| 1 | //#---------------------------------------------------------------------------
|
|---|
| 2 | //# Fitter.cc: A Fitter class for spectra
|
|---|
| 3 | //#--------------------------------------------------------------------------
|
|---|
| 4 | //# Copyright (C) 2004
|
|---|
| 5 | //# ATNF
|
|---|
| 6 | //#
|
|---|
| 7 | //# This program is free software; you can redistribute it and/or modify it
|
|---|
| 8 | //# under the terms of the GNU General Public License as published by the Free
|
|---|
| 9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
|---|
| 10 | //# any later version.
|
|---|
| 11 | //#
|
|---|
| 12 | //# This program is distributed in the hope that it will be useful, but
|
|---|
| 13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|---|
| 15 | //# Public License for more details.
|
|---|
| 16 | //#
|
|---|
| 17 | //# You should have received a copy of the GNU General Public License along
|
|---|
| 18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
|---|
| 19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
|---|
| 20 | //#
|
|---|
| 21 | //# Correspondence concerning this software should be addressed as follows:
|
|---|
| 22 | //# Internet email: Malte.Marquarding@csiro.au
|
|---|
| 23 | //# Postal address: Malte Marquarding,
|
|---|
| 24 | //# Australia Telescope National Facility,
|
|---|
| 25 | //# P.O. Box 76,
|
|---|
| 26 | //# Epping, NSW, 2121,
|
|---|
| 27 | //# AUSTRALIA
|
|---|
| 28 | //#
|
|---|
| 29 | //# $Id: STFitter.cpp 1924 2010-09-14 02:17:16Z MalteMarquarding $
|
|---|
| 30 | //#---------------------------------------------------------------------------
|
|---|
| 31 | #include <casa/aips.h>
|
|---|
| 32 | #include <casa/Arrays/ArrayMath.h>
|
|---|
| 33 | #include <casa/Arrays/ArrayLogical.h>
|
|---|
| 34 | #include <casa/Logging/LogIO.h>
|
|---|
| 35 | #include <scimath/Fitting.h>
|
|---|
| 36 | #include <scimath/Fitting/LinearFit.h>
|
|---|
| 37 | #include <scimath/Functionals/CompiledFunction.h>
|
|---|
| 38 | #include <scimath/Functionals/CompoundFunction.h>
|
|---|
| 39 | #include <scimath/Functionals/Gaussian1D.h>
|
|---|
| 40 | #include "Lorentzian1D.h"
|
|---|
| 41 | #include <scimath/Functionals/Polynomial.h>
|
|---|
| 42 | #include <scimath/Mathematics/AutoDiff.h>
|
|---|
| 43 | #include <scimath/Mathematics/AutoDiffMath.h>
|
|---|
| 44 | #include <scimath/Fitting/NonLinearFitLM.h>
|
|---|
| 45 | #include <components/SpectralComponents/SpectralEstimate.h>
|
|---|
| 46 |
|
|---|
| 47 | #include "STFitter.h"
|
|---|
| 48 |
|
|---|
| 49 | using namespace asap;
|
|---|
| 50 | using namespace casa;
|
|---|
| 51 |
|
|---|
| 52 | Fitter::Fitter()
|
|---|
| 53 | {
|
|---|
| 54 | }
|
|---|
| 55 |
|
|---|
| 56 | Fitter::~Fitter()
|
|---|
| 57 | {
|
|---|
| 58 | reset();
|
|---|
| 59 | }
|
|---|
| 60 |
|
|---|
| 61 | void Fitter::clear()
|
|---|
| 62 | {
|
|---|
| 63 | for (uInt i=0;i< funcs_.nelements();++i) {
|
|---|
| 64 | delete funcs_[i]; funcs_[i] = 0;
|
|---|
| 65 | }
|
|---|
| 66 | funcs_.resize(0,True);
|
|---|
| 67 | parameters_.resize();
|
|---|
| 68 | fixedpar_.resize();
|
|---|
| 69 | error_.resize();
|
|---|
| 70 | thefit_.resize();
|
|---|
| 71 | estimate_.resize();
|
|---|
| 72 | chisquared_ = 0.0;
|
|---|
| 73 | }
|
|---|
| 74 |
|
|---|
| 75 | void Fitter::reset()
|
|---|
| 76 | {
|
|---|
| 77 | clear();
|
|---|
| 78 | x_.resize();
|
|---|
| 79 | y_.resize();
|
|---|
| 80 | m_.resize();
|
|---|
| 81 | }
|
|---|
| 82 |
|
|---|
| 83 |
|
|---|
| 84 | bool Fitter::computeEstimate() {
|
|---|
| 85 | if (x_.nelements() == 0 || y_.nelements() == 0)
|
|---|
| 86 | throw (AipsError("No x/y data specified."));
|
|---|
| 87 |
|
|---|
| 88 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) == 0)
|
|---|
| 89 | return false;
|
|---|
| 90 | uInt n = funcs_.nelements();
|
|---|
| 91 | SpectralEstimate estimator(n);
|
|---|
| 92 | estimator.setQ(5);
|
|---|
| 93 | Int mn,mx;
|
|---|
| 94 | mn = 0;
|
|---|
| 95 | mx = m_.nelements()-1;
|
|---|
| 96 | for (uInt i=0; i<m_.nelements();++i) {
|
|---|
| 97 | if (m_[i]) {
|
|---|
| 98 | mn = i;
|
|---|
| 99 | break;
|
|---|
| 100 | }
|
|---|
| 101 | }
|
|---|
| 102 | for (uInt j=m_.nelements()-1; j>=0;--j) {
|
|---|
| 103 | if (m_[j]) {
|
|---|
| 104 | mx = j;
|
|---|
| 105 | break;
|
|---|
| 106 | }
|
|---|
| 107 | }
|
|---|
| 108 | //mn = 0+x_.nelements()/10;
|
|---|
| 109 | //mx = x_.nelements()-x_.nelements()/10;
|
|---|
| 110 | estimator.setRegion(mn,mx);
|
|---|
| 111 | //estimator.setWindowing(True);
|
|---|
| 112 | SpectralList listGauss = estimator.estimate(x_, y_);
|
|---|
| 113 | parameters_.resize(n*3);
|
|---|
| 114 | Gaussian1D<Float>* g = 0;
|
|---|
| 115 | for (uInt i=0; i<n;i++) {
|
|---|
| 116 | g = dynamic_cast<Gaussian1D<Float>* >(funcs_[i]);
|
|---|
| 117 | if (g) {
|
|---|
| 118 | (*g)[0] = listGauss[i].getAmpl();
|
|---|
| 119 | (*g)[1] = listGauss[i].getCenter();
|
|---|
| 120 | (*g)[2] = listGauss[i].getFWHM();
|
|---|
| 121 | }
|
|---|
| 122 | }
|
|---|
| 123 | estimate_.resize();
|
|---|
| 124 | listGauss.evaluate(estimate_,x_);
|
|---|
| 125 | return true;
|
|---|
| 126 | }
|
|---|
| 127 |
|
|---|
| 128 | std::vector<float> Fitter::getEstimate() const
|
|---|
| 129 | {
|
|---|
| 130 | if (estimate_.nelements() == 0)
|
|---|
| 131 | throw (AipsError("No estimate set."));
|
|---|
| 132 | std::vector<float> stlout;
|
|---|
| 133 | estimate_.tovector(stlout);
|
|---|
| 134 | return stlout;
|
|---|
| 135 | }
|
|---|
| 136 |
|
|---|
| 137 |
|
|---|
| 138 | bool Fitter::setExpression(const std::string& expr, int ncomp)
|
|---|
| 139 | {
|
|---|
| 140 | clear();
|
|---|
| 141 | if (expr == "gauss") {
|
|---|
| 142 | if (ncomp < 1) throw (AipsError("Need at least one gaussian to fit."));
|
|---|
| 143 | funcs_.resize(ncomp);
|
|---|
| 144 | funcnames_.clear();
|
|---|
| 145 | funccomponents_.clear();
|
|---|
| 146 | for (Int k=0; k<ncomp; ++k) {
|
|---|
| 147 | funcs_[k] = new Gaussian1D<Float>();
|
|---|
| 148 | funcnames_.push_back(expr);
|
|---|
| 149 | funccomponents_.push_back(3);
|
|---|
| 150 | }
|
|---|
| 151 | } else if (expr == "poly") {
|
|---|
| 152 | funcs_.resize(1);
|
|---|
| 153 | funcnames_.clear();
|
|---|
| 154 | funccomponents_.clear();
|
|---|
| 155 | funcs_[0] = new Polynomial<Float>(ncomp);
|
|---|
| 156 | funcnames_.push_back(expr);
|
|---|
| 157 | funccomponents_.push_back(ncomp);
|
|---|
| 158 | } else if (expr == "lorentz") {
|
|---|
| 159 | if (ncomp < 1) throw (AipsError("Need at least one lorentzian to fit."));
|
|---|
| 160 | funcs_.resize(ncomp);
|
|---|
| 161 | funcnames_.clear();
|
|---|
| 162 | funccomponents_.clear();
|
|---|
| 163 | for (Int k=0; k<ncomp; ++k) {
|
|---|
| 164 | funcs_[k] = new Lorentzian1D<Float>();
|
|---|
| 165 | funcnames_.push_back(expr);
|
|---|
| 166 | funccomponents_.push_back(3);
|
|---|
| 167 | }
|
|---|
| 168 | } else {
|
|---|
| 169 | //cerr << " compiled functions not yet implemented" << endl;
|
|---|
| 170 | LogIO os( LogOrigin( "Fitter", "setExpression()", WHERE ) ) ;
|
|---|
| 171 | os << LogIO::WARN << " compiled functions not yet implemented" << LogIO::POST;
|
|---|
| 172 | //funcs_.resize(1);
|
|---|
| 173 | //funcs_[0] = new CompiledFunction<Float>();
|
|---|
| 174 | //funcs_[0]->setFunction(String(expr));
|
|---|
| 175 | return false;
|
|---|
| 176 | }
|
|---|
| 177 | return true;
|
|---|
| 178 | }
|
|---|
| 179 |
|
|---|
| 180 | bool Fitter::setData(std::vector<float> absc, std::vector<float> spec,
|
|---|
| 181 | std::vector<bool> mask)
|
|---|
| 182 | {
|
|---|
| 183 | x_.resize();
|
|---|
| 184 | y_.resize();
|
|---|
| 185 | m_.resize();
|
|---|
| 186 | // convert std::vector to casa Vector
|
|---|
| 187 | Vector<Float> tmpx(absc);
|
|---|
| 188 | Vector<Float> tmpy(spec);
|
|---|
| 189 | Vector<Bool> tmpm(mask);
|
|---|
| 190 | AlwaysAssert(tmpx.nelements() == tmpy.nelements(), AipsError);
|
|---|
| 191 | x_ = tmpx;
|
|---|
| 192 | y_ = tmpy;
|
|---|
| 193 | m_ = tmpm;
|
|---|
| 194 | return true;
|
|---|
| 195 | }
|
|---|
| 196 |
|
|---|
| 197 | std::vector<float> Fitter::getResidual() const
|
|---|
| 198 | {
|
|---|
| 199 | if (residual_.nelements() == 0)
|
|---|
| 200 | throw (AipsError("Function not yet fitted."));
|
|---|
| 201 | std::vector<float> stlout;
|
|---|
| 202 | residual_.tovector(stlout);
|
|---|
| 203 | return stlout;
|
|---|
| 204 | }
|
|---|
| 205 |
|
|---|
| 206 | std::vector<float> Fitter::getFit() const
|
|---|
| 207 | {
|
|---|
| 208 | Vector<Float> out = thefit_;
|
|---|
| 209 | std::vector<float> stlout;
|
|---|
| 210 | out.tovector(stlout);
|
|---|
| 211 | return stlout;
|
|---|
| 212 |
|
|---|
| 213 | }
|
|---|
| 214 |
|
|---|
| 215 | std::vector<float> Fitter::getErrors() const
|
|---|
| 216 | {
|
|---|
| 217 | Vector<Float> out = error_;
|
|---|
| 218 | std::vector<float> stlout;
|
|---|
| 219 | out.tovector(stlout);
|
|---|
| 220 | return stlout;
|
|---|
| 221 | }
|
|---|
| 222 |
|
|---|
| 223 | bool Fitter::setParameters(std::vector<float> params)
|
|---|
| 224 | {
|
|---|
| 225 | Vector<Float> tmppar(params);
|
|---|
| 226 | if (funcs_.nelements() == 0)
|
|---|
| 227 | throw (AipsError("Function not yet set."));
|
|---|
| 228 | if (parameters_.nelements() > 0 && tmppar.nelements() != parameters_.nelements())
|
|---|
| 229 | throw (AipsError("Number of parameters inconsistent with function."));
|
|---|
| 230 | if (parameters_.nelements() == 0) {
|
|---|
| 231 | parameters_.resize(tmppar.nelements());
|
|---|
| 232 | if (tmppar.nelements() != fixedpar_.nelements()) {
|
|---|
| 233 | fixedpar_.resize(tmppar.nelements());
|
|---|
| 234 | fixedpar_ = False;
|
|---|
| 235 | }
|
|---|
| 236 | }
|
|---|
| 237 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
|---|
| 238 | uInt count = 0;
|
|---|
| 239 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
|---|
| 240 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
|---|
| 241 | (funcs_[j]->parameters())[i] = tmppar[count];
|
|---|
| 242 | parameters_[count] = tmppar[count];
|
|---|
| 243 | ++count;
|
|---|
| 244 | }
|
|---|
| 245 | }
|
|---|
| 246 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
|---|
| 247 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
|---|
| 248 | parameters_[i] = tmppar[i];
|
|---|
| 249 | (funcs_[0]->parameters())[i] = tmppar[i];
|
|---|
| 250 | }
|
|---|
| 251 | } else if (dynamic_cast<Lorentzian1D<Float>* >(funcs_[0]) != 0) {
|
|---|
| 252 | uInt count = 0;
|
|---|
| 253 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
|---|
| 254 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
|---|
| 255 | (funcs_[j]->parameters())[i] = tmppar[count];
|
|---|
| 256 | parameters_[count] = tmppar[count];
|
|---|
| 257 | ++count;
|
|---|
| 258 | }
|
|---|
| 259 | }
|
|---|
| 260 | }
|
|---|
| 261 | // reset
|
|---|
| 262 | if (params.size() == 0) {
|
|---|
| 263 | parameters_.resize();
|
|---|
| 264 | fixedpar_.resize();
|
|---|
| 265 | }
|
|---|
| 266 | return true;
|
|---|
| 267 | }
|
|---|
| 268 |
|
|---|
| 269 | bool Fitter::setFixedParameters(std::vector<bool> fixed)
|
|---|
| 270 | {
|
|---|
| 271 | if (funcs_.nelements() == 0)
|
|---|
| 272 | throw (AipsError("Function not yet set."));
|
|---|
| 273 | if (fixedpar_.nelements() > 0 && fixed.size() != fixedpar_.nelements())
|
|---|
| 274 | throw (AipsError("Number of mask elements inconsistent with function."));
|
|---|
| 275 | if (fixedpar_.nelements() == 0) {
|
|---|
| 276 | fixedpar_.resize(parameters_.nelements());
|
|---|
| 277 | fixedpar_ = False;
|
|---|
| 278 | }
|
|---|
| 279 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
|---|
| 280 | uInt count = 0;
|
|---|
| 281 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
|---|
| 282 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
|---|
| 283 | funcs_[j]->mask(i) = !fixed[count];
|
|---|
| 284 | fixedpar_[count] = fixed[count];
|
|---|
| 285 | ++count;
|
|---|
| 286 | }
|
|---|
| 287 | }
|
|---|
| 288 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
|---|
| 289 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
|---|
| 290 | fixedpar_[i] = fixed[i];
|
|---|
| 291 | funcs_[0]->mask(i) = !fixed[i];
|
|---|
| 292 | }
|
|---|
| 293 | } else if (dynamic_cast<Lorentzian1D<Float>* >(funcs_[0]) != 0) {
|
|---|
| 294 | uInt count = 0;
|
|---|
| 295 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
|---|
| 296 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
|---|
| 297 | funcs_[j]->mask(i) = !fixed[count];
|
|---|
| 298 | fixedpar_[count] = fixed[count];
|
|---|
| 299 | ++count;
|
|---|
| 300 | }
|
|---|
| 301 | }
|
|---|
| 302 | }
|
|---|
| 303 | return true;
|
|---|
| 304 | }
|
|---|
| 305 |
|
|---|
| 306 | std::vector<float> Fitter::getParameters() const {
|
|---|
| 307 | Vector<Float> out = parameters_;
|
|---|
| 308 | std::vector<float> stlout;
|
|---|
| 309 | out.tovector(stlout);
|
|---|
| 310 | return stlout;
|
|---|
| 311 | }
|
|---|
| 312 |
|
|---|
| 313 | std::vector<bool> Fitter::getFixedParameters() const {
|
|---|
| 314 | Vector<Bool> out(parameters_.nelements());
|
|---|
| 315 | if (fixedpar_.nelements() == 0) {
|
|---|
| 316 | return std::vector<bool>();
|
|---|
| 317 | //throw (AipsError("No parameter mask set."));
|
|---|
| 318 | } else {
|
|---|
| 319 | out = fixedpar_;
|
|---|
| 320 | }
|
|---|
| 321 | std::vector<bool> stlout;
|
|---|
| 322 | out.tovector(stlout);
|
|---|
| 323 | return stlout;
|
|---|
| 324 | }
|
|---|
| 325 |
|
|---|
| 326 | float Fitter::getChisquared() const {
|
|---|
| 327 | return chisquared_;
|
|---|
| 328 | }
|
|---|
| 329 |
|
|---|
| 330 | bool Fitter::fit() {
|
|---|
| 331 | NonLinearFitLM<Float> fitter;
|
|---|
| 332 | CompoundFunction<Float> func;
|
|---|
| 333 |
|
|---|
| 334 | uInt n = funcs_.nelements();
|
|---|
| 335 | for (uInt i=0; i<n; ++i) {
|
|---|
| 336 | func.addFunction(*funcs_[i]);
|
|---|
| 337 | }
|
|---|
| 338 |
|
|---|
| 339 | fitter.setFunction(func);
|
|---|
| 340 | fitter.setMaxIter(50+n*10);
|
|---|
| 341 | // Convergence criterium
|
|---|
| 342 | fitter.setCriteria(0.001);
|
|---|
| 343 |
|
|---|
| 344 | // Fit
|
|---|
| 345 | Vector<Float> sigma(x_.nelements());
|
|---|
| 346 | sigma = 1.0;
|
|---|
| 347 |
|
|---|
| 348 | parameters_.resize();
|
|---|
| 349 | parameters_ = fitter.fit(x_, y_, sigma, &m_);
|
|---|
| 350 | if ( !fitter.converged() ) {
|
|---|
| 351 | return false;
|
|---|
| 352 | }
|
|---|
| 353 | std::vector<float> ps;
|
|---|
| 354 | parameters_.tovector(ps);
|
|---|
| 355 | setParameters(ps);
|
|---|
| 356 |
|
|---|
| 357 | error_.resize();
|
|---|
| 358 | error_ = fitter.errors();
|
|---|
| 359 |
|
|---|
| 360 | chisquared_ = fitter.getChi2();
|
|---|
| 361 |
|
|---|
| 362 | residual_.resize();
|
|---|
| 363 | residual_ = y_;
|
|---|
| 364 | fitter.residual(residual_,x_);
|
|---|
| 365 | // use fitter.residual(model=True) to get the model
|
|---|
| 366 | thefit_.resize(x_.nelements());
|
|---|
| 367 | fitter.residual(thefit_,x_,True);
|
|---|
| 368 | return true;
|
|---|
| 369 | }
|
|---|
| 370 |
|
|---|
| 371 | bool Fitter::lfit() {
|
|---|
| 372 | LinearFit<Float> fitter;
|
|---|
| 373 | CompoundFunction<Float> func;
|
|---|
| 374 |
|
|---|
| 375 | uInt n = funcs_.nelements();
|
|---|
| 376 | for (uInt i=0; i<n; ++i) {
|
|---|
| 377 | func.addFunction(*funcs_[i]);
|
|---|
| 378 | }
|
|---|
| 379 |
|
|---|
| 380 | fitter.setFunction(func);
|
|---|
| 381 | //fitter.setMaxIter(50+n*10);
|
|---|
| 382 | // Convergence criterium
|
|---|
| 383 | //fitter.setCriteria(0.001);
|
|---|
| 384 |
|
|---|
| 385 | // Fit
|
|---|
| 386 | Vector<Float> sigma(x_.nelements());
|
|---|
| 387 | sigma = 1.0;
|
|---|
| 388 |
|
|---|
| 389 | parameters_.resize();
|
|---|
| 390 | parameters_ = fitter.fit(x_, y_, sigma, &m_);
|
|---|
| 391 | std::vector<float> ps;
|
|---|
| 392 | parameters_.tovector(ps);
|
|---|
| 393 | setParameters(ps);
|
|---|
| 394 |
|
|---|
| 395 | error_.resize();
|
|---|
| 396 | error_ = fitter.errors();
|
|---|
| 397 |
|
|---|
| 398 | chisquared_ = fitter.getChi2();
|
|---|
| 399 |
|
|---|
| 400 | residual_.resize();
|
|---|
| 401 | residual_ = y_;
|
|---|
| 402 | fitter.residual(residual_,x_);
|
|---|
| 403 | // use fitter.residual(model=True) to get the model
|
|---|
| 404 | thefit_.resize(x_.nelements());
|
|---|
| 405 | fitter.residual(thefit_,x_,True);
|
|---|
| 406 | return true;
|
|---|
| 407 | }
|
|---|
| 408 |
|
|---|
| 409 | std::vector<float> Fitter::evaluate(int whichComp) const
|
|---|
| 410 | {
|
|---|
| 411 | std::vector<float> stlout;
|
|---|
| 412 | uInt idx = uInt(whichComp);
|
|---|
| 413 | Float y;
|
|---|
| 414 | if ( idx < funcs_.nelements() ) {
|
|---|
| 415 | for (uInt i=0; i<x_.nelements(); ++i) {
|
|---|
| 416 | y = (*funcs_[idx])(x_[i]);
|
|---|
| 417 | stlout.push_back(float(y));
|
|---|
| 418 | }
|
|---|
| 419 | }
|
|---|
| 420 | return stlout;
|
|---|
| 421 | }
|
|---|
| 422 |
|
|---|
| 423 | STFitEntry Fitter::getFitEntry() const
|
|---|
| 424 | {
|
|---|
| 425 | STFitEntry fit;
|
|---|
| 426 | fit.setParameters(getParameters());
|
|---|
| 427 | fit.setErrors(getErrors());
|
|---|
| 428 | fit.setComponents(funccomponents_);
|
|---|
| 429 | fit.setFunctions(funcnames_);
|
|---|
| 430 | fit.setParmasks(getFixedParameters());
|
|---|
| 431 | return fit;
|
|---|
| 432 | }
|
|---|