[534] | 1 | \documentclass[11pt]{article}
|
---|
| 2 | \usepackage{a4}
|
---|
[770] | 3 | \usepackage{calc}
|
---|
[534] | 4 | \usepackage[dvips]{graphicx}
|
---|
[794] | 5 | \usepackage{makeidx}
|
---|
[534] | 6 |
|
---|
| 7 | % Adjust the page size
|
---|
| 8 | \addtolength{\oddsidemargin}{-0.4in}
|
---|
| 9 | \addtolength{\evensidemargin}{+0.4in}
|
---|
| 10 | \addtolength{\textwidth}{+0.8in}
|
---|
| 11 |
|
---|
| 12 | \setlength{\parindent}{0mm}
|
---|
| 13 | \setlength{\parskip}{1ex}
|
---|
| 14 |
|
---|
[1011] | 15 | \title{ATNF Spectral Analysis Package\\User Guide v2.0beta }
|
---|
[534] | 16 | \author{Chris Phillips}
|
---|
| 17 |
|
---|
| 18 | \newcommand{\cmd}[1]{{\tt #1}}
|
---|
| 19 |
|
---|
[770] | 20 | \newcommand{\asaprc}[3]{
|
---|
| 21 | \begin{minipage}[t]{45mm}#1\end{minipage}
|
---|
| 22 | \begin{minipage}[t]{30mm}\raggedright #2\end{minipage}\hspace{3mm}
|
---|
| 23 | \begin{minipage}[t]{\textwidth-75mm}#3\end{minipage}
|
---|
| 24 | }
|
---|
| 25 |
|
---|
[794] | 26 | \makeindex
|
---|
| 27 |
|
---|
| 28 |
|
---|
[534] | 29 | \begin{document}
|
---|
| 30 |
|
---|
| 31 | \maketitle
|
---|
| 32 |
|
---|
| 33 | \section{Introduction}
|
---|
| 34 |
|
---|
[544] | 35 | ASAP is a single dish spectral line processing package currently being
|
---|
| 36 | developed by the ATNF. It is intended to process data from all ATNF
|
---|
[770] | 37 | antennas, and can probably be used for other antennas if they can
|
---|
[544] | 38 | produce ``Single Dish FITS'' format. It is based on the AIPS++
|
---|
| 39 | package.
|
---|
| 40 |
|
---|
[1011] | 41 | This userguide is currently being updated for the ASAP 2.0 release
|
---|
[953] | 42 | which has a number of significant changes which affect the user
|
---|
| 43 | interface. Please report any mistakes you find in this userguide.
|
---|
[534] | 44 |
|
---|
[544] | 45 | \section{Installation and Running}
|
---|
[534] | 46 |
|
---|
[738] | 47 | Currently there are installations running on Linux machines at
|
---|
[534] | 48 |
|
---|
| 49 | \begin{itemize}
|
---|
| 50 | \item Epping - use hosts {\tt draco} or {\tt hydra}
|
---|
| 51 | \item Narrabri - use host {\tt kaputar}
|
---|
[537] | 52 | \item Parkes - use host {\tt bourbon}
|
---|
[534] | 53 | \item Mopra - use host {\tt minos}
|
---|
| 54 | \end{itemize}
|
---|
| 55 |
|
---|
[794] | 56 | \index{Running}To start asap log onto one of these Linux hosts and enter
|
---|
[534] | 57 |
|
---|
| 58 | \begin{verbatim}
|
---|
| 59 | > cd /my/data/directory
|
---|
[966] | 60 | > asap
|
---|
[534] | 61 | \end{verbatim}
|
---|
| 62 |
|
---|
[544] | 63 | This starts the ASAP. To quit, you need to type \verb+^+-d
|
---|
[971] | 64 | (control-d) or type \cmd{\%Exit}.
|
---|
[534] | 65 |
|
---|
| 66 | \section{Interface}
|
---|
| 67 |
|
---|
[794] | 68 | \index{Interface}ASAP is written in C++ and python. The user interface uses the
|
---|
[534] | 69 | ``ipython'' interactive shell, which is a simple interactive interface
|
---|
| 70 | to python. The user does not need to understand python to use this,
|
---|
| 71 | but certain aspects python affect what the user can do. The current
|
---|
| 72 | interface is object oriented. In the future, we will build a
|
---|
| 73 | functional (non object oriented) shell on top of this to ease
|
---|
| 74 | interactive use.
|
---|
| 75 |
|
---|
| 76 | \subsection {Integer Indices are 0-relative}
|
---|
| 77 |
|
---|
| 78 | Please note, all integer indices in ASAP and iPython are {\bf 0-relative}.
|
---|
| 79 |
|
---|
| 80 | \subsection{Objects}
|
---|
[794] | 81 | \index{objects}
|
---|
[534] | 82 | The ASAP interface is based around a number of ``objects'' which the
|
---|
| 83 | user deals with. Objects range from the data which have been read from
|
---|
| 84 | disk, to tools used for fitting functions to the data. The following
|
---|
| 85 | main objects are used :
|
---|
| 86 |
|
---|
| 87 | \begin{itemize}
|
---|
[544] | 88 | \item[\cmd{scantable}] The data container (actual spectra and header
|
---|
| 89 | information)
|
---|
[953] | 90 | \item[\cmd{selector}] Allows the user to select a subsection of the
|
---|
| 91 | data, such as a specified or ramge of beam numbers, IFs, etc.
|
---|
| 92 | \item[\cmd{plotter}] A tool used to plot the spectral line data
|
---|
[544] | 93 | \item[\cmd{fitter}] A tool used to fit functions to the spectral data
|
---|
| 94 | \item[\cmd{reader}] A tool which can be used to read data from disks
|
---|
[971] | 95 | into a scantable object (advanced use).
|
---|
[534] | 96 | \end{itemize}
|
---|
| 97 |
|
---|
[738] | 98 | There can be many objects of the same type. Each object is referred to
|
---|
[534] | 99 | by a variable name made by the user. The name of this variable is not
|
---|
[770] | 100 | important and can be set to whatever the user prefers (i.e. ``s'' and
|
---|
[534] | 101 | ``ParkesHOH-20052002'' are equivalent). However, having a simple and
|
---|
| 102 | consistent naming convention will help you a lot.
|
---|
| 103 |
|
---|
[544] | 104 | \subsection{Member Functions (functions)}
|
---|
[534] | 105 |
|
---|
[794] | 106 | \index{Functions!member}Following the object oriented approach,
|
---|
| 107 | objects have associated ``member functions'' which can either be used
|
---|
| 108 | to modify the data in some way or change global properties of the
|
---|
| 109 | object. In this document member functions will be referred to simply
|
---|
| 110 | as functions. From the command line, the user can execute these
|
---|
| 111 | functions using the syntax:
|
---|
[534] | 112 | \begin{verbatim}
|
---|
| 113 | ASAP> out = object.function(arguments)
|
---|
| 114 | \end{verbatim}
|
---|
| 115 |
|
---|
| 116 | Where \cmd{out} is the name of the returned variable (could be a new
|
---|
[544] | 117 | scantable object, or a vector of data, or a status return),
|
---|
| 118 | \cmd{object} is the object variable name (set by the user),
|
---|
| 119 | \cmd{function} is the name of the member function and \cmd{arguments}
|
---|
| 120 | is a list of arguments to the function. The arguments can be provided
|
---|
| 121 | either though position or \cmd{name=}. A mix of the two can be used.
|
---|
| 122 | E.g.
|
---|
[534] | 123 |
|
---|
| 124 | \begin{verbatim}
|
---|
[953] | 125 | ASAP> av = scans.average_time(msk,weight='tsys')
|
---|
| 126 | ASAP> av = scans.average_time(mask=msk,weight='tsys')
|
---|
| 127 | ASAP> av = scans.average_time(msk,tsys)
|
---|
[971] | 128 | ASAP> scans.poly_baseline(mask=msk, order=0, insitu=True)
|
---|
| 129 | ASAP> scans.poly_baseline(msk,0,True)
|
---|
| 130 | ASAP> scans.poly_baseline(mask, insitu=True)
|
---|
[534] | 131 | \end{verbatim}
|
---|
| 132 |
|
---|
| 133 | \subsection{Global Functions}
|
---|
| 134 |
|
---|
[794] | 135 | \index{Functions!global}It does not make sense to implement some functions as member
|
---|
[544] | 136 | functions, typically functions which operate on more than one
|
---|
| 137 | scantable (e.g. time averaging of many scans). These functions will
|
---|
| 138 | always be referred to as global functions.
|
---|
[534] | 139 |
|
---|
[538] | 140 | \subsection{Interactive environment}
|
---|
[534] | 141 |
|
---|
[794] | 142 | \index{ipython!environment}ipython has a number of useful interactive
|
---|
| 143 | features and a few things to be aware of for the new user.
|
---|
[534] | 144 |
|
---|
| 145 | \subsubsection{String completion}
|
---|
| 146 |
|
---|
[794] | 147 | \index{ipython!string completion}Tab completion is enabled for all
|
---|
| 148 | function names. If you type the first few letters of a function name,
|
---|
| 149 | then type {\tt <TAB>} the function name will be auto completed if it
|
---|
| 150 | is un-ambiguous, or a list of possibilities will be
|
---|
| 151 | given. Auto-completion works for the user object names as well as
|
---|
| 152 | function names. It does not work for filenames, nor for function
|
---|
| 153 | arguments.
|
---|
[534] | 154 |
|
---|
| 155 | Example
|
---|
| 156 | \begin{verbatim}
|
---|
| 157 | ASAP> scans = scantable('MyData.rpf')
|
---|
| 158 | ASAP> scans.se<TAB>
|
---|
| 159 | ASAP> scans.set_in<TAB>
|
---|
[971] | 160 | scans.set_cursor scans.set_freqframe scans.set_selection
|
---|
| 161 | scans.set_doppler scans.set_instrument scans.set_unit
|
---|
| 162 | scans.set_fluxunit scans.set_restfreqs
|
---|
| 163 |
|
---|
[794] | 164 | ASAP> scans.set_instrument()
|
---|
[534] | 165 | \end{verbatim}
|
---|
| 166 |
|
---|
[544] | 167 | \subsubsection{Leading Spaces}
|
---|
| 168 |
|
---|
[794] | 169 | \index{ipython!leading space}Python uses leading space to mark blocks
|
---|
| 170 | of code. This means that it you start a command line with a space, the
|
---|
| 171 | command generally will fail with an syntax error.
|
---|
[544] | 172 |
|
---|
[770] | 173 | \subsubsection{Variable Names}
|
---|
| 174 |
|
---|
[794] | 175 | \index{ipython!variable names}During normal data processing, the user
|
---|
| 176 | will have to create named variables to hold spectra etc. These must
|
---|
| 177 | conform to the normal python syntax, specifically they cannot contain
|
---|
| 178 | ``special'' characters such as \@ \$ etc and cannot start with a
|
---|
| 179 | number (but can contain numbers). Variable (and function) names are
|
---|
| 180 | case sensitive.
|
---|
[770] | 181 |
|
---|
[534] | 182 | \subsubsection{Unix Interaction}
|
---|
| 183 |
|
---|
[794] | 184 | \index{ipython!unix interaction}Basic unix shell commands (\cmd{pwd},
|
---|
| 185 | \cmd{ls}, \cmd{cd} etc) can be issued from within ASAP. This allows
|
---|
| 186 | the user to do things like look at files in the current directory. The
|
---|
| 187 | shell command ``\cmd{cd}'' works within ASAP, allowing the user to
|
---|
| 188 | change between data directories. Unix programs cannot be run this way,
|
---|
| 189 | but the shell escape ``$!$'' can be used to run arbitrary
|
---|
| 190 | programs. E.g.
|
---|
[534] | 191 |
|
---|
| 192 | \begin{verbatim}
|
---|
| 193 | ASAP> pwd
|
---|
| 194 | ASAP> ls
|
---|
[953] | 195 | ASAP> cd /my/data/directory
|
---|
[534] | 196 | ASAP> ! mozilla&
|
---|
| 197 | \end{verbatim}
|
---|
| 198 |
|
---|
| 199 | \subsection{Help}
|
---|
| 200 |
|
---|
[794] | 201 | \index{Help}ASAP has built in help for all functions. To get a list of
|
---|
| 202 | functions type:
|
---|
[534] | 203 |
|
---|
[538] | 204 | \begin{verbatim}
|
---|
[794] | 205 | ASAP> commands()
|
---|
[538] | 206 | \end{verbatim}
|
---|
| 207 |
|
---|
| 208 | To get help on specific functions, the built in help needs to be given
|
---|
| 209 | the object and function name. E.g.
|
---|
| 210 |
|
---|
| 211 | \begin{verbatim}
|
---|
[971] | 212 | ASAP> help scantable.get_scan # or help(scantable.get_scan)
|
---|
[538] | 213 | ASAP> help scantable.stats
|
---|
| 214 | ASAP> help plotter.plot
|
---|
| 215 | ASAP> help fitter.plot
|
---|
| 216 |
|
---|
| 217 | ASAP> scans = scantable('mydata.asap')
|
---|
| 218 | ASAP> help scans.get_scan # Same as above
|
---|
[544] | 219 | \end{verbatim}
|
---|
[538] | 220 |
|
---|
[544] | 221 | Global functions just need their name
|
---|
[538] | 222 |
|
---|
[544] | 223 | \begin{verbatim}
|
---|
[738] | 224 | ASAP> help average_time
|
---|
[538] | 225 | \end{verbatim}
|
---|
| 226 |
|
---|
| 227 | Note that if you just type \cmd{help} the internal ipython help is
|
---|
| 228 | invoked, which is probably {\em not} what you want. Type \verb+^+-d
|
---|
| 229 | (control-d) to escape from this.
|
---|
| 230 |
|
---|
[738] | 231 | \subsection{Customisation - .asaprc}
|
---|
[534] | 232 |
|
---|
[794] | 233 | \index{.asaprc}ASAP use an \cmd{.asaprc} file to control the user's
|
---|
| 234 | preference of default values for various functions arguments. This
|
---|
| 235 | includes the defaults for arguments such as \cmd{insitu}, scantable
|
---|
| 236 | \cmd{freqframe} and the plotters \cmd{set\_mode} values. The help on
|
---|
| 237 | individual functions says which arguments can be set default values
|
---|
| 238 | from the \cmd{.asaprc} file. To get a sample contents for the
|
---|
| 239 | \cmd{.asaprc} file use then command \cmd{list\_rcparameters}.
|
---|
[534] | 240 |
|
---|
[538] | 241 | Common values include:
|
---|
| 242 | \begin{verbatim}
|
---|
| 243 | # apply operations on the input scantable or return new one
|
---|
| 244 | insitu : False
|
---|
| 245 |
|
---|
[738] | 246 | # default output format when saving scantable
|
---|
[953] | 247 | scantable.save : ASAP
|
---|
[538] | 248 |
|
---|
| 249 | # default frequency frame to set when function
|
---|
| 250 | # scantable.set_freqframe is called
|
---|
[953] | 251 | scantable.freqframe : LSRK
|
---|
[538] | 252 |
|
---|
| 253 | # auto averaging on read
|
---|
| 254 | scantable.autoaverage : True
|
---|
| 255 | \end{verbatim}
|
---|
| 256 |
|
---|
[953] | 257 | For a complete list of \cmd{.asaprc} values, see the Appendix.
|
---|
[770] | 258 |
|
---|
[534] | 259 | \section{Scantables}
|
---|
[794] | 260 | \index{Scantables}
|
---|
[534] | 261 | \subsection {Description}
|
---|
| 262 |
|
---|
| 263 | \subsubsection {Basic Structure}
|
---|
| 264 |
|
---|
[794] | 265 | \index{Scantable!structure}ASAP data handling works on objects called
|
---|
| 266 | scantables. A scantable holds your data, and also provides functions
|
---|
| 267 | to operate upon it.
|
---|
[534] | 268 |
|
---|
| 269 | The building block of a scantable is an integration, which is a single
|
---|
[971] | 270 | row of a scantable. Each row contains just one spectrum for each beam, IF and
|
---|
[534] | 271 | polarisation. For example Parkes multibeam data would contain many
|
---|
| 272 | beams, one IF and 2-4 polarisations, while the new Mopra 8-GHz
|
---|
| 273 | filterbank will eventually produce one beam, many IFs, and 2-4
|
---|
[971] | 274 | polarisations. All of the combinations of Beams/IFs an Polarisations are
|
---|
[1011] | 275 | contained in seperate rows. These rows are grouped in cycles (same time stamp).
|
---|
[534] | 276 |
|
---|
[1011] | 277 | A collection of cycles for one source is termed
|
---|
| 278 | a scan (and each scan has a unique numeric identifier, the SCANNO). A
|
---|
[534] | 279 | scantable is then a collection of one or more scans. If you have
|
---|
[971] | 280 | scan-averaged your data in time, i.e. you have averegaed all cycles within
|
---|
| 281 | a scan, then each scan would hold just one (averaged) integration.
|
---|
[534] | 282 |
|
---|
| 283 | Many of the functions which work on scantables can either return a
|
---|
| 284 | new scantable with modified data or change the scantable insitu. Which
|
---|
| 285 | method is used depends on the users preference. The default can be
|
---|
| 286 | changed via the {\tt .asaprc} resource file.
|
---|
| 287 |
|
---|
[1011] | 288 | For example a Mopra scan with a 4s intergration time, two IFs and
|
---|
| 289 | dual polarisations has two (2s) cycles.
|
---|
| 290 |
|
---|
| 291 | \begin{verbatim}
|
---|
| 292 | SCANNO CYCLENO BEAMNO IFNO POLNO
|
---|
| 293 | 0 0 0 0 0
|
---|
| 294 | 0 0 0 0 1
|
---|
| 295 | 0 0 0 1 0
|
---|
| 296 | 0 0 0 1 1
|
---|
| 297 | 0 1 0 0 0
|
---|
| 298 | 0 1 0 0 1
|
---|
| 299 | 0 1 0 1 0
|
---|
| 300 | 0 1 0 1 1
|
---|
| 301 |
|
---|
| 302 | \end{verbatim}
|
---|
| 303 |
|
---|
| 304 |
|
---|
[534] | 305 | \subsubsection {Contents}
|
---|
| 306 |
|
---|
[794] | 307 | \index{Scantable!contents}A scantable has header information and data
|
---|
[953] | 308 | (a scantable is actually an AIPS++ Table and it is generally stored in
|
---|
| 309 | memory when you are manipulating it with ASAP. You can save it to
|
---|
| 310 | disk and then browse it with the AIPS++ Table browser if you know how
|
---|
| 311 | to do that !).
|
---|
[534] | 312 |
|
---|
| 313 | The data are stored in columns (the length of a column is the number of
|
---|
[1011] | 314 | rows/spectra of course).
|
---|
[534] | 315 |
|
---|
[953] | 316 |
|
---|
[534] | 317 | Two important columns are those that describe the frequency setup. We mention
|
---|
[538] | 318 | them explicitly here because you need to be able to understand the presentation
|
---|
[534] | 319 | of the frequency information and possibly how to manipulate it.
|
---|
| 320 |
|
---|
[1011] | 321 | These columns are called FREQ\_ID and MOLECULE\_ID. They contain indices, for
|
---|
[971] | 322 | each IF, pointing into tables with all of the frequency and rest-frequency
|
---|
| 323 | information for that integration. More on these below when we discuss
|
---|
| 324 | the \cmd{summary} function in the next subsection.
|
---|
[534] | 325 |
|
---|
| 326 | There are of course many other columns which contain the actual spectra,
|
---|
[971] | 327 | the flags, the Tsys, the source names and so on.
|
---|
[534] | 328 |
|
---|
| 329 | There is also a function \cmd{summary} to list a summary of the scantable.
|
---|
| 330 | You will find this very useful.
|
---|
| 331 |
|
---|
| 332 | Example:
|
---|
| 333 |
|
---|
| 334 | \begin{verbatim}
|
---|
| 335 | ASAP> scans = scantable('MyData.rpf')
|
---|
| 336 | ASAP> scans.summary() # Brief listing
|
---|
[544] | 337 |
|
---|
| 338 | # Equivalent to brief summary function call
|
---|
[738] | 339 | ASAP> print scan
|
---|
[534] | 340 | \end{verbatim}
|
---|
| 341 |
|
---|
[971] | 342 | The summary function gives you a scan-based summary, presenting the
|
---|
| 343 | scantable as a cascading view od Beams and IFs.
|
---|
[534] | 344 |
|
---|
[953] | 345 | \subsection{Data Selection}
|
---|
| 346 | \label{sec:selection}
|
---|
| 347 |
|
---|
[966] | 348 | ASAP contains flexible data selection. Data can be selected based on
|
---|
| 349 | IF, beam, polarisation, scan number as well as values such as
|
---|
| 350 | Tsys. Advanced users can also make use of the AIPS++ TAQL language to
|
---|
[971] | 351 | create selections based on almost any of the values recorded.
|
---|
[953] | 352 |
|
---|
[966] | 353 | Selection is based on a \cmd{selector} object. This object is created
|
---|
| 354 | and various selection functions applied to it (\cmd{set\_ifs},
|
---|
| 355 | \cmd{set\_beams} etc). The selection object then must be applied to a
|
---|
| 356 | scantable using the \cmd{set\_selection} function. A single selection
|
---|
| 357 | object can be created and setup then applied to multiple scantables.
|
---|
[534] | 358 |
|
---|
[966] | 359 | Once a selection has been applied, all following functions will only
|
---|
| 360 | ``see'' the selected spectra (including functions such as
|
---|
| 361 | \cmd{summary}). The selection can then be reset and all spectra are
|
---|
| 362 | visible. Note that if functions such as \cmd{copy} are run on a
|
---|
| 363 | scantable with active selection, only the selected spectra are copied.
|
---|
[534] | 364 |
|
---|
[966] | 365 | The common selection functions are:
|
---|
[534] | 366 |
|
---|
[966] | 367 | \begin{itemize}
|
---|
| 368 |
|
---|
| 369 | \item[\cmd{set\_beams}] Select beams by index number
|
---|
| 370 | \item[\cmd{set\_ifs}] Select ifs by index number
|
---|
| 371 | \item[\cmd{set\_name}] Select by source name. Can contain ``*'' as a
|
---|
| 372 | wildcard, e.g. ``Orion*\_R''.
|
---|
| 373 | \item[\cmd{set\_ifs}] Select ifs by index number
|
---|
| 374 | \item[\cmd{set\_polarisation}] Select but polarisation index or
|
---|
| 375 | name. If polarisation names are given, the data will be on-the-fly
|
---|
[971] | 376 | converted (for example from linears to Stokes).
|
---|
[966] | 377 | \item[\cmd{set\_query}] Set query directly. For power users only!
|
---|
| 378 | \item[\cmd{set\_tsys}] Select data based on Tsys. Also example of user
|
---|
| 379 | definable query.
|
---|
| 380 | \item[\cmd{reset}] Reset the selection to include all spectra.
|
---|
| 381 |
|
---|
| 382 |
|
---|
| 383 | Note that all indices are zero based.
|
---|
| 384 |
|
---|
| 385 | Examples:
|
---|
| 386 |
|
---|
| 387 | \begin{verbatim}
|
---|
| 388 | ASAP> selection = selector() # Create selection object
|
---|
| 389 | ASAP> selection.set_ifs(0) # Just select the first IF
|
---|
| 390 | ASAP> scans.set_selection(selection) # Apply the selection
|
---|
| 391 | ASAP> print scans # Will just show the first IF
|
---|
| 392 |
|
---|
| 393 | ASAP> selection.set_ifs([0,1]) # Select the first two IFs
|
---|
| 394 | ASAP> selection.set_beams([1,3,5]) # Also select three of the beams
|
---|
| 395 | ASAP> scans.set_selection(selection) # Apply the selection
|
---|
| 396 |
|
---|
| 397 | ASAP> selection.set_name('G308*') # Select by source name
|
---|
| 398 |
|
---|
| 399 | ASAP> selection.reset() # Turn off selection
|
---|
| 400 | ASAP> scans.set_selection(selection) # Apply the reset selection
|
---|
| 401 |
|
---|
[970] | 402 | \end{verbatim}
|
---|
| 403 |
|
---|
[966] | 404 | \end{itemize}
|
---|
| 405 |
|
---|
[534] | 406 | \subsection{State}
|
---|
| 407 |
|
---|
[794] | 408 | \index{Scantable!state}Each scantable contains "state"; these are
|
---|
| 409 | properties applying to all of the data in the scantable.
|
---|
[534] | 410 |
|
---|
| 411 | Examples are the selection of beam, IF and polarisation, spectral unit
|
---|
[770] | 412 | (e.g. km/s), frequency reference frame (e.g. BARY) and velocity Doppler
|
---|
[534] | 413 | type (e.g. RADIO).
|
---|
| 414 |
|
---|
| 415 | \subsubsection{Units, Doppler and Frequency Reference Frame}
|
---|
| 416 |
|
---|
| 417 | The information describing the frequency setup for each integration
|
---|
| 418 | is stored fundamentally in frequency in the reference frame
|
---|
[738] | 419 | of observation (E.g. TOPO).
|
---|
[534] | 420 |
|
---|
[544] | 421 | When required, this is converted to the desired reference frame
|
---|
| 422 | (e.g. LSRK), Doppler (e.g. OPTICAL) and unit (e.g. km/s) on-the-fly.
|
---|
| 423 | This is important, for example, when you are displaying the data or
|
---|
[971] | 424 | fitting to it. The reference frame is set on file read to the value
|
---|
| 425 | set in the user \cmd{.asaprc} file.
|
---|
[534] | 426 |
|
---|
| 427 | For units, the user has the choice of frequency, velocity or channel.
|
---|
| 428 | The \cmd{set\_unit} function is used to set the current unit for a
|
---|
| 429 | scantable. All functions will (where relevant) work with the selected
|
---|
| 430 | unit until this changes. This is mainly important for fitting (the fits
|
---|
[738] | 431 | can be computed in any of these units), plotting and mask creation.
|
---|
[534] | 432 |
|
---|
[544] | 433 | The velocity definition can be changed with the \cmd{set\_doppler}
|
---|
| 434 | function, and the frequency reference frame can be changed with the
|
---|
[534] | 435 | \cmd{set\_freqframe} function.
|
---|
| 436 |
|
---|
| 437 | Example usage:
|
---|
| 438 |
|
---|
| 439 | \begin{verbatim}
|
---|
| 440 | ASAP> scans = scantable('2004-11-23_1841-P484.rpf') # Read in the data
|
---|
| 441 | ASAP> scans.set_freqframe('LSRK') # Use the LSR velocity frame
|
---|
| 442 | ASAP> scans.set_unit('km/s') # Use velocity for plots etc from now on
|
---|
| 443 | ASAP> scans.set_doppler('OPTICAL') # Use the optical velocity convention
|
---|
| 444 | ASAP> scans.set_unit('MHz') # Use frequency in MHz from now on
|
---|
| 445 | \end{verbatim}
|
---|
| 446 |
|
---|
| 447 |
|
---|
| 448 | \subsubsection{Rest Frequency}
|
---|
| 449 |
|
---|
[794] | 450 | \index{Scantable!rest frequency}ASAP reads the line rest frequency
|
---|
| 451 | from the RPFITS file when reading the data. The values stored in the
|
---|
| 452 | RPFITS file are not always correct and so there is a function
|
---|
[953] | 453 | \cmd{set\_restfreq} to set the rest frequencies for the currently
|
---|
| 454 | selected data.
|
---|
[534] | 455 |
|
---|
| 456 | For each integration, there is a rest-frequency per IF (the rest
|
---|
| 457 | frequencies are just stored as a list with an index into them).
|
---|
| 458 | There are a few ways to set the rest frequencies with this function.
|
---|
| 459 |
|
---|
[953] | 460 | If you specify just one rest frequency, then it is set for all IF.
|
---|
[534] | 461 |
|
---|
| 462 | \begin{verbatim}
|
---|
[953] | 463 | # Set all IFs
|
---|
[738] | 464 | ASAP> scans.set_restfreqs(freqs=1.667359e9)
|
---|
[534] | 465 | \end{verbatim}
|
---|
| 466 |
|
---|
[953] | 467 | If set a rest frequency for each IF, specify a list of frequencies (of
|
---|
| 468 | length the number of IFs). Regardless of the source, the rest
|
---|
| 469 | frequency will be set for each IF to the corresponding value in the
|
---|
[970] | 470 | provided list.
|
---|
[534] | 471 |
|
---|
| 472 | \begin{verbatim}
|
---|
[770] | 473 | # Set rest frequency for all IFs
|
---|
| 474 | ASAP> scans.set_restfreqs(freqs=[1.6654018e9,1.667359e9,])
|
---|
[538] | 475 |
|
---|
[534] | 476 | \end{verbatim}
|
---|
| 477 |
|
---|
[953] | 478 | {\em Currently this is not implemented}
|
---|
| 479 |
|
---|
[534] | 480 | In both of the above modes, you can also specify the rest frequencies via
|
---|
| 481 | names in a known list rather than by their values.
|
---|
| 482 |
|
---|
| 483 | Examples:
|
---|
| 484 |
|
---|
| 485 | \begin{verbatim}
|
---|
[953] | 486 | ASAP> scans.set_restfreqs(freqs=['OH1665','OH1667'])
|
---|
[534] | 487 | \end{verbatim}
|
---|
| 488 |
|
---|
| 489 |
|
---|
| 490 | \subsubsection{Masks}
|
---|
| 491 |
|
---|
[970] | 492 | \index{Masks}\index{Scantable!masks}
|
---|
[534] | 493 |
|
---|
[966] | 494 | Many tasks (fitting, baseline subtraction, statistics etc) should only
|
---|
| 495 | be run on range of channels. Depending on the current ``unit'' setting
|
---|
| 496 | this range is set directly as channels, velocity or frequency
|
---|
| 497 | ranges. Internally these are converted into a simple boolean mask for
|
---|
| 498 | each channel of the abscissa. This means that if the unit setting is
|
---|
| 499 | later changed, previously created mask are still valid. (This is not
|
---|
| 500 | true for functions which change the shape or shift the frequency
|
---|
| 501 | axis). You create masks with the function \cmd{create\_mask} and this
|
---|
| 502 | specified the channels to be included in the selection. When setting
|
---|
| 503 | the mask in velocity, the conversion from velocity to channels is
|
---|
| 504 | based on the current cursor setting, selected row and selected
|
---|
| 505 | frequency reference frame.
|
---|
[534] | 506 |
|
---|
[966] | 507 |
|
---|
| 508 | Note that for multi IF data with different number of channels per IF a
|
---|
| 509 | single mask cannot be applied to different IFs. To use a mask on such
|
---|
| 510 | data the selector should be applied to select all IFs with the same
|
---|
| 511 | number of channels.
|
---|
| 512 |
|
---|
[534] | 513 | Example :
|
---|
| 514 | \begin{verbatim}
|
---|
| 515 |
|
---|
| 516 | # Select channel range for baselining
|
---|
| 517 | ASAP> scans.set_unit('channels')
|
---|
[544] | 518 | ASAP> msk = scans.create_mask([100,400],[600,800])
|
---|
[738] | 519 |
|
---|
[534] | 520 | # Select velocity range for fitting
|
---|
| 521 | ASAP> scans.set_unit('km/s')
|
---|
[544] | 522 | ASAP> msk = scans.create_mask([-30,-10])
|
---|
[534] | 523 | \end{verbatim}
|
---|
| 524 |
|
---|
[544] | 525 | Sometimes it is more convenient to specify the channels to be
|
---|
| 526 | excluded, rather included. You can do this with the ``invert''
|
---|
| 527 | argument.
|
---|
[534] | 528 |
|
---|
| 529 | Example :
|
---|
| 530 | \begin{verbatim}
|
---|
| 531 | ASAP> scans.set_unit('channels')
|
---|
[738] | 532 | ASAP> msk = scans.create_mask([0,100],[900-1023], invert=True)
|
---|
[534] | 533 | \end{verbatim}
|
---|
| 534 |
|
---|
[544] | 535 | By default \cmd{create\_mask} uses the frequency setup of the first row
|
---|
| 536 | to convert velocities into a channel mask. If the rows in the data
|
---|
| 537 | cover different velocity ranges, the scantable row to use should be
|
---|
| 538 | specified:
|
---|
| 539 |
|
---|
| 540 | \begin{verbatim}
|
---|
| 541 | ASAP> scans.set_unit('km/s')
|
---|
| 542 | ASAP> msk = q.create_mask([-30,-10], row=5)
|
---|
| 543 | \end{verbatim}
|
---|
| 544 |
|
---|
[534] | 545 | Because the mask is stored in a simple python variable, the users is
|
---|
| 546 | able to combine masks using simple arithmetic. To create a mask
|
---|
| 547 | excluding the edge channels, a strong maser feature and a birdie in
|
---|
| 548 | the middle of the band:
|
---|
| 549 |
|
---|
| 550 | \begin{verbatim}
|
---|
| 551 | ASAP> scans.set_unit('channels')
|
---|
| 552 | ASAP> msk1 = q.create_mask([0,100],[511,511],[900,1023],invert=True)
|
---|
| 553 | ASAP> scans.set_unit('km/s')
|
---|
| 554 | ASAP> msk2 = q.create_mask([-20,-10],invert=True)
|
---|
| 555 |
|
---|
| 556 | ASAP> mask = msk1 and msk2
|
---|
| 557 | \end{verbatim}
|
---|
| 558 |
|
---|
| 559 |
|
---|
[953] | 560 | \subsection{Management}
|
---|
| 561 |
|
---|
| 562 | \index{Scantable!management}During processing it is possible to create
|
---|
| 563 | a large number of scan tables. These all consume memory, so it is best
|
---|
| 564 | to periodically remove unneeded scan tables. Use \cmd{list\_scans} to
|
---|
| 565 | print a list of all scantables and \cmd{del} to remove unneeded ones.
|
---|
| 566 |
|
---|
| 567 | Example:
|
---|
| 568 |
|
---|
| 569 | \begin{verbatim}
|
---|
| 570 | ASAP> list_scans()
|
---|
| 571 | The user created scantables are:
|
---|
| 572 | ['s', 'scans', 'av', 's2', 'ss']
|
---|
| 573 |
|
---|
| 574 | ASAP> del s2
|
---|
| 575 | ASAP> del ss
|
---|
| 576 | \end{verbatim}
|
---|
| 577 |
|
---|
[534] | 578 | \section{Data Input}
|
---|
| 579 |
|
---|
[971] | 580 | \index{Reading data}Data can be loaded in one of two ways; using the
|
---|
| 581 | reader object or via the scantable constructor. The scantable method
|
---|
| 582 | is simpler but the reader allows the user more control on what is read.
|
---|
[534] | 583 |
|
---|
| 584 | \subsection{Scantable constructor}
|
---|
| 585 |
|
---|
[794] | 586 | \index{Scantable constructor}\index{Scantable!constructor}This loads
|
---|
| 587 | all of the data from filename into the scantable object scans and
|
---|
| 588 | averages all the data within a scan (i.e. the resulting scantable
|
---|
[534] | 589 | will have one row per scan). The recognised input file formats are
|
---|
| 590 | RPFITS, SDFITS (singledish fits), ASAP's scantable format and aips++
|
---|
[738] | 591 | MeasurementSet2 format.
|
---|
[534] | 592 |
|
---|
| 593 | Example usage:
|
---|
| 594 |
|
---|
| 595 | \begin{verbatim}
|
---|
| 596 | ASAP> scan = scantable('2004-11-23_1841-P484.rpf')
|
---|
[544] | 597 |
|
---|
| 598 | # Don't scan average the data
|
---|
| 599 | ASAP> scan = scantable('2004-11-23_1841-P484.rpf', average=False)
|
---|
[534] | 600 | \end{verbatim}
|
---|
| 601 |
|
---|
| 602 |
|
---|
| 603 | \subsection{Reader object}
|
---|
| 604 |
|
---|
[794] | 605 | \index{Reader object}\index{Scantable!reader object}For more control
|
---|
| 606 | when reading data into ASAP, the reader object should be used. This
|
---|
[953] | 607 | has the option of only reading in a range of integrations, only a
|
---|
| 608 | specified beam or IF and does not perform any scan averaging of the
|
---|
| 609 | data, allowing analysis of the individual integrations. Note that due
|
---|
| 610 | to limitation of the RPFITS library, only one reader object can be
|
---|
| 611 | open at one time reading RPFITS files. To read multiple RPFITS files,
|
---|
| 612 | the old reader must be destroyed before the new file is opened.
|
---|
| 613 | However, multiple readers can be created and attached to SDFITS files.
|
---|
[534] | 614 |
|
---|
| 615 |
|
---|
| 616 | Example usage:
|
---|
| 617 |
|
---|
| 618 | \begin{verbatim}
|
---|
| 619 | ASAP> r = reader('2003-03-16_082048_t0002.rpf')
|
---|
[794] | 620 | ASAP> r.summary()
|
---|
[534] | 621 | ASAP> scan = r.read()
|
---|
| 622 | ASAP> del r
|
---|
| 623 | \end{verbatim}
|
---|
| 624 |
|
---|
| 625 | \section{Basic Processing}
|
---|
| 626 |
|
---|
| 627 | In the following section, a simple data reduction to form a quotient
|
---|
[544] | 628 | spectrum of a single source is followed. It has been assume that the
|
---|
| 629 | \cmd{.asaprc} file has {\em not} been used to change the \cmd{insitu}
|
---|
| 630 | default value from \cmd{True}.
|
---|
[534] | 631 |
|
---|
[738] | 632 | \subsection{Auto quotient}
|
---|
[794] | 633 | \index{Auto quotient}Quotients can be computed ``automatically''. This
|
---|
| 634 | requires the data to have matching source/reference pairs or one
|
---|
| 635 | reference for multiple sources. Auto quotient assumes reference scans
|
---|
| 636 | have a trailing ``\_R'' in the source name for data from Parkes and
|
---|
| 637 | Mopra, and a trailing ``e'' or ``w'' for data fro, Tidbinbilla.
|
---|
[534] | 638 |
|
---|
[738] | 639 | \begin{verbatim}
|
---|
| 640 | ASAP> q = s.auto_quotient()
|
---|
| 641 | \end{verbatim}
|
---|
| 642 |
|
---|
[971] | 643 | By default the quotient spectra is calculated
|
---|
| 644 | to preserve continuum emission. If you wish to remove the continuum
|
---|
| 645 | contribution, use the \cmd{preserve} argument:
|
---|
| 646 |
|
---|
| 647 | \begin{verbatim}
|
---|
| 648 | ASAP> q = s.auto_quotient(preserve=True)
|
---|
| 649 | \end{verbatim}
|
---|
| 650 |
|
---|
[953] | 651 | %If this is not sufficient the following alternative method can be used.
|
---|
| 652 | %
|
---|
| 653 | %\subsection{Separate reference and source observations}
|
---|
| 654 | %
|
---|
| 655 | %\index{Quotient spectra}Most data from ATNF observatories
|
---|
| 656 | %distinguishes on and off source data using the file name. This makes
|
---|
| 657 | %it easy to create two scantables with the source and reference
|
---|
| 658 | %data. As long as there was exactly one reference observation for each
|
---|
| 659 | %on source observation for following method will work.
|
---|
| 660 | %
|
---|
| 661 | %For Mopra and Parkes data:
|
---|
| 662 | %\begin{verbatim}
|
---|
| 663 | % ASAP> r = scans.get_scan('*_R')
|
---|
| 664 | % ASAP> s = scans.get_scan('*_S')
|
---|
| 665 | %\end{verbatim}
|
---|
| 666 | %
|
---|
| 667 | %For Tidbinbilla data
|
---|
| 668 | %\begin{verbatim}
|
---|
| 669 | % ASAP> r = scans.get_scan('*_[ew]')
|
---|
| 670 | % ASAP> s = scans.get_scan('*_[^ew]')
|
---|
| 671 | %\end{verbatim}
|
---|
| 672 | %
|
---|
| 673 | %\subsection{Make the quotient spectra}
|
---|
| 674 | %
|
---|
| 675 | %Use the quotient function
|
---|
| 676 | %
|
---|
| 677 | %\begin{verbatim}
|
---|
| 678 | % ASAP> q = s.quotient(r)
|
---|
| 679 | %\end{verbatim}
|
---|
| 680 | %
|
---|
| 681 | %This uses the rows in scantable \cmd{r} as reference spectra for the
|
---|
| 682 | %rows in scantable \cmd{s}. Scantable \cmd{r} must have either 1 row
|
---|
| 683 | %(which is applied to all rows in \cmd{s}) or both scantables must have
|
---|
[971] | 684 | %the same number of rows.
|
---|
[738] | 685 |
|
---|
[534] | 686 | \subsection{Time average separate scans}
|
---|
| 687 |
|
---|
[794] | 688 | \index{Time average}If you have observed the source with multiple
|
---|
| 689 | source/reference cycles you will want to scan-average the quotient
|
---|
| 690 | spectra together.
|
---|
[534] | 691 |
|
---|
| 692 | \begin{verbatim}
|
---|
[953] | 693 | ASAP> av = q.average_time()
|
---|
[534] | 694 | \end{verbatim}
|
---|
| 695 |
|
---|
[544] | 696 | If for some you want to average multiple sets of scantables together
|
---|
| 697 | you can:
|
---|
[534] | 698 |
|
---|
| 699 | \begin{verbatim}
|
---|
| 700 | ASAP> av = average_time(q1, q2, q3)
|
---|
| 701 | \end{verbatim}
|
---|
| 702 |
|
---|
[544] | 703 | The default is to use integration time weighting. The alternative is
|
---|
[770] | 704 | to use none, variance, Tsys weighting or Tsys \& integration time.
|
---|
[534] | 705 |
|
---|
[544] | 706 | \begin{verbatim}
|
---|
| 707 | ASAP> av = average_time(q, weight='tintsys')
|
---|
| 708 | \end{verbatim}
|
---|
| 709 |
|
---|
[534] | 710 | To use variance based weighting, you need to supply a mask saying which
|
---|
| 711 | channel range you want it to calculate the variance from.
|
---|
| 712 |
|
---|
| 713 | \begin{verbatim}
|
---|
[544] | 714 | ASAP> msk = scans.create_mask([200,400],[600,800])
|
---|
| 715 | ASAP> av = average_time(scans, mask=msk, weight='var')
|
---|
[534] | 716 | \end{verbatim}
|
---|
| 717 |
|
---|
[953] | 718 | If you have not observed your data with Doppler tracking (or run
|
---|
| 719 | \cmd{freq\_align} explicitally) you should align the data in frequency
|
---|
| 720 | before averaging.
|
---|
[794] | 721 |
|
---|
[953] | 722 | \begin{verbatim}
|
---|
| 723 | ASAP> av = scans.average_time(align=True)
|
---|
| 724 | \end{verbatim}
|
---|
| 725 |
|
---|
| 726 | Note that, if needed, you should run \cmd{gain\_el} and \cmd{opacity}
|
---|
| 727 | before you average the data in time (\S \ref{sec:gainel} \&
|
---|
| 728 | \ref{sec:freqalign}).
|
---|
| 729 |
|
---|
[534] | 730 | \subsection{Baseline fitting}
|
---|
| 731 |
|
---|
[794] | 732 | \index{Baseline fitting}To make a baseline fit, you must first create
|
---|
| 733 | a mask of channels to use in the baseline fit.
|
---|
[534] | 734 |
|
---|
| 735 | \begin{verbatim}
|
---|
| 736 | ASAP> msk = scans.create_mask([100,400],[600,900])
|
---|
[971] | 737 | ASAP> scans.poly_baseline(msk, order=1)
|
---|
[534] | 738 | \end{verbatim}
|
---|
| 739 |
|
---|
| 740 | This will fit a first order polynomial to the selected channels and subtract
|
---|
| 741 | this polynomial from the full spectra.
|
---|
| 742 |
|
---|
| 743 | \subsubsection{Auto-baselining}
|
---|
| 744 |
|
---|
[794] | 745 | \index{Auto-baseline}The function \cmd{auto\_poly\_baseline} can be used to automatically
|
---|
[770] | 746 | baseline your data without having to specify channel ranges for the
|
---|
| 747 | line free data. It automatically figures out the line-free emission
|
---|
| 748 | and fits a polynomial baseline to that data. The user can use masks to
|
---|
| 749 | fix the range of channels or velocity range for the fit as well as
|
---|
| 750 | mark the band edge as invalid.
|
---|
[534] | 751 |
|
---|
| 752 | Simple example
|
---|
| 753 |
|
---|
| 754 | \begin{verbatim}
|
---|
| 755 | ASAP> scans.auto_poly_baseline(order=2,threshold=5)
|
---|
| 756 | \end{verbatim}
|
---|
| 757 |
|
---|
| 758 | \cmd{order} is the polynomial order for the fit. \cmd{threshold} is
|
---|
| 759 | the SNR threshold to use to deliminate line emission from
|
---|
[548] | 760 | signal. Generally the value of threshold is not too critical, however
|
---|
| 761 | making this too large will compromise the fit (as it will include
|
---|
| 762 | strong line features) and making it too small will mean it cannot find
|
---|
| 763 | enough line free channels.
|
---|
[534] | 764 |
|
---|
[548] | 765 |
|
---|
[534] | 766 | Other examples:
|
---|
| 767 |
|
---|
| 768 | \begin{verbatim}
|
---|
| 769 | # Don't try and fit the edge of the bandpass which is noisier
|
---|
| 770 | ASAP> scans.auto_poly_baseline(edge=(500,450),order=3,threshold=3)
|
---|
| 771 |
|
---|
| 772 | # Only fit a given region around the line
|
---|
| 773 | ASAP> scans.set_unit('km/s')
|
---|
[971] | 774 | ASAP> msk = scans.create_mask([-60,-20])
|
---|
[534] | 775 | ASAP> scans.auto_poly_baseline(mask=msk,order=3,threshold=3)
|
---|
| 776 |
|
---|
| 777 | \end{verbatim}
|
---|
| 778 |
|
---|
| 779 | \subsection{Average the polarisations}
|
---|
| 780 |
|
---|
[794] | 781 | \index{average\_pol}If you are just interested in the highest SNR for total intensity you
|
---|
[534] | 782 | will want to average the parallel polarisations together.
|
---|
| 783 |
|
---|
| 784 | \begin{verbatim}
|
---|
| 785 | ASAP> scans.average_pol()
|
---|
| 786 | \end{verbatim}
|
---|
| 787 |
|
---|
| 788 | \subsection{Calibration}
|
---|
| 789 |
|
---|
[794] | 790 | \index{Calibration}For most uses, calibration happens transparently as the input data
|
---|
[534] | 791 | contains the Tsys measurements taken during observations. The nominal
|
---|
| 792 | ``Tsys'' values may be in Kelvin or Jansky. The user may wish to
|
---|
| 793 | supply a Tsys correction or apply gain-elevation and opacity
|
---|
| 794 | corrections.
|
---|
| 795 |
|
---|
| 796 | \subsubsection{Brightness Units}
|
---|
| 797 |
|
---|
[794] | 798 | \index{Brightness Units}RPFITS files do not contain any information as
|
---|
| 799 | to whether the telescope calibration was in units of Kelvin or
|
---|
| 800 | Janskys. On reading the data a default value is set depending on the
|
---|
| 801 | telescope and frequency of observation. If this default is incorrect
|
---|
| 802 | (you can see it in the listing from the \cmd{summary} function) the
|
---|
| 803 | user can either override this value on reading the data or later.
|
---|
| 804 | E.g:
|
---|
[534] | 805 |
|
---|
| 806 | \begin{verbatim}
|
---|
[971] | 807 | ASAP> scans = scantable('2004-11-23_1841-P484.rpf', unit='Jy')
|
---|
[534] | 808 | # Or in two steps
|
---|
[971] | 809 | ASAP> scans = scantable('2004-11-23_1841-P484.rpf')
|
---|
[534] | 810 | ASAP> scans.set_fluxunit('Jy)
|
---|
| 811 | \end{verbatim}
|
---|
| 812 |
|
---|
| 813 | \subsubsection{Tsys scaling}
|
---|
| 814 |
|
---|
[794] | 815 | \index{Tsys scaling}Sometime the nominal Tsys measurement at the
|
---|
| 816 | telescope is wrong due to an incorrect noise diode calibration. This
|
---|
| 817 | can easily be corrected for with the scale function. By default,
|
---|
| 818 | \cmd{scale} only scans the spectra and not the corresponding Tsys.
|
---|
[534] | 819 |
|
---|
| 820 | \begin{verbatim}
|
---|
[738] | 821 | ASAP> scans.scale(1.05, tsys=True)
|
---|
[534] | 822 | \end{verbatim}
|
---|
| 823 |
|
---|
| 824 | \subsubsection{Unit Conversion}
|
---|
| 825 |
|
---|
[794] | 826 | \index{Unit conversion}To convert measurements in Kelvin to Jy (and
|
---|
| 827 | vice versa) the global function \cmd{convert\_flux} is needed. This
|
---|
| 828 | converts and scales the data from K to Jy or vice-versa depending on
|
---|
| 829 | what the current brightness unit is set to. The function knows the
|
---|
| 830 | basic parameters for some frequencies and telescopes, but the user may
|
---|
| 831 | need to supply the aperture efficiency, telescope diameter or the Jy/K
|
---|
| 832 | factor.
|
---|
[534] | 833 |
|
---|
| 834 | \begin{verbatim}
|
---|
[794] | 835 | ASAP> scans.convert_flux() # If efficency known
|
---|
[534] | 836 | ASAP> scans.convert_flux(eta=0.48) # If telescope diameter known
|
---|
| 837 | ASAP> scans.convert_flux(eta=0.48,d=35) # Unknown telescope
|
---|
| 838 | ASAP> scans.convert_flux(jypk=15) # Alternative
|
---|
| 839 | \end{verbatim}
|
---|
| 840 |
|
---|
| 841 | \subsubsection{Gain-Elevation and Opacity Corrections}
|
---|
[794] | 842 | \label{sec:gainel}
|
---|
[534] | 843 |
|
---|
[794] | 844 | \index{Gain-elevation}As higher frequencies (particularly $>$20~GHz)
|
---|
| 845 | it is important to make corrections for atmospheric opacity and
|
---|
| 846 | gain-elevation effects.
|
---|
[534] | 847 |
|
---|
[794] | 848 | Note that currently the elevation is not written correctly into
|
---|
[770] | 849 | Tidbinbilla rpfits files. This means that gain-elevation and opacity
|
---|
[794] | 850 | corrections will not work unless these get recalculated.
|
---|
[770] | 851 |
|
---|
[794] | 852 | \begin{verbatim}
|
---|
| 853 | ASAP> scans.recalc_azel() # recalculate az/el based on pointing
|
---|
| 854 | \end{verbatim}
|
---|
| 855 |
|
---|
[544] | 856 | Gain-elevation curves for some telescopes and frequencies are known to
|
---|
[794] | 857 | ASAP (currently only for Tidbinbilla at 20~GHz). In these cases
|
---|
| 858 | making gain-corrections is simple. If the gain curve for your data is
|
---|
| 859 | not known, the user can supply either a gain polynomial or text file
|
---|
[534] | 860 | tabulating gain factors at a range of elevations (see \cmd{help
|
---|
[544] | 861 | scantable.gain\_el}).
|
---|
[534] | 862 |
|
---|
| 863 | Examples:
|
---|
| 864 |
|
---|
| 865 | \begin{verbatim}
|
---|
| 866 | ASAP> scans.gain_el() # If gain table known
|
---|
| 867 | ASAP> scans.gain_el(poly=[3.58788e-1,2.87243e-2,-3.219093e-4])
|
---|
| 868 | \end{verbatim}
|
---|
| 869 |
|
---|
[794] | 870 | \index{Opacity}Opacity corrections can be made with the global
|
---|
| 871 | function \cmd{opacity}. This should work on all telescopes as long as
|
---|
| 872 | a measurement of the opacity factor was made during the observation.
|
---|
[534] | 873 |
|
---|
| 874 | \begin{verbatim}
|
---|
| 875 | ASAP> scans.opacity(0.083)
|
---|
| 876 | \end{verbatim}
|
---|
| 877 |
|
---|
| 878 | Note that at 3~mm Mopra uses a paddle wheel for Tsys calibration,
|
---|
| 879 | which takes opacity effects into account (to first order). ASAP
|
---|
[544] | 880 | opacity corrections should not be used for Mopra 3-mm data.
|
---|
[534] | 881 |
|
---|
| 882 | \subsection{Frequency Frame Alignment}
|
---|
[794] | 883 | \label{sec:freqalign}
|
---|
[534] | 884 |
|
---|
[794] | 885 | \index{Frequency alignment}\index{Velicity alignment}When time
|
---|
| 886 | averaging a series of scans together, it is possible that the velocity
|
---|
| 887 | scales are not exactly aligned. This may be for many reasons such as
|
---|
| 888 | not Doppler tracking the observations, errors in the Doppler tracking
|
---|
| 889 | etc. This mostly affects very long integrations or integrations
|
---|
| 890 | averaged together from different days. Before averaging such data
|
---|
| 891 | together, they should be frequency aligned using \cmd{freq\_align}.
|
---|
[534] | 892 |
|
---|
| 893 | E.g.:
|
---|
| 894 |
|
---|
| 895 | \begin{verbatim}
|
---|
| 896 | ASAP> scans.freq_align()
|
---|
| 897 | ASAP> av = average_time(scans)
|
---|
| 898 | \end{verbatim}
|
---|
| 899 |
|
---|
[953] | 900 | {\em A Global freq\_align command will be made eventually}
|
---|
[534] | 901 |
|
---|
| 902 | To average together data taken on different days, which are in
|
---|
| 903 | different scantables, each scantable must aligned to a common
|
---|
| 904 | reference time then the scantables averaged. The simplest way of
|
---|
| 905 | doing this is to allow ASAP to choose the reference time for the first
|
---|
[738] | 906 | scantable then using this time for the subsequent scantables.
|
---|
[534] | 907 |
|
---|
| 908 | \begin{verbatim}
|
---|
| 909 | ASAP> scans1.freq_align() # Copy the refeference Epoch from the output
|
---|
| 910 | ASAP> scans2.freq_align(reftime='2004/11/23/18:43:35')
|
---|
| 911 | ASAP> scans3.freq_align(reftime='2004/11/23/18:43:35')
|
---|
| 912 | ASAP> av = average_time(scans1, scans2, scans3)
|
---|
| 913 | \end{verbatim}
|
---|
| 914 |
|
---|
| 915 | \section{Scantable manipulation}
|
---|
| 916 |
|
---|
[794] | 917 | \index{Scantable!manipulation}While it is very useful to have many
|
---|
| 918 | independent sources within one scantable, it is often inconvenient for
|
---|
| 919 | data processing. The \cmd{get\_scan} function can be used to create a
|
---|
| 920 | new scantable with a selection of scans from a scantable. The
|
---|
| 921 | selection can either be on the source name, with simple wildcard
|
---|
[953] | 922 | matching or set of scan ids. Internally this uses the selector object,
|
---|
| 923 | so for more complicated selection the selector should be used directly
|
---|
| 924 | instead.
|
---|
[534] | 925 |
|
---|
| 926 | For example:
|
---|
| 927 |
|
---|
| 928 | \begin{verbatim}
|
---|
| 929 | ASAP> ss = scans.get_scan(10) # Get the 11th scan (zero based)
|
---|
| 930 | ASAP> ss = scans.get_scan(range(10)) # Get the first 10 scans
|
---|
[538] | 931 | ASAP> ss = scans.get_scan(range(10,20)) # Get the next 10 scans
|
---|
[534] | 932 | ASAP> ss = scans.get_scan([2,4,6,8,10]) # Get a selection of scans
|
---|
| 933 |
|
---|
| 934 | ASAP> ss = scans.get_scan('345p407') # Get a specific source
|
---|
| 935 | ASAP> ss = scans.get_scan('345*') # Get a few sources
|
---|
| 936 |
|
---|
| 937 | ASAP> r = scans.get_scan('*_R') # Get all reference sources (Parkes/Mopra)
|
---|
| 938 | ASAP> s = scans.get_scan('*_S') # Get all program sources (Parkes/Mopra)
|
---|
[953] | 939 | ASAP> r = scans.get_scan('*[ew]') # Get all reference sources (Tid)
|
---|
| 940 | ASAP> s = scans.get_scan('*[^ew]') # Get all program sources (Tid)
|
---|
[534] | 941 |
|
---|
| 942 | \end{verbatim}
|
---|
| 943 |
|
---|
| 944 | To copy a scantable the following does not work:
|
---|
| 945 |
|
---|
| 946 | \begin{verbatim}
|
---|
| 947 | ASAP> ss = scans
|
---|
| 948 | \end{verbatim}
|
---|
| 949 |
|
---|
[544] | 950 | as this just creates a reference to the original scantable. Any
|
---|
| 951 | changes made to \cmd{ss} are also seen in \cmd{scans}. To duplicate a
|
---|
[534] | 952 | scantable, use the copy function.
|
---|
| 953 |
|
---|
| 954 | \begin{verbatim}
|
---|
[794] | 955 | ASAP> ss = scans.copy()
|
---|
[534] | 956 | \end{verbatim}
|
---|
| 957 |
|
---|
| 958 | \section{Data Output}
|
---|
| 959 |
|
---|
[794] | 960 | \index{Scantable!save}\index{Saving data}ASAP can save scantables in a
|
---|
| 961 | variety of formats, suitable for reading into other packages. The
|
---|
| 962 | formats are:
|
---|
[534] | 963 |
|
---|
| 964 | \begin{itemize}
|
---|
| 965 | \item[ASAP] This is the internal format used for ASAP. It is the only
|
---|
[544] | 966 | format that allows the user to restore the data, fits etc. without
|
---|
| 967 | loosing any information. As mentioned before, the ASAP scantable is
|
---|
| 968 | an AIPS++ Table (a memory-based table). This function just converts
|
---|
| 969 | it to a disk-based Table. You can the access that Table with the
|
---|
| 970 | AIPS++ Table browser or any other AIPS++ tool.
|
---|
[534] | 971 |
|
---|
[544] | 972 | \item[SDFITS] The Single Dish FITS format. This format was designed to
|
---|
| 973 | for interchange between packages, but few packages actually can read
|
---|
| 974 | it.
|
---|
[534] | 975 |
|
---|
| 976 | \item[FITS] This uses simple ``image'' fits to save the data, each row
|
---|
[544] | 977 | being written to a separate fits file. This format is suitable for
|
---|
| 978 | importing the data into CLASS.
|
---|
[534] | 979 |
|
---|
| 980 | \item[ASCII] A simple text based format suitable for the user to
|
---|
| 981 | processing using Perl or, Python, gnuplot etc.
|
---|
| 982 |
|
---|
| 983 | \item[MS2] Saves the data in an aips++ MeasurementSet V2 format.
|
---|
| 984 | You can also access this with the Table browser and other AIPS++
|
---|
| 985 | tools.
|
---|
| 986 |
|
---|
| 987 | \end{itemize}
|
---|
| 988 |
|
---|
[738] | 989 | The default output format can be set in the users {\tt .asaprc} file.
|
---|
[534] | 990 | Typical usages are:
|
---|
| 991 |
|
---|
| 992 | \begin{verbatim}
|
---|
| 993 | ASAP> scans.save('myscans') # Save in default format
|
---|
| 994 | ASAP> scans.save('myscans', 'FITS') # Save as FITS for exporting into CLASS
|
---|
| 995 | ASAP> scans.save('myscans', overwrite=True) # Overwrite an existing file
|
---|
| 996 | \end{verbatim}
|
---|
| 997 |
|
---|
| 998 |
|
---|
| 999 | \section{Plotter}
|
---|
| 1000 |
|
---|
[794] | 1001 | \index{Plotter}Scantable spectra can be plotted at any time. An asapplotter object is
|
---|
[534] | 1002 | used for plotting, meaning multiple plot windows can be active at the
|
---|
| 1003 | same time. On start up a default asapplotter object is created called
|
---|
| 1004 | ``plotter''. This would normally be used for standard plotting.
|
---|
| 1005 |
|
---|
[538] | 1006 | The plotter, optionally, will run in a multipanel mode and contain
|
---|
[534] | 1007 | multiple plots per panel. The user must tell the plotter how they want
|
---|
| 1008 | the data distributed. This is done using the set\_mode function. The
|
---|
| 1009 | default can be set in the users {\tt .asaprc} file. The units (and frame
|
---|
[538] | 1010 | etc) of the abscissa will be whatever has previously been set by
|
---|
| 1011 | \cmd{set\_unit}, \cmd{set\_freqframe} etc.
|
---|
[534] | 1012 |
|
---|
| 1013 | Typical plotter usage would be:
|
---|
| 1014 |
|
---|
| 1015 | \begin{verbatim}
|
---|
| 1016 | ASAP> scans.set_unit('km/s')
|
---|
| 1017 | ASAP> plotter.set_mode(stacking='p',panelling='t')
|
---|
| 1018 | ASAP> plotter.plot(scans)
|
---|
| 1019 | \end{verbatim}
|
---|
| 1020 |
|
---|
| 1021 | This will plot multiple polarisation within each plot panel and each
|
---|
[544] | 1022 | scan row in a separate panel.
|
---|
[534] | 1023 |
|
---|
[538] | 1024 | Other possibilities include:
|
---|
[534] | 1025 |
|
---|
| 1026 | \begin{verbatim}
|
---|
| 1027 | # Plot multiple IFs per panel
|
---|
| 1028 | ASAP> plotter.set_mode(stacking='i',panelling='t')
|
---|
[538] | 1029 |
|
---|
| 1030 | # Plot multiple beams per panel
|
---|
| 1031 | ASAP> plotter.set_mode(stacking='b',panelling='t')
|
---|
| 1032 |
|
---|
| 1033 | # Plot one IF per panel, time stacked
|
---|
| 1034 | ASAP> plotter.set_mode('t', 'i')
|
---|
| 1035 |
|
---|
| 1036 | # Plot each scan in a seperate panel
|
---|
| 1037 | ASAP> plotter.set_mode('t', 's')
|
---|
| 1038 |
|
---|
[534] | 1039 | \end{verbatim}
|
---|
| 1040 |
|
---|
[538] | 1041 | \subsection{Plot Selection}
|
---|
| 1042 | \label{sec:plotter_cursor}
|
---|
| 1043 |
|
---|
[794] | 1044 | \index{Plotter!selection}The plotter can plot up to 25 panels and
|
---|
| 1045 | stacked spectra per panel. If you have data larger than this (or for
|
---|
| 1046 | your own sanity) you need to select a subset of this data. This is
|
---|
[953] | 1047 | particularly true for multibeam or multi IF data. The selector object
|
---|
[971] | 1048 | should be used for this purpose. Selection can either be applied to
|
---|
[953] | 1049 | the scantable or directly to the plotter, the end result is the same.
|
---|
[971] | 1050 | You don't have to reset the scantable slection though, if you set
|
---|
| 1051 | the selection on the plotter.
|
---|
[538] | 1052 |
|
---|
| 1053 | Examples:
|
---|
| 1054 |
|
---|
| 1055 | \begin{verbatim}
|
---|
[953] | 1056 | ASAP> selection = selector()
|
---|
[538] | 1057 | # Select second IF
|
---|
[966] | 1058 | ASAP> selection.set_ifs(1)
|
---|
[953] | 1059 | ASAP> plotter.set_selection(selection)
|
---|
[538] | 1060 |
|
---|
| 1061 | # Select first 4 beams
|
---|
[966] | 1062 | ASAP> selection.set_beams([0,1,2,3])
|
---|
[953] | 1063 | ASAP> plotter.set_selection(selection)
|
---|
[538] | 1064 |
|
---|
[953] | 1065 | # Select a few scans
|
---|
| 1066 | ASAP> selection.set_scans([2,4,6,10])
|
---|
| 1067 | ASAP> plotter.set_selection(selection)
|
---|
[538] | 1068 |
|
---|
| 1069 | # Multiple selection
|
---|
[966] | 1070 | ASAP> selection.set_ifs(1)
|
---|
[953] | 1071 | ASAP> selection.set_scans([2,4,6,10])
|
---|
| 1072 | ASAP> plotter.set_selection(selection)
|
---|
| 1073 |
|
---|
[538] | 1074 | \end{verbatim}
|
---|
| 1075 |
|
---|
[544] | 1076 | \subsection{Plot Control}
|
---|
| 1077 |
|
---|
[794] | 1078 | \index{Plotter!control}The plotter window has a row of buttons on the
|
---|
| 1079 | lower left. These can be used to control the plotter (mostly for
|
---|
| 1080 | zooming the individual plots). From left to right:
|
---|
[534] | 1081 |
|
---|
| 1082 | \begin{itemize}
|
---|
| 1083 |
|
---|
| 1084 | \item[Home] This will unzoom the plots to the original zoom factor
|
---|
| 1085 |
|
---|
| 1086 | \item[Plot history] (left and right arrow). The plotter keeps a
|
---|
| 1087 | history of zoom settings. The left arrow sets the plot zoom to the
|
---|
| 1088 | previous value. The right arrow returns back again. This allows you,
|
---|
| 1089 | for example, to zoom in on one feature then return the plot to how it
|
---|
| 1090 | was previously.
|
---|
| 1091 |
|
---|
| 1092 | \item[Pan] (The Cross) This sets the cursor to pan, or scroll mode
|
---|
[953] | 1093 | allowing you to shift the plot within the window. Useful when
|
---|
| 1094 | zoomed in on a feature.
|
---|
[534] | 1095 |
|
---|
| 1096 | \item[Zoom] (the letter with the magnifying glass) lets you draw a
|
---|
[953] | 1097 | rectangle around a region of interest then zooms in on that
|
---|
| 1098 | region. Use the plot history to unzoom again.
|
---|
[534] | 1099 |
|
---|
[953] | 1100 | \item[Adjust] (rectangle with 4 arrows) adjust subplot paramaters
|
---|
| 1101 | (space at edge of plots)
|
---|
| 1102 |
|
---|
[534] | 1103 | \item[Save] (floppy disk). Save the plot as a postscript or .png file
|
---|
| 1104 |
|
---|
[794] | 1105 | You can also type ``g'' in the plot window to toggle on and off grid
|
---|
| 1106 | lines. Typing 'l' turns on and off logarithmic Y-axis.
|
---|
| 1107 |
|
---|
[534] | 1108 | \end{itemize}
|
---|
| 1109 |
|
---|
| 1110 | \subsection{Other control}
|
---|
| 1111 |
|
---|
| 1112 | The plotter has a number of functions to describe the layout of the
|
---|
| 1113 | plot. These include \cmd{set\_legend}, \cmd{set\_layout} and \cmd{set\_title}.
|
---|
| 1114 |
|
---|
| 1115 | To set the exact velocity or channel range to be plotted use the
|
---|
| 1116 | \cmd{set\_range} function. To reset to the default value, call
|
---|
| 1117 | \cmd{set\_range} with no arguments. E.g.
|
---|
| 1118 |
|
---|
| 1119 | \begin{verbatim}
|
---|
| 1120 | ASAP> scans.set_unit('km/s')
|
---|
| 1121 | ASAP> plotter.plot(scans)
|
---|
| 1122 | ASAP> plotter.set_range(-150,-50)
|
---|
[544] | 1123 | ASAP> plotter.set_range() # To reset
|
---|
[534] | 1124 | \end{verbatim}
|
---|
| 1125 |
|
---|
[544] | 1126 | Both the range of the ``x'' and ``y'' axis can be set at once, if desired:
|
---|
| 1127 |
|
---|
| 1128 | \begin{verbatim}
|
---|
| 1129 | ASAP> plotter.set_range(-10,30,-1,6.6)
|
---|
| 1130 | \end{verbatim}
|
---|
| 1131 |
|
---|
[738] | 1132 | To save a hardcopy of the current plot, use the save function, e.g.
|
---|
[534] | 1133 |
|
---|
| 1134 | \begin{verbatim}
|
---|
| 1135 | ASAP> plotter.save('myplot.ps')
|
---|
[971] | 1136 | ASAP> plotter.save('myplot.png', dpi=80)
|
---|
[534] | 1137 | \end{verbatim}
|
---|
| 1138 |
|
---|
| 1139 | \section{Fitting}
|
---|
| 1140 |
|
---|
[794] | 1141 | \index{Fitting}Currently multicomponent Gaussian function is
|
---|
| 1142 | available. This is done by creating a fitting object, setting up the
|
---|
| 1143 | fit and actually fitting the data. Fitting can either be done on a
|
---|
[966] | 1144 | single scantable selection or on an entire scantable using the
|
---|
| 1145 | \cmd{auto\_fit} function. If single value fitting is used, and the
|
---|
| 1146 | current selection includes multiple spectra (beams, IFs, scans etc)
|
---|
[971] | 1147 | then the first spectrum in the scantable will be used for fitting.
|
---|
[534] | 1148 |
|
---|
| 1149 | \begin{verbatim}
|
---|
| 1150 | ASAP> f = fitter()
|
---|
| 1151 | ASAP> f.set_function(gauss=2) # Fit two Gaussians
|
---|
| 1152 | ASAP> f.set_scan(scans)
|
---|
[966] | 1153 | ASAP> selection = selector()
|
---|
[971] | 1154 | ASAP> selection.set_polarisations(1) # Fit the second polarisation
|
---|
[966] | 1155 | ASAP> scans.set_selection(selection)
|
---|
[534] | 1156 | ASAP> scans.set_unit('km/s') # Make fit in velocity units
|
---|
| 1157 | ASAP> f.fit(1) # Run the fit on the second row in the table
|
---|
| 1158 | ASAP> f.plot() # Show fit in a plot window
|
---|
| 1159 | ASAP> f.get_parameters() # Return the fit paramaters
|
---|
| 1160 | \end{verbatim}
|
---|
| 1161 |
|
---|
| 1162 | This auto-guesses the initial values of the fit and works well for data
|
---|
| 1163 | without extra confusing features. Note that the fit is performed in
|
---|
| 1164 | whatever unit the abscissa is set to.
|
---|
| 1165 |
|
---|
| 1166 | If you want to confine the fitting to a smaller range (e.g. to avoid
|
---|
| 1167 | band edge effects or RFI you must set a mask.
|
---|
| 1168 |
|
---|
| 1169 | \begin{verbatim}
|
---|
| 1170 | ASAP> f = fitter()
|
---|
| 1171 | ASAP> f.set_function(gauss=2)
|
---|
| 1172 | ASAP> scans.set_unit('km/s') # Set the mask in channel units
|
---|
| 1173 | ASAP> msk = s.create_mask([1800,2200])
|
---|
| 1174 | ASAP> scans.set_unit('km/s') # Make fit in velocity units
|
---|
| 1175 | ASAP> f.set_scan(s,msk)
|
---|
| 1176 | ASAP> f.fit()
|
---|
| 1177 | ASAP> f.plot()
|
---|
| 1178 | ASAP> f.get_parameters()
|
---|
| 1179 | \end{verbatim}
|
---|
| 1180 |
|
---|
[544] | 1181 | If you wish, the initial parameter guesses can be specified and
|
---|
| 1182 | specific parameters can be fixed:
|
---|
[534] | 1183 |
|
---|
| 1184 | \begin{verbatim}
|
---|
| 1185 | ASAP> f = fitter()
|
---|
| 1186 | ASAP> f.set_function(gauss=2)
|
---|
| 1187 | ASAP> f.set_scan(s,msk)
|
---|
| 1188 | ASAP> f.fit() # Fit using auto-estimates
|
---|
[738] | 1189 | # Set Peak, centre and fwhm for the second gaussian.
|
---|
[534] | 1190 | # Force the centre to be fixed
|
---|
| 1191 | ASAP> f.set_gauss_parameters(0.4,450,150,0,1,0,component=1)
|
---|
| 1192 | ASAP> f.fit() # Re-run the fit
|
---|
| 1193 | \end{verbatim}
|
---|
| 1194 |
|
---|
| 1195 | The fitter \cmd{plot} function has a number of options to either view
|
---|
| 1196 | the fit residuals or the individual components (by default it plots
|
---|
| 1197 | the sum of the model components).
|
---|
| 1198 |
|
---|
| 1199 | Examples:
|
---|
| 1200 |
|
---|
| 1201 | \begin{verbatim}
|
---|
| 1202 | # Plot the residual
|
---|
[738] | 1203 | ASAP> f.plot(residual=True)
|
---|
[534] | 1204 |
|
---|
| 1205 | # Plot the first 2 componentsa
|
---|
[738] | 1206 | ASAP> f.plot(components=[0,1])
|
---|
[534] | 1207 |
|
---|
| 1208 | # Plot the first and third component plus the model sum
|
---|
| 1209 | ASAP> f.plot(components=[-1,0,2]) # -1 means the compoment sum
|
---|
| 1210 | \end{verbatim}
|
---|
| 1211 |
|
---|
[544] | 1212 | \subsection{Fit saving}
|
---|
| 1213 |
|
---|
[794] | 1214 | \index{Fitter!Fit saving}One you are happy with your fit, it is
|
---|
| 1215 | possible to store it as part of the scantable.
|
---|
[544] | 1216 |
|
---|
| 1217 | \begin{verbatim}
|
---|
| 1218 | ASAP> f.storefit()
|
---|
| 1219 | \end{verbatim}
|
---|
| 1220 |
|
---|
| 1221 | This will be saved to disk with the data, if the ``ASAP'' file format
|
---|
| 1222 | is selected. Multiple fits to the same data can be stored in the
|
---|
[738] | 1223 | scantable.
|
---|
[544] | 1224 |
|
---|
| 1225 | The scantable function \cmd{get\_fit} can be used to retrieve the
|
---|
| 1226 | stored fits. Currently the fit parameters are just printed to the
|
---|
| 1227 | screen.
|
---|
| 1228 |
|
---|
| 1229 | \begin{verbatim}
|
---|
| 1230 | ASAP> scans.get_fit(4) # Print fits for row 4
|
---|
| 1231 | \end{verbatim}
|
---|
| 1232 |
|
---|
[534] | 1233 | \section{Polarisation}
|
---|
| 1234 |
|
---|
[794] | 1235 | \index{Polarisation}Currently ASAP only supports polarmetric analysis
|
---|
| 1236 | on linearly polarised feeds and the cross polarisation products
|
---|
[971] | 1237 | measured. Other cases will be added on an as needed basis.
|
---|
[534] | 1238 |
|
---|
[538] | 1239 | Conversions of linears to Stokes or Circular polarisations are done
|
---|
[966] | 1240 | ``on-the-fly''. Leakage cannot be corrected for nor are there routines
|
---|
| 1241 | to calibrate position angle offsets.
|
---|
[534] | 1242 |
|
---|
[538] | 1243 | \subsection{Simple Calibration}
|
---|
| 1244 |
|
---|
[794] | 1245 | \index{Polarisation!calibration}It is possible that there is a phase
|
---|
| 1246 | offset between polarisation which will effect the phase of the cross
|
---|
| 1247 | polarisation correlation, and so give rise to spurious
|
---|
| 1248 | polarisation. \cmd{rotate\_xyphase} can be used to correct for this
|
---|
| 1249 | error. At this point, the user must know how to determine the size of
|
---|
| 1250 | the phase offset themselves.
|
---|
[538] | 1251 |
|
---|
| 1252 | \begin{verbatim}
|
---|
[546] | 1253 | ASAP> scans.rotate_xyphase(10.5) # Degrees
|
---|
[538] | 1254 | \end{verbatim}
|
---|
| 1255 |
|
---|
| 1256 | Note that if this function is run twice, the sum of the two values is
|
---|
[546] | 1257 | applied because it is done in-situ.
|
---|
[538] | 1258 |
|
---|
[546] | 1259 | A correction for the receiver parallactic angle may need to be made,
|
---|
[953] | 1260 | generally because of how it is mounted. Use \cmd{rotate\_linpolphase}
|
---|
| 1261 | to correct the position angle. Running this function twice results in
|
---|
| 1262 | the sum of the corrections being applied because it is applied
|
---|
| 1263 | in-situ.
|
---|
[538] | 1264 |
|
---|
| 1265 | \begin{verbatim}
|
---|
[953] | 1266 | ASAP> scans.rotate_linpolphase(-45) # Degrees; correct for receiver mounting
|
---|
| 1267 | \end{verbatim}
|
---|
[538] | 1268 |
|
---|
[953] | 1269 | If the sign of the complex correlation is wrong (this can happen
|
---|
| 1270 | depending on the correlator configuration), use \cmd{invert\_phase} to
|
---|
| 1271 | change take the complex conjugate of the complex correlation
|
---|
| 1272 | term. This is always performed in-situ.
|
---|
| 1273 |
|
---|
| 1274 | \begin{verbatim}
|
---|
| 1275 | ASAP> scans.invert_phase()
|
---|
[538] | 1276 | \end{verbatim}
|
---|
| 1277 |
|
---|
[953] | 1278 | Depending on how the correlator is configured, ``BA'' may be
|
---|
| 1279 | correlated insead of ``AB''. Use \cmd{swap\_linears} to correct for
|
---|
| 1280 | this problem:
|
---|
| 1281 |
|
---|
| 1282 | \begin{verbatim}
|
---|
[970] | 1283 | ASAP> scans.swap_linears()
|
---|
[953] | 1284 | \end{verbatim}
|
---|
| 1285 |
|
---|
[1011] | 1286 | \subsection{Conversion}
|
---|
| 1287 | \label{sec:polconv}
|
---|
| 1288 | Data can be converted between linear and circular polarisations and stokes.
|
---|
| 1289 |
|
---|
| 1290 | \begin{verbatim}
|
---|
| 1291 | ASAP> stokescans = linearscans.convert_pol("stokes")
|
---|
| 1292 | \end{verbatim}
|
---|
| 1293 |
|
---|
| 1294 |
|
---|
[538] | 1295 | \subsection{Plotting}
|
---|
| 1296 | \label{sec:polplot}
|
---|
| 1297 |
|
---|
[953] | 1298 | \index{Polarisation!plotting}To plot Stokes values, a selector object
|
---|
| 1299 | must be created and the set\_polarisation function used to select the
|
---|
| 1300 | desired polarisation products.
|
---|
| 1301 |
|
---|
| 1302 | The values which can be plotted include a selection of [I,Q,U,V], [I,
|
---|
| 1303 | Plinear, Pangle, V], [RR, LL] or [XX, YY, Real(XY),
|
---|
[794] | 1304 | Imaginary(XY)]. (Plinear and Pangle are the percentage and position
|
---|
[1011] | 1305 | angle of linear polarisation).
|
---|
[538] | 1306 |
|
---|
| 1307 | Example:
|
---|
| 1308 |
|
---|
| 1309 | \begin{verbatim}
|
---|
[953] | 1310 | ASAP> selection = selector()
|
---|
[970] | 1311 |
|
---|
[971] | 1312 | ASAP> selection.set_polarisations(``I Q U V'')
|
---|
[953] | 1313 | ASAP plotter.set_selection(selection); # Select I, Q, U \& V
|
---|
| 1314 |
|
---|
[971] | 1315 | ASAP> selection.set_polarisations(``I Q'')
|
---|
[953] | 1316 | ASAP plotter.set_selection(selection); # Select just I \& Q
|
---|
| 1317 |
|
---|
[971] | 1318 | ASAP> selection.set_polarisations(``RR LL'')
|
---|
[953] | 1319 | ASAP plotter.set_selection(selection); # Select just RR \& LL
|
---|
| 1320 |
|
---|
[971] | 1321 | ASAP> selection.set_polarisations(``XX YY'')
|
---|
[953] | 1322 | ASAP plotter.set_selection(selection); # Select linears
|
---|
| 1323 |
|
---|
[971] | 1324 | ASAP> selection.set_polarisations(``I Plinear'')
|
---|
[966] | 1325 | ASAP plotter.set_selection(selection); # Fractional linear
|
---|
[953] | 1326 |
|
---|
[971] | 1327 | ASAP> selection.set_polarisations(``Pangle'')
|
---|
[966] | 1328 | ASAP plotter.set_selection(selection); # Position angle
|
---|
| 1329 |
|
---|
[538] | 1330 | \end{verbatim}
|
---|
| 1331 |
|
---|
[970] | 1332 | Scan, beam and IF selection are also available in the selector object as
|
---|
[953] | 1333 | describe in section~\ref{sec:selection}.
|
---|
[538] | 1334 |
|
---|
| 1335 | \subsection{Saving}
|
---|
| 1336 |
|
---|
[794] | 1337 | \index{Polarisation!saving}When saving data using the \cmd{save}
|
---|
| 1338 | function, the \cmd{stokes} argument can be used to save the data as
|
---|
| 1339 | Stoke values when saving in FITS format.
|
---|
[538] | 1340 |
|
---|
| 1341 | Example:
|
---|
| 1342 |
|
---|
| 1343 | \begin{verbatim}
|
---|
| 1344 | ASAP> scans.save('myscan.sdfits', 'SDFITS', stokes=True)
|
---|
| 1345 | \end{verbatim}
|
---|
| 1346 |
|
---|
[770] | 1347 | \section{Scantable Mathematics}
|
---|
| 1348 |
|
---|
[794] | 1349 | \index{Scantable!maths}It is possible to to simple mathematics
|
---|
| 1350 | directly on scantables from the command line using the \cmd{+, -, *,
|
---|
| 1351 | /} operators as well as their cousins \cmd{+=, -= *=, /=}. This works
|
---|
[971] | 1352 | between a scantable and a float. (Note that it does
|
---|
[794] | 1353 | not work for integers).
|
---|
[770] | 1354 |
|
---|
[971] | 1355 | {\em Currently mathematics between two scantables is not available }
|
---|
[966] | 1356 |
|
---|
[971] | 1357 | % ASAP> sum = scan1+scan2
|
---|
[534] | 1358 | \begin{verbatim}
|
---|
[770] | 1359 | ASAP> scan2 = scan1+2.0
|
---|
| 1360 | ASAP> scan *= 1.05
|
---|
| 1361 | \end{verbatim}
|
---|
| 1362 |
|
---|
| 1363 | \section{Scripting}
|
---|
| 1364 |
|
---|
[794] | 1365 | \index{Scripting}Because asap is based on python, it easy for the user
|
---|
| 1366 | write their own scripts and functions to process data. This is highly
|
---|
| 1367 | recommended as most processing of user data could then be done in a
|
---|
| 1368 | couple of steps using a few simple user defined functions. A Python
|
---|
| 1369 | primer is beyond the scope of this userguide. See the asap home pages
|
---|
| 1370 | for a scripting tutorial or the main python website for comprehensive
|
---|
| 1371 | documentation.
|
---|
[770] | 1372 |
|
---|
| 1373 | \hspace{1cm} http://www.atnf.csiro.au/computing/software/asap/tutorials
|
---|
[953] | 1374 |
|
---|
[770] | 1375 | \hspace{1cm} http://www.python.org/doc/Introduction.html
|
---|
| 1376 |
|
---|
| 1377 | \subsection{Running scripts}
|
---|
| 1378 |
|
---|
| 1379 | The asap global function \cmd{execfile} reads the named text file and
|
---|
| 1380 | executes the contained python code. This file can either contain
|
---|
| 1381 | function definitions which will be used in subsequent processing or
|
---|
| 1382 | just a set of commands to process a specific dataset.
|
---|
| 1383 |
|
---|
| 1384 | \subsection{asapuserfuncs.py}
|
---|
| 1385 |
|
---|
| 1386 | The file $\sim$/.asap/asapuserfuncs.py is automatically read in when
|
---|
| 1387 | asap is started. The user can use this to define a set of user
|
---|
| 1388 | functions which are automatically available each time asap is
|
---|
| 1389 | used. The \cmd{execfile} function can be called from within this file.
|
---|
| 1390 |
|
---|
| 1391 | \section{Worked examples}
|
---|
| 1392 |
|
---|
| 1393 | In the following section a few examples of end-to-end processing of
|
---|
[794] | 1394 | some data in asap are given.
|
---|
[770] | 1395 |
|
---|
| 1396 | \subsection{Mopra}
|
---|
[794] | 1397 | \index{Mopra}
|
---|
[770] | 1398 |
|
---|
[794] | 1399 | The following example is of some dual polarisation, position switched
|
---|
| 1400 | data from Mopra. The source has been observed mulitple times split
|
---|
| 1401 | into a number of seperate rpfits files. To make the processing easier,
|
---|
| 1402 | the first step is to \cmd{cat} the seeprate rpfits files together and
|
---|
| 1403 | load as a whole (future versions of asap will make this unnecessary).
|
---|
| 1404 |
|
---|
| 1405 |
|
---|
| 1406 | \begin{verbatim}
|
---|
[1011] | 1407 | # get a list of the individual rpfits files in the current directory
|
---|
| 1408 | myfiles = list_files()
|
---|
[794] | 1409 |
|
---|
| 1410 | # Load the data into a scantable
|
---|
[1011] | 1411 | data = scantable(myfiles)
|
---|
[794] | 1412 | print data
|
---|
| 1413 |
|
---|
| 1414 | # Form the quotient spectra
|
---|
| 1415 | q = data.auto_quotient()
|
---|
| 1416 | print q
|
---|
| 1417 |
|
---|
| 1418 | # Look at the spectra
|
---|
| 1419 | plotter.plot(q)
|
---|
| 1420 |
|
---|
[1011] | 1421 | # Set unit and reference frame
|
---|
[794] | 1422 | q.set_unit('km/s')
|
---|
| 1423 | q.set_freqframe('LSRK')
|
---|
| 1424 |
|
---|
[966] | 1425 | # Average all scans in time, aligning in velocity
|
---|
| 1426 | av = q.average_time(align=True)
|
---|
[794] | 1427 | plotter.plot(av)
|
---|
| 1428 |
|
---|
| 1429 | # Remove the baseline
|
---|
| 1430 | msk = av.create_mask([100,130],[160,200])
|
---|
| 1431 | av.poly_baseline(msk,2)
|
---|
| 1432 |
|
---|
| 1433 | # Average the two polarisations together
|
---|
| 1434 | iav = av.average_pol()
|
---|
| 1435 | print iav
|
---|
| 1436 | plotter.plot(iav)
|
---|
| 1437 |
|
---|
| 1438 | # Set a sensible velocity range on the plot
|
---|
| 1439 | plotter.set_range(85,200)
|
---|
| 1440 |
|
---|
| 1441 | # Smooth the data a little
|
---|
| 1442 | av.smooth('gauss',4)
|
---|
| 1443 | plotter.plot()
|
---|
| 1444 |
|
---|
| 1445 | # Fit a guassian to the emission
|
---|
| 1446 | f = fitter()
|
---|
| 1447 | f.set_function(gauss=1)
|
---|
| 1448 | f.set_scan(av)
|
---|
| 1449 | f.fit()
|
---|
| 1450 |
|
---|
| 1451 | # View the fit
|
---|
| 1452 | f.plot()
|
---|
| 1453 |
|
---|
| 1454 | # Get the fit parameters
|
---|
| 1455 | f.get_parameters()
|
---|
| 1456 |
|
---|
| 1457 | \end{verbatim}
|
---|
| 1458 |
|
---|
| 1459 |
|
---|
[770] | 1460 | \subsection{Parkes Polarimetry}
|
---|
| 1461 |
|
---|
[794] | 1462 | \index{Parkes}\index{Polarisation}The following example is processing
|
---|
| 1463 | of some Parkes polarmetric observations of OH masers at
|
---|
| 1464 | 1.6~GHz. Because digital filters where used in the backend, the
|
---|
| 1465 | baselines are stable enough not to require a quotient spectra. The
|
---|
| 1466 | 4~MHz bandwidth is wide enough to observe both the 1665 and 1667~MHz
|
---|
| 1467 | OH maser transitions. Each source was observed once for about 10
|
---|
| 1468 | minutes. Tsys information was not written to the rpfits file (a
|
---|
| 1469 | nominal 25K values was used), so the amplitudes need to be adjusted
|
---|
| 1470 | based on a separate log file. A simple user function is used to
|
---|
| 1471 | simplify this, contained in a file called mypol.py:
|
---|
[770] | 1472 |
|
---|
| 1473 | \begin{verbatim}
|
---|
| 1474 | def xyscale(data,xtsys=1.0,ytsys=1.0,nomtsys=25.0) :
|
---|
| 1475 |
|
---|
[966] | 1476 | selection = selector()
|
---|
[971] | 1477 | selection.set_polarisations(0)
|
---|
[966] | 1478 | data.set_selection(selection)
|
---|
| 1479 | data.scale(xtsys/nomtsys)
|
---|
[770] | 1480 |
|
---|
[971] | 1481 | selection.set_polarisations(1)
|
---|
[966] | 1482 | data.set_selection(selection)
|
---|
| 1483 | data.scale(ytsys/nomtsys)
|
---|
[770] | 1484 |
|
---|
[971] | 1485 | selection.set_polarisations(0)
|
---|
[966] | 1486 | data.set_selection(selection)
|
---|
| 1487 | data.scale((xtsys+ytsys)/(2*nomtsys))
|
---|
[770] | 1488 |
|
---|
[971] | 1489 | selection.set_polarisations(0)
|
---|
[966] | 1490 | data.set_selection(selection)
|
---|
| 1491 | data.scale((xtsys+ytsys)/(2*nomtsys))
|
---|
[770] | 1492 | \end{verbatim}
|
---|
| 1493 |
|
---|
| 1494 | The typical asap session would be
|
---|
| 1495 |
|
---|
| 1496 | \begin{verbatim}
|
---|
[794] | 1497 |
|
---|
[770] | 1498 | # Remind ourself the name of the rpfits files
|
---|
[794] | 1499 | ls
|
---|
[770] | 1500 |
|
---|
| 1501 | # Load data from an rpfits file
|
---|
| 1502 | d1665 = scantable('2005-10-27_0154-P484.rpf')
|
---|
| 1503 |
|
---|
| 1504 | # Check what we have just loaded
|
---|
[1011] | 1505 | d1665.summary()
|
---|
[770] | 1506 |
|
---|
| 1507 | # View the data in velocity
|
---|
| 1508 | d1665.set_unit('km/s')
|
---|
| 1509 | d1665.set_freqframe('LSRK')
|
---|
| 1510 |
|
---|
| 1511 | # Correct for the known phase offset in the crosspol data
|
---|
| 1512 | d1665.rotate_xyphase(-4)
|
---|
| 1513 |
|
---|
[794] | 1514 | # Create a copy of the data and set the rest frequency to the 1667 MHz
|
---|
[770] | 1515 | # transition
|
---|
| 1516 | d1667 = d1665.copy()
|
---|
[966] | 1517 | d1667.set_restfreqs([1667.3590], 'MHz')
|
---|
| 1518 | d1667.summary()
|
---|
[770] | 1519 |
|
---|
| 1520 | # Copy out the scan we wish to process
|
---|
| 1521 | g351_5 = d1665.get_scan('351p160')
|
---|
| 1522 | g351_7 = d1667.get_scan('351p160')
|
---|
| 1523 |
|
---|
[966] | 1524 | # Baseline both
|
---|
| 1525 | msk = g351_5.create_mask([-30,-25],[-5,0])
|
---|
| 1526 | g351_5.poly_baseline(msk,order=1)
|
---|
| 1527 | msk = g351_7.create_mask([-30,-25],[-5,0])
|
---|
| 1528 | g351_7.poly_baseline(msk,order=1)
|
---|
[770] | 1529 |
|
---|
[966] | 1530 |
|
---|
| 1531 | # Plot the data. The plotter can only plot a single scantable
|
---|
| 1532 | # So we must merge the two tables first
|
---|
| 1533 |
|
---|
| 1534 | plotscans = merge(g351_5, g351_7)
|
---|
| 1535 |
|
---|
| 1536 | plotter.plot(plotscans) # Only shows one panel
|
---|
| 1537 |
|
---|
[770] | 1538 | # Tell the plotter to stack polarisation and panel scans
|
---|
| 1539 | plotter.set_mode('p','s')
|
---|
| 1540 |
|
---|
| 1541 | # Correct for the Tsys using our predefined function
|
---|
[971] | 1542 | execfile('mypol.py') # Read in the function xyscale
|
---|
[770] | 1543 | xyscale(g351_5,23.2,22.7) # Execute it on the data
|
---|
| 1544 | xyscale(g351_7,23.2,22.7)
|
---|
| 1545 |
|
---|
| 1546 | # Only plot the velocity range of interest
|
---|
| 1547 | plotter.set_range(-30,10)
|
---|
| 1548 |
|
---|
| 1549 | # Update the plot with the baselined data
|
---|
| 1550 | plotter.plot()
|
---|
| 1551 |
|
---|
| 1552 | # Look at the various polarisation products
|
---|
[966] | 1553 | selection = selector()
|
---|
| 1554 | selection.set_polarisations(``RR LL'')
|
---|
| 1555 | plotter.set_selection(selection)
|
---|
| 1556 | selection.set_polarisations(``I Plinear'')
|
---|
| 1557 | plotter.set_selection(selection)
|
---|
| 1558 | selection.set_polarisations(``I Q U V'')
|
---|
| 1559 | plotter.set_selection(selection)
|
---|
[770] | 1560 |
|
---|
| 1561 | # Save the plot as postscript
|
---|
[966] | 1562 | plotter.save('g351_stokes.ps')
|
---|
[770] | 1563 |
|
---|
| 1564 | # Save the process spectra
|
---|
[966] | 1565 | plotscans.save('g351.asap')
|
---|
[770] | 1566 |
|
---|
| 1567 | \end{verbatim}
|
---|
| 1568 |
|
---|
| 1569 | \subsection{Tidbinbilla}
|
---|
| 1570 |
|
---|
[794] | 1571 | \index{Tidbinbilla}The following example is processing of some
|
---|
| 1572 | Tidbinbilla observations of NH$_3$ at 12~mm. Tidbinbilla has (at the
|
---|
| 1573 | time of observations) a single polarisation, but can process two IFs
|
---|
| 1574 | simultaneously. In the example, the first half of the observation was
|
---|
| 1575 | observing the (1,1) and (2,2) transitions simultaneously). The second
|
---|
| 1576 | half observed only the (4,4) transition due to bandwidth
|
---|
| 1577 | limitations. The data is position switched, observing first an
|
---|
| 1578 | reference to the west, then the source twice and finally reference to
|
---|
| 1579 | the east.
|
---|
[770] | 1580 |
|
---|
| 1581 | \begin{verbatim}
|
---|
| 1582 |
|
---|
| 1583 | # Load the rpfits file and inspect
|
---|
| 1584 | d = scantable('2003-03-16_082048_t0002.rpf')
|
---|
| 1585 | print d
|
---|
| 1586 |
|
---|
| 1587 | # Make the quotient spectra
|
---|
| 1588 | q = d.auto_quotient()
|
---|
| 1589 | print q
|
---|
| 1590 |
|
---|
[966] | 1591 | del d
|
---|
| 1592 |
|
---|
[770] | 1593 | # Plot/select in velocity
|
---|
| 1594 | q.set_freqframe('LSRK')
|
---|
| 1595 | q.set_unit('km/s')
|
---|
| 1596 |
|
---|
[966] | 1597 | # Correct for gain/el effects
|
---|
| 1598 |
|
---|
| 1599 | q.recalc_azel() # Tid does not write the elevation
|
---|
| 1600 | q.gain_el()
|
---|
| 1601 | q.opacity(0.05)
|
---|
| 1602 |
|
---|
[770] | 1603 | # Seperate data from the (1,1)&(2,2) and (4,4) transitions
|
---|
[971] | 1604 | g1 = q.get_scan(range(6)) # scans 0..5
|
---|
| 1605 | g2 = q.get_scan(range(6,12)) # scans 6..11
|
---|
[770] | 1606 |
|
---|
[794] | 1607 | # Align data in velocity
|
---|
[966] | 1608 | g1.freq_align()
|
---|
| 1609 | g2.freq_align()
|
---|
[770] | 1610 |
|
---|
| 1611 | # Average individual scans
|
---|
| 1612 | a1 = g1.average_time()
|
---|
| 1613 | a2 = g2.average_time()
|
---|
| 1614 |
|
---|
[1011] | 1615 | # Rpfits file only contains a single rest frequency. Set both
|
---|
[966] | 1616 | a1.set_restfreqs([23694.4700e6,23722.6336e6])
|
---|
[770] | 1617 |
|
---|
[966] | 1618 | plotter.plot(a1)
|
---|
[1011] | 1619 | plotter.set_mode('i','t')
|
---|
[770] | 1620 |
|
---|
| 1621 | a1.auto_poly_baseline()
|
---|
| 1622 |
|
---|
| 1623 | plotter.plot()
|
---|
| 1624 |
|
---|
| 1625 | a1.smooth('gauss',5)
|
---|
| 1626 | plotter.plot()
|
---|
| 1627 |
|
---|
[966] | 1628 |
|
---|
[770] | 1629 | \end{verbatim}
|
---|
| 1630 |
|
---|
| 1631 | \newpage
|
---|
| 1632 |
|
---|
| 1633 | \section{Appendix}
|
---|
| 1634 |
|
---|
| 1635 | \subsection{Function Summary}
|
---|
| 1636 |
|
---|
[794] | 1637 | \index{Functions!summary}%
|
---|
[770] | 1638 | \begin{verbatim}
|
---|
[1011] | 1639 | ASAP> commands()
|
---|
[738] | 1640 | [The scan container]
|
---|
[534] | 1641 | scantable - a container for integrations/scans
|
---|
| 1642 | (can open asap/rpfits/sdfits and ms files)
|
---|
| 1643 | copy - returns a copy of a scan
|
---|
| 1644 | get_scan - gets a specific scan out of a scantable
|
---|
[1011] | 1645 | (by name or number)
|
---|
| 1646 | set_selection - set a new subselection of the data
|
---|
| 1647 | get_selection - get the current selection object
|
---|
[534] | 1648 | summary - print info about the scantable contents
|
---|
| 1649 | stats - get specified statistic of the spectra in
|
---|
| 1650 | the scantable
|
---|
| 1651 | stddev - get the standard deviation of the spectra
|
---|
| 1652 | in the scantable
|
---|
| 1653 | get_tsys - get the TSys
|
---|
| 1654 | get_time - get the timestamps of the integrations
|
---|
[1011] | 1655 | get_sourcename - get the source names of the scans
|
---|
[794] | 1656 | get_azimuth - get the azimuth of the scans
|
---|
| 1657 | get_elevation - get the elevation of the scans
|
---|
| 1658 | get_parangle - get the parallactic angle of the scans
|
---|
[1011] | 1659 | get_unit - get the current unit
|
---|
[534] | 1660 | set_unit - set the abcissa unit to be used from this
|
---|
| 1661 | point on
|
---|
| 1662 | get_abcissa - get the abcissa values and name for a given
|
---|
| 1663 | row (time)
|
---|
| 1664 | set_freqframe - set the frame info for the Spectral Axis
|
---|
| 1665 | (e.g. 'LSRK')
|
---|
| 1666 | set_doppler - set the doppler to be used from this point on
|
---|
[1011] | 1667 | set_dirframe - set the frame for the direction on the sky
|
---|
[534] | 1668 | set_instrument - set the instrument name
|
---|
| 1669 | get_fluxunit - get the brightness flux unit
|
---|
| 1670 | set_fluxunit - set the brightness flux unit
|
---|
| 1671 | create_mask - return an mask in the current unit
|
---|
| 1672 | for the given region. The specified regions
|
---|
| 1673 | are NOT masked
|
---|
| 1674 | get_restfreqs - get the current list of rest frequencies
|
---|
| 1675 | set_restfreqs - set a list of rest frequencies
|
---|
[1011] | 1676 | flag_spectrum - flag data
|
---|
[534] | 1677 | save - save the scantable to disk as either 'ASAP'
|
---|
| 1678 | or 'SDFITS'
|
---|
| 1679 | nbeam,nif,nchan,npol - the number of beams/IFs/Pols/Chans
|
---|
[1011] | 1680 | nscan - the number of scans in the scantable
|
---|
| 1681 | nrow - te number of spectra in the scantable
|
---|
[534] | 1682 | history - print the history of the scantable
|
---|
[544] | 1683 | get_fit - get a fit which has been stored witnh the data
|
---|
[738] | 1684 | average_time - return the (weighted) time average of a scan
|
---|
[534] | 1685 | or a list of scans
|
---|
| 1686 | average_pol - average the polarisations together.
|
---|
| 1687 | The dimension won't be reduced and
|
---|
| 1688 | all polarisations will contain the
|
---|
| 1689 | averaged spectrum.
|
---|
[1011] | 1690 | convert_pol - convert to a different polarisation type
|
---|
[738] | 1691 | auto_quotient - return the on/off quotient with
|
---|
| 1692 | automatic detection of the on/off scans
|
---|
[1011] | 1693 | (matched pairs and 1 off - n on)
|
---|
[534] | 1694 | scale - return a scan scaled by a given factor
|
---|
[738] | 1695 | add - return a scan with given value added
|
---|
[534] | 1696 | bin - return a scan with binned channels
|
---|
| 1697 | resample - return a scan with resampled channels
|
---|
| 1698 | smooth - return the spectrally smoothed scan
|
---|
| 1699 | poly_baseline - fit a polynomial baseline to all Beams/IFs/Pols
|
---|
[738] | 1700 | auto_poly_baseline - automatically fit a polynomial baseline
|
---|
[794] | 1701 | recalc_azel - recalculate azimuth and elevation based on
|
---|
| 1702 | the pointing
|
---|
[534] | 1703 | gain_el - apply gain-elevation correction
|
---|
| 1704 | opacity - apply opacity correction
|
---|
| 1705 | convert_flux - convert to and from Jy and Kelvin brightness
|
---|
| 1706 | units
|
---|
| 1707 | freq_align - align spectra in frequency frame
|
---|
| 1708 | rotate_xyphase - rotate XY phase of cross correlation
|
---|
| 1709 | rotate_linpolphase - rotate the phase of the complex
|
---|
| 1710 | polarization O=Q+iU correlation
|
---|
[1011] | 1711 | freq_switch - perform frequency switching on the data
|
---|
| 1712 | stats - Determine the specified statistic, e.g. 'min'
|
---|
| 1713 | 'max', 'rms' etc.
|
---|
| 1714 | stddev - Determine the standard deviation of the current
|
---|
| 1715 | beam/if/pol
|
---|
| 1716 |
|
---|
[534] | 1717 | [Math] Mainly functions which operate on more than one scantable
|
---|
| 1718 |
|
---|
[738] | 1719 | average_time - return the (weighted) time average
|
---|
[534] | 1720 | of a list of scans
|
---|
| 1721 | quotient - return the on/off quotient
|
---|
[544] | 1722 | simple_math - simple mathematical operations on two scantables,
|
---|
| 1723 | 'add', 'sub', 'mul', 'div'
|
---|
[534] | 1724 | [Fitting]
|
---|
| 1725 | fitter
|
---|
| 1726 | auto_fit - return a scan where the function is
|
---|
| 1727 | applied to all Beams/IFs/Pols.
|
---|
| 1728 | commit - return a new scan where the fits have been
|
---|
| 1729 | commited.
|
---|
| 1730 | fit - execute the actual fitting process
|
---|
[1011] | 1731 | store_fit - store the fit parameters in the data (scantable)
|
---|
[534] | 1732 | get_chi2 - get the Chi^2
|
---|
| 1733 | set_scan - set the scantable to be fit
|
---|
| 1734 | set_function - set the fitting function
|
---|
| 1735 | set_parameters - set the parameters for the function(s), and
|
---|
| 1736 | set if they should be held fixed during fitting
|
---|
[544] | 1737 | set_gauss_parameters - same as above but specialised for individual
|
---|
| 1738 | gaussian components
|
---|
[534] | 1739 | get_parameters - get the fitted parameters
|
---|
| 1740 | plot - plot the resulting fit and/or components and
|
---|
| 1741 | residual
|
---|
| 1742 | [Plotter]
|
---|
| 1743 | asapplotter - a plotter for asap, default plotter is
|
---|
| 1744 | called 'plotter'
|
---|
[1011] | 1745 | plot - plot a scantable
|
---|
[534] | 1746 | save - save the plot to a file ('png' ,'ps' or 'eps')
|
---|
| 1747 | set_mode - set the state of the plotter, i.e.
|
---|
| 1748 | what is to be plotted 'colour stacked'
|
---|
| 1749 | and what 'panelled'
|
---|
[1011] | 1750 | set_selection - only plot a selected part of the data
|
---|
| 1751 | set_range - set a 'zoom' window [xmin,xmax,ymin,ymax]
|
---|
[534] | 1752 | set_legend - specify user labels for the legend indeces
|
---|
| 1753 | set_title - specify user labels for the panel indeces
|
---|
[1011] | 1754 | set_abcissa - specify a user label for the abcissa
|
---|
[534] | 1755 | set_ordinate - specify a user label for the ordinate
|
---|
| 1756 | set_layout - specify the multi-panel layout (rows,cols)
|
---|
[1011] | 1757 | set_colors - specify a set of colours to use
|
---|
| 1758 | set_linestyles - specify a set of linestyles to use if only
|
---|
| 1759 | using one color
|
---|
| 1760 | set_mask - set a plotting mask for a specific polarization
|
---|
[738] | 1761 |
|
---|
[534] | 1762 | [Reading files]
|
---|
| 1763 | reader - access rpfits/sdfits files
|
---|
[1011] | 1764 | open - attach reader to a file
|
---|
| 1765 | close - detach reader from file
|
---|
[534] | 1766 | read - read in integrations
|
---|
| 1767 | summary - list info about all integrations
|
---|
| 1768 |
|
---|
| 1769 | [General]
|
---|
| 1770 | commands - this command
|
---|
| 1771 | print - print details about a variable
|
---|
| 1772 | list_scans - list all scantables created bt the user
|
---|
[1011] | 1773 | list_files - list all files readable by asap (default rpf)
|
---|
[534] | 1774 | del - delete the given variable from memory
|
---|
| 1775 | range - create a list of values, e.g.
|
---|
| 1776 | range(3) = [0,1,2], range(2,5) = [2,3,4]
|
---|
| 1777 | help - print help for one of the listed functions
|
---|
[538] | 1778 | execfile - execute an asap script, e.g. execfile('myscript')
|
---|
[544] | 1779 | list_rcparameters - print out a list of possible values to be
|
---|
[1011] | 1780 | put into $HOME/.asaprc
|
---|
[534] | 1781 | mask_and,mask_or,
|
---|
| 1782 | mask_not - boolean operations on masks created with
|
---|
| 1783 | scantable.create_mask
|
---|
[738] | 1784 |
|
---|
[534] | 1785 | Note:
|
---|
| 1786 | How to use this with help:
|
---|
| 1787 | # function 'summary'
|
---|
| 1788 | [xxx] is just a category
|
---|
[544] | 1789 | Every 'sub-level' in this list should be replaces by a '.' Period when
|
---|
[738] | 1790 | using help
|
---|
[534] | 1791 | Example:
|
---|
| 1792 | ASAP> help scantable # to get info on ths scantable
|
---|
| 1793 | ASAP> help scantable.summary # to get help on the scantable's
|
---|
| 1794 | ASAP> help average_time
|
---|
[544] | 1795 |
|
---|
[1011] | 1796 |
|
---|
[534] | 1797 | \end{verbatim}
|
---|
| 1798 |
|
---|
| 1799 | \subsection{ASCII output format}
|
---|
| 1800 |
|
---|
| 1801 | \subsection{.asaprc settings}
|
---|
[794] | 1802 | \index{.asaprc}
|
---|
[971] | 1803 | \asaprc{verbose}{{\bf True}/False}{Print verbose output, good to disable in scripts}
|
---|
[770] | 1804 |
|
---|
| 1805 | \asaprc{insitu}{{\bf True}/False}{Apply operations on the input
|
---|
| 1806 | scantable or return new one}
|
---|
| 1807 |
|
---|
| 1808 | % plotting
|
---|
| 1809 |
|
---|
| 1810 | \asaprc{useplotter}{{\bf True}/False}{Preload a default plotter}
|
---|
| 1811 |
|
---|
| 1812 | \asaprc{plotter.gui}{{\bf True}/False}{Do we want a GUI or plot to a
|
---|
| 1813 | file}
|
---|
| 1814 |
|
---|
| 1815 | \asaprc{plotter.stacking}{{\bf Pol} Beam IF Scan Time}{Default mode for
|
---|
| 1816 | colour stacking}
|
---|
| 1817 |
|
---|
| 1818 | \asaprc{plotter.panelling}{Pol Beam IF {\bf Scan} Time}{Default mode
|
---|
| 1819 | for panelling}
|
---|
| 1820 |
|
---|
| 1821 | \asaprc{plotter.ganged}{{\bf True}/False}{Push panels together, to
|
---|
| 1822 | share axislabels}
|
---|
| 1823 |
|
---|
| 1824 | \asaprc{plotter.decimate}{True/{\bf False}}{Decimate the number of
|
---|
| 1825 | points plotted by a factor of nchan/1024}
|
---|
| 1826 |
|
---|
| 1827 | % default colours/linestyles
|
---|
| 1828 | %\asaprc{plotter.colours}{.}{.}
|
---|
| 1829 | %\asaprc{plotter.linestyles{.}{.}
|
---|
| 1830 |
|
---|
| 1831 | % scantable
|
---|
| 1832 | \asaprc{scantable.save}{{\bf ASAP} SDFITS FITS ASCII MS2}{Default output
|
---|
[794] | 1833 | format when saving}
|
---|
[770] | 1834 |
|
---|
| 1835 | \asaprc{scantable.autoaverage}{{\bf True}/False}{Auto averaging on
|
---|
| 1836 | read}
|
---|
| 1837 |
|
---|
| 1838 | \asaprc{scantable.freqframe}{{\bf LSRK} TOPO BARY etc}{default
|
---|
| 1839 | frequency frame to set when function scantable.set\_freqframe is
|
---|
[971] | 1840 | called or the data is imported}
|
---|
[770] | 1841 |
|
---|
[953] | 1842 | \subsection{Installation}
|
---|
| 1843 |
|
---|
| 1844 | \index{Installation}ASAP depends on a number of third-party libraries which you must
|
---|
| 1845 | have installed before attempting to build ASAP. These are:
|
---|
| 1846 |
|
---|
| 1847 | \begin{itemize}
|
---|
| 1848 | \item AIPS++
|
---|
| 1849 | \item Boost
|
---|
| 1850 | \item Matplotlib
|
---|
| 1851 | \item python/ipython
|
---|
| 1852 | \end{itemize}
|
---|
| 1853 |
|
---|
| 1854 | Debian Linux is currently supported and we intend also
|
---|
| 1855 | to support other popular Linux flavours, Solaris and Mac.
|
---|
| 1856 |
|
---|
| 1857 | Of the dependencies, AIPS++ is the most complex to install.
|
---|
| 1858 |
|
---|
[794] | 1859 | \printindex
|
---|
| 1860 |
|
---|
[534] | 1861 | \end{document}
|
---|
[770] | 1862 |
|
---|