source: tags/asap-3.1.0/src/STMath.cpp @ 2279

Last change on this file since 2279 was 2279, checked in by Malte Marquarding, 13 years ago

merge in fix from trunk

File size: 167.2 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "RowAccumulator.h"
52#include "STAttr.h"
53#include "STMath.h"
54#include "STSelector.h"
55
56using namespace casa;
57using namespace asap;
58
59// tolerance for direction comparison (rad)
60#define TOL_OTF    1.0e-15
61#define TOL_POINT  2.9088821e-4  // 1 arcmin
62
63STMath::STMath(bool insitu) :
64  insitu_(insitu)
65{
66}
67
68
69STMath::~STMath()
70{
71}
72
73CountedPtr<Scantable>
74STMath::average( const std::vector<CountedPtr<Scantable> >& in,
75                 const std::vector<bool>& mask,
76                 const std::string& weight,
77                 const std::string& avmode)
78{
79  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
80  if ( avmode == "SCAN" && in.size() != 1 )
81    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
82                    "Use merge first."));
83  WeightType wtype = stringToWeight(weight);
84
85  // check if OTF observation
86  String obstype = in[0]->getHeader().obstype ;
87  Double tol = 0.0 ;
88  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
89    tol = TOL_OTF ;
90  }
91  else {
92    tol = TOL_POINT ;
93  }
94
95  // output
96  // clone as this is non insitu
97  bool insitu = insitu_;
98  setInsitu(false);
99  CountedPtr< Scantable > out = getScantable(in[0], true);
100  setInsitu(insitu);
101  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
102  ++stit;
103  while ( stit != in.end() ) {
104    out->appendToHistoryTable((*stit)->history());
105    ++stit;
106  }
107
108  Table& tout = out->table();
109
110  /// @todo check if all scantables are conformant
111
112  ArrayColumn<Float> specColOut(tout,"SPECTRA");
113  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
114  ArrayColumn<Float> tsysColOut(tout,"TSYS");
115  ScalarColumn<Double> mjdColOut(tout,"TIME");
116  ScalarColumn<Double> intColOut(tout,"INTERVAL");
117  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
118  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
119
120  // set up the output table rows. These are based on the structure of the
121  // FIRST scantable in the vector
122  const Table& baset = in[0]->table();
123
124  Block<String> cols(3);
125  cols[0] = String("BEAMNO");
126  cols[1] = String("IFNO");
127  cols[2] = String("POLNO");
128  if ( avmode == "SOURCE" ) {
129    cols.resize(4);
130    cols[3] = String("SRCNAME");
131  }
132  if ( avmode == "SCAN"  && in.size() == 1) {
133    //cols.resize(4);
134    //cols[3] = String("SCANNO");
135    cols.resize(5);
136    cols[3] = String("SRCNAME");
137    cols[4] = String("SCANNO");
138  }
139  uInt outrowCount = 0;
140  TableIterator iter(baset, cols);
141//   int count = 0 ;
142  while (!iter.pastEnd()) {
143    Table subt = iter.table();
144//     // copy the first row of this selection into the new table
145//     tout.addRow();
146//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
147//     // re-index to 0
148//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
149//       scanColOut.put(outrowCount, uInt(0));
150//     }
151//     ++outrowCount;
152    MDirection::ScalarColumn dircol ;
153    dircol.attach( subt, "DIRECTION" ) ;
154    Int length = subt.nrow() ;
155    vector< Vector<Double> > dirs ;
156    vector<int> indexes ;
157    for ( Int i = 0 ; i < length ; i++ ) {
158      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
159      //os << << count++ << ": " ;
160      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
161      bool adddir = true ;
162      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
163        //if ( allTrue( t == dirs[j] ) ) {
164        Double dx = t[0] - dirs[j][0] ;
165        Double dy = t[1] - dirs[j][1] ;
166        Double dd = sqrt( dx * dx + dy * dy ) ;
167        //if ( allNearAbs( t, dirs[j], tol ) ) {
168        if ( dd <= tol ) {
169          adddir = false ;
170          break ;
171        }
172      }
173      if ( adddir ) {
174        dirs.push_back( t ) ;
175        indexes.push_back( i ) ;
176      }
177    }
178    uInt rowNum = dirs.size() ;
179    tout.addRow( rowNum ) ;
180    for ( uInt i = 0 ; i < rowNum ; i++ ) {
181      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
182      // re-index to 0
183      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
184        scanColOut.put(outrowCount+i, uInt(0));
185      }       
186    }
187    outrowCount += rowNum ;
188    ++iter;
189  }
190  RowAccumulator acc(wtype);
191  Vector<Bool> cmask(mask);
192  acc.setUserMask(cmask);
193  ROTableRow row(tout);
194  ROArrayColumn<Float> specCol, tsysCol;
195  ROArrayColumn<uChar> flagCol;
196  ROScalarColumn<Double> mjdCol, intCol;
197  ROScalarColumn<Int> scanIDCol;
198
199  Vector<uInt> rowstodelete;
200
201  for (uInt i=0; i < tout.nrow(); ++i) {
202    for ( int j=0; j < int(in.size()); ++j ) {
203      const Table& tin = in[j]->table();
204      const TableRecord& rec = row.get(i);
205      ROScalarColumn<Double> tmp(tin, "TIME");
206      Double td;tmp.get(0,td);
207      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
208                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
209                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
210      Table subt;
211      if ( avmode == "SOURCE") {
212        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
213      } else if (avmode == "SCAN") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
215                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
216      } else {
217        subt = basesubt;
218      }
219
220      vector<uInt> removeRows ;
221      uInt nrsubt = subt.nrow() ;
222      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
223        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
224        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
225        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
226        double dx = x0[0] - x1[0] ;
227        double dy = x0[0] - x1[0] ;
228        Double dd = sqrt( dx * dx + dy * dy ) ;
229        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
230        if ( dd > tol ) {
231          removeRows.push_back( irow ) ;
232        }
233      }
234      if ( removeRows.size() != 0 ) {
235        subt.removeRow( removeRows ) ;
236      }
237     
238      if ( nrsubt == removeRows.size() )
239        throw(AipsError("Averaging data is empty.")) ;
240
241      specCol.attach(subt,"SPECTRA");
242      flagCol.attach(subt,"FLAGTRA");
243      tsysCol.attach(subt,"TSYS");
244      intCol.attach(subt,"INTERVAL");
245      mjdCol.attach(subt,"TIME");
246      Vector<Float> spec,tsys;
247      Vector<uChar> flag;
248      Double inter,time;
249      for (uInt k = 0; k < subt.nrow(); ++k ) {
250        flagCol.get(k, flag);
251        Vector<Bool> bflag(flag.shape());
252        convertArray(bflag, flag);
253        /*
254        if ( allEQ(bflag, True) ) {
255        continue;//don't accumulate
256        }
257        */
258        specCol.get(k, spec);
259        tsysCol.get(k, tsys);
260        intCol.get(k, inter);
261        mjdCol.get(k, time);
262        // spectrum has to be added last to enable weighting by the other values
263        acc.add(spec, !bflag, tsys, inter, time);
264      }
265
266      // If there exists a channel at which all the input spectra are masked,
267      // spec has 'nan' values for that channel and it may affect the following
268      // processes. To avoid this, replacing 'nan' values in spec with
269      // weighted-mean of all spectra in the following line.
270      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
271      acc.replaceNaN();
272    }
273    const Vector<Bool>& msk = acc.getMask();
274    if ( allEQ(msk, False) ) {
275      uint n = rowstodelete.nelements();
276      rowstodelete.resize(n+1, True);
277      rowstodelete[n] = i;
278      continue;
279    }
280    //write out
281    if (acc.state()) {
282      Vector<uChar> flg(msk.shape());
283      convertArray(flg, !msk);
284      for (uInt k = 0; k < flg.nelements(); ++k) {
285        uChar userFlag = 1 << 7;
286        if (msk[k]==True) userFlag = 0 << 7;
287        flg(k) = userFlag;
288      }
289
290      flagColOut.put(i, flg);
291      specColOut.put(i, acc.getSpectrum());
292      tsysColOut.put(i, acc.getTsys());
293      intColOut.put(i, acc.getInterval());
294      mjdColOut.put(i, acc.getTime());
295      // we should only have one cycle now -> reset it to be 0
296      // frequency switched data has different CYCLENO for different IFNO
297      // which requires resetting this value
298      cycColOut.put(i, uInt(0));
299    } else {
300      ostringstream oss;
301      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
302      pushLog(String(oss));
303    }
304    acc.reset();
305  }
306
307  if (rowstodelete.nelements() > 0) {
308    os << rowstodelete << LogIO::POST ;
309    tout.removeRow(rowstodelete);
310    if (tout.nrow() == 0) {
311      throw(AipsError("Can't average fully flagged data."));
312    }
313  }
314  return out;
315}
316
317CountedPtr< Scantable >
318STMath::averageChannel( const CountedPtr < Scantable > & in,
319                          const std::string & mode,
320                          const std::string& avmode )
321{
322  (void) mode; // currently unused
323  // check if OTF observation
324  String obstype = in->getHeader().obstype ;
325  Double tol = 0.0 ;
326  if ( obstype.find( "OTF" ) != String::npos ) {
327    tol = TOL_OTF ;
328  }
329  else {
330    tol = TOL_POINT ;
331  }
332
333  // clone as this is non insitu
334  bool insitu = insitu_;
335  setInsitu(false);
336  CountedPtr< Scantable > out = getScantable(in, true);
337  setInsitu(insitu);
338  Table& tout = out->table();
339  ArrayColumn<Float> specColOut(tout,"SPECTRA");
340  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
341  ArrayColumn<Float> tsysColOut(tout,"TSYS");
342  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
343  ScalarColumn<Double> intColOut(tout, "INTERVAL");
344  Table tmp = in->table().sort("BEAMNO");
345  Block<String> cols(3);
346  cols[0] = String("BEAMNO");
347  cols[1] = String("IFNO");
348  cols[2] = String("POLNO");
349  if ( avmode == "SCAN") {
350    cols.resize(4);
351    cols[3] = String("SCANNO");
352  }
353  uInt outrowCount = 0;
354  uChar userflag = 1 << 7;
355  TableIterator iter(tmp, cols);
356  while (!iter.pastEnd()) {
357    Table subt = iter.table();
358    ROArrayColumn<Float> specCol, tsysCol;
359    ROArrayColumn<uChar> flagCol;
360    ROScalarColumn<Double> intCol(subt, "INTERVAL");
361    specCol.attach(subt,"SPECTRA");
362    flagCol.attach(subt,"FLAGTRA");
363    tsysCol.attach(subt,"TSYS");
364//     tout.addRow();
365//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
366//     if ( avmode != "SCAN") {
367//       scanColOut.put(outrowCount, uInt(0));
368//     }
369//     Vector<Float> tmp;
370//     specCol.get(0, tmp);
371//     uInt nchan = tmp.nelements();
372//     // have to do channel by channel here as MaskedArrMath
373//     // doesn't have partialMedians
374//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
375//     Vector<Float> outspec(nchan);
376//     Vector<uChar> outflag(nchan,0);
377//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
378//     for (uInt i=0; i<nchan; ++i) {
379//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
380//       MaskedArray<Float> ma = maskedArray(specs,flags);
381//       outspec[i] = median(ma);
382//       if ( allEQ(ma.getMask(), False) )
383//         outflag[i] = userflag;// flag data
384//     }
385//     outtsys[0] = median(tsysCol.getColumn());
386//     specColOut.put(outrowCount, outspec);
387//     flagColOut.put(outrowCount, outflag);
388//     tsysColOut.put(outrowCount, outtsys);
389//     Double intsum = sum(intCol.getColumn());
390//     intColOut.put(outrowCount, intsum);
391//     ++outrowCount;
392//     ++iter;
393    MDirection::ScalarColumn dircol ;
394    dircol.attach( subt, "DIRECTION" ) ;
395    Int length = subt.nrow() ;
396    vector< Vector<Double> > dirs ;
397    vector<int> indexes ;
398    for ( Int i = 0 ; i < length ; i++ ) {
399      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
400      bool adddir = true ;
401      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
402        //if ( allTrue( t == dirs[j] ) ) {
403        Double dx = t[0] - dirs[j][0] ;
404        Double dy = t[1] - dirs[j][1] ;
405        Double dd = sqrt( dx * dx + dy * dy ) ;
406        //if ( allNearAbs( t, dirs[j], tol ) ) {
407        if ( dd <= tol ) {
408          adddir = false ;
409          break ;
410        }
411      }
412      if ( adddir ) {
413        dirs.push_back( t ) ;
414        indexes.push_back( i ) ;
415      }
416    }
417    uInt rowNum = dirs.size() ;
418    tout.addRow( rowNum );
419    for ( uInt i = 0 ; i < rowNum ; i++ ) {
420      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
421      if ( avmode != "SCAN") {
422        //scanColOut.put(outrowCount+i, uInt(0));
423      }
424    }
425    MDirection::ScalarColumn dircolOut ;
426    dircolOut.attach( tout, "DIRECTION" ) ;
427    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
428      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
429      Vector<Float> tmp;
430      specCol.get(0, tmp);
431      uInt nchan = tmp.nelements();
432      // have to do channel by channel here as MaskedArrMath
433      // doesn't have partialMedians
434      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
435      // mask spectra for different DIRECTION
436      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
437        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
438        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
439        Double dx = t[0] - direction[0] ;
440        Double dy = t[1] - direction[1] ;
441        Double dd = sqrt( dx * dx + dy * dy ) ;
442        //if ( !allNearAbs( t, direction, tol ) ) {
443        if ( dd > tol ) {
444          flags[jrow] = userflag ;
445        }
446      }
447      Vector<Float> outspec(nchan);
448      Vector<uChar> outflag(nchan,0);
449      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
450      for (uInt i=0; i<nchan; ++i) {
451        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
452        MaskedArray<Float> ma = maskedArray(specs,flags);
453        outspec[i] = median(ma);
454        if ( allEQ(ma.getMask(), False) )
455          outflag[i] = userflag;// flag data
456      }
457      outtsys[0] = median(tsysCol.getColumn());
458      specColOut.put(outrowCount+irow, outspec);
459      flagColOut.put(outrowCount+irow, outflag);
460      tsysColOut.put(outrowCount+irow, outtsys);
461      Vector<Double> integ = intCol.getColumn() ;
462      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
463      Double intsum = sum(mi);
464      intColOut.put(outrowCount+irow, intsum);
465    }
466    outrowCount += rowNum ;
467    ++iter;
468  }
469  return out;
470}
471
472CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
473                                             bool droprows)
474{
475  if (insitu_) {
476    return in;
477  }
478  else {
479    // clone
480    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
481  }
482}
483
484CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
485                                              float val,
486                                              const std::string& mode,
487                                              bool tsys )
488{
489  CountedPtr< Scantable > out = getScantable(in, false);
490  Table& tab = out->table();
491  ArrayColumn<Float> specCol(tab,"SPECTRA");
492  ArrayColumn<Float> tsysCol(tab,"TSYS");
493  if (mode=="DIV") val = 1.0/val ;
494  else if (mode=="SUB") val *= -1.0 ;
495  for (uInt i=0; i<tab.nrow(); ++i) {
496    Vector<Float> spec;
497    Vector<Float> ts;
498    specCol.get(i, spec);
499    tsysCol.get(i, ts);
500    if (mode == "MUL" || mode == "DIV") {
501      //if (mode == "DIV") val = 1.0/val;
502      spec *= val;
503      specCol.put(i, spec);
504      if ( tsys ) {
505        ts *= val;
506        tsysCol.put(i, ts);
507      }
508    } else if ( mode == "ADD"  || mode == "SUB") {
509      //if (mode == "SUB") val *= -1.0;
510      spec += val;
511      specCol.put(i, spec);
512      if ( tsys ) {
513        ts += val;
514        tsysCol.put(i, ts);
515      }
516    }
517  }
518  return out;
519}
520
521CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
522                                              const std::vector<float> val,
523                                              const std::string& mode,
524                                              const std::string& opmode,
525                                              bool tsys )
526{
527  CountedPtr< Scantable > out ;
528  if ( opmode == "channel" ) {
529    out = arrayOperateChannel( in, val, mode, tsys ) ;
530  }
531  else if ( opmode == "row" ) {
532    out = arrayOperateRow( in, val, mode, tsys ) ;
533  }
534  else {
535    throw( AipsError( "Unknown array operation mode." ) ) ;
536  }
537  return out ;
538}
539
540CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
541                                                     const std::vector<float> val,
542                                                     const std::string& mode,
543                                                     bool tsys )
544{
545  if ( val.size() == 1 ){
546    return unaryOperate( in, val[0], mode, tsys ) ;
547  }
548
549  // conformity of SPECTRA and TSYS
550  if ( tsys ) {
551    TableIterator titer(in->table(), "IFNO");
552    while ( !titer.pastEnd() ) {
553      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
554      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
555      Array<Float> spec = specCol.getColumn() ;
556      Array<Float> ts = tsysCol.getColumn() ;
557      if ( !spec.conform( ts ) ) {
558        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
559      }
560      titer.next() ;
561    }
562  }
563
564  // check if all spectra in the scantable have the same number of channel
565  vector<uInt> nchans;
566  vector<uInt> ifnos = in->getIFNos() ;
567  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
568    nchans.push_back( in->nchan( ifnos[i] ) ) ;
569  }
570  Vector<uInt> mchans( nchans ) ;
571  if ( anyNE( mchans, mchans[0] ) ) {
572    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
573  }
574
575  // check if vector size is equal to nchan
576  Vector<Float> fact( val ) ;
577  if ( fact.nelements() != mchans[0] ) {
578    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
579  }
580
581  // check divided by zero
582  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
583    throw( AipsError("Divided by zero is not recommended." ) ) ;
584  }
585
586  CountedPtr< Scantable > out = getScantable(in, false);
587  Table& tab = out->table();
588  ArrayColumn<Float> specCol(tab,"SPECTRA");
589  ArrayColumn<Float> tsysCol(tab,"TSYS");
590  if (mode == "DIV") fact = (float)1.0 / fact;
591  else if (mode == "SUB") fact *= (float)-1.0 ;
592  for (uInt i=0; i<tab.nrow(); ++i) {
593    Vector<Float> spec;
594    Vector<Float> ts;
595    specCol.get(i, spec);
596    tsysCol.get(i, ts);
597    if (mode == "MUL" || mode == "DIV") {
598      //if (mode == "DIV") fact = (float)1.0 / fact;
599      spec *= fact;
600      specCol.put(i, spec);
601      if ( tsys ) {
602        ts *= fact;
603        tsysCol.put(i, ts);
604      }
605    } else if ( mode == "ADD"  || mode == "SUB") {
606      //if (mode == "SUB") fact *= (float)-1.0 ;
607      spec += fact;
608      specCol.put(i, spec);
609      if ( tsys ) {
610        ts += fact;
611        tsysCol.put(i, ts);
612      }
613    }
614  }
615  return out;
616}
617
618CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
619                                                 const std::vector<float> val,
620                                                 const std::string& mode,
621                                                 bool tsys )
622{
623  if ( val.size() == 1 ) {
624    return unaryOperate( in, val[0], mode, tsys ) ;
625  }
626
627  // conformity of SPECTRA and TSYS
628  if ( tsys ) {
629    TableIterator titer(in->table(), "IFNO");
630    while ( !titer.pastEnd() ) {
631      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
632      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
633      Array<Float> spec = specCol.getColumn() ;
634      Array<Float> ts = tsysCol.getColumn() ;
635      if ( !spec.conform( ts ) ) {
636        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
637      }
638      titer.next() ;
639    }
640  }
641
642  // check if vector size is equal to nrow
643  Vector<Float> fact( val ) ;
644  if (fact.nelements() != uInt(in->nrow())) {
645    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
646  }
647
648  // check divided by zero
649  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
650    throw( AipsError("Divided by zero is not recommended." ) ) ;
651  }
652
653  CountedPtr< Scantable > out = getScantable(in, false);
654  Table& tab = out->table();
655  ArrayColumn<Float> specCol(tab,"SPECTRA");
656  ArrayColumn<Float> tsysCol(tab,"TSYS");
657  if (mode == "DIV") fact = (float)1.0 / fact;
658  if (mode == "SUB") fact *= (float)-1.0 ;
659  for (uInt i=0; i<tab.nrow(); ++i) {
660    Vector<Float> spec;
661    Vector<Float> ts;
662    specCol.get(i, spec);
663    tsysCol.get(i, ts);
664    if (mode == "MUL" || mode == "DIV") {
665      spec *= fact[i];
666      specCol.put(i, spec);
667      if ( tsys ) {
668        ts *= fact[i];
669        tsysCol.put(i, ts);
670      }
671    } else if ( mode == "ADD"  || mode == "SUB") {
672      spec += fact[i];
673      specCol.put(i, spec);
674      if ( tsys ) {
675        ts += fact[i];
676        tsysCol.put(i, ts);
677      }
678    }
679  }
680  return out;
681}
682
683CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
684                                                const std::vector< std::vector<float> > val,
685                                                const std::string& mode,
686                                                bool tsys )
687{
688  // conformity of SPECTRA and TSYS
689  if ( tsys ) {
690    TableIterator titer(in->table(), "IFNO");
691    while ( !titer.pastEnd() ) {
692      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
693      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
694      Array<Float> spec = specCol.getColumn() ;
695      Array<Float> ts = tsysCol.getColumn() ;
696      if ( !spec.conform( ts ) ) {
697        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
698      }
699      titer.next() ;
700    }
701  }
702
703  // some checks
704  vector<uInt> nchans;
705  for (Int i = 0 ; i < in->nrow() ; i++) {
706    nchans.push_back((in->getSpectrum(i)).size());
707  }
708  //Vector<uInt> mchans( nchans ) ;
709  vector< Vector<Float> > facts ;
710  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
711    Vector<Float> tmp( val[i] ) ;
712    // check divided by zero
713    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
714      throw( AipsError("Divided by zero is not recommended." ) ) ;
715    }
716    // conformity check
717    if ( tmp.nelements() != nchans[i] ) {
718      stringstream ss ;
719      ss << "Row " << i << ": Vector size must be same as number of channel." ;
720      throw( AipsError( ss.str() ) ) ;
721    }
722    facts.push_back( tmp ) ;
723  }
724
725
726  CountedPtr< Scantable > out = getScantable(in, false);
727  Table& tab = out->table();
728  ArrayColumn<Float> specCol(tab,"SPECTRA");
729  ArrayColumn<Float> tsysCol(tab,"TSYS");
730  for (uInt i=0; i<tab.nrow(); ++i) {
731    Vector<Float> fact = facts[i] ;
732    Vector<Float> spec;
733    Vector<Float> ts;
734    specCol.get(i, spec);
735    tsysCol.get(i, ts);
736    if (mode == "MUL" || mode == "DIV") {
737      if (mode == "DIV") fact = (float)1.0 / fact;
738      spec *= fact;
739      specCol.put(i, spec);
740      if ( tsys ) {
741        ts *= fact;
742        tsysCol.put(i, ts);
743      }
744    } else if ( mode == "ADD"  || mode == "SUB") {
745      if (mode == "SUB") fact *= (float)-1.0 ;
746      spec += fact;
747      specCol.put(i, spec);
748      if ( tsys ) {
749        ts += fact;
750        tsysCol.put(i, ts);
751      }
752    }
753  }
754  return out;
755}
756
757CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
758                                            const CountedPtr<Scantable>& right,
759                                            const std::string& mode)
760{
761  bool insitu = insitu_;
762  if ( ! left->conformant(*right) ) {
763    throw(AipsError("'left' and 'right' scantables are not conformant."));
764  }
765  setInsitu(false);
766  CountedPtr< Scantable > out = getScantable(left, false);
767  setInsitu(insitu);
768  Table& tout = out->table();
769  Block<String> coln(5);
770  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
771  coln[3] = "IFNO";  coln[4] = "POLNO";
772  Table tmpl = tout.sort(coln);
773  Table tmpr = right->table().sort(coln);
774  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
775  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
776  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
777  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
778
779  for (uInt i=0; i<tout.nrow(); ++i) {
780    Vector<Float> lspecvec, rspecvec;
781    Vector<uChar> lflagvec, rflagvec;
782    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
783    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
784    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
785    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
786    if (mode == "ADD") {
787      mleft += mright;
788    } else if ( mode == "SUB") {
789      mleft -= mright;
790    } else if ( mode == "MUL") {
791      mleft *= mright;
792    } else if ( mode == "DIV") {
793      mleft /= mright;
794    } else {
795      throw(AipsError("Illegal binary operator"));
796    }
797    lspecCol.put(i, mleft.getArray());
798  }
799  return out;
800}
801
802
803
804MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
805                                        const Vector<uChar>& f)
806{
807  Vector<Bool> mask;
808  mask.resize(f.shape());
809  convertArray(mask, f);
810  return MaskedArray<Float>(s,!mask);
811}
812
813MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
814                                         const Vector<uChar>& f)
815{
816  Vector<Bool> mask;
817  mask.resize(f.shape());
818  convertArray(mask, f);
819  return MaskedArray<Double>(s,!mask);
820}
821
822Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
823{
824  const Vector<Bool>& m = ma.getMask();
825  Vector<uChar> flags(m.shape());
826  convertArray(flags, !m);
827  return flags;
828}
829
830CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
831                                              const std::string & mode,
832                                              bool preserve )
833{
834  /// @todo make other modes available
835  /// modes should be "nearest", "pair"
836  // make this operation non insitu
837  (void) mode; //currently unused
838  const Table& tin = in->table();
839  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
840  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
841  if ( offs.nrow() == 0 )
842    throw(AipsError("No 'off' scans present."));
843  // put all "on" scans into output table
844
845  bool insitu = insitu_;
846  setInsitu(false);
847  CountedPtr< Scantable > out = getScantable(in, true);
848  setInsitu(insitu);
849  Table& tout = out->table();
850
851  TableCopy::copyRows(tout, ons);
852  TableRow row(tout);
853  ROScalarColumn<Double> offtimeCol(offs, "TIME");
854  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
855  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
856  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
857  for (uInt i=0; i < tout.nrow(); ++i) {
858    const TableRecord& rec = row.get(i);
859    Double ontime = rec.asDouble("TIME");
860    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
861                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
862                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
863    ROScalarColumn<Double> offtimeCol(presel, "TIME");
864
865    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
866    // Timestamp may vary within a cycle ???!!!
867    // increase this by 0.01 sec in case of rounding errors...
868    // There might be a better way to do this.
869    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
870    mindeltat += 0.01/24./60./60.;
871    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
872
873    if ( sel.nrow() < 1 )  {
874      throw(AipsError("No closest in time found... This could be a rounding "
875                      "issue. Try quotient instead."));
876    }
877    TableRow offrow(sel);
878    const TableRecord& offrec = offrow.get(0);//should only be one row
879    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
880    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
881    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
882    /// @fixme this assumes tsys is a scalar not vector
883    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
884    Vector<Float> specon, tsyson;
885    outtsysCol.get(i, tsyson);
886    outspecCol.get(i, specon);
887    Vector<uChar> flagon;
888    outflagCol.get(i, flagon);
889    MaskedArray<Float> mon = maskedArray(specon, flagon);
890    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
891    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
892    if (preserve) {
893      quot -= tsysoffscalar;
894    } else {
895      quot -= tsyson[0];
896    }
897    outspecCol.put(i, quot.getArray());
898    outflagCol.put(i, flagsFromMA(quot));
899  }
900  // renumber scanno
901  TableIterator it(tout, "SCANNO");
902  uInt i = 0;
903  while ( !it.pastEnd() ) {
904    Table t = it.table();
905    TableVector<uInt> vec(t, "SCANNO");
906    vec = i;
907    ++i;
908    ++it;
909  }
910  return out;
911}
912
913
914CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
915                                          const CountedPtr< Scantable > & off,
916                                          bool preserve )
917{
918  bool insitu = insitu_;
919  if ( ! on->conformant(*off) ) {
920    throw(AipsError("'on' and 'off' scantables are not conformant."));
921  }
922  setInsitu(false);
923  CountedPtr< Scantable > out = getScantable(on, false);
924  setInsitu(insitu);
925  Table& tout = out->table();
926  const Table& toff = off->table();
927  TableIterator sit(tout, "SCANNO");
928  TableIterator s2it(toff, "SCANNO");
929  while ( !sit.pastEnd() ) {
930    Table ton = sit.table();
931    TableRow row(ton);
932    Table t = s2it.table();
933    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
934    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
935    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
936    for (uInt i=0; i < ton.nrow(); ++i) {
937      const TableRecord& rec = row.get(i);
938      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
939                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
940                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
941      if ( offsel.nrow() == 0 )
942        throw AipsError("STMath::quotient: no matching off");
943      TableRow offrow(offsel);
944      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
945      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
946      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
947      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
948      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
949      Vector<Float> specon, tsyson;
950      outtsysCol.get(i, tsyson);
951      outspecCol.get(i, specon);
952      Vector<uChar> flagon;
953      outflagCol.get(i, flagon);
954      MaskedArray<Float> mon = maskedArray(specon, flagon);
955      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
956      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
957      if (preserve) {
958        quot -= tsysoffscalar;
959      } else {
960        quot -= tsyson[0];
961      }
962      outspecCol.put(i, quot.getArray());
963      outflagCol.put(i, flagsFromMA(quot));
964    }
965    ++sit;
966    ++s2it;
967    // take the first off for each on scan which doesn't have a
968    // matching off scan
969    // non <= noff:  matching pairs, non > noff matching pairs then first off
970    if ( s2it.pastEnd() ) s2it.reset();
971  }
972  return out;
973}
974
975// dototalpower (migration of GBTIDL procedure dototalpower.pro)
976// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
977// do it for each cycles in a specific scan.
978CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
979                                              const CountedPtr< Scantable >& caloff, Float tcal )
980{
981if ( ! calon->conformant(*caloff) ) {
982    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
983  }
984  setInsitu(false);
985  CountedPtr< Scantable > out = getScantable(caloff, false);
986  Table& tout = out->table();
987  const Table& tcon = calon->table();
988  Vector<Float> tcalout;
989  Vector<Float> tcalout2;  //debug
990
991  if ( tout.nrow() != tcon.nrow() ) {
992    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
993  }
994  // iteration by scanno or cycle no.
995  TableIterator sit(tout, "SCANNO");
996  TableIterator s2it(tcon, "SCANNO");
997  while ( !sit.pastEnd() ) {
998    Table toff = sit.table();
999    TableRow row(toff);
1000    Table t = s2it.table();
1001    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1002    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1003    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1004    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1005    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1006    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1007    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1008    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1009    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1010    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1011    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1012
1013    for (uInt i=0; i < toff.nrow(); ++i) {
1014      //skip these checks -> assumes the data order are the same between the cal on off pairs
1015      //
1016      Vector<Float> specCalon, specCaloff;
1017      // to store scalar (mean) tsys
1018      Vector<Float> tsysout(1);
1019      uInt tcalId, polno;
1020      Double offint, onint;
1021      outpolCol.get(i, polno);
1022      outspecCol.get(i, specCaloff);
1023      onspecCol.get(i, specCalon);
1024      Vector<uChar> flagCaloff, flagCalon;
1025      outflagCol.get(i, flagCaloff);
1026      onflagCol.get(i, flagCalon);
1027      outtcalIdCol.get(i, tcalId);
1028      outintCol.get(i, offint);
1029      onintCol.get(i, onint);
1030      // caluculate mean Tsys
1031      uInt nchan = specCaloff.nelements();
1032      // percentage of edge cut off
1033      uInt pc = 10;
1034      uInt bchan = nchan/pc;
1035      uInt echan = nchan-bchan;
1036
1037      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1038      Vector<Float> testsubsp = specCaloff(chansl);
1039      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1040      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1041      MaskedArray<Float> spdiff = spon-spoff;
1042      uInt noff = spoff.nelementsValid();
1043      //uInt non = spon.nelementsValid();
1044      uInt ndiff = spdiff.nelementsValid();
1045      Float meantsys;
1046
1047/**
1048      Double subspec, subdiff;
1049      uInt usednchan;
1050      subspec = 0;
1051      subdiff = 0;
1052      usednchan = 0;
1053      for(uInt k=(bchan-1); k<echan; k++) {
1054        subspec += specCaloff[k];
1055        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1056        ++usednchan;
1057      }
1058**/
1059      // get tcal if input tcal <= 0
1060      String tcalt;
1061      Float tcalUsed;
1062      tcalUsed = tcal;
1063      if ( tcal <= 0.0 ) {
1064        caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1065//         if (polno<=3) {
1066//           tcalUsed = tcalout[polno];
1067//         }
1068//         else {
1069//           tcalUsed = tcalout[0];
1070//         }
1071        if ( tcalout.size() == 1 )
1072          tcalUsed = tcalout[0] ;
1073        else if ( tcalout.size() == nchan )
1074          tcalUsed = mean(tcalout) ;
1075        else {
1076          uInt ipol = polno ;
1077          if ( ipol > 3 ) ipol = 0 ;
1078          tcalUsed = tcalout[ipol] ;
1079        }
1080      }
1081
1082      Float meanoff;
1083      Float meandiff;
1084      if (noff && ndiff) {
1085         //Debug
1086         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1087         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1088         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1089         meanoff = sum(spoff)/noff;
1090         meandiff = sum(spdiff)/ndiff;
1091         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1092      }
1093      else {
1094         meantsys=1;
1095      }
1096
1097      tsysout[0] = Float(meantsys);
1098      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1099      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1100      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1101      //uInt ncaloff = mcaloff.nelementsValid();
1102      //uInt ncalon = mcalon.nelementsValid();
1103
1104      outintCol.put(i, offint+onint);
1105      outspecCol.put(i, sig.getArray());
1106      outflagCol.put(i, flagsFromMA(sig));
1107      outtsysCol.put(i, tsysout);
1108    }
1109    ++sit;
1110    ++s2it;
1111  }
1112  return out;
1113}
1114
1115//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1116// observatiions.
1117// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1118//        no smoothing).
1119// output: resultant scantable [= (sig-ref/ref)*tsys]
1120CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1121                                          const CountedPtr < Scantable >& ref,
1122                                          int smoothref,
1123                                          casa::Float tsysv,
1124                                          casa::Float tau )
1125{
1126if ( ! ref->conformant(*sig) ) {
1127    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1128  }
1129  setInsitu(false);
1130  CountedPtr< Scantable > out = getScantable(sig, false);
1131  CountedPtr< Scantable > smref;
1132  if ( smoothref > 1 ) {
1133    float fsmoothref = static_cast<float>(smoothref);
1134    std::string inkernel = "boxcar";
1135    smref = smooth(ref, inkernel, fsmoothref );
1136    ostringstream oss;
1137    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1138    pushLog(String(oss));
1139  }
1140  else {
1141    smref = ref;
1142  }
1143  Table& tout = out->table();
1144  const Table& tref = smref->table();
1145  if ( tout.nrow() != tref.nrow() ) {
1146    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1147  }
1148  // iteration by scanno? or cycle no.
1149  TableIterator sit(tout, "SCANNO");
1150  TableIterator s2it(tref, "SCANNO");
1151  while ( !sit.pastEnd() ) {
1152    Table ton = sit.table();
1153    Table t = s2it.table();
1154    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1155    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1156    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1157    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1158    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1159    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1160    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1161    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1162    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1163    for (uInt i=0; i < ton.nrow(); ++i) {
1164
1165      Double onint, refint;
1166      Vector<Float> specon, specref;
1167      // to store scalar (mean) tsys
1168      Vector<Float> tsysref;
1169      outintCol.get(i, onint);
1170      refintCol.get(i, refint);
1171      outspecCol.get(i, specon);
1172      refspecCol.get(i, specref);
1173      Vector<uChar> flagref, flagon;
1174      outflagCol.get(i, flagon);
1175      refflagCol.get(i, flagref);
1176      reftsysCol.get(i, tsysref);
1177
1178      Float tsysrefscalar;
1179      if ( tsysv > 0.0 ) {
1180        ostringstream oss;
1181        Float elev;
1182        refelevCol.get(i, elev);
1183        oss << "user specified Tsys = " << tsysv;
1184        // do recalc elevation if EL = 0
1185        if ( elev == 0 ) {
1186          throw(AipsError("EL=0, elevation data is missing."));
1187        } else {
1188          if ( tau <= 0.0 ) {
1189            throw(AipsError("Valid tau is not supplied."));
1190          } else {
1191            tsysrefscalar = tsysv * exp(tau/elev);
1192          }
1193        }
1194        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1195        pushLog(String(oss));
1196      }
1197      else {
1198        tsysrefscalar = tsysref[0];
1199      }
1200      //get quotient spectrum
1201      MaskedArray<Float> mref = maskedArray(specref, flagref);
1202      MaskedArray<Float> mon = maskedArray(specon, flagon);
1203      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1204      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1205
1206      //Debug
1207      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1208      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1209      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1210      // fill the result, replay signal tsys by reference tsys
1211      outintCol.put(i, resint);
1212      outspecCol.put(i, specres.getArray());
1213      outflagCol.put(i, flagsFromMA(specres));
1214      outtsysCol.put(i, tsysref);
1215    }
1216    ++sit;
1217    ++s2it;
1218  }
1219  return out;
1220}
1221
1222CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1223                                     const std::vector<int>& scans,
1224                                     int smoothref,
1225                                     casa::Float tsysv,
1226                                     casa::Float tau,
1227                                     casa::Float tcal )
1228
1229{
1230  setInsitu(false);
1231  STSelector sel;
1232  std::vector<int> scan1, scan2, beams, types;
1233  std::vector< vector<int> > scanpair;
1234  //std::vector<string> calstate;
1235  std::vector<int> calstate;
1236  String msg;
1237
1238  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1239  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1240
1241  std::vector< CountedPtr< Scantable > > sctables;
1242  sctables.push_back(s1b1on);
1243  sctables.push_back(s1b1off);
1244  sctables.push_back(s1b2on);
1245  sctables.push_back(s1b2off);
1246  sctables.push_back(s2b1on);
1247  sctables.push_back(s2b1off);
1248  sctables.push_back(s2b2on);
1249  sctables.push_back(s2b2off);
1250
1251  //check scanlist
1252  int n=s->checkScanInfo(scans);
1253  if (n==1) {
1254     throw(AipsError("Incorrect scan pairs. "));
1255  }
1256
1257  // Assume scans contain only a pair of consecutive scan numbers.
1258  // It is assumed that first beam, b1,  is on target.
1259  // There is no check if the first beam is on or not.
1260  if ( scans.size()==1 ) {
1261    scan1.push_back(scans[0]);
1262    scan2.push_back(scans[0]+1);
1263  } else if ( scans.size()==2 ) {
1264   scan1.push_back(scans[0]);
1265   scan2.push_back(scans[1]);
1266  } else {
1267    if ( scans.size()%2 == 0 ) {
1268      for (uInt i=0; i<scans.size(); i++) {
1269        if (i%2 == 0) {
1270          scan1.push_back(scans[i]);
1271        }
1272        else {
1273          scan2.push_back(scans[i]);
1274        }
1275      }
1276    } else {
1277      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1278    }
1279  }
1280  scanpair.push_back(scan1);
1281  scanpair.push_back(scan2);
1282  //calstate.push_back("*calon");
1283  //calstate.push_back("*[^calon]");
1284  calstate.push_back(SrcType::NODCAL);
1285  calstate.push_back(SrcType::NOD);
1286  CountedPtr< Scantable > ws = getScantable(s, false);
1287  uInt l=0;
1288  while ( l < sctables.size() ) {
1289    for (uInt i=0; i < 2; i++) {
1290      for (uInt j=0; j < 2; j++) {
1291        for (uInt k=0; k < 2; k++) {
1292          sel.reset();
1293          sel.setScans(scanpair[i]);
1294          //sel.setName(calstate[k]);
1295          types.clear();
1296          types.push_back(calstate[k]);
1297          sel.setTypes(types);
1298          beams.clear();
1299          beams.push_back(j);
1300          sel.setBeams(beams);
1301          ws->setSelection(sel);
1302          sctables[l]= getScantable(ws, false);
1303          l++;
1304        }
1305      }
1306    }
1307  }
1308
1309  // replace here by splitData or getData functionality
1310  CountedPtr< Scantable > sig1;
1311  CountedPtr< Scantable > ref1;
1312  CountedPtr< Scantable > sig2;
1313  CountedPtr< Scantable > ref2;
1314  CountedPtr< Scantable > calb1;
1315  CountedPtr< Scantable > calb2;
1316
1317  msg=String("Processing dototalpower for subset of the data");
1318  ostringstream oss1;
1319  oss1 << msg  << endl;
1320  pushLog(String(oss1));
1321  // Debug for IRC CS data
1322  //float tcal1=7.0;
1323  //float tcal2=4.0;
1324  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1325  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1326  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1327  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1328
1329  // correction of user-specified tsys for elevation here
1330
1331  // dosigref calibration
1332  msg=String("Processing dosigref for subset of the data");
1333  ostringstream oss2;
1334  oss2 << msg  << endl;
1335  pushLog(String(oss2));
1336  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1337  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1338
1339  // iteration by scanno or cycle no.
1340  Table& tcalb1 = calb1->table();
1341  Table& tcalb2 = calb2->table();
1342  TableIterator sit(tcalb1, "SCANNO");
1343  TableIterator s2it(tcalb2, "SCANNO");
1344  while ( !sit.pastEnd() ) {
1345    Table t1 = sit.table();
1346    Table t2= s2it.table();
1347    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1348    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1349    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1350    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1351    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1352    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1353    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1354    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1355    for (uInt i=0; i < t1.nrow(); ++i) {
1356      Vector<Float> spec1, spec2;
1357      // to store scalar (mean) tsys
1358      Vector<Float> tsys1, tsys2;
1359      Vector<uChar> flag1, flag2;
1360      Double tint1, tint2;
1361      outspecCol.get(i, spec1);
1362      t2specCol.get(i, spec2);
1363      outflagCol.get(i, flag1);
1364      t2flagCol.get(i, flag2);
1365      outtsysCol.get(i, tsys1);
1366      t2tsysCol.get(i, tsys2);
1367      outintCol.get(i, tint1);
1368      t2intCol.get(i, tint2);
1369      // average
1370      // assume scalar tsys for weights
1371      Float wt1, wt2, tsyssq1, tsyssq2;
1372      tsyssq1 = tsys1[0]*tsys1[0];
1373      tsyssq2 = tsys2[0]*tsys2[0];
1374      wt1 = Float(tint1)/tsyssq1;
1375      wt2 = Float(tint2)/tsyssq2;
1376      Float invsumwt=1/(wt1+wt2);
1377      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1378      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1379      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1380      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1381      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1382      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1383      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1384      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1385      Array<Float> avtsys =  tsys1;
1386
1387      outspecCol.put(i, avspec.getArray());
1388      outflagCol.put(i, flagsFromMA(avspec));
1389      outtsysCol.put(i, avtsys);
1390    }
1391    ++sit;
1392    ++s2it;
1393  }
1394  return calb1;
1395}
1396
1397//GBTIDL version of frequency switched data calibration
1398CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1399                                      const std::vector<int>& scans,
1400                                      int smoothref,
1401                                      casa::Float tsysv,
1402                                      casa::Float tau,
1403                                      casa::Float tcal )
1404{
1405
1406
1407  (void) scans; //currently unused
1408  STSelector sel;
1409  CountedPtr< Scantable > ws = getScantable(s, false);
1410  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1411  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1412  Bool nofold=False;
1413  vector<int> types ;
1414
1415  //split the data
1416  //sel.setName("*_fs");
1417  types.push_back( SrcType::FSON ) ;
1418  sel.setTypes( types ) ;
1419  ws->setSelection(sel);
1420  sig = getScantable(ws,false);
1421  sel.reset();
1422  types.clear() ;
1423  //sel.setName("*_fs_calon");
1424  types.push_back( SrcType::FONCAL ) ;
1425  sel.setTypes( types ) ;
1426  ws->setSelection(sel);
1427  sigwcal = getScantable(ws,false);
1428  sel.reset();
1429  types.clear() ;
1430  //sel.setName("*_fsr");
1431  types.push_back( SrcType::FSOFF ) ;
1432  sel.setTypes( types ) ;
1433  ws->setSelection(sel);
1434  ref = getScantable(ws,false);
1435  sel.reset();
1436  types.clear() ;
1437  //sel.setName("*_fsr_calon");
1438  types.push_back( SrcType::FOFFCAL ) ;
1439  sel.setTypes( types ) ;
1440  ws->setSelection(sel);
1441  refwcal = getScantable(ws,false);
1442  sel.reset() ;
1443  types.clear() ;
1444
1445  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1446  calref = dototalpower(refwcal, ref, tcal=tcal);
1447
1448  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1449  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1450
1451  Table& tabout1=out1->table();
1452  Table& tabout2=out2->table();
1453  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1454  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1455  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1456  Vector<Float> spec; specCol.get(0, spec);
1457  uInt nchan = spec.nelements();
1458  uInt freqid1; freqidCol1.get(0,freqid1);
1459  uInt freqid2; freqidCol2.get(0,freqid2);
1460  Double rp1, rp2, rv1, rv2, inc1, inc2;
1461  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1462  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1463  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1464  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1465  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1466  if (rp1==rp2) {
1467    Double foffset = rv1 - rv2;
1468    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1469    if (choffset >= nchan) {
1470      //cerr<<"out-band frequency switching, no folding"<<endl;
1471      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1472      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1473      nofold = True;
1474    }
1475  }
1476
1477  if (nofold) {
1478    std::vector< CountedPtr< Scantable > > tabs;
1479    tabs.push_back(out1);
1480    tabs.push_back(out2);
1481    out = merge(tabs);
1482  }
1483  else {
1484    //out = out1;
1485    Double choffset = ( rv1 - rv2 ) / inc2 ;
1486    out = dofold( out1, out2, choffset ) ;
1487  }
1488   
1489  return out;
1490}
1491
1492CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1493                                      const CountedPtr<Scantable> &ref,
1494                                      Double choffset,
1495                                      Double choffset2 )
1496{
1497  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1498  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1499
1500  // output scantable
1501  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1502
1503  // separate choffset to integer part and decimal part
1504  Int ioffset = (Int)choffset ;
1505  Double doffset = choffset - ioffset ;
1506  Int ioffset2 = (Int)choffset2 ;
1507  Double doffset2 = choffset2 - ioffset2 ;
1508  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1509  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1510
1511  // get column
1512  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1513  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1514  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1515  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1516  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1517  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1518  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1519  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1520  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1521  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1522
1523  // check
1524  if ( ioffset == 0 ) {
1525    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1526    os << "channel offset is zero, no folding" << LogIO::POST ;
1527    return out ;
1528  }
1529  int nchan = ref->nchan() ;
1530  if ( abs(ioffset) >= nchan ) {
1531    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1532    os << "out-band frequency switching, no folding" << LogIO::POST ;
1533    return out ;
1534  }
1535
1536  // attach column for output scantable
1537  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1538  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1539  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1540  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1541  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1542  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1543
1544  // for each row
1545  // assume that the data order are same between sig and ref
1546  RowAccumulator acc( asap::W_TINTSYS ) ;
1547  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1548    // get values
1549    Vector<Float> spsig ;
1550    specCol1.get( i, spsig ) ;
1551    Vector<Float> spref ;
1552    specCol2.get( i, spref ) ;
1553    Vector<Float> tsyssig ;
1554    tsysCol1.get( i, tsyssig ) ;
1555    Vector<Float> tsysref ;
1556    tsysCol2.get( i, tsysref ) ;
1557    Vector<uChar> flagsig ;
1558    flagCol1.get( i, flagsig ) ;
1559    Vector<uChar> flagref ;
1560    flagCol2.get( i, flagref ) ;
1561    Double timesig ;
1562    mjdCol1.get( i, timesig ) ;
1563    Double timeref ;
1564    mjdCol2.get( i, timeref ) ;
1565    Double intsig ;
1566    intervalCol1.get( i, intsig ) ;
1567    Double intref ;
1568    intervalCol2.get( i, intref ) ;
1569
1570    // shift reference spectra
1571    int refchan = spref.nelements() ;
1572    Vector<Float> sspref( spref.nelements() ) ;
1573    Vector<Float> stsysref( tsysref.nelements() ) ;
1574    Vector<uChar> sflagref( flagref.nelements() ) ;
1575    if ( ioffset > 0 ) {
1576      // SPECTRA and FLAGTRA
1577      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1578        sspref[j] = spref[j+ioffset] ;
1579        sflagref[j] = flagref[j+ioffset] ;
1580      }
1581      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1582        sspref[j] = spref[j-refchan+ioffset] ;
1583        sflagref[j] = flagref[j-refchan+ioffset] ;
1584      }
1585      spref = sspref.copy() ;
1586      flagref = sflagref.copy() ;
1587      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1588        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1589        sflagref[j] = flagref[j+1] + flagref[j] ;
1590      }
1591      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1592      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1593
1594      // TSYS
1595      if ( spref.nelements() == tsysref.nelements() ) {
1596        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1597          stsysref[j] = tsysref[j+ioffset] ;
1598        }
1599        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1600          stsysref[j] = tsysref[j-refchan+ioffset] ;
1601        }
1602        tsysref = stsysref.copy() ;
1603        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1604          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1605        }
1606        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1607      }
1608    }
1609    else {
1610      // SPECTRA and FLAGTRA
1611      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1612        sspref[j] = spref[refchan+ioffset+j] ;
1613        sflagref[j] = flagref[refchan+ioffset+j] ;
1614      }
1615      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1616        sspref[j] = spref[j+ioffset] ;
1617        sflagref[j] = flagref[j+ioffset] ;
1618      }
1619      spref = sspref.copy() ;
1620      flagref = sflagref.copy() ;
1621      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1622      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1623      for ( int j = 1 ; j < refchan ; j++ ) {
1624        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1625        sflagref[j] = flagref[j-1] + flagref[j] ;
1626      }
1627      // TSYS
1628      if ( spref.nelements() == tsysref.nelements() ) {
1629        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1630          stsysref[j] = tsysref[refchan+ioffset+j] ;
1631        }
1632        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1633          stsysref[j] = tsysref[j+ioffset] ;
1634        }
1635        tsysref = stsysref.copy() ;
1636        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1637        for ( int j = 1 ; j < refchan ; j++ ) {
1638          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1639        }
1640      }
1641    }
1642
1643    // shift signal spectra if necessary (only for APEX?)
1644    if ( choffset2 != 0.0 ) {
1645      int sigchan = spsig.nelements() ;
1646      Vector<Float> sspsig( spsig.nelements() ) ;
1647      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1648      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1649      if ( ioffset2 > 0 ) {
1650        // SPECTRA and FLAGTRA
1651        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1652          sspsig[j] = spsig[j+ioffset2] ;
1653          sflagsig[j] = flagsig[j+ioffset2] ;
1654        }
1655        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1656          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1657          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1658        }
1659        spsig = sspsig.copy() ;
1660        flagsig = sflagsig.copy() ;
1661        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1662          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1663          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1664        }
1665        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1666        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1667        // TSTS
1668        if ( spsig.nelements() == tsyssig.nelements() ) {
1669          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1670            stsyssig[j] = tsyssig[j+ioffset2] ;
1671          }
1672          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1673            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1674          }
1675          tsyssig = stsyssig.copy() ;
1676          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1677            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1678          }
1679          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1680        }
1681      }
1682      else {
1683        // SPECTRA and FLAGTRA
1684        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1685          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1686          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1687        }
1688        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1689          sspsig[j] = spsig[j+ioffset2] ;
1690          sflagsig[j] = flagsig[j+ioffset2] ;
1691        }
1692        spsig = sspsig.copy() ;
1693        flagsig = sflagsig.copy() ;
1694        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1695        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1696        for ( int j = 1 ; j < sigchan ; j++ ) {
1697          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1698          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1699        }
1700        // TSYS
1701        if ( spsig.nelements() == tsyssig.nelements() ) {
1702          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1703            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1704          }
1705          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1706            stsyssig[j] = tsyssig[j+ioffset2] ;
1707          }
1708          tsyssig = stsyssig.copy() ;
1709          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1710          for ( int j = 1 ; j < sigchan ; j++ ) {
1711            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1712          }
1713        }
1714      }
1715    }
1716
1717    // folding
1718    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1719    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1720   
1721    // put result
1722    specColOut.put( i, acc.getSpectrum() ) ;
1723    const Vector<Bool> &msk = acc.getMask() ;
1724    Vector<uChar> flg( msk.shape() ) ;
1725    convertArray( flg, !msk ) ;
1726    flagColOut.put( i, flg ) ;
1727    tsysColOut.put( i, acc.getTsys() ) ;
1728    intervalColOut.put( i, acc.getInterval() ) ;
1729    mjdColOut.put( i, acc.getTime() ) ;
1730    // change FREQ_ID to unshifted IF setting (only for APEX?)
1731    if ( choffset2 != 0.0 ) {
1732      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1733      double refpix, refval, increment ;
1734      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1735      refval -= choffset * increment ;
1736      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1737      Vector<uInt> freqids = fidColOut.getColumn() ;
1738      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1739        if ( freqids[j] == freqid )
1740          freqids[j] = newfreqid ;
1741      }
1742      fidColOut.putColumn( freqids ) ;
1743    }
1744
1745    acc.reset() ;
1746  }
1747
1748  return out ;
1749}
1750
1751
1752CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1753{
1754  // make copy or reference
1755  CountedPtr< Scantable > out = getScantable(in, false);
1756  Table& tout = out->table();
1757  Block<String> cols(4);
1758  cols[0] = String("SCANNO");
1759  cols[1] = String("CYCLENO");
1760  cols[2] = String("BEAMNO");
1761  cols[3] = String("POLNO");
1762  TableIterator iter(tout, cols);
1763  while (!iter.pastEnd()) {
1764    Table subt = iter.table();
1765    // this should leave us with two rows for the two IFs....if not ignore
1766    if (subt.nrow() != 2 ) {
1767      continue;
1768    }
1769    ArrayColumn<Float> specCol(subt, "SPECTRA");
1770    ArrayColumn<Float> tsysCol(subt, "TSYS");
1771    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1772    Vector<Float> onspec,offspec, ontsys, offtsys;
1773    Vector<uChar> onflag, offflag;
1774    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1775    specCol.get(0, onspec);   specCol.get(1, offspec);
1776    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1777    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1778    MaskedArray<Float> off = maskedArray(offspec, offflag);
1779    MaskedArray<Float> oncopy = on.copy();
1780
1781    on /= off; on -= 1.0f;
1782    on *= ontsys[0];
1783    off /= oncopy; off -= 1.0f;
1784    off *= offtsys[0];
1785    specCol.put(0, on.getArray());
1786    const Vector<Bool>& m0 = on.getMask();
1787    Vector<uChar> flags0(m0.shape());
1788    convertArray(flags0, !m0);
1789    flagCol.put(0, flags0);
1790
1791    specCol.put(1, off.getArray());
1792    const Vector<Bool>& m1 = off.getMask();
1793    Vector<uChar> flags1(m1.shape());
1794    convertArray(flags1, !m1);
1795    flagCol.put(1, flags1);
1796    ++iter;
1797  }
1798
1799  return out;
1800}
1801
1802std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1803                                        const std::vector< bool > & mask,
1804                                        const std::string& which )
1805{
1806
1807  Vector<Bool> m(mask);
1808  const Table& tab = in->table();
1809  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1810  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1811  std::vector<float> out;
1812  for (uInt i=0; i < tab.nrow(); ++i ) {
1813    Vector<Float> spec; specCol.get(i, spec);
1814    Vector<uChar> flag; flagCol.get(i, flag);
1815    MaskedArray<Float> ma  = maskedArray(spec, flag);
1816    float outstat = 0.0;
1817    if ( spec.nelements() == m.nelements() ) {
1818      outstat = mathutil::statistics(which, ma(m));
1819    } else {
1820      outstat = mathutil::statistics(which, ma);
1821    }
1822    out.push_back(outstat);
1823  }
1824  return out;
1825}
1826
1827std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1828                                        const std::vector< bool > & mask,
1829                                        const std::string& which,
1830                                        int row )
1831{
1832
1833  Vector<Bool> m(mask);
1834  const Table& tab = in->table();
1835  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1836  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1837  std::vector<float> out;
1838
1839  Vector<Float> spec; specCol.get(row, spec);
1840  Vector<uChar> flag; flagCol.get(row, flag);
1841  MaskedArray<Float> ma  = maskedArray(spec, flag);
1842  float outstat = 0.0;
1843  if ( spec.nelements() == m.nelements() ) {
1844    outstat = mathutil::statistics(which, ma(m));
1845  } else {
1846    outstat = mathutil::statistics(which, ma);
1847  }
1848  out.push_back(outstat);
1849
1850  return out;
1851}
1852
1853std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1854                                        const std::vector< bool > & mask,
1855                                        const std::string& which )
1856{
1857
1858  Vector<Bool> m(mask);
1859  const Table& tab = in->table();
1860  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1861  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1862  std::vector<int> out;
1863  for (uInt i=0; i < tab.nrow(); ++i ) {
1864    Vector<Float> spec; specCol.get(i, spec);
1865    Vector<uChar> flag; flagCol.get(i, flag);
1866    MaskedArray<Float> ma  = maskedArray(spec, flag);
1867    if (ma.ndim() != 1) {
1868      throw (ArrayError(
1869          "std::vector<int> STMath::minMaxChan("
1870          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1871          " std::string &which)"
1872          " - MaskedArray is not 1D"));
1873    }
1874    IPosition outpos(1,0);
1875    if ( spec.nelements() == m.nelements() ) {
1876      outpos = mathutil::minMaxPos(which, ma(m));
1877    } else {
1878      outpos = mathutil::minMaxPos(which, ma);
1879    }
1880    out.push_back(outpos[0]);
1881  }
1882  return out;
1883}
1884
1885CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1886                                     int width )
1887{
1888  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1889  CountedPtr< Scantable > out = getScantable(in, false);
1890  Table& tout = out->table();
1891  out->frequencies().rescale(width, "BIN");
1892  ArrayColumn<Float> specCol(tout, "SPECTRA");
1893  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1894  for (uInt i=0; i < tout.nrow(); ++i ) {
1895    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1896    MaskedArray<Float> maout;
1897    LatticeUtilities::bin(maout, main, 0, Int(width));
1898    /// @todo implement channel based tsys binning
1899    specCol.put(i, maout.getArray());
1900    flagCol.put(i, flagsFromMA(maout));
1901    // take only the first binned spectrum's length for the deprecated
1902    // global header item nChan
1903    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1904                                       Int(maout.getArray().nelements()));
1905  }
1906  return out;
1907}
1908
1909CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1910                                          const std::string& method,
1911                                          float width )
1912//
1913// Should add the possibility of width being specified in km/s. This means
1914// that for each freqID (SpectralCoordinate) we will need to convert to an
1915// average channel width (say at the reference pixel).  Then we would need
1916// to be careful to make sure each spectrum (of different freqID)
1917// is the same length.
1918//
1919{
1920  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1921  Int interpMethod(stringToIMethod(method));
1922
1923  CountedPtr< Scantable > out = getScantable(in, false);
1924  Table& tout = out->table();
1925
1926// Resample SpectralCoordinates (one per freqID)
1927  out->frequencies().rescale(width, "RESAMPLE");
1928  TableIterator iter(tout, "IFNO");
1929  TableRow row(tout);
1930  while ( !iter.pastEnd() ) {
1931    Table tab = iter.table();
1932    ArrayColumn<Float> specCol(tab, "SPECTRA");
1933    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1934    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1935    Vector<Float> spec;
1936    Vector<uChar> flag;
1937    specCol.get(0,spec); // the number of channels should be constant per IF
1938    uInt nChanIn = spec.nelements();
1939    Vector<Float> xIn(nChanIn); indgen(xIn);
1940    Int fac =  Int(nChanIn/width);
1941    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1942    uInt k = 0;
1943    Float x = 0.0;
1944    while (x < Float(nChanIn) ) {
1945      xOut(k) = x;
1946      k++;
1947      x += width;
1948    }
1949    uInt nChanOut = k;
1950    xOut.resize(nChanOut, True);
1951    // process all rows for this IFNO
1952    Vector<Float> specOut;
1953    Vector<Bool> maskOut;
1954    Vector<uChar> flagOut;
1955    for (uInt i=0; i < tab.nrow(); ++i) {
1956      specCol.get(i, spec);
1957      flagCol.get(i, flag);
1958      Vector<Bool> mask(flag.nelements());
1959      convertArray(mask, flag);
1960
1961      IPosition shapeIn(spec.shape());
1962      //sh.nchan = nChanOut;
1963      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1964                                                   xIn, spec, mask,
1965                                                   interpMethod, True, True);
1966      /// @todo do the same for channel based Tsys
1967      flagOut.resize(maskOut.nelements());
1968      convertArray(flagOut, maskOut);
1969      specCol.put(i, specOut);
1970      flagCol.put(i, flagOut);
1971    }
1972    ++iter;
1973  }
1974
1975  return out;
1976}
1977
1978STMath::imethod STMath::stringToIMethod(const std::string& in)
1979{
1980  static STMath::imap lookup;
1981
1982  // initialize the lookup table if necessary
1983  if ( lookup.empty() ) {
1984    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1985    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1986    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1987    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1988  }
1989
1990  STMath::imap::const_iterator iter = lookup.find(in);
1991
1992  if ( lookup.end() == iter ) {
1993    std::string message = in;
1994    message += " is not a valid interpolation mode";
1995    throw(AipsError(message));
1996  }
1997  return iter->second;
1998}
1999
2000WeightType STMath::stringToWeight(const std::string& in)
2001{
2002  static std::map<std::string, WeightType> lookup;
2003
2004  // initialize the lookup table if necessary
2005  if ( lookup.empty() ) {
2006    lookup["NONE"]   = asap::W_NONE;
2007    lookup["TINT"] = asap::W_TINT;
2008    lookup["TINTSYS"]  = asap::W_TINTSYS;
2009    lookup["TSYS"]  = asap::W_TSYS;
2010    lookup["VAR"]  = asap::W_VAR;
2011  }
2012
2013  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2014
2015  if ( lookup.end() == iter ) {
2016    std::string message = in;
2017    message += " is not a valid weighting mode";
2018    throw(AipsError(message));
2019  }
2020  return iter->second;
2021}
2022
2023CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2024                                               const vector< float > & coeff,
2025                                               const std::string & filename,
2026                                               const std::string& method)
2027{
2028  // Get elevation data from Scantable and convert to degrees
2029  CountedPtr< Scantable > out = getScantable(in, false);
2030  Table& tab = out->table();
2031  ROScalarColumn<Float> elev(tab, "ELEVATION");
2032  Vector<Float> x = elev.getColumn();
2033  x *= Float(180 / C::pi);                        // Degrees
2034
2035  Vector<Float> coeffs(coeff);
2036  const uInt nc = coeffs.nelements();
2037  if ( filename.length() > 0 && nc > 0 ) {
2038    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2039  }
2040
2041  // Correct
2042  if ( nc > 0 || filename.length() == 0 ) {
2043    // Find instrument
2044    Bool throwit = True;
2045    Instrument inst =
2046      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2047                                throwit);
2048
2049    // Set polynomial
2050    Polynomial<Float>* ppoly = 0;
2051    Vector<Float> coeff;
2052    String msg;
2053    if ( nc > 0 ) {
2054      ppoly = new Polynomial<Float>(nc-1);
2055      coeff = coeffs;
2056      msg = String("user");
2057    } else {
2058      STAttr sdAttr;
2059      coeff = sdAttr.gainElevationPoly(inst);
2060      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2061      msg = String("built in");
2062    }
2063
2064    if ( coeff.nelements() > 0 ) {
2065      ppoly->setCoefficients(coeff);
2066    } else {
2067      delete ppoly;
2068      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2069    }
2070    ostringstream oss;
2071    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2072    oss << "   " <<  coeff;
2073    pushLog(String(oss));
2074    const uInt nrow = tab.nrow();
2075    Vector<Float> factor(nrow);
2076    for ( uInt i=0; i < nrow; ++i ) {
2077      factor[i] = 1.0 / (*ppoly)(x[i]);
2078    }
2079    delete ppoly;
2080    scaleByVector(tab, factor, true);
2081
2082  } else {
2083    // Read and correct
2084    pushLog("Making correction from ascii Table");
2085    scaleFromAsciiTable(tab, filename, method, x, true);
2086  }
2087  return out;
2088}
2089
2090void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2091                                 const std::string& method,
2092                                 const Vector<Float>& xout, bool dotsys)
2093{
2094
2095// Read gain-elevation ascii file data into a Table.
2096
2097  String formatString;
2098  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2099  scaleFromTable(in, tbl, method, xout, dotsys);
2100}
2101
2102void STMath::scaleFromTable(Table& in,
2103                            const Table& table,
2104                            const std::string& method,
2105                            const Vector<Float>& xout, bool dotsys)
2106{
2107
2108  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2109  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2110  Vector<Float> xin = geElCol.getColumn();
2111  Vector<Float> yin = geFacCol.getColumn();
2112  Vector<Bool> maskin(xin.nelements(),True);
2113
2114  // Interpolate (and extrapolate) with desired method
2115
2116  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2117
2118   Vector<Float> yout;
2119   Vector<Bool> maskout;
2120   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2121                                                xin, yin, maskin, interp,
2122                                                True, True);
2123
2124   scaleByVector(in, Float(1.0)/yout, dotsys);
2125}
2126
2127void STMath::scaleByVector( Table& in,
2128                            const Vector< Float >& factor,
2129                            bool dotsys )
2130{
2131  uInt nrow = in.nrow();
2132  if ( factor.nelements() != nrow ) {
2133    throw(AipsError("factors.nelements() != table.nelements()"));
2134  }
2135  ArrayColumn<Float> specCol(in, "SPECTRA");
2136  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2137  ArrayColumn<Float> tsysCol(in, "TSYS");
2138  for (uInt i=0; i < nrow; ++i) {
2139    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2140    ma *= factor[i];
2141    specCol.put(i, ma.getArray());
2142    flagCol.put(i, flagsFromMA(ma));
2143    if ( dotsys ) {
2144      Vector<Float> tsys = tsysCol(i);
2145      tsys *= factor[i];
2146      tsysCol.put(i,tsys);
2147    }
2148  }
2149}
2150
2151CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2152                                             float d, float etaap,
2153                                             float jyperk )
2154{
2155  CountedPtr< Scantable > out = getScantable(in, false);
2156  Table& tab = in->table();
2157  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2158  Unit K(String("K"));
2159  Unit JY(String("Jy"));
2160
2161  bool tokelvin = true;
2162  Double cfac = 1.0;
2163
2164  if ( fluxUnit == JY ) {
2165    pushLog("Converting to K");
2166    Quantum<Double> t(1.0,fluxUnit);
2167    Quantum<Double> t2 = t.get(JY);
2168    cfac = (t2 / t).getValue();               // value to Jy
2169
2170    tokelvin = true;
2171    out->setFluxUnit("K");
2172  } else if ( fluxUnit == K ) {
2173    pushLog("Converting to Jy");
2174    Quantum<Double> t(1.0,fluxUnit);
2175    Quantum<Double> t2 = t.get(K);
2176    cfac = (t2 / t).getValue();              // value to K
2177
2178    tokelvin = false;
2179    out->setFluxUnit("Jy");
2180  } else {
2181    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2182  }
2183  // Make sure input values are converted to either Jy or K first...
2184  Float factor = cfac;
2185
2186  // Select method
2187  if (jyperk > 0.0) {
2188    factor *= jyperk;
2189    if ( tokelvin ) factor = 1.0 / jyperk;
2190    ostringstream oss;
2191    oss << "Jy/K = " << jyperk;
2192    pushLog(String(oss));
2193    Vector<Float> factors(tab.nrow(), factor);
2194    scaleByVector(tab,factors, false);
2195  } else if ( etaap > 0.0) {
2196    if (d < 0) {
2197      Instrument inst =
2198        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2199                                  True);
2200      STAttr sda;
2201      d = sda.diameter(inst);
2202    }
2203    jyperk = STAttr::findJyPerK(etaap, d);
2204    ostringstream oss;
2205    oss << "Jy/K = " << jyperk;
2206    pushLog(String(oss));
2207    factor *= jyperk;
2208    if ( tokelvin ) {
2209      factor = 1.0 / factor;
2210    }
2211    Vector<Float> factors(tab.nrow(), factor);
2212    scaleByVector(tab, factors, False);
2213  } else {
2214
2215    // OK now we must deal with automatic look up of values.
2216    // We must also deal with the fact that the factors need
2217    // to be computed per IF and may be different and may
2218    // change per integration.
2219
2220    pushLog("Looking up conversion factors");
2221    convertBrightnessUnits(out, tokelvin, cfac);
2222  }
2223
2224  return out;
2225}
2226
2227void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2228                                     bool tokelvin, float cfac )
2229{
2230  Table& table = in->table();
2231  Instrument inst =
2232    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2233  TableIterator iter(table, "FREQ_ID");
2234  STFrequencies stfreqs = in->frequencies();
2235  STAttr sdAtt;
2236  while (!iter.pastEnd()) {
2237    Table tab = iter.table();
2238    ArrayColumn<Float> specCol(tab, "SPECTRA");
2239    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2240    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2241    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2242
2243    uInt freqid; freqidCol.get(0, freqid);
2244    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2245    // STAttr.JyPerK has a Vector interface... change sometime.
2246    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2247    for ( uInt i=0; i<tab.nrow(); ++i) {
2248      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2249      Float factor = cfac * jyperk;
2250      if ( tokelvin ) factor = Float(1.0) / factor;
2251      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2252      ma *= factor;
2253      specCol.put(i, ma.getArray());
2254      flagCol.put(i, flagsFromMA(ma));
2255    }
2256  ++iter;
2257  }
2258}
2259
2260CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2261                                         const std::vector<float>& tau )
2262{
2263  CountedPtr< Scantable > out = getScantable(in, false);
2264
2265  Table outtab = out->table();
2266
2267  const Int ntau = uInt(tau.size());
2268  std::vector<float>::const_iterator tauit = tau.begin();
2269  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2270               AipsError);
2271  TableIterator iiter(outtab, "IFNO");
2272  while ( !iiter.pastEnd() ) {
2273    Table itab = iiter.table();
2274    TableIterator piter(itab, "POLNO");
2275    while ( !piter.pastEnd() ) {
2276      Table tab = piter.table();
2277      ROScalarColumn<Float> elev(tab, "ELEVATION");
2278      ArrayColumn<Float> specCol(tab, "SPECTRA");
2279      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2280      ArrayColumn<Float> tsysCol(tab, "TSYS");
2281      for ( uInt i=0; i<tab.nrow(); ++i) {
2282        Float zdist = Float(C::pi_2) - elev(i);
2283        Float factor = exp(*tauit/cos(zdist));
2284        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2285        ma *= factor;
2286        specCol.put(i, ma.getArray());
2287        flagCol.put(i, flagsFromMA(ma));
2288        Vector<Float> tsys;
2289        tsysCol.get(i, tsys);
2290        tsys *= factor;
2291        tsysCol.put(i, tsys);
2292      }
2293      if (ntau == in->nif()*in->npol() ) {
2294        tauit++;
2295      }
2296      piter++;
2297    }
2298    if (ntau >= in->nif() ) {
2299      tauit++;
2300    }
2301    iiter++;
2302  }
2303  return out;
2304}
2305
2306CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2307                                             const std::string& kernel,
2308                                             float width, int order)
2309{
2310  CountedPtr< Scantable > out = getScantable(in, false);
2311  Table table = out->table();
2312
2313  TableIterator iter(table, "IFNO");
2314  while (!iter.pastEnd()) {
2315    Table tab = iter.table();
2316    ArrayColumn<Float> specCol(tab, "SPECTRA");
2317    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2318    Vector<Float> spec;
2319    Vector<uChar> flag;
2320    for (uInt i = 0; i < tab.nrow(); ++i) {
2321      specCol.get(i, spec);
2322      flagCol.get(i, flag);
2323      Vector<Bool> mask(flag.nelements());
2324      convertArray(mask, flag);
2325      Vector<Float> specout;
2326      Vector<Bool> maskout;
2327      if (kernel == "hanning") {
2328        mathutil::hanning(specout, maskout, spec, !mask);
2329        convertArray(flag, !maskout);
2330      } else if (kernel == "rmedian") {
2331        mathutil::runningMedian(specout, maskout, spec , mask, width);
2332        convertArray(flag, maskout);
2333      } else if (kernel == "poly") {
2334        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2335        convertArray(flag, !maskout);
2336      }
2337
2338      for (uInt j = 0; j < flag.nelements(); ++j) {
2339        uChar userFlag = 1 << 7;
2340        if (maskout[j]==True) userFlag = 0 << 7;
2341        flag(j) = userFlag;
2342      }
2343
2344      flagCol.put(i, flag);
2345      specCol.put(i, specout);
2346    }
2347  ++iter;
2348  }
2349  return out;
2350}
2351
2352CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2353                                        const std::string& kernel, float width,
2354                                        int order)
2355{
2356  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2357    return smoothOther(in, kernel, width, order);
2358  }
2359  CountedPtr< Scantable > out = getScantable(in, false);
2360  Table& table = out->table();
2361  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2362  // same IFNO should have same no of channels
2363  // this saves overhead
2364  TableIterator iter(table, "IFNO");
2365  while (!iter.pastEnd()) {
2366    Table tab = iter.table();
2367    ArrayColumn<Float> specCol(tab, "SPECTRA");
2368    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2369    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2370    uInt nchan = tmpspec.nelements();
2371    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2372    Convolver<Float> conv(kvec, IPosition(1,nchan));
2373    Vector<Float> spec;
2374    Vector<uChar> flag;
2375    for ( uInt i=0; i<tab.nrow(); ++i) {
2376      specCol.get(i, spec);
2377      flagCol.get(i, flag);
2378      Vector<Bool> mask(flag.nelements());
2379      convertArray(mask, flag);
2380      Vector<Float> specout;
2381      mathutil::replaceMaskByZero(specout, mask);
2382      conv.linearConv(specout, spec);
2383      specCol.put(i, specout);
2384    }
2385    ++iter;
2386  }
2387  return out;
2388}
2389
2390CountedPtr< Scantable >
2391  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2392{
2393  if ( in.size() < 2 ) {
2394    throw(AipsError("Need at least two scantables to perform a merge."));
2395  }
2396  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2397  bool insitu = insitu_;
2398  setInsitu(false);
2399  CountedPtr< Scantable > out = getScantable(*it, false);
2400  setInsitu(insitu);
2401  Table& tout = out->table();
2402  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2403  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2404  // Renumber SCANNO to be 0-based
2405  Vector<uInt> scannos = scannocol.getColumn();
2406  uInt offset = min(scannos);
2407  scannos -= offset;
2408  scannocol.putColumn(scannos);
2409  uInt newscanno = max(scannos)+1;
2410  ++it;
2411  while ( it != in.end() ){
2412    if ( ! (*it)->conformant(*out) ) {
2413      // non conformant.
2414      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2415      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2416      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2417    }
2418    out->appendToHistoryTable((*it)->history());
2419    const Table& tab = (*it)->table();
2420    TableIterator scanit(tab, "SCANNO");
2421    while (!scanit.pastEnd()) {
2422      TableIterator freqit(scanit.table(), "FREQ_ID");
2423      while ( !freqit.pastEnd() ) {
2424        Table thetab = freqit.table();
2425        uInt nrow = tout.nrow();
2426        tout.addRow(thetab.nrow());
2427        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2428        ROTableRow row(thetab);
2429        for ( uInt i=0; i<thetab.nrow(); ++i) {
2430          uInt k = nrow+i;
2431          scannocol.put(k, newscanno);
2432          const TableRecord& rec = row.get(i);
2433          Double rv,rp,inc;
2434          (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2435          uInt id;
2436          id = out->frequencies().addEntry(rp, rv, inc);
2437          freqidcol.put(k,id);
2438          //String name,fname;Double rf;
2439          Vector<String> name,fname;Vector<Double> rf;
2440          (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2441          id = out->molecules().addEntry(rf, name, fname);
2442          molidcol.put(k, id);
2443          Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2444          (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand,
2445                                  fmount,fuser, fxy, fxyp,
2446                                  rec.asuInt("FOCUS_ID"));
2447          id = out->focus().addEntry(fpa, fax, ftan, frot, fhand,
2448                                     fmount,fuser, fxy, fxyp);
2449          focusidcol.put(k, id);
2450        }
2451        ++freqit;
2452      }
2453      ++newscanno;
2454      ++scanit;
2455    }
2456    ++it;
2457  }
2458  return out;
2459}
2460
2461CountedPtr< Scantable >
2462  STMath::invertPhase( const CountedPtr < Scantable >& in )
2463{
2464  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2465}
2466
2467CountedPtr< Scantable >
2468  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2469{
2470   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2471}
2472
2473CountedPtr< Scantable >
2474  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2475{
2476  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2477}
2478
2479CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2480                                             STPol::polOperation fptr,
2481                                             Float phase )
2482{
2483  CountedPtr< Scantable > out = getScantable(in, false);
2484  Table& tout = out->table();
2485  Block<String> cols(4);
2486  cols[0] = String("SCANNO");
2487  cols[1] = String("BEAMNO");
2488  cols[2] = String("IFNO");
2489  cols[3] = String("CYCLENO");
2490  TableIterator iter(tout, cols);
2491  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2492                                               out->getPolType() );
2493  while (!iter.pastEnd()) {
2494    Table t = iter.table();
2495    ArrayColumn<Float> speccol(t, "SPECTRA");
2496    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2497    Matrix<Float> pols(speccol.getColumn());
2498    try {
2499      stpol->setSpectra(pols);
2500      Float fang,fhand;
2501      fang = in->focusTable_.getTotalAngle(focidcol(0));
2502      fhand = in->focusTable_.getFeedHand(focidcol(0));
2503      stpol->setPhaseCorrections(fang, fhand);
2504      // use a member function pointer in STPol.  This only works on
2505      // the STPol pointer itself, not the Counted Pointer so
2506      // derefernce it.
2507      (&(*(stpol))->*fptr)(phase);
2508      speccol.putColumn(stpol->getSpectra());
2509    } catch (AipsError& e) {
2510      //delete stpol;stpol=0;
2511      throw(e);
2512    }
2513    ++iter;
2514  }
2515  //delete stpol;stpol=0;
2516  return out;
2517}
2518
2519CountedPtr< Scantable >
2520  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2521{
2522  CountedPtr< Scantable > out = getScantable(in, false);
2523  Table& tout = out->table();
2524  Table t0 = tout(tout.col("POLNO") == 0);
2525  Table t1 = tout(tout.col("POLNO") == 1);
2526  if ( t0.nrow() != t1.nrow() )
2527    throw(AipsError("Inconsistent number of polarisations"));
2528  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2529  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2530  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2531  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2532  Matrix<Float> s0 = speccol0.getColumn();
2533  Matrix<uChar> f0 = flagcol0.getColumn();
2534  speccol0.putColumn(speccol1.getColumn());
2535  flagcol0.putColumn(flagcol1.getColumn());
2536  speccol1.putColumn(s0);
2537  flagcol1.putColumn(f0);
2538  return out;
2539}
2540
2541CountedPtr< Scantable >
2542  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2543                                const std::vector<bool>& mask,
2544                                const std::string& weight )
2545{
2546  if (in->npol() < 2 )
2547    throw(AipsError("averagePolarisations can only be applied to two or more"
2548                    "polarisations"));
2549  bool insitu = insitu_;
2550  setInsitu(false);
2551  CountedPtr< Scantable > pols = getScantable(in, true);
2552  setInsitu(insitu);
2553  Table& tout = pols->table();
2554  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2555  Table tab = tableCommand(taql, in->table());
2556  if (tab.nrow() == 0 )
2557    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2558  TableCopy::copyRows(tout, tab);
2559  TableVector<uInt> vec(tout, "POLNO");
2560  vec = 0;
2561  pols->table_.rwKeywordSet().define("nPol", Int(1));
2562  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2563  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2564  std::vector<CountedPtr<Scantable> > vpols;
2565  vpols.push_back(pols);
2566  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2567  return out;
2568}
2569
2570CountedPtr< Scantable >
2571  STMath::averageBeams( const CountedPtr< Scantable > & in,
2572                        const std::vector<bool>& mask,
2573                        const std::string& weight )
2574{
2575  bool insitu = insitu_;
2576  setInsitu(false);
2577  CountedPtr< Scantable > beams = getScantable(in, false);
2578  setInsitu(insitu);
2579  Table& tout = beams->table();
2580  // give all rows the same BEAMNO
2581  TableVector<uInt> vec(tout, "BEAMNO");
2582  vec = 0;
2583  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2584  std::vector<CountedPtr<Scantable> > vbeams;
2585  vbeams.push_back(beams);
2586  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2587  return out;
2588}
2589
2590
2591CountedPtr< Scantable >
2592  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2593                                const std::string & refTime,
2594                                const std::string & method)
2595{
2596  // clone as this is not working insitu
2597  bool insitu = insitu_;
2598  setInsitu(false);
2599  CountedPtr< Scantable > out = getScantable(in, false);
2600  setInsitu(insitu);
2601  Table& tout = out->table();
2602  // Get reference Epoch to time of first row or given String
2603  Unit DAY(String("d"));
2604  MEpoch::Ref epochRef(in->getTimeReference());
2605  MEpoch refEpoch;
2606  if (refTime.length()>0) {
2607    Quantum<Double> qt;
2608    if (MVTime::read(qt,refTime)) {
2609      MVEpoch mv(qt);
2610      refEpoch = MEpoch(mv, epochRef);
2611   } else {
2612      throw(AipsError("Invalid format for Epoch string"));
2613   }
2614  } else {
2615    refEpoch = in->timeCol_(0);
2616  }
2617  MPosition refPos = in->getAntennaPosition();
2618
2619  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2620  /*
2621  // Comment from MV.
2622  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2623  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2624  // test if user frame is different to base frame
2625  if ( in->frequencies().getFrameString(true)
2626       == in->frequencies().getFrameString(false) ) {
2627    throw(AipsError("Can't convert as no output frame has been set"
2628                    " (use set_freqframe) or it is aligned already."));
2629  }
2630  */
2631  MFrequency::Types system = in->frequencies().getFrame();
2632  MVTime mvt(refEpoch.getValue());
2633  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2634  ostringstream oss;
2635  oss << "Aligned at reference Epoch " << epochout
2636      << " in frame " << MFrequency::showType(system);
2637  pushLog(String(oss));
2638  // set up the iterator
2639  Block<String> cols(4);
2640  // select by constant direction
2641  cols[0] = String("SRCNAME");
2642  cols[1] = String("BEAMNO");
2643  // select by IF ( no of channels varies over this )
2644  cols[2] = String("IFNO");
2645  // select by restfrequency
2646  cols[3] = String("MOLECULE_ID");
2647  TableIterator iter(tout, cols);
2648  while ( !iter.pastEnd() ) {
2649    Table t = iter.table();
2650    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2651    TableIterator fiter(t, "FREQ_ID");
2652    // determine nchan from the first row. This should work as
2653    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2654
2655    ROArrayColumn<Float> sCol(t, "SPECTRA");
2656    const MDirection direction = dirCol(0);
2657    const uInt nchan = sCol(0).nelements();
2658
2659    // skip operations if there is nothing to align
2660    if (fiter.pastEnd()) {
2661        continue;
2662    }
2663
2664    Table ftab = fiter.table();
2665    // align all frequency ids with respect to the first encountered id
2666    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2667    // get the SpectralCoordinate for the freqid, which we are iterating over
2668    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2669    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2670                                direction, refPos, system );
2671    // realign the SpectralCoordinate and put into the output Scantable
2672    Vector<String> units(1);
2673    units = String("Hz");
2674    Bool linear=True;
2675    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2676    sc2.setWorldAxisUnits(units);
2677    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2678                                                sc2.referenceValue()[0],
2679                                                sc2.increment()[0]);
2680    while ( !fiter.pastEnd() ) {
2681      ftab = fiter.table();
2682      // spectral coordinate for the current FREQ_ID
2683      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2684      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2685      // create the "global" abcissa for alignment with same FREQ_ID
2686      Vector<Double> abc(nchan);
2687      for (uInt i=0; i<nchan; i++) {
2688           Double w;
2689           sC.toWorld(w,Double(i));
2690           abc[i] = w;
2691      }
2692      TableVector<uInt> tvec(ftab, "FREQ_ID");
2693      // assign new frequency id to all rows
2694      tvec = id;
2695      // cache abcissa for same time stamps, so iterate over those
2696      TableIterator timeiter(ftab, "TIME");
2697      while ( !timeiter.pastEnd() ) {
2698        Table tab = timeiter.table();
2699        ArrayColumn<Float> specCol(tab, "SPECTRA");
2700        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2701        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2702        // use align abcissa cache after the first row
2703        // these rows should be just be POLNO
2704        bool first = true;
2705        for (int i=0; i<int(tab.nrow()); ++i) {
2706          // input values
2707          Vector<uChar> flag = flagCol(i);
2708          Vector<Bool> mask(flag.shape());
2709          Vector<Float> specOut, spec;
2710          spec  = specCol(i);
2711          Vector<Bool> maskOut;Vector<uChar> flagOut;
2712          convertArray(mask, flag);
2713          // alignment
2714          Bool ok = fa.align(specOut, maskOut, abc, spec,
2715                             mask, timeCol(i), !first,
2716                             interp, False);
2717          (void) ok; // unused stop compiler nagging     
2718          // back into scantable
2719          flagOut.resize(maskOut.nelements());
2720          convertArray(flagOut, maskOut);
2721          flagCol.put(i, flagOut);
2722          specCol.put(i, specOut);
2723          // start abcissa caching
2724          first = false;
2725        }
2726        // next timestamp
2727        ++timeiter;
2728      }
2729      // next FREQ_ID
2730      ++fiter;
2731    }
2732    // next aligner
2733    ++iter;
2734  }
2735  // set this afterwards to ensure we are doing insitu correctly.
2736  out->frequencies().setFrame(system, true);
2737  return out;
2738}
2739
2740CountedPtr<Scantable>
2741  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2742                                     const std::string & newtype )
2743{
2744  if (in->npol() != 2 && in->npol() != 4)
2745    throw(AipsError("Can only convert two or four polarisations."));
2746  if ( in->getPolType() == newtype )
2747    throw(AipsError("No need to convert."));
2748  if ( ! in->selector_.empty() )
2749    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2750  bool insitu = insitu_;
2751  setInsitu(false);
2752  CountedPtr< Scantable > out = getScantable(in, true);
2753  setInsitu(insitu);
2754  Table& tout = out->table();
2755  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2756
2757  Block<String> cols(4);
2758  cols[0] = "SCANNO";
2759  cols[1] = "CYCLENO";
2760  cols[2] = "BEAMNO";
2761  cols[3] = "IFNO";
2762  TableIterator it(in->originalTable_, cols);
2763  String basetype = in->getPolType();
2764  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2765  try {
2766    while ( !it.pastEnd() ) {
2767      Table tab = it.table();
2768      uInt row = tab.rowNumbers()[0];
2769      stpol->setSpectra(in->getPolMatrix(row));
2770      Float fang,fhand;
2771      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2772      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2773      stpol->setPhaseCorrections(fang, fhand);
2774      Int npolout = 0;
2775      for (uInt i=0; i<tab.nrow(); ++i) {
2776        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2777        if ( outvec.nelements() > 0 ) {
2778          tout.addRow();
2779          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2780          ArrayColumn<Float> sCol(tout,"SPECTRA");
2781          ScalarColumn<uInt> pCol(tout,"POLNO");
2782          sCol.put(tout.nrow()-1 ,outvec);
2783          pCol.put(tout.nrow()-1 ,uInt(npolout));
2784          npolout++;
2785       }
2786      }
2787      tout.rwKeywordSet().define("nPol", npolout);
2788      ++it;
2789    }
2790  } catch (AipsError& e) {
2791    delete stpol;
2792    throw(e);
2793  }
2794  delete stpol;
2795  return out;
2796}
2797
2798CountedPtr< Scantable >
2799  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2800                           const std::string & scantype )
2801{
2802  bool insitu = insitu_;
2803  setInsitu(false);
2804  CountedPtr< Scantable > out = getScantable(in, true);
2805  setInsitu(insitu);
2806  Table& tout = out->table();
2807  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2808  if (scantype == "on") {
2809    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2810  }
2811  Table tab = tableCommand(taql, in->table());
2812  TableCopy::copyRows(tout, tab);
2813  if (scantype == "on") {
2814    // re-index SCANNO to 0
2815    TableVector<uInt> vec(tout, "SCANNO");
2816    vec = 0;
2817  }
2818  return out;
2819}
2820
2821std::vector<float>
2822  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2823                     const std::vector<int>& whichrow,
2824                     bool getRealImag )
2825{
2826  std::vector<float> res;
2827  Table tab = in->table();
2828  std::vector<bool> mask;
2829
2830  if (whichrow.size() < 1) {          // for all rows (by default)
2831    int nrow = int(tab.nrow());
2832    for (int i = 0; i < nrow; ++i) {
2833      res = in->execFFT(i, mask, getRealImag);
2834    }
2835  } else {                           // for specified rows
2836    for (uInt i = 0; i < whichrow.size(); ++i) {
2837      res = in->execFFT(i, mask, getRealImag);
2838    }
2839  }
2840
2841  return res;
2842}
2843
2844
2845CountedPtr<Scantable>
2846  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2847                         double start, double end,
2848                         const std::string& mode )
2849{
2850  CountedPtr<Scantable> out = getScantable(in, false);
2851  Table& tout = out->table();
2852  TableIterator iter(tout, "FREQ_ID");
2853  FFTServer<Float,Complex> ffts;
2854
2855  while ( !iter.pastEnd() ) {
2856    Table tab = iter.table();
2857    Double rp,rv,inc;
2858    ROTableRow row(tab);
2859    const TableRecord& rec = row.get(0);
2860    uInt freqid = rec.asuInt("FREQ_ID");
2861    out->frequencies().getEntry(rp, rv, inc, freqid);
2862    ArrayColumn<Float> specCol(tab, "SPECTRA");
2863    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2864
2865    for (int i=0; i<int(tab.nrow()); ++i) {
2866      Vector<Float> spec = specCol(i);
2867      Vector<uChar> flag = flagCol(i);
2868      std::vector<bool> mask;
2869      for (uInt j = 0; j < flag.nelements(); ++j) {
2870        mask.push_back(!(flag[j]>0));
2871      }
2872      mathutil::doZeroOrderInterpolation(spec, mask);
2873
2874      Vector<Complex> lags;
2875      ffts.fft0(lags, spec);
2876
2877      Int lag0(start+0.5);
2878      Int lag1(end+0.5);
2879      if (mode == "frequency") {
2880        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2881        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2882      }
2883      Int lstart =  max(0, lag0);
2884      Int lend   =  min(Int(lags.nelements()-1), lag1);
2885      if (lstart == lend) {
2886        lags[lstart] = Complex(0.0);
2887      } else {
2888        if (lstart > lend) {
2889          Int tmp = lend;
2890          lend = lstart;
2891          lstart = tmp;
2892        }
2893        for (int j=lstart; j <=lend ;++j) {
2894          lags[j] = Complex(0.0);
2895        }
2896      }
2897
2898      ffts.fft0(spec, lags);
2899
2900      specCol.put(i, spec);
2901    }
2902    ++iter;
2903  }
2904  return out;
2905}
2906
2907// Averaging spectra with different channel/resolution
2908CountedPtr<Scantable>
2909STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2910                     const bool& compel,
2911                     const std::vector<bool>& mask,
2912                     const std::string& weight,
2913                     const std::string& avmode )
2914  throw ( casa::AipsError )
2915{
2916  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2917  if ( avmode == "SCAN" && in.size() != 1 )
2918    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2919                    "Use merge first."));
2920 
2921  // check if OTF observation
2922  String obstype = in[0]->getHeader().obstype ;
2923  Double tol = 0.0 ;
2924  if ( obstype.find( "OTF" ) != String::npos ) {
2925    tol = TOL_OTF ;
2926  }
2927  else {
2928    tol = TOL_POINT ;
2929  }
2930
2931  CountedPtr<Scantable> out ;     // processed result
2932  if ( compel ) {
2933    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2934    uInt insize = in.size() ;    // number of input scantables
2935
2936    // TEST: do normal average in each table before IF grouping
2937    os << "Do preliminary averaging" << LogIO::POST ;
2938    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2939    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2940      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2941      tmpin[itable] = average( v, mask, weight, avmode ) ;
2942    }
2943
2944    // warning
2945    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2946
2947    // temporarily set coordinfo
2948    vector<string> oldinfo( insize ) ;
2949    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2950      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2951      oldinfo[itable] = coordinfo[0] ;
2952      coordinfo[0] = "Hz" ;
2953      tmpin[itable]->setCoordInfo( coordinfo ) ;
2954    }
2955
2956    // columns
2957    ScalarColumn<uInt> freqIDCol ;
2958    ScalarColumn<uInt> ifnoCol ;
2959    ScalarColumn<uInt> scannoCol ;
2960
2961
2962    // check IF frequency coverage
2963    // freqid: list of FREQ_ID, which is used, in each table 
2964    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2965    //         each table
2966    // freqid[insize][numIF]
2967    // freqid: [[id00, id01, ...],
2968    //          [id10, id11, ...],
2969    //          ...
2970    //          [idn0, idn1, ...]]
2971    // iffreq[insize][numIF*2]
2972    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2973    //          [min_id10, max_id10, min_id11, max_id11, ...],
2974    //          ...
2975    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
2976    //os << "Check IF settings in each table" << LogIO::POST ;
2977    vector< vector<uInt> > freqid( insize );
2978    vector< vector<double> > iffreq( insize ) ;
2979    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2980      uInt rows = tmpin[itable]->nrow() ;
2981      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
2982      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
2983        if ( freqid[itable].size() == freqnrows ) {
2984          break ;
2985        }
2986        else {
2987          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
2988          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
2989          uInt id = freqIDCol( irow ) ;
2990          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
2991            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
2992            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
2993            freqid[itable].push_back( id ) ;
2994            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2995            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2996          }
2997        }
2998      }
2999    }
3000
3001    // debug
3002    //os << "IF settings summary:" << endl ;
3003    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3004    //os << "   Table" << i << endl ;
3005    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3006    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3007    //}
3008    //}
3009    //os << endl ;
3010    //os.post() ;
3011
3012    // IF grouping based on their frequency coverage
3013    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3014    // ifgfreq: list of minimum and maximum frequency in each IF group
3015    // ifgrp[numgrp][nummember*2]
3016    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3017    //         [table10, freqrow10, table11, freqrow11, ...],
3018    //         ...
3019    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3020    // ifgfreq[numgrp*2]
3021    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3022    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3023    vector< vector<uInt> > ifgrp ;
3024    vector<double> ifgfreq ;
3025
3026    // parameter for IF grouping
3027    // groupmode = OR    retrieve all region
3028    //             AND   only retrieve overlaped region
3029    //string groupmode = "AND" ;
3030    string groupmode = "OR" ;
3031    uInt sizecr = 0 ;
3032    if ( groupmode == "AND" )
3033      sizecr = 2 ;
3034    else if ( groupmode == "OR" )
3035      sizecr = 0 ;
3036
3037    vector<double> sortedfreq ;
3038    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3039      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3040        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3041          sortedfreq.push_back( iffreq[i][j] ) ;
3042      }
3043    }
3044    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3045    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3046      ifgfreq.push_back( *i ) ;
3047      ifgfreq.push_back( *(i+1) ) ;
3048    }
3049    ifgrp.resize( ifgfreq.size()/2 ) ;
3050    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3051      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3052        double range0 = iffreq[itable][2*iif] ;
3053        double range1 = iffreq[itable][2*iif+1] ;
3054        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3055          double fmin = max( range0, ifgfreq[2*j] ) ;
3056          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3057          if ( fmin < fmax ) {
3058            ifgrp[j].push_back( itable ) ;
3059            ifgrp[j].push_back( freqid[itable][iif] ) ;
3060          }
3061        }
3062      }
3063    }
3064    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3065    vector<double>::iterator giter = ifgfreq.begin() ;
3066    while( fiter != ifgrp.end() ) {
3067      if ( fiter->size() <= sizecr ) {
3068        fiter = ifgrp.erase( fiter ) ;
3069        giter = ifgfreq.erase( giter ) ;
3070        giter = ifgfreq.erase( giter ) ;
3071      }
3072      else {
3073        fiter++ ;
3074        advance( giter, 2 ) ;
3075      }
3076    }
3077
3078    // Grouping continuous IF groups (without frequency gap)
3079    // freqgrp: list of IF group indexes in each frequency group
3080    // freqrange: list of minimum and maximum frequency in each frequency group
3081    // freqgrp[numgrp][nummember]
3082    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3083    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3084    //           ...
3085    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3086    // freqrange[numgrp*2]
3087    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3088    vector< vector<uInt> > freqgrp ;
3089    double freqrange = 0.0 ;
3090    uInt grpnum = 0 ;
3091    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3092      // Assumed that ifgfreq was sorted
3093      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3094        freqgrp[grpnum-1].push_back( i ) ;
3095      }
3096      else {
3097        vector<uInt> grp0( 1, i ) ;
3098        freqgrp.push_back( grp0 ) ;
3099        grpnum++ ;
3100      }
3101      freqrange = ifgfreq[2*i+1] ;
3102    }
3103       
3104
3105    // print IF groups
3106    ostringstream oss ;
3107    oss << "IF Group summary: " << endl ;
3108    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3109    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3110      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3111      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3112        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3113      }
3114      oss << endl ;
3115    }
3116    oss << endl ;
3117    os << oss.str() << LogIO::POST ;
3118   
3119    // print frequency group
3120    oss.str("") ;
3121    oss << "Frequency Group summary: " << endl ;
3122    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3123    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3124      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3125      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3126        oss << freqgrp[i][j] << " " ;
3127      }
3128      oss << endl ;
3129    }
3130    oss << endl ;
3131    os << oss.str() << LogIO::POST ;
3132
3133    // membership check
3134    // groups: list of IF group indexes whose frequency range overlaps with
3135    //         that of each table and IF
3136    // groups[numtable][numIF][nummembership]
3137    // groups: [[[grp, grp,...], [grp, grp,...],...],
3138    //          [[grp, grp,...], [grp, grp,...],...],
3139    //          ...
3140    //          [[grp, grp,...], [grp, grp,...],...]]
3141    vector< vector< vector<uInt> > > groups( insize ) ;
3142    for ( uInt i = 0 ; i < insize ; i++ ) {
3143      groups[i].resize( freqid[i].size() ) ;
3144    }
3145    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3146      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3147        uInt tableid = ifgrp[igrp][2*imem] ;
3148        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3149        if ( iter != freqid[tableid].end() ) {
3150          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3151          groups[tableid][rowid].push_back( igrp ) ;
3152        }
3153      }
3154    }
3155
3156    // print membership
3157    //oss.str("") ;
3158    //for ( uInt i = 0 ; i < insize ; i++ ) {
3159    //oss << "Table " << i << endl ;
3160    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3161    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3162    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3163    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3164    //}
3165    //oss << endl ;
3166    //}
3167    //}
3168    //os << oss.str() << LogIO::POST ;
3169
3170    // set back coordinfo
3171    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3172      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3173      coordinfo[0] = oldinfo[itable] ;
3174      tmpin[itable]->setCoordInfo( coordinfo ) ;
3175    }
3176
3177    // Create additional table if needed
3178    bool oldInsitu = insitu_ ;
3179    setInsitu( false ) ;
3180    vector< vector<uInt> > addrow( insize ) ;
3181    vector<uInt> addtable( insize, 0 ) ;
3182    vector<uInt> newtableids( insize ) ;
3183    vector<uInt> newifids( insize, 0 ) ;
3184    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3185      //os << "Table " << itable << ": " ;
3186      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3187        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3188        //os << addrow[itable][ifrow] << " " ;
3189      }
3190      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3191      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3192    }
3193    newin.resize( insize ) ;
3194    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3195    for ( uInt i = 0 ; i < insize ; i++ ) {
3196      newtableids[i] = i ;
3197    }
3198    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3199      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3200        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3201        vector<int> freqidlist ;
3202        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3203          if ( groups[itable][i].size() > iadd + 1 ) {
3204            freqidlist.push_back( freqid[itable][i] ) ;
3205          }
3206        }
3207        stringstream taqlstream ;
3208        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3209        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3210          taqlstream << freqidlist[i] ;
3211          if ( i < freqidlist.size() - 1 )
3212            taqlstream << "," ;
3213          else
3214            taqlstream << "]" ;
3215        }
3216        string taql = taqlstream.str() ;
3217        //os << "taql = " << taql << LogIO::POST ;
3218        STSelector selector = STSelector() ;
3219        selector.setTaQL( taql ) ;
3220        add->setSelection( selector ) ;
3221        newin.push_back( add ) ;
3222        newtableids.push_back( itable ) ;
3223        newifids.push_back( iadd + 1 ) ;
3224      }
3225    }
3226
3227    // udpate ifgrp
3228    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3229      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3230        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3231          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3232            uInt igrp = groups[itable][ifrow][iadd+1] ;
3233            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3234              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3235                ifgrp[igrp][2*imem] = insize + iadd ;
3236              }
3237            }
3238          }
3239        }
3240      }
3241    }
3242
3243    // print IF groups again for debug
3244    //oss.str( "" ) ;
3245    //oss << "IF Group summary: " << endl ;
3246    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3247    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3248    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3249    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3250    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3251    //}
3252    //oss << endl ;
3253    //}
3254    //oss << endl ;
3255    //os << oss.str() << LogIO::POST ;
3256
3257    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3258    os << "All scan number is set to 0" << LogIO::POST ;
3259    //os << "All IF number is set to IF group index" << LogIO::POST ;
3260    insize = newin.size() ;
3261    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3262      uInt rows = newin[itable]->nrow() ;
3263      Table &tmpt = newin[itable]->table() ;
3264      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3265      scannoCol.attach( tmpt, "SCANNO" ) ;
3266      ifnoCol.attach( tmpt, "IFNO" ) ;
3267      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3268        scannoCol.put( irow, 0 ) ;
3269        uInt freqID = freqIDCol( irow ) ;
3270        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3271        if ( iter != freqid[newtableids[itable]].end() ) {
3272          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3273          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3274        }
3275        else {
3276          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3277        }
3278      }
3279    }
3280    oldinfo.resize( insize ) ;
3281    setInsitu( oldInsitu ) ;
3282
3283    // temporarily set coordinfo
3284    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3285      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3286      oldinfo[itable] = coordinfo[0] ;
3287      coordinfo[0] = "Hz" ;
3288      newin[itable]->setCoordInfo( coordinfo ) ;
3289    }
3290
3291    // save column values in the vector
3292    vector< vector<uInt> > freqTableIdVec( insize ) ;
3293    vector< vector<uInt> > freqIdVec( insize ) ;
3294    vector< vector<uInt> > ifNoVec( insize ) ;
3295    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3296      ScalarColumn<uInt> freqIDs ;
3297      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3298      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3299      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3300      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3301        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3302      }
3303      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3304        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3305        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3306      }
3307    }
3308
3309    // reset spectra and flagtra: pick up common part of frequency coverage
3310    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3311    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3312      uInt rows = newin[itable]->nrow() ;
3313      int nminchan = -1 ;
3314      int nmaxchan = -1 ;
3315      vector<uInt> freqIdUpdate ;
3316      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3317        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3318        double minfreq = ifgfreq[2*ifno] ;
3319        double maxfreq = ifgfreq[2*ifno+1] ;
3320        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3321        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3322        int nchan = abcissa.size() ;
3323        double resol = abcissa[1] - abcissa[0] ;
3324        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3325        if ( minfreq <= abcissa[0] )
3326          nminchan = 0 ;
3327        else {
3328          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3329          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3330          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3331        }
3332        if ( maxfreq >= abcissa[abcissa.size()-1] )
3333          nmaxchan = abcissa.size() - 1 ;
3334        else {
3335          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3336          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3337          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3338        }
3339        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3340        if ( nmaxchan > nminchan ) {
3341          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3342          int newchan = nmaxchan - nminchan + 1 ;
3343          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3344            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3345        }
3346        else {
3347          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3348        }
3349      }
3350      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3351        uInt freqId = freqIdUpdate[i] ;
3352        Double refpix ;
3353        Double refval ;
3354        Double increment ;
3355       
3356        // update row
3357        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3358        refval = refval - ( refpix - nminchan ) * increment ;
3359        refpix = 0 ;
3360        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3361      }   
3362    }
3363
3364   
3365    // reset spectra and flagtra: align spectral resolution
3366    //os << "Align spectral resolution" << LogIO::POST ;
3367    // gmaxdnu: the coarsest frequency resolution in the frequency group
3368    // gmemid: member index that have a resolution equal to gmaxdnu
3369    // gmaxdnu[numfreqgrp]
3370    // gmaxdnu: [dnu0, dnu1, ...]
3371    // gmemid[numfreqgrp]
3372    // gmemid: [id0, id1, ...]
3373    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3374    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3375    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3376      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3377      int minchan = INT_MAX ;     // minimum channel number
3378      Double refpixref = -1 ;     // reference of 'reference pixel'
3379      Double refvalref = -1 ;     // reference of 'reference frequency'
3380      Double refinc = -1 ;        // reference frequency resolution
3381      uInt refreqid ;
3382      uInt reftable = INT_MAX;
3383      // process only if group member > 1
3384      if ( ifgrp[igrp].size() > 2 ) {
3385        // find minchan and maxdnu in each group
3386        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3387          uInt tableid = ifgrp[igrp][2*imem] ;
3388          uInt rowid = ifgrp[igrp][2*imem+1] ;
3389          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3390          if ( iter != freqIdVec[tableid].end() ) {
3391            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3392            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3393            int nchan = abcissa.size() ;
3394            double dnu = abcissa[1] - abcissa[0] ;
3395            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3396            if ( nchan < minchan ) {
3397              minchan = nchan ;
3398              maxdnu = dnu ;
3399              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3400              refreqid = rowid ;
3401              reftable = tableid ;
3402            }
3403          }
3404        }
3405        // regrid spectra in each group
3406        os << "GROUP " << igrp << endl ;
3407        os << "   Channel number is adjusted to " << minchan << endl ;
3408        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3409        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3410          uInt tableid = ifgrp[igrp][2*imem] ;
3411          uInt rowid = ifgrp[igrp][2*imem+1] ;
3412          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3413          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3414          //os << "   regridChannel applied to " ;
3415          //if ( tableid != reftable )
3416          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3417          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3418            uInt tfreqid = freqIdVec[tableid][irow] ;
3419            if ( tfreqid == rowid ) {     
3420              //os << irow << " " ;
3421              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3422              freqIDCol.put( irow, refreqid ) ;
3423              freqIdVec[tableid][irow] = refreqid ;
3424            }
3425          }
3426          //os << LogIO::POST ;
3427        }
3428      }
3429      else {
3430        uInt tableid = ifgrp[igrp][0] ;
3431        uInt rowid = ifgrp[igrp][1] ;
3432        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3433        if ( iter != freqIdVec[tableid].end() ) {
3434          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3435          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3436          minchan = abcissa.size() ;
3437          maxdnu = abcissa[1] - abcissa[0] ;
3438        }
3439      }
3440      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3441        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3442          if ( maxdnu > gmaxdnu[i] ) {
3443            gmaxdnu[i] = maxdnu ;
3444            gmemid[i] = igrp ;
3445          }
3446          break ;
3447        }
3448      }
3449    }
3450
3451    // set back coordinfo
3452    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3453      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3454      coordinfo[0] = oldinfo[itable] ;
3455      newin[itable]->setCoordInfo( coordinfo ) ;
3456    }     
3457
3458    // accumulate all rows into the first table
3459    // NOTE: assumed in.size() = 1
3460    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3461    if ( newin.size() == 1 )
3462      tmp[0] = newin[0] ;
3463    else
3464      tmp[0] = merge( newin ) ;
3465
3466    //return tmp[0] ;
3467
3468    // average
3469    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3470
3471    //return tmpout ;
3472
3473    // combine frequency group
3474    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3475    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3476    vector<string> coordinfo = tmpout->getCoordInfo() ;
3477    oldinfo[0] = coordinfo[0] ;
3478    coordinfo[0] = "Hz" ;
3479    tmpout->setCoordInfo( coordinfo ) ;
3480    // create proformas of output table
3481    stringstream taqlstream ;
3482    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3483    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3484      taqlstream << gmemid[i] ;
3485      if ( i < gmemid.size() - 1 )
3486        taqlstream << "," ;
3487      else
3488        taqlstream << "]" ;
3489    }
3490    string taql = taqlstream.str() ;
3491    //os << "taql = " << taql << LogIO::POST ;
3492    STSelector selector = STSelector() ;
3493    selector.setTaQL( taql ) ;
3494    oldInsitu = insitu_ ;
3495    setInsitu( false ) ;
3496    out = getScantable( tmpout, false ) ;
3497    setInsitu( oldInsitu ) ;
3498    out->setSelection( selector ) ;
3499    // regrid rows
3500    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3501    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3502      uInt ifno = ifnoCol( irow ) ;
3503      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3504        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3505          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3506          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3507          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3508          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3509          break ;
3510        }
3511      }
3512    }
3513    // combine spectra
3514    ArrayColumn<Float> specColOut ;
3515    specColOut.attach( out->table(), "SPECTRA" ) ;
3516    ArrayColumn<uChar> flagColOut ;
3517    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3518    ScalarColumn<uInt> ifnoColOut ;
3519    ifnoColOut.attach( out->table(), "IFNO" ) ;
3520    ScalarColumn<uInt> polnoColOut ;
3521    polnoColOut.attach( out->table(), "POLNO" ) ;
3522    ScalarColumn<uInt> freqidColOut ;
3523    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3524    MDirection::ScalarColumn dirColOut ;
3525    dirColOut.attach( out->table(), "DIRECTION" ) ;
3526    Table &tab = tmpout->table() ;
3527    Block<String> cols(1);
3528    cols[0] = String("POLNO") ;
3529    TableIterator iter( tab, cols ) ;
3530    bool done = false ;
3531    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3532    while( !iter.pastEnd() ) {
3533      vector< vector<Float> > specout( freqgrp.size() ) ;
3534      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3535      ArrayColumn<Float> specCols ;
3536      specCols.attach( iter.table(), "SPECTRA" ) ;
3537      ArrayColumn<uChar> flagCols ;
3538      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3539      ifnoCol.attach( iter.table(), "IFNO" ) ;
3540      ScalarColumn<uInt> polnos ;
3541      polnos.attach( iter.table(), "POLNO" ) ;
3542      MDirection::ScalarColumn dircol ;
3543      dircol.attach( iter.table(), "DIRECTION" ) ;
3544      uInt polno = polnos( 0 ) ;
3545      //os << "POLNO iteration: " << polno << LogIO::POST ;
3546//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3547//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3548//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3549//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3550//          uInt ifno = ifnoCol( irow ) ;
3551//          if ( ifno == freqgrp[igrp][imem] ) {
3552//            Vector<Float> spec = specCols( irow ) ;
3553//            Vector<uChar> flag = flagCols( irow ) ;
3554//            vector<Float> svec ;
3555//            spec.tovector( svec ) ;
3556//            vector<uChar> fvec ;
3557//            flag.tovector( fvec ) ;
3558//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3559//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3560//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3561//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3562//            sizes[igrp][imem] = spec.nelements() ;
3563//          }
3564//        }
3565//      }
3566//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3567//        uInt ifout = ifnoColOut( irow ) ;
3568//        uInt polout = polnoColOut( irow ) ;
3569//        if ( ifout == gmemid[igrp] && polout == polno ) {
3570//          // set SPECTRA and FRAGTRA
3571//          Vector<Float> newspec( specout[igrp] ) ;
3572//          Vector<uChar> newflag( flagout[igrp] ) ;
3573//          specColOut.put( irow, newspec ) ;
3574//          flagColOut.put( irow, newflag ) ;
3575//          // IFNO renumbering
3576//          ifnoColOut.put( irow, igrp ) ;
3577//        }
3578//      }
3579//       }
3580      // get a list of number of channels for each frequency group member
3581      if ( !done ) {
3582        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3583          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3584          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3585            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3586              uInt ifno = ifnoCol( irow ) ;
3587              if ( ifno == freqgrp[igrp][imem] ) {
3588                Vector<Float> spec = specCols( irow ) ;
3589                sizes[igrp][imem] = spec.nelements() ;
3590                break ;
3591              }               
3592            }
3593          }
3594        }
3595        done = true ;
3596      }
3597      // combine spectra
3598      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3599        uInt polout = polnoColOut( irow ) ;
3600        if ( polout == polno ) {
3601          uInt ifout = ifnoColOut( irow ) ;
3602          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3603          uInt igrp ;
3604          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3605            if ( ifout == gmemid[jgrp] ) {
3606              igrp = jgrp ;
3607              break ;
3608            }
3609          }
3610          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3611            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3612              uInt ifno = ifnoCol( jrow ) ;
3613              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3614              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3615              Double dx = tdir[0] - direction[0] ;
3616              Double dy = tdir[1] - direction[1] ;
3617              Double dd = sqrt( dx * dx + dy * dy ) ;
3618              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3619              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3620                Vector<Float> spec = specCols( jrow ) ;
3621                Vector<uChar> flag = flagCols( jrow ) ;
3622                vector<Float> svec ;
3623                spec.tovector( svec ) ;
3624                vector<uChar> fvec ;
3625                flag.tovector( fvec ) ;
3626                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3627                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3628                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3629                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3630              }
3631            }
3632          }
3633          // set SPECTRA and FRAGTRA
3634          Vector<Float> newspec( specout[igrp] ) ;
3635          Vector<uChar> newflag( flagout[igrp] ) ;
3636          specColOut.put( irow, newspec ) ;
3637          flagColOut.put( irow, newflag ) ;
3638          // IFNO renumbering
3639          ifnoColOut.put( irow, igrp ) ;
3640        }
3641      }
3642      iter++ ;
3643    }
3644    // update FREQUENCIES subtable
3645    vector<bool> updated( freqgrp.size(), false ) ;
3646    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3647      uInt index = 0 ;
3648      uInt pixShift = 0 ;
3649      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3650        pixShift += sizes[igrp][index++] ;
3651      }
3652      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3653        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3654          uInt freqidOut = freqidColOut( irow ) ;
3655          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3656          double refpix ;
3657          double refval ;
3658          double increm ;
3659          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3660          refpix += pixShift ;
3661          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3662          updated[igrp] = true ;
3663        }
3664      }
3665    }
3666
3667    //out = tmpout ;
3668
3669    coordinfo = tmpout->getCoordInfo() ;
3670    coordinfo[0] = oldinfo[0] ;
3671    tmpout->setCoordInfo( coordinfo ) ;
3672  }
3673  else {
3674    // simple average
3675    out =  average( in, mask, weight, avmode ) ;
3676  }
3677 
3678  return out ;
3679}
3680
3681CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3682                                     const String calmode,
3683                                     const String antname )
3684{
3685  // frequency switch
3686  if ( calmode == "fs" ) {
3687    return cwcalfs( s, antname ) ;
3688  }
3689  else {
3690    vector<bool> masks = s->getMask( 0 ) ;
3691    vector<int> types ;
3692
3693    // sky scan
3694    STSelector sel = STSelector() ;
3695    types.push_back( SrcType::SKY ) ;
3696    sel.setTypes( types ) ;
3697    s->setSelection( sel ) ;
3698    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3699    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3700    s->unsetSelection() ;
3701    sel.reset() ;
3702    types.clear() ;
3703
3704    // hot scan
3705    types.push_back( SrcType::HOT ) ;
3706    sel.setTypes( types ) ;
3707    s->setSelection( sel ) ;
3708    tmp.clear() ;
3709    tmp.push_back( getScantable( s, false ) ) ;
3710    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3711    s->unsetSelection() ;
3712    sel.reset() ;
3713    types.clear() ;
3714   
3715    // cold scan
3716    CountedPtr<Scantable> acold ;
3717//     types.push_back( SrcType::COLD ) ;
3718//     sel.setTypes( types ) ;
3719//     s->setSelection( sel ) ;
3720//     tmp.clear() ;
3721//     tmp.push_back( getScantable( s, false ) ) ;
3722//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3723//     s->unsetSelection() ;
3724//     sel.reset() ;
3725//     types.clear() ;
3726
3727    // off scan
3728    types.push_back( SrcType::PSOFF ) ;
3729    sel.setTypes( types ) ;
3730    s->setSelection( sel ) ;
3731    tmp.clear() ;
3732    tmp.push_back( getScantable( s, false ) ) ;
3733    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3734    s->unsetSelection() ;
3735    sel.reset() ;
3736    types.clear() ;
3737   
3738    // on scan
3739    bool insitu = insitu_ ;
3740    insitu_ = false ;
3741    CountedPtr<Scantable> out = getScantable( s, true ) ;
3742    insitu_ = insitu ;
3743    types.push_back( SrcType::PSON ) ;
3744    sel.setTypes( types ) ;
3745    s->setSelection( sel ) ;
3746    TableCopy::copyRows( out->table(), s->table() ) ;
3747    s->unsetSelection() ;
3748    sel.reset() ;
3749    types.clear() ;
3750   
3751    // process each on scan
3752    ArrayColumn<Float> tsysCol ;
3753    tsysCol.attach( out->table(), "TSYS" ) ;
3754    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3755      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3756      out->setSpectrum( sp, i ) ;
3757      string reftime = out->getTime( i ) ;
3758      vector<int> ii( 1, out->getIF( i ) ) ;
3759      vector<int> ib( 1, out->getBeam( i ) ) ;
3760      vector<int> ip( 1, out->getPol( i ) ) ;
3761      sel.setIFs( ii ) ;
3762      sel.setBeams( ib ) ;
3763      sel.setPolarizations( ip ) ;
3764      asky->setSelection( sel ) ;   
3765      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3766      const Vector<Float> Vtsys( sptsys ) ;
3767      tsysCol.put( i, Vtsys ) ;
3768      asky->unsetSelection() ;
3769      sel.reset() ;
3770    }
3771
3772    // flux unit
3773    out->setFluxUnit( "K" ) ;
3774
3775    return out ;
3776  }
3777}
3778 
3779CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3780                                       const String calmode )
3781{
3782  // frequency switch
3783  if ( calmode == "fs" ) {
3784    return almacalfs( s ) ;
3785  }
3786  else {
3787    vector<bool> masks = s->getMask( 0 ) ;
3788   
3789    // off scan
3790    STSelector sel = STSelector() ;
3791    vector<int> types ;
3792    types.push_back( SrcType::PSOFF ) ;
3793    sel.setTypes( types ) ;
3794    s->setSelection( sel ) ;
3795    // TODO 2010/01/08 TN
3796    // Grouping by time should be needed before averaging.
3797    // Each group must have own unique SCANNO (should be renumbered).
3798    // See PIPELINE/SDCalibration.py
3799    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3800    Table ttab = soff->table() ;
3801    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3802    uInt nrow = timeCol.nrow() ;
3803    Vector<Double> timeSep( nrow - 1 ) ;
3804    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3805      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3806    }
3807    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3808    Vector<Double> interval = intervalCol.getColumn() ;
3809    interval /= 86400.0 ;
3810    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3811    vector<uInt> glist ;
3812    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3813      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3814      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3815      if ( gap > 1.1 ) {
3816        glist.push_back( i ) ;
3817      }
3818    }
3819    Vector<uInt> gaplist( glist ) ;
3820    //cout << "gaplist = " << gaplist << endl ;
3821    uInt newid = 0 ;
3822    for ( uInt i = 0 ; i < nrow ; i++ ) {
3823      scanCol.put( i, newid ) ;
3824      if ( i == gaplist[newid] ) {
3825        newid++ ;
3826      }
3827    }
3828    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3829    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3830    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3831    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3832    s->unsetSelection() ;
3833    sel.reset() ;
3834    types.clear() ;
3835   
3836    // on scan
3837    bool insitu = insitu_ ;
3838    insitu_ = false ;
3839    CountedPtr<Scantable> out = getScantable( s, true ) ;
3840    insitu_ = insitu ;
3841    types.push_back( SrcType::PSON ) ;
3842    sel.setTypes( types ) ;
3843    s->setSelection( sel ) ;
3844    TableCopy::copyRows( out->table(), s->table() ) ;
3845    s->unsetSelection() ;
3846    sel.reset() ;
3847    types.clear() ;
3848   
3849    // process each on scan
3850    ArrayColumn<Float> tsysCol ;
3851    tsysCol.attach( out->table(), "TSYS" ) ;
3852    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3853      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3854      out->setSpectrum( sp, i ) ;
3855    }
3856
3857    // flux unit
3858    out->setFluxUnit( "K" ) ;
3859
3860    return out ;
3861  }
3862}
3863
3864CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3865                                       const String antname )
3866{
3867  vector<int> types ;
3868
3869  // APEX calibration mode
3870  int apexcalmode = 1 ;
3871 
3872  if ( antname.find( "APEX" ) != string::npos ) {
3873    // check if off scan exists or not
3874    STSelector sel = STSelector() ;
3875    //sel.setName( offstr1 ) ;
3876    types.push_back( SrcType::FLOOFF ) ;
3877    sel.setTypes( types ) ;
3878    try {
3879      s->setSelection( sel ) ;
3880    }
3881    catch ( AipsError &e ) {
3882      apexcalmode = 0 ;
3883    }
3884    sel.reset() ;
3885  }
3886  s->unsetSelection() ;
3887  types.clear() ;
3888
3889  vector<bool> masks = s->getMask( 0 ) ;
3890  CountedPtr<Scantable> ssig, sref ;
3891  CountedPtr<Scantable> out ;
3892
3893  if ( antname.find( "APEX" ) != string::npos ) {
3894    // APEX calibration
3895    // sky scan
3896    STSelector sel = STSelector() ;
3897    types.push_back( SrcType::FLOSKY ) ;
3898    sel.setTypes( types ) ;
3899    s->setSelection( sel ) ;
3900    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3901    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3902    s->unsetSelection() ;
3903    sel.reset() ;
3904    types.clear() ;
3905    types.push_back( SrcType::FHISKY ) ;
3906    sel.setTypes( types ) ;
3907    s->setSelection( sel ) ;
3908    tmp.clear() ;
3909    tmp.push_back( getScantable( s, false ) ) ;
3910    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3911    s->unsetSelection() ;
3912    sel.reset() ;
3913    types.clear() ;
3914   
3915    // hot scan
3916    types.push_back( SrcType::FLOHOT ) ;
3917    sel.setTypes( types ) ;
3918    s->setSelection( sel ) ;
3919    tmp.clear() ;
3920    tmp.push_back( getScantable( s, false ) ) ;
3921    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3922    s->unsetSelection() ;
3923    sel.reset() ;
3924    types.clear() ;
3925    types.push_back( SrcType::FHIHOT ) ;
3926    sel.setTypes( types ) ;
3927    s->setSelection( sel ) ;
3928    tmp.clear() ;
3929    tmp.push_back( getScantable( s, false ) ) ;
3930    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3931    s->unsetSelection() ;
3932    sel.reset() ;
3933    types.clear() ;
3934   
3935    // cold scan
3936    CountedPtr<Scantable> acoldlo, acoldhi ;
3937//     types.push_back( SrcType::FLOCOLD ) ;
3938//     sel.setTypes( types ) ;
3939//     s->setSelection( sel ) ;
3940//     tmp.clear() ;
3941//     tmp.push_back( getScantable( s, false ) ) ;
3942//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3943//     s->unsetSelection() ;
3944//     sel.reset() ;
3945//     types.clear() ;
3946//     types.push_back( SrcType::FHICOLD ) ;
3947//     sel.setTypes( types ) ;
3948//     s->setSelection( sel ) ;
3949//     tmp.clear() ;
3950//     tmp.push_back( getScantable( s, false ) ) ;
3951//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3952//     s->unsetSelection() ;
3953//     sel.reset() ;
3954//     types.clear() ;
3955
3956    // ref scan
3957    bool insitu = insitu_ ;
3958    insitu_ = false ;
3959    sref = getScantable( s, true ) ;
3960    insitu_ = insitu ;
3961    types.push_back( SrcType::FSLO ) ;
3962    sel.setTypes( types ) ;
3963    s->setSelection( sel ) ;
3964    TableCopy::copyRows( sref->table(), s->table() ) ;
3965    s->unsetSelection() ;
3966    sel.reset() ;
3967    types.clear() ;
3968   
3969    // sig scan
3970    insitu_ = false ;
3971    ssig = getScantable( s, true ) ;
3972    insitu_ = insitu ;
3973    types.push_back( SrcType::FSHI ) ;
3974    sel.setTypes( types ) ;
3975    s->setSelection( sel ) ;
3976    TableCopy::copyRows( ssig->table(), s->table() ) ;
3977    s->unsetSelection() ;
3978    sel.reset() ; 
3979    types.clear() ;
3980         
3981    if ( apexcalmode == 0 ) {
3982      // APEX fs data without off scan
3983      // process each sig and ref scan
3984      ArrayColumn<Float> tsysCollo ;
3985      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3986      ArrayColumn<Float> tsysColhi ;
3987      tsysColhi.attach( sref->table(), "TSYS" ) ;
3988      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3989        vector< CountedPtr<Scantable> > sky( 2 ) ;
3990        sky[0] = askylo ;
3991        sky[1] = askyhi ;
3992        vector< CountedPtr<Scantable> > hot( 2 ) ;
3993        hot[0] = ahotlo ;
3994        hot[1] = ahothi ;
3995        vector< CountedPtr<Scantable> > cold( 2 ) ;
3996        //cold[0] = acoldlo ;
3997        //cold[1] = acoldhi ;
3998        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
3999        ssig->setSpectrum( sp, i ) ;
4000        string reftime = ssig->getTime( i ) ;
4001        vector<int> ii( 1, ssig->getIF( i ) ) ;
4002        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4003        vector<int> ip( 1, ssig->getPol( i ) ) ;
4004        sel.setIFs( ii ) ;
4005        sel.setBeams( ib ) ;
4006        sel.setPolarizations( ip ) ;
4007        askylo->setSelection( sel ) ;
4008        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4009        const Vector<Float> Vtsyslo( sptsys ) ;
4010        tsysCollo.put( i, Vtsyslo ) ;
4011        askylo->unsetSelection() ;
4012        sel.reset() ;
4013        sky[0] = askyhi ;
4014        sky[1] = askylo ;
4015        hot[0] = ahothi ;
4016        hot[1] = ahotlo ;
4017        cold[0] = acoldhi ;
4018        cold[1] = acoldlo ;
4019        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4020        sref->setSpectrum( sp, i ) ;
4021        reftime = sref->getTime( i ) ;
4022        ii[0] = sref->getIF( i )  ;
4023        ib[0] = sref->getBeam( i ) ;
4024        ip[0] = sref->getPol( i ) ;
4025        sel.setIFs( ii ) ;
4026        sel.setBeams( ib ) ;
4027        sel.setPolarizations( ip ) ;
4028        askyhi->setSelection( sel ) ;   
4029        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4030        const Vector<Float> Vtsyshi( sptsys ) ;
4031        tsysColhi.put( i, Vtsyshi ) ;
4032        askyhi->unsetSelection() ;
4033        sel.reset() ;
4034      }
4035    }
4036    else if ( apexcalmode == 1 ) {
4037      // APEX fs data with off scan
4038      // off scan
4039      types.push_back( SrcType::FLOOFF ) ;
4040      sel.setTypes( types ) ;
4041      s->setSelection( sel ) ;
4042      tmp.clear() ;
4043      tmp.push_back( getScantable( s, false ) ) ;
4044      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4045      s->unsetSelection() ;
4046      sel.reset() ;
4047      types.clear() ;
4048      types.push_back( SrcType::FHIOFF ) ;
4049      sel.setTypes( types ) ;
4050      s->setSelection( sel ) ;
4051      tmp.clear() ;
4052      tmp.push_back( getScantable( s, false ) ) ;
4053      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4054      s->unsetSelection() ;
4055      sel.reset() ;
4056      types.clear() ;
4057     
4058      // process each sig and ref scan
4059      ArrayColumn<Float> tsysCollo ;
4060      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4061      ArrayColumn<Float> tsysColhi ;
4062      tsysColhi.attach( sref->table(), "TSYS" ) ;
4063      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4064        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4065        ssig->setSpectrum( sp, i ) ;
4066        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4067        string reftime = ssig->getTime( i ) ;
4068        vector<int> ii( 1, ssig->getIF( i ) ) ;
4069        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4070        vector<int> ip( 1, ssig->getPol( i ) ) ;
4071        sel.setIFs( ii ) ;
4072        sel.setBeams( ib ) ;
4073        sel.setPolarizations( ip ) ;
4074        askylo->setSelection( sel ) ;
4075        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4076        const Vector<Float> Vtsyslo( sptsys ) ;
4077        tsysCollo.put( i, Vtsyslo ) ;
4078        askylo->unsetSelection() ;
4079        sel.reset() ;
4080        sref->setSpectrum( sp, i ) ;
4081        reftime = sref->getTime( i ) ;
4082        ii[0] = sref->getIF( i )  ;
4083        ib[0] = sref->getBeam( i ) ;
4084        ip[0] = sref->getPol( i ) ;
4085        sel.setIFs( ii ) ;
4086        sel.setBeams( ib ) ;
4087        sel.setPolarizations( ip ) ;
4088        askyhi->setSelection( sel ) ;   
4089        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4090        const Vector<Float> Vtsyshi( sptsys ) ;
4091        tsysColhi.put( i, Vtsyshi ) ;
4092        askyhi->unsetSelection() ;
4093        sel.reset() ;
4094      }
4095    }
4096  }
4097  else {
4098    // non-APEX fs data
4099    // sky scan
4100    STSelector sel = STSelector() ;
4101    types.push_back( SrcType::SKY ) ;
4102    sel.setTypes( types ) ;
4103    s->setSelection( sel ) ;
4104    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4105    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4106    s->unsetSelection() ;
4107    sel.reset() ;
4108    types.clear() ;
4109   
4110    // hot scan
4111    types.push_back( SrcType::HOT ) ;
4112    sel.setTypes( types ) ;
4113    s->setSelection( sel ) ;
4114    tmp.clear() ;
4115    tmp.push_back( getScantable( s, false ) ) ;
4116    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4117    s->unsetSelection() ;
4118    sel.reset() ;
4119    types.clear() ;
4120
4121    // cold scan
4122    CountedPtr<Scantable> acold ;
4123//     types.push_back( SrcType::COLD ) ;
4124//     sel.setTypes( types ) ;
4125//     s->setSelection( sel ) ;
4126//     tmp.clear() ;
4127//     tmp.push_back( getScantable( s, false ) ) ;
4128//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4129//     s->unsetSelection() ;
4130//     sel.reset() ;
4131//     types.clear() ;
4132   
4133    // ref scan
4134    bool insitu = insitu_ ;
4135    insitu_ = false ;
4136    sref = getScantable( s, true ) ;
4137    insitu_ = insitu ;
4138    types.push_back( SrcType::FSOFF ) ;
4139    sel.setTypes( types ) ;
4140    s->setSelection( sel ) ;
4141    TableCopy::copyRows( sref->table(), s->table() ) ;
4142    s->unsetSelection() ;
4143    sel.reset() ;
4144    types.clear() ;
4145   
4146    // sig scan
4147    insitu_ = false ;
4148    ssig = getScantable( s, true ) ;
4149    insitu_ = insitu ;
4150    types.push_back( SrcType::FSON ) ;
4151    sel.setTypes( types ) ;
4152    s->setSelection( sel ) ;
4153    TableCopy::copyRows( ssig->table(), s->table() ) ;
4154    s->unsetSelection() ;
4155    sel.reset() ;
4156    types.clear() ;
4157
4158    // process each sig and ref scan
4159    ArrayColumn<Float> tsysColsig ;
4160    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4161    ArrayColumn<Float> tsysColref ;
4162    tsysColref.attach( ssig->table(), "TSYS" ) ;
4163    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4164      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4165      ssig->setSpectrum( sp, i ) ;
4166      string reftime = ssig->getTime( i ) ;
4167      vector<int> ii( 1, ssig->getIF( i ) ) ;
4168      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4169      vector<int> ip( 1, ssig->getPol( i ) ) ;
4170      sel.setIFs( ii ) ;
4171      sel.setBeams( ib ) ;
4172      sel.setPolarizations( ip ) ;
4173      asky->setSelection( sel ) ;
4174      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4175      const Vector<Float> Vtsys( sptsys ) ;
4176      tsysColsig.put( i, Vtsys ) ;
4177      asky->unsetSelection() ;
4178      sel.reset() ;
4179      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4180      sref->setSpectrum( sp, i ) ;
4181      tsysColref.put( i, Vtsys ) ;
4182    }
4183  }
4184
4185  // do folding if necessary
4186  Table sigtab = ssig->table() ;
4187  Table reftab = sref->table() ;
4188  ScalarColumn<uInt> sigifnoCol ;
4189  ScalarColumn<uInt> refifnoCol ;
4190  ScalarColumn<uInt> sigfidCol ;
4191  ScalarColumn<uInt> reffidCol ;
4192  Int nchan = (Int)ssig->nchan() ;
4193  sigifnoCol.attach( sigtab, "IFNO" ) ;
4194  refifnoCol.attach( reftab, "IFNO" ) ;
4195  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4196  reffidCol.attach( reftab, "FREQ_ID" ) ;
4197  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4198  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4199  vector<uInt> sfids_unique ;
4200  vector<uInt> rfids_unique ;
4201  vector<uInt> sifno_unique ;
4202  vector<uInt> rifno_unique ;
4203  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4204    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4205      sfids_unique.push_back( sfids[i] ) ;
4206      sifno_unique.push_back( ssig->getIF( i ) ) ;
4207    }
4208    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4209      rfids_unique.push_back( rfids[i] ) ;
4210      rifno_unique.push_back( sref->getIF( i ) ) ;
4211    }
4212  }
4213  double refpix_sig, refval_sig, increment_sig ;
4214  double refpix_ref, refval_ref, increment_ref ;
4215  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4216  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4217    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4218    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4219    if ( refpix_sig == refpix_ref ) {
4220      double foffset = refval_ref - refval_sig ;
4221      int choffset = static_cast<int>(foffset/increment_sig) ;
4222      double doffset = foffset / increment_sig ;
4223      if ( abs(choffset) >= nchan ) {
4224        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4225        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4226        os << "Just return signal data" << LogIO::POST ;
4227        //std::vector< CountedPtr<Scantable> > tabs ;
4228        //tabs.push_back( ssig ) ;
4229        //tabs.push_back( sref ) ;
4230        //out = merge( tabs ) ;
4231        tmp[i] = ssig ;
4232      }
4233      else {
4234        STSelector sel = STSelector() ;
4235        vector<int> v( 1, sifno_unique[i] ) ;
4236        sel.setIFs( v ) ;
4237        ssig->setSelection( sel ) ;
4238        sel.reset() ;
4239        v[0] = rifno_unique[i] ;
4240        sel.setIFs( v ) ;
4241        sref->setSelection( sel ) ;
4242        sel.reset() ;
4243        if ( antname.find( "APEX" ) != string::npos ) {
4244          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4245          //tmp[i] = dofold( ssig, sref, doffset ) ;
4246        }
4247        else {
4248          tmp[i] = dofold( ssig, sref, doffset ) ;
4249        }
4250        ssig->unsetSelection() ;
4251        sref->unsetSelection() ;
4252      }
4253    }
4254  }
4255
4256  if ( tmp.size() > 1 ) {
4257    out = merge( tmp ) ;
4258  }
4259  else {
4260    out = tmp[0] ;
4261  }
4262
4263  // flux unit
4264  out->setFluxUnit( "K" ) ;
4265
4266  return out ;
4267}
4268
4269CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4270{
4271  (void) s; //currently unused
4272  CountedPtr<Scantable> out ;
4273
4274  return out ;
4275}
4276
4277vector<float> STMath::getSpectrumFromTime( string reftime,
4278                                           CountedPtr<Scantable>& s,
4279                                           string mode )
4280{
4281  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4282  vector<float> sp ;
4283
4284  if ( s->nrow() == 0 ) {
4285    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4286    return sp ;
4287  }
4288  else if ( s->nrow() == 1 ) {
4289    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4290    return s->getSpectrum( 0 ) ;
4291  }
4292  else {
4293    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4294    if ( mode == "before" ) {
4295      int id = -1 ;
4296      if ( idx[0] != -1 ) {
4297        id = idx[0] ;
4298      }
4299      else if ( idx[1] != -1 ) {
4300        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4301        id = idx[1] ;
4302      }
4303      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4304      sp = s->getSpectrum( id ) ;
4305    }
4306    else if ( mode == "after" ) {
4307      int id = -1 ;
4308      if ( idx[1] != -1 ) {
4309        id = idx[1] ;
4310      }
4311      else if ( idx[0] != -1 ) {
4312        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4313        id = idx[1] ;
4314      }
4315      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4316      sp = s->getSpectrum( id ) ;
4317    }
4318    else if ( mode == "nearest" ) {
4319      int id = -1 ;
4320      if ( idx[0] == -1 ) {
4321        id = idx[1] ;
4322      }
4323      else if ( idx[1] == -1 ) {
4324        id = idx[0] ;
4325      }
4326      else if ( idx[0] == idx[1] ) {
4327        id = idx[0] ;
4328      }
4329      else {
4330        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4331        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4332        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4333        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4334        double tref = getMJD( reftime ) ;
4335        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4336          id = idx[1] ;
4337        }
4338        else {
4339          id = idx[0] ;
4340        }
4341      }
4342      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4343      sp = s->getSpectrum( id ) ;     
4344    }
4345    else if ( mode == "linear" ) {
4346      if ( idx[0] == -1 ) {
4347        // use after
4348        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4349        int id = idx[1] ;
4350        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4351        sp = s->getSpectrum( id ) ;
4352      }
4353      else if ( idx[1] == -1 ) {
4354        // use before
4355        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4356        int id = idx[0] ;
4357        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4358        sp = s->getSpectrum( id ) ;
4359      }
4360      else if ( idx[0] == idx[1] ) {
4361        // use before
4362        //os << "No need to interporate." << LogIO::POST ;
4363        int id = idx[0] ;
4364        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4365        sp = s->getSpectrum( id ) ;
4366      }
4367      else {
4368        // do interpolation
4369        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4370        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4371        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4372        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4373        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4374        double tref = getMJD( reftime ) ;
4375        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4376        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4377        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4378          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4379          sp.push_back( v ) ;
4380        }
4381      }
4382    }
4383    else {
4384      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4385    }
4386    return sp ;
4387  }
4388}
4389
4390double STMath::getMJD( string strtime )
4391{
4392  if ( strtime.find("/") == string::npos ) {
4393    // MJD time string
4394    return atof( strtime.c_str() ) ;
4395  }
4396  else {
4397    // string in YYYY/MM/DD/HH:MM:SS format
4398    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4399    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4400    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4401    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4402    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4403    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4404    Time t( year, month, day, hour, minute, sec ) ;
4405    return t.modifiedJulianDay() ;
4406  }
4407}
4408
4409vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4410{
4411  double reft = getMJD( reftime ) ;
4412  double dtmin = 1.0e100 ;
4413  double dtmax = -1.0e100 ;
4414  vector<double> dt ;
4415  int just_before = -1 ;
4416  int just_after = -1 ;
4417  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4418    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4419  }
4420  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4421    if ( dt[i] > 0.0 ) {
4422      // after reftime
4423      if ( dt[i] < dtmin ) {
4424        just_after = i ;
4425        dtmin = dt[i] ;
4426      }
4427    }
4428    else if ( dt[i] < 0.0 ) {
4429      // before reftime
4430      if ( dt[i] > dtmax ) {
4431        just_before = i ;
4432        dtmax = dt[i] ;
4433      }
4434    }
4435    else {
4436      // just a reftime
4437      just_before = i ;
4438      just_after = i ;
4439      dtmax = 0 ;
4440      dtmin = 0 ;
4441      break ;
4442    }
4443  }
4444
4445  vector<int> v ;
4446  v.push_back( just_before ) ;
4447  v.push_back( just_after ) ;
4448
4449  return v ;
4450}
4451
4452vector<float> STMath::getTcalFromTime( string reftime,
4453                                       CountedPtr<Scantable>& s,
4454                                       string mode )
4455{
4456  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4457  vector<float> tcal ;
4458  STTcal tcalTable = s->tcal() ;
4459  String time ;
4460  Vector<Float> tcalval ;
4461  if ( s->nrow() == 0 ) {
4462    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4463    return tcal ;
4464  }
4465  else if ( s->nrow() == 1 ) {
4466    uInt tcalid = s->getTcalId( 0 ) ;
4467    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4468    tcalTable.getEntry( time, tcalval, tcalid ) ;
4469    tcalval.tovector( tcal ) ;
4470    return tcal ;
4471  }
4472  else {
4473    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4474    if ( mode == "before" ) {
4475      int id = -1 ;
4476      if ( idx[0] != -1 ) {
4477        id = idx[0] ;
4478      }
4479      else if ( idx[1] != -1 ) {
4480        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4481        id = idx[1] ;
4482      }
4483      uInt tcalid = s->getTcalId( id ) ;
4484      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4485      tcalTable.getEntry( time, tcalval, tcalid ) ;
4486      tcalval.tovector( tcal ) ;
4487    }
4488    else if ( mode == "after" ) {
4489      int id = -1 ;
4490      if ( idx[1] != -1 ) {
4491        id = idx[1] ;
4492      }
4493      else if ( idx[0] != -1 ) {
4494        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4495        id = idx[1] ;
4496      }
4497      uInt tcalid = s->getTcalId( id ) ;
4498      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4499      tcalTable.getEntry( time, tcalval, tcalid ) ;
4500      tcalval.tovector( tcal ) ;
4501    }
4502    else if ( mode == "nearest" ) {
4503      int id = -1 ;
4504      if ( idx[0] == -1 ) {
4505        id = idx[1] ;
4506      }
4507      else if ( idx[1] == -1 ) {
4508        id = idx[0] ;
4509      }
4510      else if ( idx[0] == idx[1] ) {
4511        id = idx[0] ;
4512      }
4513      else {
4514        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4515        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4516        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4517        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4518        double tref = getMJD( reftime ) ;
4519        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4520          id = idx[1] ;
4521        }
4522        else {
4523          id = idx[0] ;
4524        }
4525      }
4526      uInt tcalid = s->getTcalId( id ) ;
4527      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4528      tcalTable.getEntry( time, tcalval, tcalid ) ;
4529      tcalval.tovector( tcal ) ;
4530    }
4531    else if ( mode == "linear" ) {
4532      if ( idx[0] == -1 ) {
4533        // use after
4534        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4535        int id = idx[1] ;
4536        uInt tcalid = s->getTcalId( id ) ;
4537        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4538        tcalTable.getEntry( time, tcalval, tcalid ) ;
4539        tcalval.tovector( tcal ) ;
4540      }
4541      else if ( idx[1] == -1 ) {
4542        // use before
4543        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4544        int id = idx[0] ;
4545        uInt tcalid = s->getTcalId( id ) ;
4546        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4547        tcalTable.getEntry( time, tcalval, tcalid ) ;
4548        tcalval.tovector( tcal ) ;
4549      }
4550      else if ( idx[0] == idx[1] ) {
4551        // use before
4552        //os << "No need to interporate." << LogIO::POST ;
4553        int id = idx[0] ;
4554        uInt tcalid = s->getTcalId( id ) ;
4555        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4556        tcalTable.getEntry( time, tcalval, tcalid ) ;
4557        tcalval.tovector( tcal ) ;
4558      }
4559      else {
4560        // do interpolation
4561        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4562        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4563        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4564        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4565        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4566        double tref = getMJD( reftime ) ;
4567        vector<float> tcal0 ;
4568        vector<float> tcal1 ;
4569        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4570        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4571        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4572        tcalval.tovector( tcal0 ) ;
4573        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4574        tcalval.tovector( tcal1 ) ;       
4575        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4576          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4577          tcal.push_back( v ) ;
4578        }
4579      }
4580    }
4581    else {
4582      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4583    }
4584    return tcal ;
4585  }
4586}
4587
4588vector<float> STMath::getTsysFromTime( string reftime,
4589                                       CountedPtr<Scantable>& s,
4590                                       string mode )
4591{
4592  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4593  ArrayColumn<Float> tsysCol ;
4594  tsysCol.attach( s->table(), "TSYS" ) ;
4595  vector<float> tsys ;
4596  String time ;
4597  Vector<Float> tsysval ;
4598  if ( s->nrow() == 0 ) {
4599    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4600    return tsys ;
4601  }
4602  else if ( s->nrow() == 1 ) {
4603    //os << "use row " << 0 << LogIO::POST ;
4604    tsysval = tsysCol( 0 ) ;
4605    tsysval.tovector( tsys ) ;
4606    return tsys ;
4607  }
4608  else {
4609    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4610    if ( mode == "before" ) {
4611      int id = -1 ;
4612      if ( idx[0] != -1 ) {
4613        id = idx[0] ;
4614      }
4615      else if ( idx[1] != -1 ) {
4616        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4617        id = idx[1] ;
4618      }
4619      //os << "use row " << id << LogIO::POST ;
4620      tsysval = tsysCol( id ) ;
4621      tsysval.tovector( tsys ) ;
4622    }
4623    else if ( mode == "after" ) {
4624      int id = -1 ;
4625      if ( idx[1] != -1 ) {
4626        id = idx[1] ;
4627      }
4628      else if ( idx[0] != -1 ) {
4629        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4630        id = idx[1] ;
4631      }
4632      //os << "use row " << id << LogIO::POST ;
4633      tsysval = tsysCol( id ) ;
4634      tsysval.tovector( tsys ) ;
4635    }
4636    else if ( mode == "nearest" ) {
4637      int id = -1 ;
4638      if ( idx[0] == -1 ) {
4639        id = idx[1] ;
4640      }
4641      else if ( idx[1] == -1 ) {
4642        id = idx[0] ;
4643      }
4644      else if ( idx[0] == idx[1] ) {
4645        id = idx[0] ;
4646      }
4647      else {
4648        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4649        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4650        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4651        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4652        double tref = getMJD( reftime ) ;
4653        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4654          id = idx[1] ;
4655        }
4656        else {
4657          id = idx[0] ;
4658        }
4659      }
4660      //os << "use row " << id << LogIO::POST ;
4661      tsysval = tsysCol( id ) ;
4662      tsysval.tovector( tsys ) ;
4663    }
4664    else if ( mode == "linear" ) {
4665      if ( idx[0] == -1 ) {
4666        // use after
4667        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4668        int id = idx[1] ;
4669        //os << "use row " << id << LogIO::POST ;
4670        tsysval = tsysCol( id ) ;
4671        tsysval.tovector( tsys ) ;
4672      }
4673      else if ( idx[1] == -1 ) {
4674        // use before
4675        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4676        int id = idx[0] ;
4677        //os << "use row " << id << LogIO::POST ;
4678        tsysval = tsysCol( id ) ;
4679        tsysval.tovector( tsys ) ;
4680      }
4681      else if ( idx[0] == idx[1] ) {
4682        // use before
4683        //os << "No need to interporate." << LogIO::POST ;
4684        int id = idx[0] ;
4685        //os << "use row " << id << LogIO::POST ;
4686        tsysval = tsysCol( id ) ;
4687        tsysval.tovector( tsys ) ;
4688      }
4689      else {
4690        // do interpolation
4691        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4692        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4693        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4694        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4695        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4696        double tref = getMJD( reftime ) ;
4697        vector<float> tsys0 ;
4698        vector<float> tsys1 ;
4699        tsysval = tsysCol( idx[0] ) ;
4700        tsysval.tovector( tsys0 ) ;
4701        tsysval = tsysCol( idx[1] ) ;
4702        tsysval.tovector( tsys1 ) ;       
4703        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4704          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4705          tsys.push_back( v ) ;
4706        }
4707      }
4708    }
4709    else {
4710      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4711    }
4712    return tsys ;
4713  }
4714}
4715
4716vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4717                                            CountedPtr<Scantable>& off,
4718                                            CountedPtr<Scantable>& sky,
4719                                            CountedPtr<Scantable>& hot,
4720                                            CountedPtr<Scantable>& cold,
4721                                            int index,
4722                                            string antname )
4723{
4724  (void) cold; //currently unused
4725  string reftime = on->getTime( index ) ;
4726  vector<int> ii( 1, on->getIF( index ) ) ;
4727  vector<int> ib( 1, on->getBeam( index ) ) ;
4728  vector<int> ip( 1, on->getPol( index ) ) ;
4729  vector<int> ic( 1, on->getScan( index ) ) ;
4730  STSelector sel = STSelector() ;
4731  sel.setIFs( ii ) ;
4732  sel.setBeams( ib ) ;
4733  sel.setPolarizations( ip ) ;
4734  sky->setSelection( sel ) ;
4735  hot->setSelection( sel ) ;
4736  //cold->setSelection( sel ) ;
4737  off->setSelection( sel ) ;
4738  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4739  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4740  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4741  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4742  vector<float> spec = on->getSpectrum( index ) ;
4743  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4744  vector<float> sp( tcal.size() ) ;
4745  if ( antname.find( "APEX" ) != string::npos ) {
4746    // using gain array
4747    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4748      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4749        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4750      sp[j] = v ;
4751    }
4752  }
4753  else {
4754    // Chopper-Wheel calibration (Ulich & Haas 1976)
4755    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4756      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4757      sp[j] = v ;
4758    }
4759  }
4760  sel.reset() ;
4761  sky->unsetSelection() ;
4762  hot->unsetSelection() ;
4763  //cold->unsetSelection() ;
4764  off->unsetSelection() ;
4765
4766  return sp ;
4767}
4768
4769vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4770                                            CountedPtr<Scantable>& off,
4771                                            int index )
4772{
4773  string reftime = on->getTime( index ) ;
4774  vector<int> ii( 1, on->getIF( index ) ) ;
4775  vector<int> ib( 1, on->getBeam( index ) ) ;
4776  vector<int> ip( 1, on->getPol( index ) ) ;
4777  vector<int> ic( 1, on->getScan( index ) ) ;
4778  STSelector sel = STSelector() ;
4779  sel.setIFs( ii ) ;
4780  sel.setBeams( ib ) ;
4781  sel.setPolarizations( ip ) ;
4782  off->setSelection( sel ) ;
4783  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4784  vector<float> spec = on->getSpectrum( index ) ;
4785  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4786  //vector<float> tsys = on->getTsysVec( index ) ;
4787  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4788  Vector<Float> tsys = tsysCol( index ) ;
4789  vector<float> sp( spec.size() ) ;
4790  // ALMA Calibration
4791  //
4792  // Ta* = Tsys * ( ON - OFF ) / OFF
4793  //
4794  // 2010/01/07 Takeshi Nakazato
4795  unsigned int tsyssize = tsys.nelements() ;
4796  unsigned int spsize = sp.size() ;
4797  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4798    float tscale = 0.0 ;
4799    if ( tsyssize == spsize )
4800      tscale = tsys[j] ;
4801    else
4802      tscale = tsys[0] ;
4803    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4804    sp[j] = v ;
4805  }
4806  sel.reset() ;
4807  off->unsetSelection() ;
4808
4809  return sp ;
4810}
4811
4812vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4813                                              CountedPtr<Scantable>& ref,
4814                                              CountedPtr<Scantable>& sky,
4815                                              CountedPtr<Scantable>& hot,
4816                                              CountedPtr<Scantable>& cold,
4817                                              int index )
4818{
4819  (void) cold; //currently unused
4820  string reftime = sig->getTime( index ) ;
4821  vector<int> ii( 1, sig->getIF( index ) ) ;
4822  vector<int> ib( 1, sig->getBeam( index ) ) ;
4823  vector<int> ip( 1, sig->getPol( index ) ) ;
4824  vector<int> ic( 1, sig->getScan( index ) ) ;
4825  STSelector sel = STSelector() ;
4826  sel.setIFs( ii ) ;
4827  sel.setBeams( ib ) ;
4828  sel.setPolarizations( ip ) ;
4829  sky->setSelection( sel ) ;
4830  hot->setSelection( sel ) ;
4831  //cold->setSelection( sel ) ;
4832  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4833  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4834  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4835  vector<float> spref = ref->getSpectrum( index ) ;
4836  vector<float> spsig = sig->getSpectrum( index ) ;
4837  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4838  vector<float> sp( tcal.size() ) ;
4839  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4840    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4841    sp[j] = v ;
4842  }
4843  sel.reset() ;
4844  sky->unsetSelection() ;
4845  hot->unsetSelection() ;
4846  //cold->unsetSelection() ;
4847
4848  return sp ;
4849}
4850
4851vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4852                                              CountedPtr<Scantable>& ref,
4853                                              vector< CountedPtr<Scantable> >& sky,
4854                                              vector< CountedPtr<Scantable> >& hot,
4855                                              vector< CountedPtr<Scantable> >& cold,
4856                                              int index )
4857{
4858  (void) cold; //currently unused
4859  string reftime = sig->getTime( index ) ;
4860  vector<int> ii( 1, sig->getIF( index ) ) ;
4861  vector<int> ib( 1, sig->getBeam( index ) ) ;
4862  vector<int> ip( 1, sig->getPol( index ) ) ;
4863  vector<int> ic( 1, sig->getScan( index ) ) ;
4864  STSelector sel = STSelector() ;
4865  sel.setIFs( ii ) ;
4866  sel.setBeams( ib ) ;
4867  sel.setPolarizations( ip ) ;
4868  sky[0]->setSelection( sel ) ;
4869  hot[0]->setSelection( sel ) ;
4870  //cold[0]->setSelection( sel ) ;
4871  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4872  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4873  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4874  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4875  sel.reset() ;
4876  ii[0] = ref->getIF( index ) ;
4877  sel.setIFs( ii ) ;
4878  sel.setBeams( ib ) ;
4879  sel.setPolarizations( ip ) ;
4880  sky[1]->setSelection( sel ) ;
4881  hot[1]->setSelection( sel ) ;
4882  //cold[1]->setSelection( sel ) ;
4883  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4884  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4885  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4886  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4887  vector<float> spref = ref->getSpectrum( index ) ;
4888  vector<float> spsig = sig->getSpectrum( index ) ;
4889  vector<float> sp( tcals.size() ) ;
4890  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4891    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4892    sp[j] = v ;
4893  }
4894  sel.reset() ;
4895  sky[0]->unsetSelection() ;
4896  hot[0]->unsetSelection() ;
4897  //cold[0]->unsetSelection() ;
4898  sky[1]->unsetSelection() ;
4899  hot[1]->unsetSelection() ;
4900  //cold[1]->unsetSelection() ;
4901
4902  return sp ;
4903}
Note: See TracBrowser for help on using the repository browser.