}
1331
1332\subsection{Line selection}
1333
1334\index{Linecatalog|line selection}The linecatalog has a number of
1335selection functions to select a range of lines from a larger catalog
1336(the JPL catalog has $>$180000 lines for
1337example). \cmd{set\_frequency\_limits} selects on frequency range,
1338\cmd{set\_strength\_limits} selects on intensity while \cmd{set\_name}
1339selects on molecule name (wild cards allowed).
1340
1341\begin{verbatim}
1342 ASAP>jpl = linecatalog('jpl.tbl')
1343 ASAP>jpl.set_frequency_limits(80,115,'GHz') # Lines for 3mm receiver
1344 ASAP>jpl.set_name('*OH') # Select all alcohols
1345 ASAP>jpl.set_name('OH') # Select only OH molecules
1346 ASAP>jpl.summary()
1347
1348 ASAP>jpl.reset() # Selections are accumulative
1349 ASAP>jpl.set_frequency_limits(80,115,'GHz')
1350 ASAP>jpl.set_strength_limits(-2,10) # Select brightest lines
1351 ASAP>jpl.summary()
1352\end{verbatim}
1353
1354\subsection{Using Linecatalog}
1355
1356The line catalogs can be used for line overlays on the plotter or with
1357\cmd{set\_restfreq}.
1358
1359\subsubsection{Plotting linecatalog}
1360
1361\index{Linecatalog|plotting}
1362
1363The plotter \cmd{plot\_lines} function takes a line catalog as an
1364argument and overlays the lines on the spectrum. {\em Currently this
1365only works when plotting in units of frequency (Hz, GHz etc).} If a
1366large line catalog has been loaded (e.g. JPL) it is highly recommended
1367that you use the selection functions to narrow down the number of
1368lines. By default the line catalog overlay is plotted assuming a line
1369velocity of 0.0. This can be set using the \cmd{doppler} argument (in
1370km/s). Each time \cmd{plot\_lines} is called the new lines are added
1371to any existing line catalog annotations. These are all removed after
1372the next call to \cmd{plotter.plot()}.
1373
1374\begin{verbatim}
1375 ASAP>jpl = linecatalog('jpl.tbl')
1376 ASAP>jpl.set_frequency_limits(23,24,'GHz')
1377 ASAP>data.set_unit('GHz') # Only works with freq axis currently
1378 ASAP>plotter.plot(data)
1379 ASAP>plotter.plot_lines(jpl)
1380
1381 ASAP>plotter.plot() # Reset plotter
1382 ASAP>plotter.plot_lines(jpl,doppler=-10,location='Top') # On top with -10 km/s velocity
1383\end{verbatim}
1384
1385\subsubsection{Setting Rest Frequencies}
1386
1387\index{Linecatalog|set_restfreq}
1388
[534]1389\section{Fitting}
1390
[794]1391\index{Fitting}Currently multicomponent Gaussian function is
1392available. This is done by creating a fitting object, setting up the
1393fit and actually fitting the data. Fitting can either be done on a
[966]1394single scantable selection or on an entire scantable using the
1395\cmd{auto\_fit} function. If single value fitting is used, and the
1396current selection includes multiple spectra (beams, IFs, scans etc)
[971]1397then the first spectrum in the scantable will be used for fitting.
[534]1398
1399\begin{verbatim}
[1259]1400 ASAP>f = fitter()
1401 ASAP>f.set_function(gauss=2) # Fit two Gaussians
1402 ASAP>f.set_scan(scans)
1403 ASAP>selection = selector()
1404 ASAP>selection.set_polarisations(1) # Fit the second polarisation
1405 ASAP>scans.set_selection(selection)
1406 ASAP>scans.set_unit('km/s') # Make fit in velocity units
1407 ASAP>f.fit(1) # Run the fit on the second row in the table
1408 ASAP>f.plot() # Show fit in a plot window
1409 ASAP>f.get_parameters() # Return the fit paramaters
[534]1410\end{verbatim}
1411
1412This auto-guesses the initial values of the fit and works well for data
1413without extra confusing features. Note that the fit is performed in
1414whatever unit the abscissa is set to.
1415
1416If you want to confine the fitting to a smaller range (e.g. to avoid
1417band edge effects or RFI you must set a mask.
1418
1419\begin{verbatim}
[1259]1420 ASAP>f = fitter()
1421 ASAP>f.set_function(gauss=2)
1422 ASAP>scans.set_unit('km/s') # Set the mask in channel units
1423 ASAP>msk = s.create_mask([1800,2200])
1424 ASAP>scans.set_unit('km/s') # Make fit in velocity units
1425 ASAP>f.set_scan(s,msk)
1426 ASAP>f.fit()
1427 ASAP>f.plot()
1428 ASAP>f.get_parameters()
[534]1429\end{verbatim}
1430
[544]1431If you wish, the initial parameter guesses can be specified and
1432specific parameters can be fixed:
[534]1433
1434\begin{verbatim}
[1259]1435 ASAP>f = fitter()
1436 ASAP>f.set_function(gauss=2)
1437 ASAP>f.set_scan(s,msk)
1438 ASAP>f.fit() # Fit using auto-estimates
[738]1439 # Set Peak, centre and fwhm for the second gaussian.
[534]1440 # Force the centre to be fixed
[1259]1441 ASAP>f.set_gauss_parameters(0.4,450,150,0,1,0,component=1)
1442 ASAP>f.fit() # Re-run the fit
[534]1443\end{verbatim}
1444
1445The fitter \cmd{plot} function has a number of options to either view
1446the fit residuals or the individual components (by default it plots
1447the sum of the model components).
1448
1449Examples:
1450
1451\begin{verbatim}
1452 # Plot the residual
[1259]1453 ASAP>f.plot(residual=True)
[534]1454
1455 # Plot the first 2 componentsa
[1259]1456 ASAP>f.plot(components=[0,1])
[534]1457
1458 # Plot the first and third component plus the model sum
[1259]1459 ASAP>f.plot(components=[-1,0,2]) # -1 means the compoment sum
[534]1460\end{verbatim}
1461
[544]1462\subsection{Fit saving}
1463
[794]1464\index{Fitter!Fit saving}One you are happy with your fit, it is
1465possible to store it as part of the scantable.
[544]1466
1467\begin{verbatim}
[1259]1468 ASAP>f.store_fit()
[544]1469\end{verbatim}
1470
1471This will be saved to disk with the data, if the ``ASAP'' file format
1472is selected. Multiple fits to the same data can be stored in the
[738]1473scantable.
[544]1474
1475The scantable function \cmd{get\_fit} can be used to retrieve the
1476stored fits. Currently the fit parameters are just printed to the
1477screen.
1478
1479\begin{verbatim}
[1259]1480 ASAP>scans.get_fit(4) # Print fits for row 4
[544]1481\end{verbatim}
1482
[1259]1483A fit can also be exported to an ASCII file using the \cmd{store\_fit}
1484function. Simply give the name of the output file requires as an
1485argument.
1486
1487\begin{verbatim}
1488 ASAP>f.store_fit('myfit.txt')
1489\end{verbatim}
1490
[534]1491\section{Polarisation}
1492
[794]1493\index{Polarisation}Currently ASAP only supports polarmetric analysis
1494on linearly polarised feeds and the cross polarisation products
[971]1495measured. Other cases will be added on an as needed basis.
[534]1496
[538]1497Conversions of linears to Stokes or Circular polarisations are done
[966]1498``on-the-fly''. Leakage cannot be corrected for nor are there routines
1499to calibrate position angle offsets.
[534]1500
[538]1501\subsection{Simple Calibration}
1502
[794]1503\index{Polarisation!calibration}It is possible that there is a phase
1504offset between polarisation which will effect the phase of the cross
1505polarisation correlation, and so give rise to spurious
1506polarisation. \cmd{rotate\_xyphase} can be used to correct for this
1507error. At this point, the user must know how to determine the size of
1508the phase offset themselves.
[538]1509
1510\begin{verbatim}
[1259]1511 ASAP>scans.rotate_xyphase(10.5) # Degrees
[538]1512\end{verbatim}
1513
1514Note that if this function is run twice, the sum of the two values is
[546]1515applied because it is done in-situ.
[538]1516
[546]1517A correction for the receiver parallactic angle may need to be made,
[953]1518generally because of how it is mounted. Use \cmd{rotate\_linpolphase}
1519to correct the position angle. Running this function twice results in
1520the sum of the corrections being applied because it is applied
1521in-situ.
[538]1522
1523\begin{verbatim}
[1259]1524 ASAP>scans.rotate_linpolphase(-45) # Degrees; correct for receiver mounting
[953]1525\end{verbatim}
[538]1526
[953]1527If the sign of the complex correlation is wrong (this can happen
1528depending on the correlator configuration), use \cmd{invert\_phase} to
1529change take the complex conjugate of the complex correlation
1530term. This is always performed in-situ.
1531
1532\begin{verbatim}
[1259]1533 ASAP>scans.invert_phase()
[538]1534\end{verbatim}
1535
[953]1536Depending on how the correlator is configured, ``BA'' may be
[1259]1537correlated instead of ``AB''. Use \cmd{swap\_linears} to correct for
[953]1538this problem:
1539
1540\begin{verbatim}
[1259]1541 ASAP>scans.swap_linears()
[953]1542\end{verbatim}
1543
[1011]1544\subsection{Conversion}
1545\label{sec:polconv}
1546
[1064]1547Data can be permanently converted between linear and circular
1548polarisations and stokes.
1549
[1011]1550\begin{verbatim}
[1259]1551 ASAP>stokescans = linearscans.convert_pol("stokes")
[1011]1552\end{verbatim}
1553
1554
[538]1555\subsection{Plotting}
1556\label{sec:polplot}
1557
[953]1558\index{Polarisation!plotting}To plot Stokes values, a selector object
1559must be created and the set\_polarisation function used to select the
1560desired polarisation products.
1561
1562The values which can be plotted include a selection of [I,Q,U,V], [I,
1563Plinear, Pangle, V], [RR, LL] or [XX, YY, Real(XY),
[794]1564Imaginary(XY)]. (Plinear and Pangle are the percentage and position
[1011]1565angle of linear polarisation).
[538]1566
1567Example:
1568
1569\begin{verbatim}
[1259]1570 ASAP>selection = selector()
[970]1571
[1259]1572 ASAP>selection.set_polarisations(``I Q U V'')
[953]1573 ASAP plotter.set_selection(selection); # Select I, Q, U \& V
1574
[1259]1575 ASAP>selection.set_polarisations(``I Q'')
[953]1576 ASAP plotter.set_selection(selection); # Select just I \& Q
1577
[1259]1578 ASAP>selection.set_polarisations(``RR LL'')
[953]1579 ASAP plotter.set_selection(selection); # Select just RR \& LL
1580
[1259]1581 ASAP>selection.set_polarisations(``XX YY'')
[953]1582 ASAP plotter.set_selection(selection); # Select linears
1583
[1259]1584 ASAP>selection.set_polarisations(``I Plinear'')
[966]1585 ASAP plotter.set_selection(selection); # Fractional linear
[953]1586
[1259]1587 ASAP>selection.set_polarisations(``Pangle'')
[966]1588 ASAP plotter.set_selection(selection); # Position angle
1589
[538]1590\end{verbatim}
1591
[970]1592Scan, beam and IF selection are also available in the selector object as
[953]1593describe in section~\ref{sec:selection}.
[538]1594
1595\subsection{Saving}
1596
[794]1597\index{Polarisation!saving}When saving data using the \cmd{save}
1598function, the \cmd{stokes} argument can be used to save the data as
1599Stoke values when saving in FITS format.
[538]1600
1601Example:
1602
1603\begin{verbatim}
[1259]1604 ASAP>scans.save('myscan.sdfits', 'SDFITS', stokes=True)
[538]1605\end{verbatim}
1606
[1217]1607\section{Specialised Processing}
1608
1609\subsection{Multibeam MX mode}
1610
1611MX mode is a specific observing approach with a multibeam where a
1612single source is observed cycling through each beam. The scans when
[1259]1613the beam is off source is used as a reference for the on-source
[1217]1614scan. The function \cmd{mx\_quotient} is used to make a quotient
1615spectrum from an MX cycle. This works averaging the ``off-source''
1616scans for each beam (either a median average or mean) and using this
1617as a reference scan in a normal quotient (for each beam). The final
1618spectrum for each beam is returned on a new scantable containing
1619single scan (it the scan numbers are re-labelled to be the same). Note
1620that the current version of \cmd{mx\_quotient} only handles a single
[1259]1621MX cycle, i.e. if each beam has observed the source multiple times you
[1217]1622will need to use the selector object multiple times to select a single
1623MX cycle, run \cmd{mx\_quotient} for each cycle then merge the
1624resulting scan tables back together.
1625
1626Example:
1627
1628\begin{verbatim}
[1259]1629 ASAP>scans = scantable('mydata.rpf')
1630 ASAP>q = scans.mx_quotient()
1631 ASAP>plotter.plot(q)
[1217]1632\end{verbatim}
1633
1634The function \cmd{average\_beam} averages multiple beam data
1635together. This is need if MX mode has been used to make a long
1636integration on a single source. E.g.
1637
1638\begin{verbatim}
[1259]1639 ASAP>av = q.average_beam()
[1217]1640\end{verbatim}
1641
1642\subsection{Frequency Switching}
1643
1644{\em FILL ME IN}
1645
[1259]1646\subsection{Disk Based Processing}
1647\index{Scantable|disk based}
1648
1649Normally scantables exisit entirely in memory during an ASAP
1650session. This has the adtantage of speed, but causes limits on the
1651size of the dataset which can be loaded. ASAP can use ``disk based''
1652scan tables which
1653
1654{\bf NOTE: } Currently a bug in ipython means temporary files are not
1655cleaned up properly when you exit ASAP. If you use disk based scan
1656tables your directory will be left with 'tmp*' directories. These can
1657be safely removed if ASAP is not running.
1658
[770]1659\section{Scantable Mathematics}
1660
[794]1661\index{Scantable!maths}It is possible to to simple mathematics
1662directly on scantables from the command line using the \cmd{+, -, *,
1663/} operators as well as their cousins \cmd{+=, -= *=, /=}. This works
[971]1664between a scantable and a float. (Note that it does
[794]1665not work for integers).
[770]1666
[971]1667{\em Currently mathematics between two scantables is not available }
[966]1668
[1259]1669% ASAP>sum = scan1+scan2
[534]1670\begin{verbatim}
[1259]1671 ASAP>scan2 = scan1+2.0
1672 ASAP>scan *= 1.05
[770]1673\end{verbatim}
1674
1675\section{Scripting}
1676
[1259]1677\index{Scripting}Because ASAP is based on python, it easy for the user
[794]1678write their own scripts and functions to process data. This is highly
1679recommended as most processing of user data could then be done in a
1680couple of steps using a few simple user defined functions. A Python
[1259]1681primer is beyond the scope of this userguide. See the ASAP home pages
[794]1682for a scripting tutorial or the main python website for comprehensive
1683documentation.
[770]1684
1685\hspace{1cm} http://www.atnf.csiro.au/computing/software/asap/tutorials
[953]1686
[770]1687\hspace{1cm} http://www.python.org/doc/Introduction.html
1688
1689\subsection{Running scripts}
1690
[1259]1691The ASAP global function \cmd{execfile} reads the named text file and
[770]1692executes the contained python code. This file can either contain
1693function definitions which will be used in subsequent processing or
1694just a set of commands to process a specific dataset.
1695
1696\subsection{asapuserfuncs.py}
1697
1698The file $\sim$/.asap/asapuserfuncs.py is automatically read in when
[1259]1699ASAP is started. The user can use this to define a set of user
1700functions which are automatically available each time ASAP is
[770]1701used. The \cmd{execfile} function can be called from within this file.
1702
1703\section{Worked examples}
1704
1705In the following section a few examples of end-to-end processing of
[1259]1706some data in ASAP are given.
[770]1707
1708\subsection{Mopra}
[794]1709\index{Mopra}
[770]1710
[794]1711The following example is of some dual polarisation, position switched
[1259]1712data from Mopra. The source has been observed multiple times split
1713into a number of separate RPFITS files. To make the processing easier,
1714the first step is to \cmd{cat} the separate RPFITS files together and
1715load as a whole (future versions of ASAP will make this unnecessary).
[794]1716
1717
1718\begin{verbatim}
[1011]1719# get a list of the individual rpfits files in the current directory
1720myfiles = list_files()
[794]1721
1722# Load the data into a scantable
[1011]1723data = scantable(myfiles)
[794]1724print data
1725
1726# Form the quotient spectra
1727q = data.auto_quotient()
1728print q
1729
1730# Look at the spectra
1731plotter.plot(q)
1732
[1011]1733# Set unit and reference frame
[794]1734q.set_unit('km/s')
1735q.set_freqframe('LSRK')
1736
[966]1737# Average all scans in time, aligning in velocity
1738av = q.average_time(align=True)
[794]1739plotter.plot(av)
1740
1741# Remove the baseline
1742msk = av.create_mask([100,130],[160,200])
1743av.poly_baseline(msk,2)
1744
1745# Average the two polarisations together
1746iav = av.average_pol()
1747print iav
1748plotter.plot(iav)
1749
1750# Set a sensible velocity range on the plot
1751plotter.set_range(85,200)
1752
1753# Smooth the data a little
1754av.smooth('gauss',4)
1755plotter.plot()
1756
1757# Fit a guassian to the emission
1758f = fitter()
1759f.set_function(gauss=1)
1760f.set_scan(av)
1761f.fit()
1762
1763# View the fit
1764f.plot()
1765
1766# Get the fit parameters
1767f.get_parameters()
1768
1769\end{verbatim}
1770
1771
[770]1772\subsection{Parkes Polarimetry}
1773
[794]1774\index{Parkes}\index{Polarisation}The following example is processing
1775of some Parkes polarmetric observations of OH masers at
17761.6~GHz. Because digital filters where used in the backend, the
1777baselines are stable enough not to require a quotient spectra. The
17784~MHz bandwidth is wide enough to observe both the 1665 and 1667~MHz
1779OH maser transitions. Each source was observed once for about 10
[1259]1780minutes. Tsys information was not written to the RPFITS file (a
[794]1781nominal 25K values was used), so the amplitudes need to be adjusted
1782based on a separate log file. A simple user function is used to
1783simplify this, contained in a file called mypol.py:
[770]1784
1785\begin{verbatim}
1786def xyscale(data,xtsys=1.0,ytsys=1.0,nomtsys=25.0) :
1787
[966]1788 selection = selector()
[971]1789 selection.set_polarisations(0)
[966]1790 data.set_selection(selection)
1791 data.scale(xtsys/nomtsys)
[770]1792
[971]1793 selection.set_polarisations(1)
[966]1794 data.set_selection(selection)
1795 data.scale(ytsys/nomtsys)
[770]1796
[971]1797 selection.set_polarisations(0)
[966]1798 data.set_selection(selection)
1799 data.scale((xtsys+ytsys)/(2*nomtsys))
[770]1800
[971]1801 selection.set_polarisations(0)
[966]1802 data.set_selection(selection)
1803 data.scale((xtsys+ytsys)/(2*nomtsys))
[770]1804\end{verbatim}
1805
[1259]1806The typical ASAP session would be
[770]1807
1808\begin{verbatim}
[794]1809
[770]1810# Remind ourself the name of the rpfits files
[794]1811ls
[770]1812
1813# Load data from an rpfits file
1814d1665 = scantable('2005-10-27_0154-P484.rpf')
1815
1816# Check what we have just loaded
[1011]1817d1665.summary()
[770]1818
1819# View the data in velocity
1820d1665.set_unit('km/s')
1821d1665.set_freqframe('LSRK')
1822
1823# Correct for the known phase offset in the crosspol data
1824d1665.rotate_xyphase(-4)
1825
[794]1826# Create a copy of the data and set the rest frequency to the 1667 MHz
[770]1827# transition
1828d1667 = d1665.copy()
[966]1829d1667.set_restfreqs([1667.3590], 'MHz')
1830d1667.summary()
[770]1831
1832# Copy out the scan we wish to process
1833g351_5 = d1665.get_scan('351p160')
1834g351_7 = d1667.get_scan('351p160')
1835
[966]1836# Baseline both
1837msk = g351_5.create_mask([-30,-25],[-5,0])
1838g351_5.poly_baseline(msk,order=1)
1839msk = g351_7.create_mask([-30,-25],[-5,0])
1840g351_7.poly_baseline(msk,order=1)
[770]1841
[966]1842
1843# Plot the data. The plotter can only plot a single scantable
1844# So we must merge the two tables first
1845
1846plotscans = merge(g351_5, g351_7)
1847
1848plotter.plot(plotscans) # Only shows one panel
1849
[770]1850# Tell the plotter to stack polarisation and panel scans
1851plotter.set_mode('p','s')
1852
1853# Correct for the Tsys using our predefined function
[971]1854execfile('mypol.py') # Read in the function xyscale
[770]1855xyscale(g351_5,23.2,22.7) # Execute it on the data
1856xyscale(g351_7,23.2,22.7)
1857
1858# Only plot the velocity range of interest
1859plotter.set_range(-30,10)
1860
1861# Update the plot with the baselined data
1862plotter.plot()
1863
1864# Look at the various polarisation products
[966]1865selection = selector()
1866selection.set_polarisations(``RR LL'')
1867plotter.set_selection(selection)
1868selection.set_polarisations(``I Plinear'')
1869plotter.set_selection(selection)
1870selection.set_polarisations(``I Q U V'')
1871plotter.set_selection(selection)
[770]1872
1873# Save the plot as postscript
[966]1874plotter.save('g351_stokes.ps')
[770]1875
1876# Save the process spectra
[966]1877plotscans.save('g351.asap')
[770]1878
1879\end{verbatim}
1880
1881\subsection{Tidbinbilla}
1882
[794]1883\index{Tidbinbilla}The following example is processing of some
1884Tidbinbilla observations of NH$_3$ at 12~mm. Tidbinbilla has (at the
1885time of observations) a single polarisation, but can process two IFs
1886simultaneously. In the example, the first half of the observation was
1887observing the (1,1) and (2,2) transitions simultaneously). The second
1888half observed only the (4,4) transition due to bandwidth
1889limitations. The data is position switched, observing first an
1890reference to the west, then the source twice and finally reference to
1891the east.
[770]1892
1893\begin{verbatim}
1894
1895# Load the rpfits file and inspect
1896d = scantable('2003-03-16_082048_t0002.rpf')
1897print d
1898
1899# Make the quotient spectra
1900q = d.auto_quotient()
1901print q
1902
[966]1903del d
1904
[770]1905# Plot/select in velocity
1906q.set_freqframe('LSRK')
1907q.set_unit('km/s')
1908
[966]1909# Correct for gain/el effects
1910
1911q.recalc_azel() # Tid does not write the elevation
1912q.gain_el()
1913q.opacity(0.05)
1914
[770]1915# Seperate data from the (1,1)&(2,2) and (4,4) transitions
[971]1916g1 = q.get_scan(range(6)) # scans 0..5
1917g2 = q.get_scan(range(6,12)) # scans 6..11
[770]1918
[794]1919# Align data in velocity
[966]1920g1.freq_align()
1921g2.freq_align()
[770]1922
1923# Average individual scans
1924a1 = g1.average_time()
1925a2 = g2.average_time()
1926
[1011]1927# Rpfits file only contains a single rest frequency. Set both
[966]1928a1.set_restfreqs([23694.4700e6,23722.6336e6])
[770]1929
[966]1930plotter.plot(a1)
[1011]1931plotter.set_mode('i','t')
[770]1932
1933a1.auto_poly_baseline()
1934
1935plotter.plot()
1936
1937a1.smooth('gauss',5)
1938plotter.plot()
1939
[966]1940
[770]1941\end{verbatim}
1942
1943\newpage
1944
1945\section{Appendix}
1946
1947\subsection{Function Summary}
1948
[794]1949\index{Functions!summary}%
[770]1950\begin{verbatim}
[1217]1951
[738]1952 [The scan container]
[534]1953 scantable - a container for integrations/scans
1954 (can open asap/rpfits/sdfits and ms files)
1955 copy - returns a copy of a scan
1956 get_scan - gets a specific scan out of a scantable
[1011]1957 (by name or number)
[1217]1958 drop_scan - drops a specific scan out of a scantable
1959 (by number)
[1011]1960 set_selection - set a new subselection of the data
1961 get_selection - get the current selection object
[534]1962 summary - print info about the scantable contents
1963 stats - get specified statistic of the spectra in
1964 the scantable
1965 stddev - get the standard deviation of the spectra
1966 in the scantable
1967 get_tsys - get the TSys
1968 get_time - get the timestamps of the integrations
[1011]1969 get_sourcename - get the source names of the scans
[794]1970 get_azimuth - get the azimuth of the scans
1971 get_elevation - get the elevation of the scans
1972 get_parangle - get the parallactic angle of the scans
[1011]1973 get_unit - get the current unit
[534]1974 set_unit - set the abcissa unit to be used from this
1975 point on
1976 get_abcissa - get the abcissa values and name for a given
1977 row (time)
1978 set_freqframe - set the frame info for the Spectral Axis
1979 (e.g. 'LSRK')
1980 set_doppler - set the doppler to be used from this point on
[1011]1981 set_dirframe - set the frame for the direction on the sky
[534]1982 set_instrument - set the instrument name
[1217]1983 set_feedtype - set the feed type
[534]1984 get_fluxunit - get the brightness flux unit
1985 set_fluxunit - set the brightness flux unit
1986 create_mask - return an mask in the current unit
1987 for the given region. The specified regions
1988 are NOT masked
1989 get_restfreqs - get the current list of rest frequencies
1990 set_restfreqs - set a list of rest frequencies
[1217]1991 flag - flag selected channels in the data
1992 lag_flag - flag specified frequency in the data
1993 save - save the scantable to disk as either 'ASAP',
1994 'SDFITS' or 'ASCII'
[534]1995 nbeam,nif,nchan,npol - the number of beams/IFs/Pols/Chans
[1011]1996 nscan - the number of scans in the scantable
1997 nrow - te number of spectra in the scantable
[534]1998 history - print the history of the scantable
[544]1999 get_fit - get a fit which has been stored witnh the data
[738]2000 average_time - return the (weighted) time average of a scan
[534]2001 or a list of scans
2002 average_pol - average the polarisations together.
[1217]2003 average_beam - average the beams together.
[1011]2004 convert_pol - convert to a different polarisation type
[738]2005 auto_quotient - return the on/off quotient with
[1217]2006 automatic detection of the on/off scans (closest
2007 in time off is selected)
2008 mx_quotient - Form a quotient using MX data (off beams)
2009 scale, *, / - return a scan scaled by a given factor
2010 add, +, - - return a scan with given value added
[534]2011 bin - return a scan with binned channels
2012 resample - return a scan with resampled channels
2013 smooth - return the spectrally smoothed scan
2014 poly_baseline - fit a polynomial baseline to all Beams/IFs/Pols
[738]2015 auto_poly_baseline - automatically fit a polynomial baseline
[794]2016 recalc_azel - recalculate azimuth and elevation based on
2017 the pointing
[534]2018 gain_el - apply gain-elevation correction
2019 opacity - apply opacity correction
2020 convert_flux - convert to and from Jy and Kelvin brightness
2021 units
2022 freq_align - align spectra in frequency frame
[1217]2023 invert_phase - Invert the phase of the cross-correlation
2024 swap_linears - Swap XX and YY
[534]2025 rotate_xyphase - rotate XY phase of cross correlation
2026 rotate_linpolphase - rotate the phase of the complex
2027 polarization O=Q+iU correlation
[1011]2028 freq_switch - perform frequency switching on the data
2029 stats - Determine the specified statistic, e.g. 'min'
2030 'max', 'rms' etc.
2031 stddev - Determine the standard deviation of the current
2032 beam/if/pol
[1217]2033 [Selection]
2034 selector - a selection object to set a subset of a scantable
2035 set_scans - set (a list of) scans by index
2036 set_cycles - set (a list of) cycles by index
2037 set_beams - set (a list of) beamss by index
2038 set_ifs - set (a list of) ifs by index
2039 set_polarisations - set (a list of) polarisations by name
2040 or by index
2041 set_names - set a selection by name (wildcards allowed)
2042 set_tsys - set a selection by tsys thresholds
2043 reset - unset all selections
2044 + - merge to selections
[1011]2045
[534]2046 [Math] Mainly functions which operate on more than one scantable
2047
[738]2048 average_time - return the (weighted) time average
[534]2049 of a list of scans
2050 quotient - return the on/off quotient
[544]2051 simple_math - simple mathematical operations on two scantables,
2052 'add', 'sub', 'mul', 'div'
[1217]2053 quotient - build quotient of the given on and off scans
2054 (matched pairs and 1 off/n on are valid)
2055 merge - merge a list of scantables
2056
2057 [Line Catalog]
2058 linecatalog - a linecatalog wrapper, taking an ASCII or
2059 internal format table
2060 summary - print a summary of the current selection
2061 set_name - select a subset by name pattern, e.g. '*OH*'
2062 set_strength_limits - select a subset by line strength limits
2063 set_frequency_limits - select a subset by frequency limits
2064 reset - unset all selections
2065 save - save the current subset to a table (internal
2066 format)
2067 get_row - get the name and frequency from a specific
2068 row in the table
[534]2069 [Fitting]
2070 fitter
2071 auto_fit - return a scan where the function is
2072 applied to all Beams/IFs/Pols.
2073 commit - return a new scan where the fits have been
2074 commited.
2075 fit - execute the actual fitting process
[1011]2076 store_fit - store the fit parameters in the data (scantable)
[534]2077 get_chi2 - get the Chi^2
2078 set_scan - set the scantable to be fit
2079 set_function - set the fitting function
2080 set_parameters - set the parameters for the function(s), and
2081 set if they should be held fixed during fitting
[544]2082 set_gauss_parameters - same as above but specialised for individual
2083 gaussian components
[534]2084 get_parameters - get the fitted parameters
2085 plot - plot the resulting fit and/or components and
2086 residual
2087 [Plotter]
2088 asapplotter - a plotter for asap, default plotter is
2089 called 'plotter'
[1011]2090 plot - plot a scantable
[1217]2091 plot_lines - plot a linecatalog overlay
[534]2092 save - save the plot to a file ('png' ,'ps' or 'eps')
2093 set_mode - set the state of the plotter, i.e.
2094 what is to be plotted 'colour stacked'
2095 and what 'panelled'
[1011]2096 set_selection - only plot a selected part of the data
2097 set_range - set a 'zoom' window [xmin,xmax,ymin,ymax]
[534]2098 set_legend - specify user labels for the legend indeces
2099 set_title - specify user labels for the panel indeces
[1011]2100 set_abcissa - specify a user label for the abcissa
[534]2101 set_ordinate - specify a user label for the ordinate
2102 set_layout - specify the multi-panel layout (rows,cols)
[1011]2103 set_colors - specify a set of colours to use
2104 set_linestyles - specify a set of linestyles to use if only
2105 using one color
[1217]2106 set_font - set general font properties, e.g. 'family'
2107 set_histogram - plot in historam style
[1011]2108 set_mask - set a plotting mask for a specific polarization
[1217]2109 text - draw text annotations either in data or relative
2110 coordinates
2111 arrow - draw arrow annotations either in data or relative
2112 coordinates
2113 set_abcissa - specify a user label for the abcissa
2114 set_ordinate - specify a user label for the ordinate
2115 set_layout - specify the multi-panel layout (rows,cols)
2116 set_colors - specify a set of colours to use
2117 set_linestyles - specify a set of linestyles to use if only
2118 using one color
2119 set_font - set general font properties, e.g. 'family'
2120 set_histogram - plot in historam style
2121 set_mask - set a plotting mask for a specific polarization
2122 text - draw text annotations either in data or relative
2123 coordinates
2124 arrow - draw arrow annotations either in data or relative
2125 coordinates
2126 axhline,axvline - draw horizontal/vertical lines
2127 axhspan,axvspan - draw horizontal/vertical regions
[738]2128
[1217]2129 xyplotter - matplotlib/pylab plotting functions
2130
[534]2131 [Reading files]
2132 reader - access rpfits/sdfits files
[1011]2133 open - attach reader to a file
2134 close - detach reader from file
[534]2135 read - read in integrations
2136 summary - list info about all integrations
2137
2138 [General]
2139 commands - this command
2140 print - print details about a variable
2141 list_scans - list all scantables created bt the user
[1011]2142 list_files - list all files readable by asap (default rpf)
[534]2143 del - delete the given variable from memory
2144 range - create a list of values, e.g.
2145 range(3) = [0,1,2], range(2,5) = [2,3,4]
2146 help - print help for one of the listed functions
[538]2147 execfile - execute an asap script, e.g. execfile('myscript')
[544]2148 list_rcparameters - print out a list of possible values to be
[1217]2149 put into .asaprc
2150 rc - set rc parameters from within asap
[534]2151 mask_and,mask_or,
2152 mask_not - boolean operations on masks created with
2153 scantable.create_mask
2154\end{verbatim}
2155
2156\subsection{ASCII output format}
2157
2158\subsection{.asaprc settings}
[794]2159\index{.asaprc}
[971]2160\asaprc{verbose}{{\bf True}/False}{Print verbose output, good to disable in scripts}
[770]2161
2162\asaprc{insitu}{{\bf True}/False}{Apply operations on the input
2163scantable or return new one}
2164
2165\asaprc{useplotter}{{\bf True}/False}{Preload a default plotter}
2166
2167\asaprc{plotter.gui}{{\bf True}/False}{Do we want a GUI or plot to a
2168file}
2169
2170\asaprc{plotter.stacking}{{\bf Pol} Beam IF Scan Time}{Default mode for
2171colour stacking}
2172
2173\asaprc{plotter.panelling}{Pol Beam IF {\bf Scan} Time}{Default mode
2174for panelling}
2175
2176\asaprc{plotter.ganged}{{\bf True}/False}{Push panels together, to
2177share axislabels}
2178
2179\asaprc{plotter.decimate}{True/{\bf False}}{Decimate the number of
2180points plotted by a factor of nchan/1024}
2181
[1217]2182\asaprc{plotter.histogram}{True/{\bf False}}{Plot spectrum using
2183histogram rather than lines.}
[770]2184
[1217]2185{\em MALTE TO FIX}
2186
2187\asaprc{plotter.colours}{}{Set default colours for plotting}
2188
2189\asaprc{plotter.colours}{}{Set default line styles}
2190
2191\asaprc{plotter.papersze}{{\bf A4}}{}
2192
[770]2193% scantable
2194\asaprc{scantable.save}{{\bf ASAP} SDFITS FITS ASCII MS2}{Default output
[794]2195format when saving}
[770]2196
2197\asaprc{scantable.autoaverage}{{\bf True}/False}{Auto averaging on
2198read}
2199
2200\asaprc{scantable.freqframe}{{\bf LSRK} TOPO BARY etc}{default
2201frequency frame to set when function scantable.set\_freqframe is
[971]2202called or the data is imported}
[770]2203
[1217]2204\asaprc{scantable.verbosesummary}{True/{\bf False}}{Control the level
2205of information printed by summary}
2206
2207\asaprc{scantable.storage}{{\bf memory}/disk}{Storage of scantables in
2208memory of via based disk tables}
2209
[953]2210\subsection{Installation}
2211
2212\index{Installation}ASAP depends on a number of third-party libraries which you must
2213have installed before attempting to build ASAP. These are:
2214
2215\begin{itemize}
2216\item AIPS++
2217\item Boost
2218\item Matplotlib
2219\item python/ipython
2220\end{itemize}
2221
2222Debian Linux is currently supported and we intend also
2223to support other popular Linux flavours, Solaris and Mac.
2224
2225Of the dependencies, AIPS++ is the most complex to install.
2226
[794]2227\printindex
2228
[534]2229\end{document}
[770]2230
Note: See TracBrowser for help on using the repository browser.