source: branches/parallel/src/STMath.cpp @ 2076

Last change on this file since 2076 was 2014, checked in by ShinnosukeKawakami, 13 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s): STMath.cpp

Description: calsig and calref were to be parallelized


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 166.2 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <casa/iomanip.h>
14#include <casa/Exceptions/Error.h>
15#include <casa/Containers/Block.h>
16#include <casa/BasicSL/String.h>
17#include <casa/Arrays/MaskArrLogi.h>
18#include <casa/Arrays/MaskArrMath.h>
19#include <casa/Arrays/ArrayLogical.h>
20#include <casa/Arrays/ArrayMath.h>
21#include <casa/Arrays/Slice.h>
22#include <casa/Arrays/Slicer.h>
23#include <casa/Containers/RecordField.h>
24#include <tables/Tables/TableRow.h>
25#include <tables/Tables/TableVector.h>
26#include <tables/Tables/TabVecMath.h>
27#include <tables/Tables/ExprNode.h>
28#include <tables/Tables/TableRecord.h>
29#include <tables/Tables/TableParse.h>
30#include <tables/Tables/ReadAsciiTable.h>
31#include <tables/Tables/TableIter.h>
32#include <tables/Tables/TableCopy.h>
33#include <scimath/Mathematics/FFTServer.h>
34
35#include <lattices/Lattices/LatticeUtilities.h>
36
37#include <coordinates/Coordinates/SpectralCoordinate.h>
38#include <coordinates/Coordinates/CoordinateSystem.h>
39#include <coordinates/Coordinates/CoordinateUtil.h>
40#include <coordinates/Coordinates/FrequencyAligner.h>
41
42#include <scimath/Mathematics/VectorKernel.h>
43#include <scimath/Mathematics/Convolver.h>
44#include <scimath/Functionals/Polynomial.h>
45
46#include <atnf/PKSIO/SrcType.h>
47
48#include <casa/Logging/LogIO.h>
49#include <sstream>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STSelector.h"
55
56#include "STMath.h"
57using namespace casa;
58
59using namespace asap;
60
61// tolerance for direction comparison (rad)
62#define TOL_OTF    1.0e-15
63#define TOL_POINT  2.9088821e-4  // 1 arcmin
64
65STMath::STMath(bool insitu) :
66  insitu_(insitu)
67{
68}
69
70
71STMath::~STMath()
72{
73}
74
75CountedPtr<Scantable>
76STMath::average( const std::vector<CountedPtr<Scantable> >& in,
77                 const std::vector<bool>& mask,
78                 const std::string& weight,
79                 const std::string& avmode)
80{
81  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
82  if ( avmode == "SCAN" && in.size() != 1 )
83    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
84                    "Use merge first."));
85  WeightType wtype = stringToWeight(weight);
86
87  // check if OTF observation
88  String obstype = in[0]->getHeader().obstype ;
89  Double tol = 0.0 ;
90  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
91    tol = TOL_OTF ;
92  }
93  else {
94    tol = TOL_POINT ;
95  }
96
97  // output
98  // clone as this is non insitu
99  bool insitu = insitu_;
100  setInsitu(false);
101  CountedPtr< Scantable > out = getScantable(in[0], true);
102  setInsitu(insitu);
103  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
104  ++stit;
105  while ( stit != in.end() ) {
106    out->appendToHistoryTable((*stit)->history());
107    ++stit;
108  }
109
110  Table& tout = out->table();
111
112  /// @todo check if all scantables are conformant
113
114  ArrayColumn<Float> specColOut(tout,"SPECTRA");
115  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
116  ArrayColumn<Float> tsysColOut(tout,"TSYS");
117  ScalarColumn<Double> mjdColOut(tout,"TIME");
118  ScalarColumn<Double> intColOut(tout,"INTERVAL");
119  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
120  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
121
122  // set up the output table rows. These are based on the structure of the
123  // FIRST scantable in the vector
124  const Table& baset = in[0]->table();
125
126  Block<String> cols(3);
127  cols[0] = String("BEAMNO");
128  cols[1] = String("IFNO");
129  cols[2] = String("POLNO");
130  if ( avmode == "SOURCE" ) {
131    cols.resize(4);
132    cols[3] = String("SRCNAME");
133  }
134  if ( avmode == "SCAN"  && in.size() == 1) {
135    //cols.resize(4);
136    //cols[3] = String("SCANNO");
137    cols.resize(5);
138    cols[3] = String("SRCNAME");
139    cols[4] = String("SCANNO");
140  }
141  uInt outrowCount = 0;
142  TableIterator iter(baset, cols);
143//   int count = 0 ;
144  while (!iter.pastEnd()) {
145    Table subt = iter.table();
146//     // copy the first row of this selection into the new table
147//     tout.addRow();
148//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
149//     // re-index to 0
150//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
151//       scanColOut.put(outrowCount, uInt(0));
152//     }
153//     ++outrowCount;
154    MDirection::ScalarColumn dircol ;
155    dircol.attach( subt, "DIRECTION" ) ;
156    Int length = subt.nrow() ;
157    vector< Vector<Double> > dirs ;
158    vector<int> indexes ;
159    for ( Int i = 0 ; i < length ; i++ ) {
160      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
161      //os << << count++ << ": " ;
162      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
163      bool adddir = true ;
164      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
165        //if ( allTrue( t == dirs[j] ) ) {
166        Double dx = t[0] - dirs[j][0] ;
167        Double dy = t[1] - dirs[j][1] ;
168        Double dd = sqrt( dx * dx + dy * dy ) ;
169        //if ( allNearAbs( t, dirs[j], tol ) ) {
170        if ( dd <= tol ) {
171          adddir = false ;
172          break ;
173        }
174      }
175      if ( adddir ) {
176        dirs.push_back( t ) ;
177        indexes.push_back( i ) ;
178      }
179    }
180    uInt rowNum = dirs.size() ;
181    tout.addRow( rowNum ) ;
182    for ( uInt i = 0 ; i < rowNum ; i++ ) {
183      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
184      // re-index to 0
185      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
186        scanColOut.put(outrowCount+i, uInt(0));
187      }       
188    }
189    outrowCount += rowNum ;
190    ++iter;
191  }
192  RowAccumulator acc(wtype);
193  Vector<Bool> cmask(mask);
194  acc.setUserMask(cmask);
195  ROTableRow row(tout);
196  ROArrayColumn<Float> specCol, tsysCol;
197  ROArrayColumn<uChar> flagCol;
198  ROScalarColumn<Double> mjdCol, intCol;
199  ROScalarColumn<Int> scanIDCol;
200
201  Vector<uInt> rowstodelete;
202
203  for (uInt i=0; i < tout.nrow(); ++i) {
204    for ( int j=0; j < int(in.size()); ++j ) {
205      const Table& tin = in[j]->table();
206      const TableRecord& rec = row.get(i);
207      ROScalarColumn<Double> tmp(tin, "TIME");
208      Double td;tmp.get(0,td);
209      Table basesubt = tin(tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
210                       && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
211                       && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
212      Table subt;
213      if ( avmode == "SOURCE") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME") );
215      } else if (avmode == "SCAN") {
216        //subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
217        subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO"))
218                         && basesubt.col("SRCNAME") == rec.asString("SRCNAME") );
219      } else {
220        subt = basesubt;
221      }
222
223      vector<uInt> removeRows ;
224      uInt nrsubt = subt.nrow() ;
225      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
226        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
227        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
228        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
229        double dx = x0[0] - x1[0] ;
230        double dy = x0[0] - x1[0] ;
231        Double dd = sqrt( dx * dx + dy * dy ) ;
232        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
233        if ( dd > tol ) {
234          removeRows.push_back( irow ) ;
235        }
236      }
237      if ( removeRows.size() != 0 ) {
238        subt.removeRow( removeRows ) ;
239      }
240     
241      if ( nrsubt == removeRows.size() )
242        throw(AipsError("Averaging data is empty.")) ;
243
244      specCol.attach(subt,"SPECTRA");
245      flagCol.attach(subt,"FLAGTRA");
246      tsysCol.attach(subt,"TSYS");
247      intCol.attach(subt,"INTERVAL");
248      mjdCol.attach(subt,"TIME");
249      Vector<Float> spec,tsys;
250      Vector<uChar> flag;
251      Double inter,time;
252      for (uInt k = 0; k < subt.nrow(); ++k ) {
253        flagCol.get(k, flag);
254        Vector<Bool> bflag(flag.shape());
255        convertArray(bflag, flag);
256        /*
257        if ( allEQ(bflag, True) ) {
258        continue;//don't accumulate
259        }
260        */
261        specCol.get(k, spec);
262        tsysCol.get(k, tsys);
263        intCol.get(k, inter);
264        mjdCol.get(k, time);
265        // spectrum has to be added last to enable weighting by the other values
266        acc.add(spec, !bflag, tsys, inter, time);
267      }
268    }
269    const Vector<Bool>& msk = acc.getMask();
270    if ( allEQ(msk, False) ) {
271      uint n = rowstodelete.nelements();
272      rowstodelete.resize(n+1, True);
273      rowstodelete[n] = i;
274      continue;
275    }
276    //write out
277    if (acc.state()) {
278      Vector<uChar> flg(msk.shape());
279      convertArray(flg, !msk);
280      flagColOut.put(i, flg);
281      specColOut.put(i, acc.getSpectrum());
282      tsysColOut.put(i, acc.getTsys());
283      intColOut.put(i, acc.getInterval());
284      mjdColOut.put(i, acc.getTime());
285      // we should only have one cycle now -> reset it to be 0
286      // frequency switched data has different CYCLENO for different IFNO
287      // which requires resetting this value
288      cycColOut.put(i, uInt(0));
289    } else {
290      ostringstream oss;
291      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
292      pushLog(String(oss));
293    }
294    acc.reset();
295  }
296  if (rowstodelete.nelements() > 0) {
297    //cout << rowstodelete << endl;
298    os << rowstodelete << LogIO::POST ;
299    tout.removeRow(rowstodelete);
300    if (tout.nrow() == 0) {
301      throw(AipsError("Can't average fully flagged data."));
302    }
303  }
304  return out;
305}
306
307CountedPtr< Scantable >
308  STMath::averageChannel( const CountedPtr < Scantable > & in,
309                          const std::string & mode,
310                          const std::string& avmode )
311{
312  // check if OTF observation
313  String obstype = in->getHeader().obstype ;
314  Double tol = 0.0 ;
315  if ( obstype.find( "OTF" ) != String::npos ) {
316    tol = TOL_OTF ;
317  }
318  else {
319    tol = TOL_POINT ;
320  }
321
322  // clone as this is non insitu
323  bool insitu = insitu_;
324  setInsitu(false);
325  CountedPtr< Scantable > out = getScantable(in, true);
326  setInsitu(insitu);
327  Table& tout = out->table();
328  ArrayColumn<Float> specColOut(tout,"SPECTRA");
329  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
330  ArrayColumn<Float> tsysColOut(tout,"TSYS");
331  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
332  ScalarColumn<Double> intColOut(tout, "INTERVAL");
333  Table tmp = in->table().sort("BEAMNO");
334  Block<String> cols(3);
335  cols[0] = String("BEAMNO");
336  cols[1] = String("IFNO");
337  cols[2] = String("POLNO");
338  if ( avmode == "SCAN") {
339    cols.resize(4);
340    cols[3] = String("SCANNO");
341  }
342  uInt outrowCount = 0;
343  uChar userflag = 1 << 7;
344  TableIterator iter(tmp, cols);
345  while (!iter.pastEnd()) {
346    Table subt = iter.table();
347    ROArrayColumn<Float> specCol, tsysCol;
348    ROArrayColumn<uChar> flagCol;
349    ROScalarColumn<Double> intCol(subt, "INTERVAL");
350    specCol.attach(subt,"SPECTRA");
351    flagCol.attach(subt,"FLAGTRA");
352    tsysCol.attach(subt,"TSYS");
353//     tout.addRow();
354//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
355//     if ( avmode != "SCAN") {
356//       scanColOut.put(outrowCount, uInt(0));
357//     }
358//     Vector<Float> tmp;
359//     specCol.get(0, tmp);
360//     uInt nchan = tmp.nelements();
361//     // have to do channel by channel here as MaskedArrMath
362//     // doesn't have partialMedians
363//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
364//     Vector<Float> outspec(nchan);
365//     Vector<uChar> outflag(nchan,0);
366//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
367//     for (uInt i=0; i<nchan; ++i) {
368//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
369//       MaskedArray<Float> ma = maskedArray(specs,flags);
370//       outspec[i] = median(ma);
371//       if ( allEQ(ma.getMask(), False) )
372//         outflag[i] = userflag;// flag data
373//     }
374//     outtsys[0] = median(tsysCol.getColumn());
375//     specColOut.put(outrowCount, outspec);
376//     flagColOut.put(outrowCount, outflag);
377//     tsysColOut.put(outrowCount, outtsys);
378//     Double intsum = sum(intCol.getColumn());
379//     intColOut.put(outrowCount, intsum);
380//     ++outrowCount;
381//     ++iter;
382    MDirection::ScalarColumn dircol ;
383    dircol.attach( subt, "DIRECTION" ) ;
384    Int length = subt.nrow() ;
385    vector< Vector<Double> > dirs ;
386    vector<int> indexes ;
387    for ( Int i = 0 ; i < length ; i++ ) {
388      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
389      bool adddir = true ;
390      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
391        //if ( allTrue( t == dirs[j] ) ) {
392        Double dx = t[0] - dirs[j][0] ;
393        Double dy = t[1] - dirs[j][1] ;
394        Double dd = sqrt( dx * dx + dy * dy ) ;
395        //if ( allNearAbs( t, dirs[j], tol ) ) {
396        if ( dd <= tol ) {
397          adddir = false ;
398          break ;
399        }
400      }
401      if ( adddir ) {
402        dirs.push_back( t ) ;
403        indexes.push_back( i ) ;
404      }
405    }
406    uInt rowNum = dirs.size() ;
407    tout.addRow( rowNum );
408    for ( uInt i = 0 ; i < rowNum ; i++ ) {
409      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
410      if ( avmode != "SCAN") {
411        //scanColOut.put(outrowCount+i, uInt(0));
412      }
413    }
414    MDirection::ScalarColumn dircolOut ;
415    dircolOut.attach( tout, "DIRECTION" ) ;
416    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
417      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
418      Vector<Float> tmp;
419      specCol.get(0, tmp);
420      uInt nchan = tmp.nelements();
421      // have to do channel by channel here as MaskedArrMath
422      // doesn't have partialMedians
423      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
424      // mask spectra for different DIRECTION
425      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
426        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
427        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
428        Double dx = t[0] - direction[0] ;
429        Double dy = t[1] - direction[1] ;
430        Double dd = sqrt( dx * dx + dy * dy ) ;
431        //if ( !allNearAbs( t, direction, tol ) ) {
432        if ( dd > tol ) {
433          flags[jrow] = userflag ;
434        }
435      }
436      Vector<Float> outspec(nchan);
437      Vector<uChar> outflag(nchan,0);
438      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
439      for (uInt i=0; i<nchan; ++i) {
440        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
441        MaskedArray<Float> ma = maskedArray(specs,flags);
442        outspec[i] = median(ma);
443        if ( allEQ(ma.getMask(), False) )
444          outflag[i] = userflag;// flag data
445      }
446      outtsys[0] = median(tsysCol.getColumn());
447      specColOut.put(outrowCount+irow, outspec);
448      flagColOut.put(outrowCount+irow, outflag);
449      tsysColOut.put(outrowCount+irow, outtsys);
450      Vector<Double> integ = intCol.getColumn() ;
451      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
452      Double intsum = sum(mi);
453      intColOut.put(outrowCount+irow, intsum);
454    }
455    outrowCount += rowNum ;
456    ++iter;
457  }
458  return out;
459}
460
461CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
462                                             bool droprows)
463{
464  if (insitu_) {
465    return in;
466  }
467  else {
468    // clone
469    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
470  }
471}
472
473CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
474                                              float val,
475                                              const std::string& mode,
476                                              bool tsys )
477{
478  CountedPtr< Scantable > out = getScantable(in, false);
479  Table& tab = out->table();
480  ArrayColumn<Float> specCol(tab,"SPECTRA");
481  ArrayColumn<Float> tsysCol(tab,"TSYS");
482  for (uInt i=0; i<tab.nrow(); ++i) {
483    Vector<Float> spec;
484    Vector<Float> ts;
485    specCol.get(i, spec);
486    tsysCol.get(i, ts);
487    if (mode == "MUL" || mode == "DIV") {
488      if (mode == "DIV") val = 1.0/val;
489      spec *= val;
490      specCol.put(i, spec);
491      if ( tsys ) {
492        ts *= val;
493        tsysCol.put(i, ts);
494      }
495    } else if ( mode == "ADD"  || mode == "SUB") {
496      if (mode == "SUB") val *= -1.0;
497      spec += val;
498      specCol.put(i, spec);
499      if ( tsys ) {
500        ts += val;
501        tsysCol.put(i, ts);
502      }
503    }
504  }
505  return out;
506}
507
508CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
509                                              const std::vector<float> val,
510                                              const std::string& mode,
511                                              const std::string& opmode,
512                                              bool tsys )
513{
514  CountedPtr< Scantable > out ;
515  if ( opmode == "channel" ) {
516    out = arrayOperateChannel( in, val, mode, tsys ) ;
517  }
518  else if ( opmode == "row" ) {
519    out = arrayOperateRow( in, val, mode, tsys ) ;
520  }
521  else {
522    throw( AipsError( "Unknown array operation mode." ) ) ;
523  }
524  return out ;
525}
526
527CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
528                                                     const std::vector<float> val,
529                                                     const std::string& mode,
530                                                     bool tsys )
531{
532  if ( val.size() == 1 ){
533    return unaryOperate( in, val[0], mode, tsys ) ;
534  }
535
536  // conformity of SPECTRA and TSYS
537  if ( tsys ) {
538    TableIterator titer(in->table(), "IFNO");
539    while ( !titer.pastEnd() ) {
540      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
541      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
542      Array<Float> spec = specCol.getColumn() ;
543      Array<Float> ts = tsysCol.getColumn() ;
544      if ( !spec.conform( ts ) ) {
545        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
546      }
547      titer.next() ;
548    }
549  }
550
551  // check if all spectra in the scantable have the same number of channel
552  vector<uInt> nchans;
553  vector<uInt> ifnos = in->getIFNos() ;
554  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
555    nchans.push_back( in->nchan( ifnos[i] ) ) ;
556  }
557  Vector<uInt> mchans( nchans ) ;
558  if ( anyNE( mchans, mchans[0] ) ) {
559    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
560  }
561
562  // check if vector size is equal to nchan
563  Vector<Float> fact( val ) ;
564  if ( fact.nelements() != mchans[0] ) {
565    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
566  }
567
568  // check divided by zero
569  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
570    throw( AipsError("Divided by zero is not recommended." ) ) ;
571  }
572
573  CountedPtr< Scantable > out = getScantable(in, false);
574  Table& tab = out->table();
575  ArrayColumn<Float> specCol(tab,"SPECTRA");
576  ArrayColumn<Float> tsysCol(tab,"TSYS");
577  for (uInt i=0; i<tab.nrow(); ++i) {
578    Vector<Float> spec;
579    Vector<Float> ts;
580    specCol.get(i, spec);
581    tsysCol.get(i, ts);
582    if (mode == "MUL" || mode == "DIV") {
583      if (mode == "DIV") fact = (float)1.0 / fact;
584      spec *= fact;
585      specCol.put(i, spec);
586      if ( tsys ) {
587        ts *= fact;
588        tsysCol.put(i, ts);
589      }
590    } else if ( mode == "ADD"  || mode == "SUB") {
591      if (mode == "SUB") fact *= (float)-1.0 ;
592      spec += fact;
593      specCol.put(i, spec);
594      if ( tsys ) {
595        ts += fact;
596        tsysCol.put(i, ts);
597      }
598    }
599  }
600  return out;
601}
602
603CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
604                                                 const std::vector<float> val,
605                                                 const std::string& mode,
606                                                 bool tsys )
607{
608  if ( val.size() == 1 ) {
609    return unaryOperate( in, val[0], mode, tsys ) ;
610  }
611
612  // conformity of SPECTRA and TSYS
613  if ( tsys ) {
614    TableIterator titer(in->table(), "IFNO");
615    while ( !titer.pastEnd() ) {
616      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
617      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
618      Array<Float> spec = specCol.getColumn() ;
619      Array<Float> ts = tsysCol.getColumn() ;
620      if ( !spec.conform( ts ) ) {
621        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
622      }
623      titer.next() ;
624    }
625  }
626
627  // check if vector size is equal to nrow
628  Vector<Float> fact( val ) ;
629  if ( fact.nelements() != in->nrow() ) {
630    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
631  }
632
633  // check divided by zero
634  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
635    throw( AipsError("Divided by zero is not recommended." ) ) ;
636  }
637
638  CountedPtr< Scantable > out = getScantable(in, false);
639  Table& tab = out->table();
640  ArrayColumn<Float> specCol(tab,"SPECTRA");
641  ArrayColumn<Float> tsysCol(tab,"TSYS");
642  if (mode == "DIV") fact = (float)1.0 / fact;
643  if (mode == "SUB") fact *= (float)-1.0 ;
644  for (uInt i=0; i<tab.nrow(); ++i) {
645    Vector<Float> spec;
646    Vector<Float> ts;
647    specCol.get(i, spec);
648    tsysCol.get(i, ts);
649    if (mode == "MUL" || mode == "DIV") {
650      spec *= fact[i];
651      specCol.put(i, spec);
652      if ( tsys ) {
653        ts *= fact[i];
654        tsysCol.put(i, ts);
655      }
656    } else if ( mode == "ADD"  || mode == "SUB") {
657      spec += fact[i];
658      specCol.put(i, spec);
659      if ( tsys ) {
660        ts += fact[i];
661        tsysCol.put(i, ts);
662      }
663    }
664  }
665  return out;
666}
667
668CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
669                                                const std::vector< std::vector<float> > val,
670                                                const std::string& mode,
671                                                bool tsys )
672{
673  // conformity of SPECTRA and TSYS
674  if ( tsys ) {
675    TableIterator titer(in->table(), "IFNO");
676    while ( !titer.pastEnd() ) {
677      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
678      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
679      Array<Float> spec = specCol.getColumn() ;
680      Array<Float> ts = tsysCol.getColumn() ;
681      if ( !spec.conform( ts ) ) {
682        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
683      }
684      titer.next() ;
685    }
686  }
687
688  // some checks
689  vector<uInt> nchans;
690  for ( uInt i = 0 ; i < in->nrow() ; i++ ) {
691    nchans.push_back( (in->getSpectrum( i )).size() ) ;
692  }
693  //Vector<uInt> mchans( nchans ) ;
694  vector< Vector<Float> > facts ;
695  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
696    Vector<Float> tmp( val[i] ) ;
697    // check divided by zero
698    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
699      throw( AipsError("Divided by zero is not recommended." ) ) ;
700    }
701    // conformity check
702    if ( tmp.nelements() != nchans[i] ) {
703      stringstream ss ;
704      ss << "Row " << i << ": Vector size must be same as number of channel." ;
705      throw( AipsError( ss.str() ) ) ;
706    }
707    facts.push_back( tmp ) ;
708  }
709
710
711  CountedPtr< Scantable > out = getScantable(in, false);
712  Table& tab = out->table();
713  ArrayColumn<Float> specCol(tab,"SPECTRA");
714  ArrayColumn<Float> tsysCol(tab,"TSYS");
715  for (uInt i=0; i<tab.nrow(); ++i) {
716    Vector<Float> fact = facts[i] ;
717    Vector<Float> spec;
718    Vector<Float> ts;
719    specCol.get(i, spec);
720    tsysCol.get(i, ts);
721    if (mode == "MUL" || mode == "DIV") {
722      if (mode == "DIV") fact = (float)1.0 / fact;
723      spec *= fact;
724      specCol.put(i, spec);
725      if ( tsys ) {
726        ts *= fact;
727        tsysCol.put(i, ts);
728      }
729    } else if ( mode == "ADD"  || mode == "SUB") {
730      if (mode == "SUB") fact *= (float)-1.0 ;
731      spec += fact;
732      specCol.put(i, spec);
733      if ( tsys ) {
734        ts += fact;
735        tsysCol.put(i, ts);
736      }
737    }
738  }
739  return out;
740}
741
742CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
743                                            const CountedPtr<Scantable>& right,
744                                            const std::string& mode)
745{
746  bool insitu = insitu_;
747  if ( ! left->conformant(*right) ) {
748    throw(AipsError("'left' and 'right' scantables are not conformant."));
749  }
750  setInsitu(false);
751  CountedPtr< Scantable > out = getScantable(left, false);
752  setInsitu(insitu);
753  Table& tout = out->table();
754  Block<String> coln(5);
755  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
756  coln[3] = "IFNO";  coln[4] = "POLNO";
757  Table tmpl = tout.sort(coln);
758  Table tmpr = right->table().sort(coln);
759  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
760  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
761  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
762  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
763
764  for (uInt i=0; i<tout.nrow(); ++i) {
765    Vector<Float> lspecvec, rspecvec;
766    Vector<uChar> lflagvec, rflagvec;
767    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
768    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
769    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
770    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
771    if (mode == "ADD") {
772      mleft += mright;
773    } else if ( mode == "SUB") {
774      mleft -= mright;
775    } else if ( mode == "MUL") {
776      mleft *= mright;
777    } else if ( mode == "DIV") {
778      mleft /= mright;
779    } else {
780      throw(AipsError("Illegal binary operator"));
781    }
782    lspecCol.put(i, mleft.getArray());
783  }
784  return out;
785}
786
787
788
789MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
790                                        const Vector<uChar>& f)
791{
792  Vector<Bool> mask;
793  mask.resize(f.shape());
794  convertArray(mask, f);
795  return MaskedArray<Float>(s,!mask);
796}
797
798MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
799                                         const Vector<uChar>& f)
800{
801  Vector<Bool> mask;
802  mask.resize(f.shape());
803  convertArray(mask, f);
804  return MaskedArray<Double>(s,!mask);
805}
806
807Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
808{
809  const Vector<Bool>& m = ma.getMask();
810  Vector<uChar> flags(m.shape());
811  convertArray(flags, !m);
812  return flags;
813}
814
815CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
816                                              const std::string & mode,
817                                              bool preserve )
818{
819  /// @todo make other modes available
820  /// modes should be "nearest", "pair"
821  // make this operation non insitu
822  const Table& tin = in->table();
823  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
824  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
825  if ( offs.nrow() == 0 )
826    throw(AipsError("No 'off' scans present."));
827  // put all "on" scans into output table
828
829  bool insitu = insitu_;
830  setInsitu(false);
831  CountedPtr< Scantable > out = getScantable(in, true);
832  setInsitu(insitu);
833  Table& tout = out->table();
834
835  TableCopy::copyRows(tout, ons);
836  TableRow row(tout);
837  ROScalarColumn<Double> offtimeCol(offs, "TIME");
838  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
839  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
840  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
841  for (uInt i=0; i < tout.nrow(); ++i) {
842    const TableRecord& rec = row.get(i);
843    Double ontime = rec.asDouble("TIME");
844    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
845                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
846                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
847    ROScalarColumn<Double> offtimeCol(presel, "TIME");
848
849    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
850    // Timestamp may vary within a cycle ???!!!
851    // increase this by 0.01 sec in case of rounding errors...
852    // There might be a better way to do this.
853    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
854    mindeltat += 0.01/24./60./60.;
855    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
856
857    if ( sel.nrow() < 1 )  {
858      throw(AipsError("No closest in time found... This could be a rounding "
859                      "issue. Try quotient instead."));
860    }
861    TableRow offrow(sel);
862    const TableRecord& offrec = offrow.get(0);//should only be one row
863    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
864    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
865    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
866    /// @fixme this assumes tsys is a scalar not vector
867    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
868    Vector<Float> specon, tsyson;
869    outtsysCol.get(i, tsyson);
870    outspecCol.get(i, specon);
871    Vector<uChar> flagon;
872    outflagCol.get(i, flagon);
873    MaskedArray<Float> mon = maskedArray(specon, flagon);
874    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
875    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
876    if (preserve) {
877      quot -= tsysoffscalar;
878    } else {
879      quot -= tsyson[0];
880    }
881    outspecCol.put(i, quot.getArray());
882    outflagCol.put(i, flagsFromMA(quot));
883  }
884  // renumber scanno
885  TableIterator it(tout, "SCANNO");
886  uInt i = 0;
887  while ( !it.pastEnd() ) {
888    Table t = it.table();
889    TableVector<uInt> vec(t, "SCANNO");
890    vec = i;
891    ++i;
892    ++it;
893  }
894  return out;
895}
896
897
898CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
899                                          const CountedPtr< Scantable > & off,
900                                          bool preserve )
901{
902  bool insitu = insitu_;
903  if ( ! on->conformant(*off) ) {
904    throw(AipsError("'on' and 'off' scantables are not conformant."));
905  }
906  setInsitu(false);
907  CountedPtr< Scantable > out = getScantable(on, false);
908  setInsitu(insitu);
909  Table& tout = out->table();
910  const Table& toff = off->table();
911  TableIterator sit(tout, "SCANNO");
912  TableIterator s2it(toff, "SCANNO");
913  while ( !sit.pastEnd() ) {
914    Table ton = sit.table();
915    TableRow row(ton);
916    Table t = s2it.table();
917    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
918    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
919    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
920    for (uInt i=0; i < ton.nrow(); ++i) {
921      const TableRecord& rec = row.get(i);
922      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
923                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
924                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
925      if ( offsel.nrow() == 0 )
926        throw AipsError("STMath::quotient: no matching off");
927      TableRow offrow(offsel);
928      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
929      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
930      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
931      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
932      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
933      Vector<Float> specon, tsyson;
934      outtsysCol.get(i, tsyson);
935      outspecCol.get(i, specon);
936      Vector<uChar> flagon;
937      outflagCol.get(i, flagon);
938      MaskedArray<Float> mon = maskedArray(specon, flagon);
939      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
940      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
941      if (preserve) {
942        quot -= tsysoffscalar;
943      } else {
944        quot -= tsyson[0];
945      }
946      outspecCol.put(i, quot.getArray());
947      outflagCol.put(i, flagsFromMA(quot));
948    }
949    ++sit;
950    ++s2it;
951    // take the first off for each on scan which doesn't have a
952    // matching off scan
953    // non <= noff:  matching pairs, non > noff matching pairs then first off
954    if ( s2it.pastEnd() ) s2it.reset();
955  }
956  return out;
957}
958
959// dototalpower (migration of GBTIDL procedure dototalpower.pro)
960// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
961// do it for each cycles in a specific scan.
962CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
963                                              const CountedPtr< Scantable >& caloff, Float tcal )
964{
965if ( ! calon->conformant(*caloff) ) {
966    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
967  }
968  setInsitu(false);
969  CountedPtr< Scantable > out = getScantable(caloff, false);
970  Table& tout = out->table();
971  const Table& tcon = calon->table();
972  Vector<Float> tcalout;
973  Vector<Float> tcalout2;  //debug
974
975  if ( tout.nrow() != tcon.nrow() ) {
976    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
977  }
978  // iteration by scanno or cycle no.
979  TableIterator sit(tout, "SCANNO");
980  TableIterator s2it(tcon, "SCANNO");
981  while ( !sit.pastEnd() ) {
982    Table toff = sit.table();
983    TableRow row(toff);
984    Table t = s2it.table();
985    ScalarColumn<Double> outintCol(toff, "INTERVAL");
986    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
987    ArrayColumn<Float> outtsysCol(toff, "TSYS");
988    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
989    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
990    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
991    ROScalarColumn<Double> onintCol(t, "INTERVAL");
992    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
993    ROArrayColumn<Float> ontsysCol(t, "TSYS");
994    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
995    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
996
997    for (uInt i=0; i < toff.nrow(); ++i) {
998      //skip these checks -> assumes the data order are the same between the cal on off pairs
999      //
1000      Vector<Float> specCalon, specCaloff;
1001      // to store scalar (mean) tsys
1002      Vector<Float> tsysout(1);
1003      uInt tcalId, polno;
1004      Double offint, onint;
1005      outpolCol.get(i, polno);
1006      outspecCol.get(i, specCaloff);
1007      onspecCol.get(i, specCalon);
1008      Vector<uChar> flagCaloff, flagCalon;
1009      outflagCol.get(i, flagCaloff);
1010      onflagCol.get(i, flagCalon);
1011      outtcalIdCol.get(i, tcalId);
1012      outintCol.get(i, offint);
1013      onintCol.get(i, onint);
1014      // caluculate mean Tsys
1015      uInt nchan = specCaloff.nelements();
1016      // percentage of edge cut off
1017      uInt pc = 10;
1018      uInt bchan = nchan/pc;
1019      uInt echan = nchan-bchan;
1020
1021      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1022      Vector<Float> testsubsp = specCaloff(chansl);
1023      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1024      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1025      MaskedArray<Float> spdiff = spon-spoff;
1026      uInt noff = spoff.nelementsValid();
1027      //uInt non = spon.nelementsValid();
1028      uInt ndiff = spdiff.nelementsValid();
1029      Float meantsys;
1030
1031/**
1032      Double subspec, subdiff;
1033      uInt usednchan;
1034      subspec = 0;
1035      subdiff = 0;
1036      usednchan = 0;
1037      for(uInt k=(bchan-1); k<echan; k++) {
1038        subspec += specCaloff[k];
1039        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1040        ++usednchan;
1041      }
1042**/
1043      // get tcal if input tcal <= 0
1044      String tcalt;
1045      Float tcalUsed;
1046      tcalUsed = tcal;
1047      if ( tcal <= 0.0 ) {
1048        caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1049//         if (polno<=3) {
1050//           tcalUsed = tcalout[polno];
1051//         }
1052//         else {
1053//           tcalUsed = tcalout[0];
1054//         }
1055        if ( tcalout.size() == 1 )
1056          tcalUsed = tcalout[0] ;
1057        else if ( tcalout.size() == nchan )
1058          tcalUsed = mean(tcalout) ;
1059        else {
1060          uInt ipol = polno ;
1061          if ( ipol > 3 ) ipol = 0 ;
1062          tcalUsed = tcalout[ipol] ;
1063        }
1064      }
1065
1066      Float meanoff;
1067      Float meandiff;
1068      if (noff && ndiff) {
1069         //Debug
1070         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1071         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1072         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1073         meanoff = sum(spoff)/noff;
1074         meandiff = sum(spdiff)/ndiff;
1075         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1076      }
1077      else {
1078         meantsys=1;
1079      }
1080
1081      tsysout[0] = Float(meantsys);
1082      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1083      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1084      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1085      //uInt ncaloff = mcaloff.nelementsValid();
1086      //uInt ncalon = mcalon.nelementsValid();
1087
1088      outintCol.put(i, offint+onint);
1089      outspecCol.put(i, sig.getArray());
1090      outflagCol.put(i, flagsFromMA(sig));
1091      outtsysCol.put(i, tsysout);
1092    }
1093    ++sit;
1094    ++s2it;
1095  }
1096  return out;
1097}
1098
1099//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1100// observatiions.
1101// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1102//        no smoothing).
1103// output: resultant scantable [= (sig-ref/ref)*tsys]
1104CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1105                                          const CountedPtr < Scantable >& ref,
1106                                          int smoothref,
1107                                          casa::Float tsysv,
1108                                          casa::Float tau )
1109{
1110if ( ! ref->conformant(*sig) ) {
1111    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1112  }
1113  setInsitu(false);
1114  CountedPtr< Scantable > out = getScantable(sig, false);
1115  CountedPtr< Scantable > smref;
1116  if ( smoothref > 1 ) {
1117    float fsmoothref = static_cast<float>(smoothref);
1118    std::string inkernel = "boxcar";
1119    smref = smooth(ref, inkernel, fsmoothref );
1120    ostringstream oss;
1121    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1122    pushLog(String(oss));
1123  }
1124  else {
1125    smref = ref;
1126  }
1127  Table& tout = out->table();
1128  const Table& tref = smref->table();
1129  if ( tout.nrow() != tref.nrow() ) {
1130    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1131  }
1132  // iteration by scanno? or cycle no.
1133  TableIterator sit(tout, "SCANNO");
1134  TableIterator s2it(tref, "SCANNO");
1135  while ( !sit.pastEnd() ) {
1136    Table ton = sit.table();
1137    Table t = s2it.table();
1138    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1139    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1140    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1141    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1142    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1143    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1144    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1145    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1146    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1147    for (uInt i=0; i < ton.nrow(); ++i) {
1148
1149      Double onint, refint;
1150      Vector<Float> specon, specref;
1151      // to store scalar (mean) tsys
1152      Vector<Float> tsysref;
1153      outintCol.get(i, onint);
1154      refintCol.get(i, refint);
1155      outspecCol.get(i, specon);
1156      refspecCol.get(i, specref);
1157      Vector<uChar> flagref, flagon;
1158      outflagCol.get(i, flagon);
1159      refflagCol.get(i, flagref);
1160      reftsysCol.get(i, tsysref);
1161
1162      Float tsysrefscalar;
1163      if ( tsysv > 0.0 ) {
1164        ostringstream oss;
1165        Float elev;
1166        refelevCol.get(i, elev);
1167        oss << "user specified Tsys = " << tsysv;
1168        // do recalc elevation if EL = 0
1169        if ( elev == 0 ) {
1170          throw(AipsError("EL=0, elevation data is missing."));
1171        } else {
1172          if ( tau <= 0.0 ) {
1173            throw(AipsError("Valid tau is not supplied."));
1174          } else {
1175            tsysrefscalar = tsysv * exp(tau/elev);
1176          }
1177        }
1178        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1179        pushLog(String(oss));
1180      }
1181      else {
1182        tsysrefscalar = tsysref[0];
1183      }
1184      //get quotient spectrum
1185      MaskedArray<Float> mref = maskedArray(specref, flagref);
1186      MaskedArray<Float> mon = maskedArray(specon, flagon);
1187      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1188      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1189
1190      //Debug
1191      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1192      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1193      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1194      // fill the result, replay signal tsys by reference tsys
1195      outintCol.put(i, resint);
1196      outspecCol.put(i, specres.getArray());
1197      outflagCol.put(i, flagsFromMA(specres));
1198      outtsysCol.put(i, tsysref);
1199    }
1200    ++sit;
1201    ++s2it;
1202  }
1203  return out;
1204}
1205
1206CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1207                                     const std::vector<int>& scans,
1208                                     int smoothref,
1209                                     casa::Float tsysv,
1210                                     casa::Float tau,
1211                                     casa::Float tcal )
1212
1213{
1214  setInsitu(false);
1215  STSelector sel;
1216  std::vector<int> scan1, scan2, beams, types;
1217  std::vector< vector<int> > scanpair;
1218  //std::vector<string> calstate;
1219  std::vector<int> calstate;
1220  String msg;
1221
1222  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1223  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1224
1225  std::vector< CountedPtr< Scantable > > sctables;
1226  sctables.push_back(s1b1on);
1227  sctables.push_back(s1b1off);
1228  sctables.push_back(s1b2on);
1229  sctables.push_back(s1b2off);
1230  sctables.push_back(s2b1on);
1231  sctables.push_back(s2b1off);
1232  sctables.push_back(s2b2on);
1233  sctables.push_back(s2b2off);
1234
1235  //check scanlist
1236  int n=s->checkScanInfo(scans);
1237  if (n==1) {
1238     throw(AipsError("Incorrect scan pairs. "));
1239  }
1240
1241  // Assume scans contain only a pair of consecutive scan numbers.
1242  // It is assumed that first beam, b1,  is on target.
1243  // There is no check if the first beam is on or not.
1244  if ( scans.size()==1 ) {
1245    scan1.push_back(scans[0]);
1246    scan2.push_back(scans[0]+1);
1247  } else if ( scans.size()==2 ) {
1248   scan1.push_back(scans[0]);
1249   scan2.push_back(scans[1]);
1250  } else {
1251    if ( scans.size()%2 == 0 ) {
1252      for (uInt i=0; i<scans.size(); i++) {
1253        if (i%2 == 0) {
1254          scan1.push_back(scans[i]);
1255        }
1256        else {
1257          scan2.push_back(scans[i]);
1258        }
1259      }
1260    } else {
1261      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1262    }
1263  }
1264  scanpair.push_back(scan1);
1265  scanpair.push_back(scan2);
1266  //calstate.push_back("*calon");
1267  //calstate.push_back("*[^calon]");
1268  calstate.push_back(SrcType::NODCAL);
1269  calstate.push_back(SrcType::NOD);
1270  CountedPtr< Scantable > ws = getScantable(s, false);
1271  uInt l=0;
1272  while ( l < sctables.size() ) {
1273    for (uInt i=0; i < 2; i++) {
1274      for (uInt j=0; j < 2; j++) {
1275        for (uInt k=0; k < 2; k++) {
1276          sel.reset();
1277          sel.setScans(scanpair[i]);
1278          //sel.setName(calstate[k]);
1279          types.clear();
1280          types.push_back(calstate[k]);
1281          sel.setTypes(types);
1282          beams.clear();
1283          beams.push_back(j);
1284          sel.setBeams(beams);
1285          ws->setSelection(sel);
1286          sctables[l]= getScantable(ws, false);
1287          l++;
1288        }
1289      }
1290    }
1291  }
1292
1293  // replace here by splitData or getData functionality
1294  CountedPtr< Scantable > sig1;
1295  CountedPtr< Scantable > ref1;
1296  CountedPtr< Scantable > sig2;
1297  CountedPtr< Scantable > ref2;
1298  CountedPtr< Scantable > calb1;
1299  CountedPtr< Scantable > calb2;
1300
1301  msg=String("Processing dototalpower for subset of the data");
1302  ostringstream oss1;
1303  oss1 << msg  << endl;
1304  pushLog(String(oss1));
1305  // Debug for IRC CS data
1306  //float tcal1=7.0;
1307  //float tcal2=4.0;
1308  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1309  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1310  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1311  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1312
1313  // correction of user-specified tsys for elevation here
1314
1315  // dosigref calibration
1316  msg=String("Processing dosigref for subset of the data");
1317  ostringstream oss2;
1318  oss2 << msg  << endl;
1319  pushLog(String(oss2));
1320  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1321  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1322
1323  // iteration by scanno or cycle no.
1324  Table& tcalb1 = calb1->table();
1325  Table& tcalb2 = calb2->table();
1326  TableIterator sit(tcalb1, "SCANNO");
1327  TableIterator s2it(tcalb2, "SCANNO");
1328  while ( !sit.pastEnd() ) {
1329    Table t1 = sit.table();
1330    Table t2= s2it.table();
1331    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1332    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1333    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1334    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1335    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1336    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1337    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1338    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1339    for (uInt i=0; i < t1.nrow(); ++i) {
1340      Vector<Float> spec1, spec2;
1341      // to store scalar (mean) tsys
1342      Vector<Float> tsys1, tsys2;
1343      Vector<uChar> flag1, flag2;
1344      Double tint1, tint2;
1345      outspecCol.get(i, spec1);
1346      t2specCol.get(i, spec2);
1347      outflagCol.get(i, flag1);
1348      t2flagCol.get(i, flag2);
1349      outtsysCol.get(i, tsys1);
1350      t2tsysCol.get(i, tsys2);
1351      outintCol.get(i, tint1);
1352      t2intCol.get(i, tint2);
1353      // average
1354      // assume scalar tsys for weights
1355      Float wt1, wt2, tsyssq1, tsyssq2;
1356      tsyssq1 = tsys1[0]*tsys1[0];
1357      tsyssq2 = tsys2[0]*tsys2[0];
1358      wt1 = Float(tint1)/tsyssq1;
1359      wt2 = Float(tint2)/tsyssq2;
1360      Float invsumwt=1/(wt1+wt2);
1361      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1362      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1363      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1364      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1365      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1366      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1367      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1368      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1369      Array<Float> avtsys =  tsys1;
1370
1371      outspecCol.put(i, avspec.getArray());
1372      outflagCol.put(i, flagsFromMA(avspec));
1373      outtsysCol.put(i, avtsys);
1374    }
1375    ++sit;
1376    ++s2it;
1377  }
1378  return calb1;
1379}
1380
1381//GBTIDL version of frequency switched data calibration
1382CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1383                                      const std::vector<int>& scans,
1384                                      int smoothref,
1385                                      casa::Float tsysv,
1386                                      casa::Float tau,
1387                                      casa::Float tcal )
1388{
1389
1390
1391  STSelector sel;
1392  CountedPtr< Scantable > ws = getScantable(s, false);
1393  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1394  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1395  Bool nofold=False;
1396  vector<int> types ;
1397
1398  //split the data
1399  //sel.setName("*_fs");
1400  types.push_back( SrcType::FSON ) ;
1401  sel.setTypes( types ) ;
1402  ws->setSelection(sel);
1403  sig = getScantable(ws,false);
1404  sel.reset();
1405  types.clear() ;
1406  //sel.setName("*_fs_calon");
1407  types.push_back( SrcType::FONCAL ) ;
1408  sel.setTypes( types ) ;
1409  ws->setSelection(sel);
1410  sigwcal = getScantable(ws,false);
1411  sel.reset();
1412  types.clear() ;
1413  //sel.setName("*_fsr");
1414  types.push_back( SrcType::FSOFF ) ;
1415  sel.setTypes( types ) ;
1416  ws->setSelection(sel);
1417  ref = getScantable(ws,false);
1418  sel.reset();
1419  types.clear() ;
1420  //sel.setName("*_fsr_calon");
1421  types.push_back( SrcType::FOFFCAL ) ;
1422  sel.setTypes( types ) ;
1423  ws->setSelection(sel);
1424  refwcal = getScantable(ws,false);
1425  sel.reset() ;
1426  types.clear() ;
1427
1428//Shinnosuke 2011/02/25>>>
1429#pragma omp parallel sections
1430{
1431#pragma omp section
1432 {
1433  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1434 }
1435#pragma omp section
1436 {
1437  calref = dototalpower(refwcal, ref, tcal=tcal);
1438 }
1439}
1440//Shinnosuke 2011/02/25<<<
1441
1442  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1443  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1444
1445  Table& tabout1=out1->table();
1446  Table& tabout2=out2->table();
1447  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1448  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1449  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1450  Vector<Float> spec; specCol.get(0, spec);
1451  uInt nchan = spec.nelements();
1452  uInt freqid1; freqidCol1.get(0,freqid1);
1453  uInt freqid2; freqidCol2.get(0,freqid2);
1454  Double rp1, rp2, rv1, rv2, inc1, inc2;
1455  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1456  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1457  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1458  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1459  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1460  if (rp1==rp2) {
1461    Double foffset = rv1 - rv2;
1462    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1463    if (choffset >= nchan) {
1464      //cerr<<"out-band frequency switching, no folding"<<endl;
1465      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1466      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1467      nofold = True;
1468    }
1469  }
1470
1471  if (nofold) {
1472    std::vector< CountedPtr< Scantable > > tabs;
1473    tabs.push_back(out1);
1474    tabs.push_back(out2);
1475    out = merge(tabs);
1476  }
1477  else {
1478    //out = out1;
1479    Double choffset = ( rv1 - rv2 ) / inc2 ;
1480    out = dofold( out1, out2, choffset ) ;
1481  }
1482   
1483  return out;
1484}
1485
1486CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1487                                      const CountedPtr<Scantable> &ref,
1488                                      Double choffset,
1489                                      Double choffset2 )
1490{
1491  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1492  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1493
1494  // output scantable
1495  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1496
1497  // separate choffset to integer part and decimal part
1498  Int ioffset = (Int)choffset ;
1499  Double doffset = choffset - ioffset ;
1500  Int ioffset2 = (Int)choffset2 ;
1501  Double doffset2 = choffset2 - ioffset2 ;
1502  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1503  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1504
1505  // get column
1506  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1507  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1508  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1509  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1510  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1511  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1512  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1513  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1514  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1515  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1516
1517  // check
1518  if ( ioffset == 0 ) {
1519    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1520    os << "channel offset is zero, no folding" << LogIO::POST ;
1521    return out ;
1522  }
1523  int nchan = ref->nchan() ;
1524  if ( abs(ioffset) >= nchan ) {
1525    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1526    os << "out-band frequency switching, no folding" << LogIO::POST ;
1527    return out ;
1528  }
1529
1530  // attach column for output scantable
1531  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1532  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1533  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1534  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1535  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1536  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1537
1538  // for each row
1539  // assume that the data order are same between sig and ref
1540  RowAccumulator acc( asap::W_TINTSYS ) ;
1541  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1542    // get values
1543    Vector<Float> spsig ;
1544    specCol1.get( i, spsig ) ;
1545    Vector<Float> spref ;
1546    specCol2.get( i, spref ) ;
1547    Vector<Float> tsyssig ;
1548    tsysCol1.get( i, tsyssig ) ;
1549    Vector<Float> tsysref ;
1550    tsysCol2.get( i, tsysref ) ;
1551    Vector<uChar> flagsig ;
1552    flagCol1.get( i, flagsig ) ;
1553    Vector<uChar> flagref ;
1554    flagCol2.get( i, flagref ) ;
1555    Double timesig ;
1556    mjdCol1.get( i, timesig ) ;
1557    Double timeref ;
1558    mjdCol2.get( i, timeref ) ;
1559    Double intsig ;
1560    intervalCol1.get( i, intsig ) ;
1561    Double intref ;
1562    intervalCol2.get( i, intref ) ;
1563
1564    // shift reference spectra
1565    int refchan = spref.nelements() ;
1566    Vector<Float> sspref( spref.nelements() ) ;
1567    Vector<Float> stsysref( tsysref.nelements() ) ;
1568    Vector<uChar> sflagref( flagref.nelements() ) ;
1569    if ( ioffset > 0 ) {
1570      // SPECTRA and FLAGTRA
1571      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1572        sspref[j] = spref[j+ioffset] ;
1573        sflagref[j] = flagref[j+ioffset] ;
1574      }
1575      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1576        sspref[j] = spref[j-refchan+ioffset] ;
1577        sflagref[j] = flagref[j-refchan+ioffset] ;
1578      }
1579      spref = sspref.copy() ;
1580      flagref = sflagref.copy() ;
1581      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1582        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1583        sflagref[j] = flagref[j+1] + flagref[j] ;
1584      }
1585      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1586      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1587
1588      // TSYS
1589      if ( spref.nelements() == tsysref.nelements() ) {
1590        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1591          stsysref[j] = tsysref[j+ioffset] ;
1592        }
1593        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1594          stsysref[j] = tsysref[j-refchan+ioffset] ;
1595        }
1596        tsysref = stsysref.copy() ;
1597        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1598          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1599        }
1600        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1601      }
1602    }
1603    else {
1604      // SPECTRA and FLAGTRA
1605      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1606        sspref[j] = spref[refchan+ioffset+j] ;
1607        sflagref[j] = flagref[refchan+ioffset+j] ;
1608      }
1609      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1610        sspref[j] = spref[j+ioffset] ;
1611        sflagref[j] = flagref[j+ioffset] ;
1612      }
1613      spref = sspref.copy() ;
1614      flagref = sflagref.copy() ;
1615      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1616      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1617      for ( int j = 1 ; j < refchan ; j++ ) {
1618        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1619        sflagref[j] = flagref[j-1] + flagref[j] ;
1620      }
1621      // TSYS
1622      if ( spref.nelements() == tsysref.nelements() ) {
1623        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1624          stsysref[j] = tsysref[refchan+ioffset+j] ;
1625        }
1626        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1627          stsysref[j] = tsysref[j+ioffset] ;
1628        }
1629        tsysref = stsysref.copy() ;
1630        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1631        for ( int j = 1 ; j < refchan ; j++ ) {
1632          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1633        }
1634      }
1635    }
1636
1637    // shift signal spectra if necessary (only for APEX?)
1638    if ( choffset2 != 0.0 ) {
1639      int sigchan = spsig.nelements() ;
1640      Vector<Float> sspsig( spsig.nelements() ) ;
1641      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1642      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1643      if ( ioffset2 > 0 ) {
1644        // SPECTRA and FLAGTRA
1645        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1646          sspsig[j] = spsig[j+ioffset2] ;
1647          sflagsig[j] = flagsig[j+ioffset2] ;
1648        }
1649        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1650          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1651          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1652        }
1653        spsig = sspsig.copy() ;
1654        flagsig = sflagsig.copy() ;
1655        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1656          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1657          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1658        }
1659        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1660        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1661        // TSTS
1662        if ( spsig.nelements() == tsyssig.nelements() ) {
1663          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1664            stsyssig[j] = tsyssig[j+ioffset2] ;
1665          }
1666          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1667            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1668          }
1669          tsyssig = stsyssig.copy() ;
1670          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1671            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1672          }
1673          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1674        }
1675      }
1676      else {
1677        // SPECTRA and FLAGTRA
1678        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1679          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1680          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1681        }
1682        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1683          sspsig[j] = spsig[j+ioffset2] ;
1684          sflagsig[j] = flagsig[j+ioffset2] ;
1685        }
1686        spsig = sspsig.copy() ;
1687        flagsig = sflagsig.copy() ;
1688        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1689        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1690        for ( int j = 1 ; j < sigchan ; j++ ) {
1691          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1692          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1693        }
1694        // TSYS
1695        if ( spsig.nelements() == tsyssig.nelements() ) {
1696          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1697            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1698          }
1699          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1700            stsyssig[j] = tsyssig[j+ioffset2] ;
1701          }
1702          tsyssig = stsyssig.copy() ;
1703          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1704          for ( int j = 1 ; j < sigchan ; j++ ) {
1705            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1706          }
1707        }
1708      }
1709    }
1710
1711    // folding
1712    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1713    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1714   
1715    // put result
1716    specColOut.put( i, acc.getSpectrum() ) ;
1717    const Vector<Bool> &msk = acc.getMask() ;
1718    Vector<uChar> flg( msk.shape() ) ;
1719    convertArray( flg, !msk ) ;
1720    flagColOut.put( i, flg ) ;
1721    tsysColOut.put( i, acc.getTsys() ) ;
1722    intervalColOut.put( i, acc.getInterval() ) ;
1723    mjdColOut.put( i, acc.getTime() ) ;
1724    // change FREQ_ID to unshifted IF setting (only for APEX?)
1725    if ( choffset2 != 0.0 ) {
1726      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1727      double refpix, refval, increment ;
1728      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1729      refval -= choffset * increment ;
1730      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1731      Vector<uInt> freqids = fidColOut.getColumn() ;
1732      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1733        if ( freqids[j] == freqid )
1734          freqids[j] = newfreqid ;
1735      }
1736      fidColOut.putColumn( freqids ) ;
1737    }
1738
1739    acc.reset() ;
1740  }
1741
1742  return out ;
1743}
1744
1745
1746CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1747{
1748  // make copy or reference
1749  CountedPtr< Scantable > out = getScantable(in, false);
1750  Table& tout = out->table();
1751  Block<String> cols(4);
1752  cols[0] = String("SCANNO");
1753  cols[1] = String("CYCLENO");
1754  cols[2] = String("BEAMNO");
1755  cols[3] = String("POLNO");
1756  TableIterator iter(tout, cols);
1757  while (!iter.pastEnd()) {
1758    Table subt = iter.table();
1759    // this should leave us with two rows for the two IFs....if not ignore
1760    if (subt.nrow() != 2 ) {
1761      continue;
1762    }
1763    ArrayColumn<Float> specCol(subt, "SPECTRA");
1764    ArrayColumn<Float> tsysCol(subt, "TSYS");
1765    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1766    Vector<Float> onspec,offspec, ontsys, offtsys;
1767    Vector<uChar> onflag, offflag;
1768    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1769    specCol.get(0, onspec);   specCol.get(1, offspec);
1770    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1771    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1772    MaskedArray<Float> off = maskedArray(offspec, offflag);
1773    MaskedArray<Float> oncopy = on.copy();
1774
1775    on /= off; on -= 1.0f;
1776    on *= ontsys[0];
1777    off /= oncopy; off -= 1.0f;
1778    off *= offtsys[0];
1779    specCol.put(0, on.getArray());
1780    const Vector<Bool>& m0 = on.getMask();
1781    Vector<uChar> flags0(m0.shape());
1782    convertArray(flags0, !m0);
1783    flagCol.put(0, flags0);
1784
1785    specCol.put(1, off.getArray());
1786    const Vector<Bool>& m1 = off.getMask();
1787    Vector<uChar> flags1(m1.shape());
1788    convertArray(flags1, !m1);
1789    flagCol.put(1, flags1);
1790    ++iter;
1791  }
1792
1793  return out;
1794}
1795
1796std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1797                                        const std::vector< bool > & mask,
1798                                        const std::string& which )
1799{
1800
1801  Vector<Bool> m(mask);
1802  const Table& tab = in->table();
1803  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1804  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1805  std::vector<float> out;
1806  for (uInt i=0; i < tab.nrow(); ++i ) {
1807    Vector<Float> spec; specCol.get(i, spec);
1808    Vector<uChar> flag; flagCol.get(i, flag);
1809    MaskedArray<Float> ma  = maskedArray(spec, flag);
1810    float outstat = 0.0;
1811    if ( spec.nelements() == m.nelements() ) {
1812      outstat = mathutil::statistics(which, ma(m));
1813    } else {
1814      outstat = mathutil::statistics(which, ma);
1815    }
1816    out.push_back(outstat);
1817  }
1818  return out;
1819}
1820
1821std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1822                                        const std::vector< bool > & mask,
1823                                        const std::string& which,
1824                                        int row )
1825{
1826
1827  Vector<Bool> m(mask);
1828  const Table& tab = in->table();
1829  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1830  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1831  std::vector<float> out;
1832
1833  Vector<Float> spec; specCol.get(row, spec);
1834  Vector<uChar> flag; flagCol.get(row, flag);
1835  MaskedArray<Float> ma  = maskedArray(spec, flag);
1836  float outstat = 0.0;
1837  if ( spec.nelements() == m.nelements() ) {
1838    outstat = mathutil::statistics(which, ma(m));
1839  } else {
1840    outstat = mathutil::statistics(which, ma);
1841  }
1842  out.push_back(outstat);
1843
1844  return out;
1845}
1846
1847std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1848                                        const std::vector< bool > & mask,
1849                                        const std::string& which )
1850{
1851
1852  Vector<Bool> m(mask);
1853  const Table& tab = in->table();
1854  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1855  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1856  std::vector<int> out;
1857  for (uInt i=0; i < tab.nrow(); ++i ) {
1858    Vector<Float> spec; specCol.get(i, spec);
1859    Vector<uChar> flag; flagCol.get(i, flag);
1860    MaskedArray<Float> ma  = maskedArray(spec, flag);
1861    if (ma.ndim() != 1) {
1862      throw (ArrayError(
1863          "std::vector<int> STMath::minMaxChan("
1864          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1865          " std::string &which)"
1866          " - MaskedArray is not 1D"));
1867    }
1868    IPosition outpos(1,0);
1869    if ( spec.nelements() == m.nelements() ) {
1870      outpos = mathutil::minMaxPos(which, ma(m));
1871    } else {
1872      outpos = mathutil::minMaxPos(which, ma);
1873    }
1874    out.push_back(outpos[0]);
1875  }
1876  return out;
1877}
1878
1879CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1880                                     int width )
1881{
1882  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1883  CountedPtr< Scantable > out = getScantable(in, false);
1884  Table& tout = out->table();
1885  out->frequencies().rescale(width, "BIN");
1886  ArrayColumn<Float> specCol(tout, "SPECTRA");
1887  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1888  for (uInt i=0; i < tout.nrow(); ++i ) {
1889    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1890    MaskedArray<Float> maout;
1891    LatticeUtilities::bin(maout, main, 0, Int(width));
1892    /// @todo implement channel based tsys binning
1893    specCol.put(i, maout.getArray());
1894    flagCol.put(i, flagsFromMA(maout));
1895    // take only the first binned spectrum's length for the deprecated
1896    // global header item nChan
1897    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1898                                       Int(maout.getArray().nelements()));
1899  }
1900  return out;
1901}
1902
1903CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1904                                          const std::string& method,
1905                                          float width )
1906//
1907// Should add the possibility of width being specified in km/s. This means
1908// that for each freqID (SpectralCoordinate) we will need to convert to an
1909// average channel width (say at the reference pixel).  Then we would need
1910// to be careful to make sure each spectrum (of different freqID)
1911// is the same length.
1912//
1913{
1914  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1915  Int interpMethod(stringToIMethod(method));
1916
1917  CountedPtr< Scantable > out = getScantable(in, false);
1918  Table& tout = out->table();
1919
1920// Resample SpectralCoordinates (one per freqID)
1921  out->frequencies().rescale(width, "RESAMPLE");
1922  TableIterator iter(tout, "IFNO");
1923  TableRow row(tout);
1924  while ( !iter.pastEnd() ) {
1925    Table tab = iter.table();
1926    ArrayColumn<Float> specCol(tab, "SPECTRA");
1927    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1928    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1929    Vector<Float> spec;
1930    Vector<uChar> flag;
1931    specCol.get(0,spec); // the number of channels should be constant per IF
1932    uInt nChanIn = spec.nelements();
1933    Vector<Float> xIn(nChanIn); indgen(xIn);
1934    Int fac =  Int(nChanIn/width);
1935    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1936    uInt k = 0;
1937    Float x = 0.0;
1938    while (x < Float(nChanIn) ) {
1939      xOut(k) = x;
1940      k++;
1941      x += width;
1942    }
1943    uInt nChanOut = k;
1944    xOut.resize(nChanOut, True);
1945    // process all rows for this IFNO
1946    Vector<Float> specOut;
1947    Vector<Bool> maskOut;
1948    Vector<uChar> flagOut;
1949    for (uInt i=0; i < tab.nrow(); ++i) {
1950      specCol.get(i, spec);
1951      flagCol.get(i, flag);
1952      Vector<Bool> mask(flag.nelements());
1953      convertArray(mask, flag);
1954
1955      IPosition shapeIn(spec.shape());
1956      //sh.nchan = nChanOut;
1957      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1958                                                   xIn, spec, mask,
1959                                                   interpMethod, True, True);
1960      /// @todo do the same for channel based Tsys
1961      flagOut.resize(maskOut.nelements());
1962      convertArray(flagOut, maskOut);
1963      specCol.put(i, specOut);
1964      flagCol.put(i, flagOut);
1965    }
1966    ++iter;
1967  }
1968
1969  return out;
1970}
1971
1972STMath::imethod STMath::stringToIMethod(const std::string& in)
1973{
1974  static STMath::imap lookup;
1975
1976  // initialize the lookup table if necessary
1977  if ( lookup.empty() ) {
1978    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1979    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1980    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1981    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1982  }
1983
1984  STMath::imap::const_iterator iter = lookup.find(in);
1985
1986  if ( lookup.end() == iter ) {
1987    std::string message = in;
1988    message += " is not a valid interpolation mode";
1989    throw(AipsError(message));
1990  }
1991  return iter->second;
1992}
1993
1994WeightType STMath::stringToWeight(const std::string& in)
1995{
1996  static std::map<std::string, WeightType> lookup;
1997
1998  // initialize the lookup table if necessary
1999  if ( lookup.empty() ) {
2000    lookup["NONE"]   = asap::W_NONE;
2001    lookup["TINT"] = asap::W_TINT;
2002    lookup["TINTSYS"]  = asap::W_TINTSYS;
2003    lookup["TSYS"]  = asap::W_TSYS;
2004    lookup["VAR"]  = asap::W_VAR;
2005  }
2006
2007  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2008
2009  if ( lookup.end() == iter ) {
2010    std::string message = in;
2011    message += " is not a valid weighting mode";
2012    throw(AipsError(message));
2013  }
2014  return iter->second;
2015}
2016
2017CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2018                                               const vector< float > & coeff,
2019                                               const std::string & filename,
2020                                               const std::string& method)
2021{
2022  // Get elevation data from Scantable and convert to degrees
2023  CountedPtr< Scantable > out = getScantable(in, false);
2024  Table& tab = out->table();
2025  ROScalarColumn<Float> elev(tab, "ELEVATION");
2026  Vector<Float> x = elev.getColumn();
2027  x *= Float(180 / C::pi);                        // Degrees
2028
2029  Vector<Float> coeffs(coeff);
2030  const uInt nc = coeffs.nelements();
2031  if ( filename.length() > 0 && nc > 0 ) {
2032    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2033  }
2034
2035  // Correct
2036  if ( nc > 0 || filename.length() == 0 ) {
2037    // Find instrument
2038    Bool throwit = True;
2039    Instrument inst =
2040      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2041                                throwit);
2042
2043    // Set polynomial
2044    Polynomial<Float>* ppoly = 0;
2045    Vector<Float> coeff;
2046    String msg;
2047    if ( nc > 0 ) {
2048      ppoly = new Polynomial<Float>(nc-1);
2049      coeff = coeffs;
2050      msg = String("user");
2051    } else {
2052      STAttr sdAttr;
2053      coeff = sdAttr.gainElevationPoly(inst);
2054      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2055      msg = String("built in");
2056    }
2057
2058    if ( coeff.nelements() > 0 ) {
2059      ppoly->setCoefficients(coeff);
2060    } else {
2061      delete ppoly;
2062      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2063    }
2064    ostringstream oss;
2065    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2066    oss << "   " <<  coeff;
2067    pushLog(String(oss));
2068    const uInt nrow = tab.nrow();
2069    Vector<Float> factor(nrow);
2070    for ( uInt i=0; i < nrow; ++i ) {
2071      factor[i] = 1.0 / (*ppoly)(x[i]);
2072    }
2073    delete ppoly;
2074    scaleByVector(tab, factor, true);
2075
2076  } else {
2077    // Read and correct
2078    pushLog("Making correction from ascii Table");
2079    scaleFromAsciiTable(tab, filename, method, x, true);
2080  }
2081  return out;
2082}
2083
2084void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2085                                 const std::string& method,
2086                                 const Vector<Float>& xout, bool dotsys)
2087{
2088
2089// Read gain-elevation ascii file data into a Table.
2090
2091  String formatString;
2092  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2093  scaleFromTable(in, tbl, method, xout, dotsys);
2094}
2095
2096void STMath::scaleFromTable(Table& in,
2097                            const Table& table,
2098                            const std::string& method,
2099                            const Vector<Float>& xout, bool dotsys)
2100{
2101
2102  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2103  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2104  Vector<Float> xin = geElCol.getColumn();
2105  Vector<Float> yin = geFacCol.getColumn();
2106  Vector<Bool> maskin(xin.nelements(),True);
2107
2108  // Interpolate (and extrapolate) with desired method
2109
2110  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2111
2112   Vector<Float> yout;
2113   Vector<Bool> maskout;
2114   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2115                                                xin, yin, maskin, interp,
2116                                                True, True);
2117
2118   scaleByVector(in, Float(1.0)/yout, dotsys);
2119}
2120
2121void STMath::scaleByVector( Table& in,
2122                            const Vector< Float >& factor,
2123                            bool dotsys )
2124{
2125  uInt nrow = in.nrow();
2126  if ( factor.nelements() != nrow ) {
2127    throw(AipsError("factors.nelements() != table.nelements()"));
2128  }
2129  ArrayColumn<Float> specCol(in, "SPECTRA");
2130  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2131  ArrayColumn<Float> tsysCol(in, "TSYS");
2132  for (uInt i=0; i < nrow; ++i) {
2133    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2134    ma *= factor[i];
2135    specCol.put(i, ma.getArray());
2136    flagCol.put(i, flagsFromMA(ma));
2137    if ( dotsys ) {
2138      Vector<Float> tsys = tsysCol(i);
2139      tsys *= factor[i];
2140      tsysCol.put(i,tsys);
2141    }
2142  }
2143}
2144
2145CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2146                                             float d, float etaap,
2147                                             float jyperk )
2148{
2149  CountedPtr< Scantable > out = getScantable(in, false);
2150  Table& tab = in->table();
2151  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2152  Unit K(String("K"));
2153  Unit JY(String("Jy"));
2154
2155  bool tokelvin = true;
2156  Double cfac = 1.0;
2157
2158  if ( fluxUnit == JY ) {
2159    pushLog("Converting to K");
2160    Quantum<Double> t(1.0,fluxUnit);
2161    Quantum<Double> t2 = t.get(JY);
2162    cfac = (t2 / t).getValue();               // value to Jy
2163
2164    tokelvin = true;
2165    out->setFluxUnit("K");
2166  } else if ( fluxUnit == K ) {
2167    pushLog("Converting to Jy");
2168    Quantum<Double> t(1.0,fluxUnit);
2169    Quantum<Double> t2 = t.get(K);
2170    cfac = (t2 / t).getValue();              // value to K
2171
2172    tokelvin = false;
2173    out->setFluxUnit("Jy");
2174  } else {
2175    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2176  }
2177  // Make sure input values are converted to either Jy or K first...
2178  Float factor = cfac;
2179
2180  // Select method
2181  if (jyperk > 0.0) {
2182    factor *= jyperk;
2183    if ( tokelvin ) factor = 1.0 / jyperk;
2184    ostringstream oss;
2185    oss << "Jy/K = " << jyperk;
2186    pushLog(String(oss));
2187    Vector<Float> factors(tab.nrow(), factor);
2188    scaleByVector(tab,factors, false);
2189  } else if ( etaap > 0.0) {
2190    if (d < 0) {
2191      Instrument inst =
2192        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2193                                  True);
2194      STAttr sda;
2195      d = sda.diameter(inst);
2196    }
2197    jyperk = STAttr::findJyPerK(etaap, d);
2198    ostringstream oss;
2199    oss << "Jy/K = " << jyperk;
2200    pushLog(String(oss));
2201    factor *= jyperk;
2202    if ( tokelvin ) {
2203      factor = 1.0 / factor;
2204    }
2205    Vector<Float> factors(tab.nrow(), factor);
2206    scaleByVector(tab, factors, False);
2207  } else {
2208
2209    // OK now we must deal with automatic look up of values.
2210    // We must also deal with the fact that the factors need
2211    // to be computed per IF and may be different and may
2212    // change per integration.
2213
2214    pushLog("Looking up conversion factors");
2215    convertBrightnessUnits(out, tokelvin, cfac);
2216  }
2217
2218  return out;
2219}
2220
2221void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2222                                     bool tokelvin, float cfac )
2223{
2224  Table& table = in->table();
2225  Instrument inst =
2226    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2227  TableIterator iter(table, "FREQ_ID");
2228  STFrequencies stfreqs = in->frequencies();
2229  STAttr sdAtt;
2230  while (!iter.pastEnd()) {
2231    Table tab = iter.table();
2232    ArrayColumn<Float> specCol(tab, "SPECTRA");
2233    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2234    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2235    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2236
2237    uInt freqid; freqidCol.get(0, freqid);
2238    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2239    // STAttr.JyPerK has a Vector interface... change sometime.
2240    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2241    for ( uInt i=0; i<tab.nrow(); ++i) {
2242      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2243      Float factor = cfac * jyperk;
2244      if ( tokelvin ) factor = Float(1.0) / factor;
2245      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2246      ma *= factor;
2247      specCol.put(i, ma.getArray());
2248      flagCol.put(i, flagsFromMA(ma));
2249    }
2250  ++iter;
2251  }
2252}
2253
2254CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2255                                         const std::vector<float>& tau )
2256{
2257  CountedPtr< Scantable > out = getScantable(in, false);
2258
2259  Table outtab = out->table();
2260
2261  const uInt ntau = uInt(tau.size());
2262  std::vector<float>::const_iterator tauit = tau.begin();
2263  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2264               AipsError);
2265  TableIterator iiter(outtab, "IFNO");
2266  while ( !iiter.pastEnd() ) {
2267    Table itab = iiter.table();
2268    TableIterator piter(outtab, "POLNO");
2269    while ( !piter.pastEnd() ) {
2270      Table tab = piter.table();
2271      ROScalarColumn<Float> elev(tab, "ELEVATION");
2272      ArrayColumn<Float> specCol(tab, "SPECTRA");
2273      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2274      ArrayColumn<Float> tsysCol(tab, "TSYS");
2275      for ( uInt i=0; i<tab.nrow(); ++i) {
2276        Float zdist = Float(C::pi_2) - elev(i);
2277        Float factor = exp(*tauit/cos(zdist));
2278        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2279        ma *= factor;
2280        specCol.put(i, ma.getArray());
2281        flagCol.put(i, flagsFromMA(ma));
2282        Vector<Float> tsys;
2283        tsysCol.get(i, tsys);
2284        tsys *= factor;
2285        tsysCol.put(i, tsys);
2286      }
2287      if (ntau == in->nif()*in->npol() ) {
2288        tauit++;
2289      }
2290      piter++;
2291    }
2292    if (ntau >= in->nif() ) {
2293      tauit++;
2294    }
2295    iiter++;
2296  }
2297  return out;
2298}
2299
2300CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2301                                             const std::string& kernel,
2302                                             float width, int order)
2303{
2304  CountedPtr< Scantable > out = getScantable(in, false);
2305  Table& table = out->table();
2306  ArrayColumn<Float> specCol(table, "SPECTRA");
2307  ArrayColumn<uChar> flagCol(table, "FLAGTRA");
2308  Vector<Float> spec;
2309  Vector<uChar> flag;
2310  for ( uInt i=0; i<table.nrow(); ++i) {
2311    specCol.get(i, spec);
2312    flagCol.get(i, flag);
2313    Vector<Bool> mask(flag.nelements());
2314    convertArray(mask, flag);
2315    Vector<Float> specout;
2316    Vector<Bool> maskout;
2317    if ( kernel == "hanning" ) {
2318      mathutil::hanning(specout, maskout, spec , !mask);
2319      convertArray(flag, !maskout);
2320    } else if (  kernel == "rmedian" ) {
2321      mathutil::runningMedian(specout, maskout, spec , mask, width);
2322      convertArray(flag, maskout);
2323    } else if ( kernel == "poly" ) {
2324      mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2325      convertArray(flag, !maskout);
2326    }
2327    flagCol.put(i, flag);
2328    specCol.put(i, specout);
2329  }
2330  return out;
2331}
2332
2333CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2334                                        const std::string& kernel, float width,
2335                                        int order)
2336{
2337  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2338    return smoothOther(in, kernel, width, order);
2339  }
2340  CountedPtr< Scantable > out = getScantable(in, false);
2341  Table& table = out->table();
2342  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2343  // same IFNO should have same no of channels
2344  // this saves overhead
2345  TableIterator iter(table, "IFNO");
2346  while (!iter.pastEnd()) {
2347    Table tab = iter.table();
2348    ArrayColumn<Float> specCol(tab, "SPECTRA");
2349    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2350    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2351    uInt nchan = tmpspec.nelements();
2352    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2353    Convolver<Float> conv(kvec, IPosition(1,nchan));
2354    Vector<Float> spec;
2355    Vector<uChar> flag;
2356    for ( uInt i=0; i<tab.nrow(); ++i) {
2357      specCol.get(i, spec);
2358      flagCol.get(i, flag);
2359      Vector<Bool> mask(flag.nelements());
2360      convertArray(mask, flag);
2361      Vector<Float> specout;
2362      mathutil::replaceMaskByZero(specout, mask);
2363      conv.linearConv(specout, spec);
2364      specCol.put(i, specout);
2365    }
2366    ++iter;
2367  }
2368  return out;
2369}
2370
2371CountedPtr< Scantable >
2372  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2373{
2374  if ( in.size() < 2 ) {
2375    throw(AipsError("Need at least two scantables to perform a merge."));
2376  }
2377  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2378  bool insitu = insitu_;
2379  setInsitu(false);
2380  CountedPtr< Scantable > out = getScantable(*it, false);
2381  setInsitu(insitu);
2382  Table& tout = out->table();
2383  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2384  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2385  // Renumber SCANNO to be 0-based
2386  Vector<uInt> scannos = scannocol.getColumn();
2387  uInt offset = min(scannos);
2388  scannos -= offset;
2389  scannocol.putColumn(scannos);
2390  uInt newscanno = max(scannos)+1;
2391  ++it;
2392  while ( it != in.end() ){
2393    if ( ! (*it)->conformant(*out) ) {
2394      // non conformant.
2395      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2396      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2397      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2398    }
2399    out->appendToHistoryTable((*it)->history());
2400    const Table& tab = (*it)->table();
2401    TableIterator scanit(tab, "SCANNO");
2402    while (!scanit.pastEnd()) {
2403      TableIterator freqit(scanit.table(), "FREQ_ID");
2404      while ( !freqit.pastEnd() ) {
2405        Table thetab = freqit.table();
2406        uInt nrow = tout.nrow();
2407        tout.addRow(thetab.nrow());
2408        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2409        ROTableRow row(thetab);
2410        for ( uInt i=0; i<thetab.nrow(); ++i) {
2411          uInt k = nrow+i;
2412          scannocol.put(k, newscanno);
2413          const TableRecord& rec = row.get(i);
2414          Double rv,rp,inc;
2415          (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2416          uInt id;
2417          id = out->frequencies().addEntry(rp, rv, inc);
2418          freqidcol.put(k,id);
2419          //String name,fname;Double rf;
2420          Vector<String> name,fname;Vector<Double> rf;
2421          (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2422          id = out->molecules().addEntry(rf, name, fname);
2423          molidcol.put(k, id);
2424          Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2425          (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand,
2426                                  fmount,fuser, fxy, fxyp,
2427                                  rec.asuInt("FOCUS_ID"));
2428          id = out->focus().addEntry(fpa, fax, ftan, frot, fhand,
2429                                     fmount,fuser, fxy, fxyp);
2430          focusidcol.put(k, id);
2431        }
2432        ++freqit;
2433      }
2434      ++newscanno;
2435      ++scanit;
2436    }
2437    ++it;
2438  }
2439  return out;
2440}
2441
2442CountedPtr< Scantable >
2443  STMath::invertPhase( const CountedPtr < Scantable >& in )
2444{
2445  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2446}
2447
2448CountedPtr< Scantable >
2449  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2450{
2451   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2452}
2453
2454CountedPtr< Scantable >
2455  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2456{
2457  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2458}
2459
2460CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2461                                             STPol::polOperation fptr,
2462                                             Float phase )
2463{
2464  CountedPtr< Scantable > out = getScantable(in, false);
2465  Table& tout = out->table();
2466  Block<String> cols(4);
2467  cols[0] = String("SCANNO");
2468  cols[1] = String("BEAMNO");
2469  cols[2] = String("IFNO");
2470  cols[3] = String("CYCLENO");
2471  TableIterator iter(tout, cols);
2472  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2473                                               out->getPolType() );
2474  while (!iter.pastEnd()) {
2475    Table t = iter.table();
2476    ArrayColumn<Float> speccol(t, "SPECTRA");
2477    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2478    Matrix<Float> pols(speccol.getColumn());
2479    try {
2480      stpol->setSpectra(pols);
2481      Float fang,fhand;
2482      fang = in->focusTable_.getTotalAngle(focidcol(0));
2483      fhand = in->focusTable_.getFeedHand(focidcol(0));
2484      stpol->setPhaseCorrections(fang, fhand);
2485      // use a member function pointer in STPol.  This only works on
2486      // the STPol pointer itself, not the Counted Pointer so
2487      // derefernce it.
2488      (&(*(stpol))->*fptr)(phase);
2489      speccol.putColumn(stpol->getSpectra());
2490    } catch (AipsError& e) {
2491      //delete stpol;stpol=0;
2492      throw(e);
2493    }
2494    ++iter;
2495  }
2496  //delete stpol;stpol=0;
2497  return out;
2498}
2499
2500CountedPtr< Scantable >
2501  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2502{
2503  CountedPtr< Scantable > out = getScantable(in, false);
2504  Table& tout = out->table();
2505  Table t0 = tout(tout.col("POLNO") == 0);
2506  Table t1 = tout(tout.col("POLNO") == 1);
2507  if ( t0.nrow() != t1.nrow() )
2508    throw(AipsError("Inconsistent number of polarisations"));
2509  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2510  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2511  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2512  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2513  Matrix<Float> s0 = speccol0.getColumn();
2514  Matrix<uChar> f0 = flagcol0.getColumn();
2515  speccol0.putColumn(speccol1.getColumn());
2516  flagcol0.putColumn(flagcol1.getColumn());
2517  speccol1.putColumn(s0);
2518  flagcol1.putColumn(f0);
2519  return out;
2520}
2521
2522CountedPtr< Scantable >
2523  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2524                                const std::vector<bool>& mask,
2525                                const std::string& weight )
2526{
2527  if (in->npol() < 2 )
2528    throw(AipsError("averagePolarisations can only be applied to two or more"
2529                    "polarisations"));
2530  bool insitu = insitu_;
2531  setInsitu(false);
2532  CountedPtr< Scantable > pols = getScantable(in, true);
2533  setInsitu(insitu);
2534  Table& tout = pols->table();
2535  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2536  Table tab = tableCommand(taql, in->table());
2537  if (tab.nrow() == 0 )
2538    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2539  TableCopy::copyRows(tout, tab);
2540  TableVector<uInt> vec(tout, "POLNO");
2541  vec = 0;
2542  pols->table_.rwKeywordSet().define("nPol", Int(1));
2543  //pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2544  pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2545  std::vector<CountedPtr<Scantable> > vpols;
2546  vpols.push_back(pols);
2547  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2548  return out;
2549}
2550
2551CountedPtr< Scantable >
2552  STMath::averageBeams( const CountedPtr< Scantable > & in,
2553                        const std::vector<bool>& mask,
2554                        const std::string& weight )
2555{
2556  bool insitu = insitu_;
2557  setInsitu(false);
2558  CountedPtr< Scantable > beams = getScantable(in, false);
2559  setInsitu(insitu);
2560  Table& tout = beams->table();
2561  // give all rows the same BEAMNO
2562  TableVector<uInt> vec(tout, "BEAMNO");
2563  vec = 0;
2564  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2565  std::vector<CountedPtr<Scantable> > vbeams;
2566  vbeams.push_back(beams);
2567  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2568  return out;
2569}
2570
2571
2572CountedPtr< Scantable >
2573  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2574                                const std::string & refTime,
2575                                const std::string & method)
2576{
2577  // clone as this is not working insitu
2578  bool insitu = insitu_;
2579  setInsitu(false);
2580  CountedPtr< Scantable > out = getScantable(in, false);
2581  setInsitu(insitu);
2582  Table& tout = out->table();
2583  // Get reference Epoch to time of first row or given String
2584  Unit DAY(String("d"));
2585  MEpoch::Ref epochRef(in->getTimeReference());
2586  MEpoch refEpoch;
2587  if (refTime.length()>0) {
2588    Quantum<Double> qt;
2589    if (MVTime::read(qt,refTime)) {
2590      MVEpoch mv(qt);
2591      refEpoch = MEpoch(mv, epochRef);
2592   } else {
2593      throw(AipsError("Invalid format for Epoch string"));
2594   }
2595  } else {
2596    refEpoch = in->timeCol_(0);
2597  }
2598  MPosition refPos = in->getAntennaPosition();
2599
2600  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2601  /*
2602  // Comment from MV.
2603  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2604  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2605  // test if user frame is different to base frame
2606  if ( in->frequencies().getFrameString(true)
2607       == in->frequencies().getFrameString(false) ) {
2608    throw(AipsError("Can't convert as no output frame has been set"
2609                    " (use set_freqframe) or it is aligned already."));
2610  }
2611  */
2612  MFrequency::Types system = in->frequencies().getFrame();
2613  MVTime mvt(refEpoch.getValue());
2614  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2615  ostringstream oss;
2616  oss << "Aligned at reference Epoch " << epochout
2617      << " in frame " << MFrequency::showType(system);
2618  pushLog(String(oss));
2619  // set up the iterator
2620  Block<String> cols(4);
2621  // select by constant direction
2622  cols[0] = String("SRCNAME");
2623  cols[1] = String("BEAMNO");
2624  // select by IF ( no of channels varies over this )
2625  cols[2] = String("IFNO");
2626  // select by restfrequency
2627  cols[3] = String("MOLECULE_ID");
2628  TableIterator iter(tout, cols);
2629  while ( !iter.pastEnd() ) {
2630    Table t = iter.table();
2631    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2632    TableIterator fiter(t, "FREQ_ID");
2633    // determine nchan from the first row. This should work as
2634    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2635
2636    ROArrayColumn<Float> sCol(t, "SPECTRA");
2637    const MDirection direction = dirCol(0);
2638    const uInt nchan = sCol(0).nelements();
2639
2640    // skip operations if there is nothing to align
2641    if (fiter.pastEnd()) {
2642        continue;
2643    }
2644
2645    Table ftab = fiter.table();
2646    // align all frequency ids with respect to the first encountered id
2647    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2648    // get the SpectralCoordinate for the freqid, which we are iterating over
2649    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2650    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2651                                direction, refPos, system );
2652    // realign the SpectralCoordinate and put into the output Scantable
2653    Vector<String> units(1);
2654    units = String("Hz");
2655    Bool linear=True;
2656    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2657    sc2.setWorldAxisUnits(units);
2658    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2659                                                sc2.referenceValue()[0],
2660                                                sc2.increment()[0]);
2661    while ( !fiter.pastEnd() ) {
2662      ftab = fiter.table();
2663      // spectral coordinate for the current FREQ_ID
2664      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2665      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2666      // create the "global" abcissa for alignment with same FREQ_ID
2667      Vector<Double> abc(nchan);
2668      for (uInt i=0; i<nchan; i++) {
2669           Double w;
2670           sC.toWorld(w,Double(i));
2671           abc[i] = w;
2672      }
2673      TableVector<uInt> tvec(ftab, "FREQ_ID");
2674      // assign new frequency id to all rows
2675      tvec = id;
2676      // cache abcissa for same time stamps, so iterate over those
2677      TableIterator timeiter(ftab, "TIME");
2678      while ( !timeiter.pastEnd() ) {
2679        Table tab = timeiter.table();
2680        ArrayColumn<Float> specCol(tab, "SPECTRA");
2681        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2682        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2683        // use align abcissa cache after the first row
2684        // these rows should be just be POLNO
2685        bool first = true;
2686        for (int i=0; i<int(tab.nrow()); ++i) {
2687          // input values
2688          Vector<uChar> flag = flagCol(i);
2689          Vector<Bool> mask(flag.shape());
2690          Vector<Float> specOut, spec;
2691          spec  = specCol(i);
2692          Vector<Bool> maskOut;Vector<uChar> flagOut;
2693          convertArray(mask, flag);
2694          // alignment
2695          Bool ok = fa.align(specOut, maskOut, abc, spec,
2696                             mask, timeCol(i), !first,
2697                             interp, False);
2698          // back into scantable
2699          flagOut.resize(maskOut.nelements());
2700          convertArray(flagOut, maskOut);
2701          flagCol.put(i, flagOut);
2702          specCol.put(i, specOut);
2703          // start abcissa caching
2704          first = false;
2705        }
2706        // next timestamp
2707        ++timeiter;
2708      }
2709      // next FREQ_ID
2710      ++fiter;
2711    }
2712    // next aligner
2713    ++iter;
2714  }
2715  // set this afterwards to ensure we are doing insitu correctly.
2716  out->frequencies().setFrame(system, true);
2717  return out;
2718}
2719
2720CountedPtr<Scantable>
2721  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2722                                     const std::string & newtype )
2723{
2724  if (in->npol() != 2 && in->npol() != 4)
2725    throw(AipsError("Can only convert two or four polarisations."));
2726  if ( in->getPolType() == newtype )
2727    throw(AipsError("No need to convert."));
2728  if ( ! in->selector_.empty() )
2729    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2730  bool insitu = insitu_;
2731  setInsitu(false);
2732  CountedPtr< Scantable > out = getScantable(in, true);
2733  setInsitu(insitu);
2734  Table& tout = out->table();
2735  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2736
2737  Block<String> cols(4);
2738  cols[0] = "SCANNO";
2739  cols[1] = "CYCLENO";
2740  cols[2] = "BEAMNO";
2741  cols[3] = "IFNO";
2742  TableIterator it(in->originalTable_, cols);
2743  String basetype = in->getPolType();
2744  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2745  try {
2746    while ( !it.pastEnd() ) {
2747      Table tab = it.table();
2748      uInt row = tab.rowNumbers()[0];
2749      stpol->setSpectra(in->getPolMatrix(row));
2750      Float fang,fhand;
2751      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2752      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2753      stpol->setPhaseCorrections(fang, fhand);
2754      Int npolout = 0;
2755      for (uInt i=0; i<tab.nrow(); ++i) {
2756        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2757        if ( outvec.nelements() > 0 ) {
2758          tout.addRow();
2759          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2760          ArrayColumn<Float> sCol(tout,"SPECTRA");
2761          ScalarColumn<uInt> pCol(tout,"POLNO");
2762          sCol.put(tout.nrow()-1 ,outvec);
2763          pCol.put(tout.nrow()-1 ,uInt(npolout));
2764          npolout++;
2765       }
2766      }
2767      tout.rwKeywordSet().define("nPol", npolout);
2768      ++it;
2769    }
2770  } catch (AipsError& e) {
2771    delete stpol;
2772    throw(e);
2773  }
2774  delete stpol;
2775  return out;
2776}
2777
2778CountedPtr< Scantable >
2779  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2780                           const std::string & scantype )
2781{
2782  bool insitu = insitu_;
2783  setInsitu(false);
2784  CountedPtr< Scantable > out = getScantable(in, true);
2785  setInsitu(insitu);
2786  Table& tout = out->table();
2787  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2788  if (scantype == "on") {
2789    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2790  }
2791  Table tab = tableCommand(taql, in->table());
2792  TableCopy::copyRows(tout, tab);
2793  if (scantype == "on") {
2794    // re-index SCANNO to 0
2795    TableVector<uInt> vec(tout, "SCANNO");
2796    vec = 0;
2797  }
2798  return out;
2799}
2800
2801CountedPtr< Scantable >
2802  asap::STMath::lagFlag( const CountedPtr< Scantable > & in,
2803                         double start, double end,
2804                         const std::string& mode)
2805{
2806  CountedPtr< Scantable > out = getScantable(in, false);
2807  Table& tout = out->table();
2808  TableIterator iter(tout, "FREQ_ID");
2809  FFTServer<Float,Complex> ffts;
2810  while ( !iter.pastEnd() ) {
2811    Table tab = iter.table();
2812    Double rp,rv,inc;
2813    ROTableRow row(tab);
2814    const TableRecord& rec = row.get(0);
2815    uInt freqid = rec.asuInt("FREQ_ID");
2816    out->frequencies().getEntry(rp, rv, inc, freqid);
2817    ArrayColumn<Float> specCol(tab, "SPECTRA");
2818    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2819    for (int i=0; i<int(tab.nrow()); ++i) {
2820      Vector<Float> spec = specCol(i);
2821      Vector<uChar> flag = flagCol(i);
2822      int fstart = -1;
2823      int fend = -1;
2824      for (unsigned int k=0; k < flag.nelements(); ++k ) {
2825        if (flag[k] > 0) {
2826          fstart = k;
2827          while (flag[k] > 0 && k < flag.nelements()) {
2828            fend = k;
2829            k++;
2830          }
2831        }
2832        Float interp = 0.0;
2833        if (fstart-1 > 0 ) {
2834          interp = spec[fstart-1];
2835          if (fend+1 < spec.nelements()) {
2836            interp = (interp+spec[fend+1])/2.0;
2837          }
2838        } else {
2839          interp = spec[fend+1];
2840        }
2841        if (fstart > -1 && fend > -1) {
2842          for (int j=fstart;j<=fend;++j) {
2843            spec[j] = interp;
2844          }
2845        }
2846        fstart =-1;
2847        fend = -1;
2848      }
2849      Vector<Complex> lags;
2850      ffts.fft0(lags, spec);
2851      Int lag0(start+0.5);
2852      Int lag1(end+0.5);
2853      if (mode == "frequency") {
2854        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2855        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2856      }
2857      Int lstart =  max(0, lag0);
2858      Int lend =  min(Int(lags.nelements()-1), lag1);
2859      if (lstart == lend) {
2860        lags[lstart] = Complex(0.0);
2861      } else {
2862        if (lstart > lend) {
2863          Int tmp = lend;
2864          lend = lstart;
2865          lstart = tmp;
2866        }
2867        for (int j=lstart; j <=lend ;++j) {
2868          lags[j] = Complex(0.0);
2869        }
2870      }
2871      ffts.fft0(spec, lags);
2872      specCol.put(i, spec);
2873    }
2874    ++iter;
2875  }
2876  return out;
2877}
2878
2879// Averaging spectra with different channel/resolution
2880CountedPtr<Scantable>
2881STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2882                     const bool& compel,
2883                     const std::vector<bool>& mask,
2884                     const std::string& weight,
2885                     const std::string& avmode )
2886  throw ( casa::AipsError )
2887{
2888  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2889  if ( avmode == "SCAN" && in.size() != 1 )
2890    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2891                    "Use merge first."));
2892 
2893  // check if OTF observation
2894  String obstype = in[0]->getHeader().obstype ;
2895  Double tol = 0.0 ;
2896  if ( obstype.find( "OTF" ) != String::npos ) {
2897    tol = TOL_OTF ;
2898  }
2899  else {
2900    tol = TOL_POINT ;
2901  }
2902
2903  CountedPtr<Scantable> out ;     // processed result
2904  if ( compel ) {
2905    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2906    uInt insize = in.size() ;    // number of input scantables
2907
2908    // TEST: do normal average in each table before IF grouping
2909    os << "Do preliminary averaging" << LogIO::POST ;
2910    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2911    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2912      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2913      tmpin[itable] = average( v, mask, weight, avmode ) ;
2914    }
2915
2916    // warning
2917    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2918
2919    // temporarily set coordinfo
2920    vector<string> oldinfo( insize ) ;
2921    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2922      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2923      oldinfo[itable] = coordinfo[0] ;
2924      coordinfo[0] = "Hz" ;
2925      tmpin[itable]->setCoordInfo( coordinfo ) ;
2926    }
2927
2928    // columns
2929    ScalarColumn<uInt> freqIDCol ;
2930    ScalarColumn<uInt> ifnoCol ;
2931    ScalarColumn<uInt> scannoCol ;
2932
2933
2934    // check IF frequency coverage
2935    // freqid: list of FREQ_ID, which is used, in each table 
2936    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2937    //         each table
2938    // freqid[insize][numIF]
2939    // freqid: [[id00, id01, ...],
2940    //          [id10, id11, ...],
2941    //          ...
2942    //          [idn0, idn1, ...]]
2943    // iffreq[insize][numIF*2]
2944    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2945    //          [min_id10, max_id10, min_id11, max_id11, ...],
2946    //          ...
2947    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
2948    //os << "Check IF settings in each table" << LogIO::POST ;
2949    vector< vector<uInt> > freqid( insize );
2950    vector< vector<double> > iffreq( insize ) ;
2951    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2952      uInt rows = tmpin[itable]->nrow() ;
2953      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
2954      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
2955        if ( freqid[itable].size() == freqnrows ) {
2956          break ;
2957        }
2958        else {
2959          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
2960          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
2961          uInt id = freqIDCol( irow ) ;
2962          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
2963            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
2964            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
2965            freqid[itable].push_back( id ) ;
2966            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2967            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2968          }
2969        }
2970      }
2971    }
2972
2973    // debug
2974    //os << "IF settings summary:" << endl ;
2975    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
2976    //os << "   Table" << i << endl ;
2977    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
2978    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
2979    //}
2980    //}
2981    //os << endl ;
2982    //os.post() ;
2983
2984    // IF grouping based on their frequency coverage
2985    // ifgrp: list of table index and FREQ_ID for all members in each IF group
2986    // ifgfreq: list of minimum and maximum frequency in each IF group
2987    // ifgrp[numgrp][nummember*2]
2988    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
2989    //         [table10, freqrow10, table11, freqrow11, ...],
2990    //         ...
2991    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
2992    // ifgfreq[numgrp*2]
2993    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
2994    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
2995    vector< vector<uInt> > ifgrp ;
2996    vector<double> ifgfreq ;
2997
2998    // parameter for IF grouping
2999    // groupmode = OR    retrieve all region
3000    //             AND   only retrieve overlaped region
3001    //string groupmode = "AND" ;
3002    string groupmode = "OR" ;
3003    uInt sizecr = 0 ;
3004    if ( groupmode == "AND" )
3005      sizecr = 2 ;
3006    else if ( groupmode == "OR" )
3007      sizecr = 0 ;
3008
3009    vector<double> sortedfreq ;
3010    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3011      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3012        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3013          sortedfreq.push_back( iffreq[i][j] ) ;
3014      }
3015    }
3016    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3017    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3018      ifgfreq.push_back( *i ) ;
3019      ifgfreq.push_back( *(i+1) ) ;
3020    }
3021    ifgrp.resize( ifgfreq.size()/2 ) ;
3022    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3023      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3024        double range0 = iffreq[itable][2*iif] ;
3025        double range1 = iffreq[itable][2*iif+1] ;
3026        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3027          double fmin = max( range0, ifgfreq[2*j] ) ;
3028          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3029          if ( fmin < fmax ) {
3030            ifgrp[j].push_back( itable ) ;
3031            ifgrp[j].push_back( freqid[itable][iif] ) ;
3032          }
3033        }
3034      }
3035    }
3036    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3037    vector<double>::iterator giter = ifgfreq.begin() ;
3038    while( fiter != ifgrp.end() ) {
3039      if ( fiter->size() <= sizecr ) {
3040        fiter = ifgrp.erase( fiter ) ;
3041        giter = ifgfreq.erase( giter ) ;
3042        giter = ifgfreq.erase( giter ) ;
3043      }
3044      else {
3045        fiter++ ;
3046        advance( giter, 2 ) ;
3047      }
3048    }
3049
3050    // Grouping continuous IF groups (without frequency gap)
3051    // freqgrp: list of IF group indexes in each frequency group
3052    // freqrange: list of minimum and maximum frequency in each frequency group
3053    // freqgrp[numgrp][nummember]
3054    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3055    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3056    //           ...
3057    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3058    // freqrange[numgrp*2]
3059    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3060    vector< vector<uInt> > freqgrp ;
3061    double freqrange = 0.0 ;
3062    uInt grpnum = 0 ;
3063    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3064      // Assumed that ifgfreq was sorted
3065      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3066        freqgrp[grpnum-1].push_back( i ) ;
3067      }
3068      else {
3069        vector<uInt> grp0( 1, i ) ;
3070        freqgrp.push_back( grp0 ) ;
3071        grpnum++ ;
3072      }
3073      freqrange = ifgfreq[2*i+1] ;
3074    }
3075       
3076
3077    // print IF groups
3078    ostringstream oss ;
3079    oss << "IF Group summary: " << endl ;
3080    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3081    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3082      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3083      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3084        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3085      }
3086      oss << endl ;
3087    }
3088    oss << endl ;
3089    os << oss.str() << LogIO::POST ;
3090   
3091    // print frequency group
3092    oss.str("") ;
3093    oss << "Frequency Group summary: " << endl ;
3094    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3095    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3096      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3097      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3098        oss << freqgrp[i][j] << " " ;
3099      }
3100      oss << endl ;
3101    }
3102    oss << endl ;
3103    os << oss.str() << LogIO::POST ;
3104
3105    // membership check
3106    // groups: list of IF group indexes whose frequency range overlaps with
3107    //         that of each table and IF
3108    // groups[numtable][numIF][nummembership]
3109    // groups: [[[grp, grp,...], [grp, grp,...],...],
3110    //          [[grp, grp,...], [grp, grp,...],...],
3111    //          ...
3112    //          [[grp, grp,...], [grp, grp,...],...]]
3113    vector< vector< vector<uInt> > > groups( insize ) ;
3114    for ( uInt i = 0 ; i < insize ; i++ ) {
3115      groups[i].resize( freqid[i].size() ) ;
3116    }
3117    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3118      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3119        uInt tableid = ifgrp[igrp][2*imem] ;
3120        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3121        if ( iter != freqid[tableid].end() ) {
3122          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3123          groups[tableid][rowid].push_back( igrp ) ;
3124        }
3125      }
3126    }
3127
3128    // print membership
3129    //oss.str("") ;
3130    //for ( uInt i = 0 ; i < insize ; i++ ) {
3131    //oss << "Table " << i << endl ;
3132    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3133    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3134    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3135    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3136    //}
3137    //oss << endl ;
3138    //}
3139    //}
3140    //os << oss.str() << LogIO::POST ;
3141
3142    // set back coordinfo
3143    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3144      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3145      coordinfo[0] = oldinfo[itable] ;
3146      tmpin[itable]->setCoordInfo( coordinfo ) ;
3147    }
3148
3149    // Create additional table if needed
3150    bool oldInsitu = insitu_ ;
3151    setInsitu( false ) ;
3152    vector< vector<uInt> > addrow( insize ) ;
3153    vector<uInt> addtable( insize, 0 ) ;
3154    vector<uInt> newtableids( insize ) ;
3155    vector<uInt> newifids( insize, 0 ) ;
3156    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3157      //os << "Table " << itable << ": " ;
3158      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3159        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3160        //os << addrow[itable][ifrow] << " " ;
3161      }
3162      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3163      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3164    }
3165    newin.resize( insize ) ;
3166    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3167    for ( uInt i = 0 ; i < insize ; i++ ) {
3168      newtableids[i] = i ;
3169    }
3170    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3171      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3172        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3173        vector<int> freqidlist ;
3174        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3175          if ( groups[itable][i].size() > iadd + 1 ) {
3176            freqidlist.push_back( freqid[itable][i] ) ;
3177          }
3178        }
3179        stringstream taqlstream ;
3180        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3181        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3182          taqlstream << i ;
3183          if ( i < freqidlist.size() - 1 )
3184            taqlstream << "," ;
3185          else
3186            taqlstream << "]" ;
3187        }
3188        string taql = taqlstream.str() ;
3189        //os << "taql = " << taql << LogIO::POST ;
3190        STSelector selector = STSelector() ;
3191        selector.setTaQL( taql ) ;
3192        add->setSelection( selector ) ;
3193        newin.push_back( add ) ;
3194        newtableids.push_back( itable ) ;
3195        newifids.push_back( iadd + 1 ) ;
3196      }
3197    }
3198
3199    // udpate ifgrp
3200    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3201      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3202        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3203          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3204            uInt igrp = groups[itable][ifrow][iadd+1] ;
3205            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3206              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3207                ifgrp[igrp][2*imem] = insize + iadd ;
3208              }
3209            }
3210          }
3211        }
3212      }
3213    }
3214
3215    // print IF groups again for debug
3216    //oss.str( "" ) ;
3217    //oss << "IF Group summary: " << endl ;
3218    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3219    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3220    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3221    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3222    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3223    //}
3224    //oss << endl ;
3225    //}
3226    //oss << endl ;
3227    //os << oss.str() << LogIO::POST ;
3228
3229    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3230    os << "All scan number is set to 0" << LogIO::POST ;
3231    //os << "All IF number is set to IF group index" << LogIO::POST ;
3232    insize = newin.size() ;
3233    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3234      uInt rows = newin[itable]->nrow() ;
3235      Table &tmpt = newin[itable]->table() ;
3236      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3237      scannoCol.attach( tmpt, "SCANNO" ) ;
3238      ifnoCol.attach( tmpt, "IFNO" ) ;
3239      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3240        scannoCol.put( irow, 0 ) ;
3241        uInt freqID = freqIDCol( irow ) ;
3242        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3243        if ( iter != freqid[newtableids[itable]].end() ) {
3244          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3245          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3246        }
3247        else {
3248          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3249        }
3250      }
3251    }
3252    oldinfo.resize( insize ) ;
3253    setInsitu( oldInsitu ) ;
3254
3255    // temporarily set coordinfo
3256    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3257      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3258      oldinfo[itable] = coordinfo[0] ;
3259      coordinfo[0] = "Hz" ;
3260      newin[itable]->setCoordInfo( coordinfo ) ;
3261    }
3262
3263    // save column values in the vector
3264    vector< vector<uInt> > freqTableIdVec( insize ) ;
3265    vector< vector<uInt> > freqIdVec( insize ) ;
3266    vector< vector<uInt> > ifNoVec( insize ) ;
3267    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3268      ScalarColumn<uInt> freqIDs ;
3269      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3270      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3271      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3272      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3273        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3274      }
3275      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3276        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3277        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3278      }
3279    }
3280
3281    // reset spectra and flagtra: pick up common part of frequency coverage
3282    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3283    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3284      uInt rows = newin[itable]->nrow() ;
3285      int nminchan = -1 ;
3286      int nmaxchan = -1 ;
3287      vector<uInt> freqIdUpdate ;
3288      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3289        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3290        double minfreq = ifgfreq[2*ifno] ;
3291        double maxfreq = ifgfreq[2*ifno+1] ;
3292        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3293        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3294        int nchan = abcissa.size() ;
3295        double resol = abcissa[1] - abcissa[0] ;
3296        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3297        if ( minfreq <= abcissa[0] )
3298          nminchan = 0 ;
3299        else {
3300          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3301          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3302          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3303        }
3304        if ( maxfreq >= abcissa[abcissa.size()-1] )
3305          nmaxchan = abcissa.size() - 1 ;
3306        else {
3307          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3308          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3309          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3310        }
3311        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3312        if ( nmaxchan > nminchan ) {
3313          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3314          int newchan = nmaxchan - nminchan + 1 ;
3315          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3316            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3317        }
3318        else {
3319          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3320        }
3321      }
3322      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3323        uInt freqId = freqIdUpdate[i] ;
3324        Double refpix ;
3325        Double refval ;
3326        Double increment ;
3327       
3328        // update row
3329        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3330        refval = refval - ( refpix - nminchan ) * increment ;
3331        refpix = 0 ;
3332        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3333      }   
3334    }
3335
3336   
3337    // reset spectra and flagtra: align spectral resolution
3338    //os << "Align spectral resolution" << LogIO::POST ;
3339    // gmaxdnu: the coarsest frequency resolution in the frequency group
3340    // gmemid: member index that have a resolution equal to gmaxdnu
3341    // gmaxdnu[numfreqgrp]
3342    // gmaxdnu: [dnu0, dnu1, ...]
3343    // gmemid[numfreqgrp]
3344    // gmemid: [id0, id1, ...]
3345    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3346    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3347    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3348      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3349      int minchan = INT_MAX ;     // minimum channel number
3350      Double refpixref = -1 ;     // reference of 'reference pixel'
3351      Double refvalref = -1 ;     // reference of 'reference frequency'
3352      Double refinc = -1 ;        // reference frequency resolution
3353      uInt refreqid ;
3354      uInt reftable = INT_MAX;
3355      // process only if group member > 1
3356      if ( ifgrp[igrp].size() > 2 ) {
3357        // find minchan and maxdnu in each group
3358        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3359          uInt tableid = ifgrp[igrp][2*imem] ;
3360          uInt rowid = ifgrp[igrp][2*imem+1] ;
3361          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3362          if ( iter != freqIdVec[tableid].end() ) {
3363            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3364            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3365            int nchan = abcissa.size() ;
3366            double dnu = abcissa[1] - abcissa[0] ;
3367            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3368            if ( nchan < minchan ) {
3369              minchan = nchan ;
3370              maxdnu = dnu ;
3371              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3372              refreqid = rowid ;
3373              reftable = tableid ;
3374            }
3375          }
3376        }
3377        // regrid spectra in each group
3378        os << "GROUP " << igrp << endl ;
3379        os << "   Channel number is adjusted to " << minchan << endl ;
3380        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3381        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3382          uInt tableid = ifgrp[igrp][2*imem] ;
3383          uInt rowid = ifgrp[igrp][2*imem+1] ;
3384          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3385          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3386          //os << "   regridChannel applied to " ;
3387          if ( tableid != reftable )
3388            refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3389          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3390            uInt tfreqid = freqIdVec[tableid][irow] ;
3391            if ( tfreqid == rowid ) {     
3392              //os << irow << " " ;
3393              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3394              freqIDCol.put( irow, refreqid ) ;
3395              freqIdVec[tableid][irow] = refreqid ;
3396            }
3397          }
3398          //os << LogIO::POST ;
3399        }
3400      }
3401      else {
3402        uInt tableid = ifgrp[igrp][0] ;
3403        uInt rowid = ifgrp[igrp][1] ;
3404        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3405        if ( iter != freqIdVec[tableid].end() ) {
3406          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3407          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3408          minchan = abcissa.size() ;
3409          maxdnu = abcissa[1] - abcissa[0] ;
3410        }
3411      }
3412      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3413        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3414          if ( maxdnu > gmaxdnu[i] ) {
3415            gmaxdnu[i] = maxdnu ;
3416            gmemid[i] = igrp ;
3417          }
3418          break ;
3419        }
3420      }
3421    }
3422
3423    // set back coordinfo
3424    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3425      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3426      coordinfo[0] = oldinfo[itable] ;
3427      newin[itable]->setCoordInfo( coordinfo ) ;
3428    }     
3429
3430    // accumulate all rows into the first table
3431    // NOTE: assumed in.size() = 1
3432    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3433    if ( newin.size() == 1 )
3434      tmp[0] = newin[0] ;
3435    else
3436      tmp[0] = merge( newin ) ;
3437
3438    //return tmp[0] ;
3439
3440    // average
3441    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3442
3443    //return tmpout ;
3444
3445    // combine frequency group
3446    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3447    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3448    vector<string> coordinfo = tmpout->getCoordInfo() ;
3449    oldinfo[0] = coordinfo[0] ;
3450    coordinfo[0] = "Hz" ;
3451    tmpout->setCoordInfo( coordinfo ) ;
3452    // create proformas of output table
3453    stringstream taqlstream ;
3454    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3455    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3456      taqlstream << gmemid[i] ;
3457      if ( i < gmemid.size() - 1 )
3458        taqlstream << "," ;
3459      else
3460        taqlstream << "]" ;
3461    }
3462    string taql = taqlstream.str() ;
3463    //os << "taql = " << taql << LogIO::POST ;
3464    STSelector selector = STSelector() ;
3465    selector.setTaQL( taql ) ;
3466    oldInsitu = insitu_ ;
3467    setInsitu( false ) ;
3468    out = getScantable( tmpout, false ) ;
3469    setInsitu( oldInsitu ) ;
3470    out->setSelection( selector ) ;
3471    // regrid rows
3472    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3473    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3474      uInt ifno = ifnoCol( irow ) ;
3475      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3476        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3477          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3478          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3479          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3480          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3481          break ;
3482        }
3483      }
3484    }
3485    // combine spectra
3486    ArrayColumn<Float> specColOut ;
3487    specColOut.attach( out->table(), "SPECTRA" ) ;
3488    ArrayColumn<uChar> flagColOut ;
3489    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3490    ScalarColumn<uInt> ifnoColOut ;
3491    ifnoColOut.attach( out->table(), "IFNO" ) ;
3492    ScalarColumn<uInt> polnoColOut ;
3493    polnoColOut.attach( out->table(), "POLNO" ) ;
3494    ScalarColumn<uInt> freqidColOut ;
3495    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3496    MDirection::ScalarColumn dirColOut ;
3497    dirColOut.attach( out->table(), "DIRECTION" ) ;
3498    Table &tab = tmpout->table() ;
3499    Block<String> cols(1);
3500    cols[0] = String("POLNO") ;
3501    TableIterator iter( tab, cols ) ;
3502    bool done = false ;
3503    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3504    while( !iter.pastEnd() ) {
3505      vector< vector<Float> > specout( freqgrp.size() ) ;
3506      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3507      ArrayColumn<Float> specCols ;
3508      specCols.attach( iter.table(), "SPECTRA" ) ;
3509      ArrayColumn<uChar> flagCols ;
3510      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3511      ifnoCol.attach( iter.table(), "IFNO" ) ;
3512      ScalarColumn<uInt> polnos ;
3513      polnos.attach( iter.table(), "POLNO" ) ;
3514      MDirection::ScalarColumn dircol ;
3515      dircol.attach( iter.table(), "DIRECTION" ) ;
3516      uInt polno = polnos( 0 ) ;
3517      //os << "POLNO iteration: " << polno << LogIO::POST ;
3518//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3519//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3520//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3521//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3522//          uInt ifno = ifnoCol( irow ) ;
3523//          if ( ifno == freqgrp[igrp][imem] ) {
3524//            Vector<Float> spec = specCols( irow ) ;
3525//            Vector<uChar> flag = flagCols( irow ) ;
3526//            vector<Float> svec ;
3527//            spec.tovector( svec ) ;
3528//            vector<uChar> fvec ;
3529//            flag.tovector( fvec ) ;
3530//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3531//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3532//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3533//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3534//            sizes[igrp][imem] = spec.nelements() ;
3535//          }
3536//        }
3537//      }
3538//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3539//        uInt ifout = ifnoColOut( irow ) ;
3540//        uInt polout = polnoColOut( irow ) ;
3541//        if ( ifout == gmemid[igrp] && polout == polno ) {
3542//          // set SPECTRA and FRAGTRA
3543//          Vector<Float> newspec( specout[igrp] ) ;
3544//          Vector<uChar> newflag( flagout[igrp] ) ;
3545//          specColOut.put( irow, newspec ) ;
3546//          flagColOut.put( irow, newflag ) ;
3547//          // IFNO renumbering
3548//          ifnoColOut.put( irow, igrp ) ;
3549//        }
3550//      }
3551//       }
3552      // get a list of number of channels for each frequency group member
3553      if ( !done ) {
3554        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3555          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3556          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3557            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3558              uInt ifno = ifnoCol( irow ) ;
3559              if ( ifno == freqgrp[igrp][imem] ) {
3560                Vector<Float> spec = specCols( irow ) ;
3561                sizes[igrp][imem] = spec.nelements() ;
3562                break ;
3563              }               
3564            }
3565          }
3566        }
3567        done = true ;
3568      }
3569      // combine spectra
3570      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3571        uInt polout = polnoColOut( irow ) ;
3572        if ( polout == polno ) {
3573          uInt ifout = ifnoColOut( irow ) ;
3574          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3575          uInt igrp ;
3576          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3577            if ( ifout == gmemid[jgrp] ) {
3578              igrp = jgrp ;
3579              break ;
3580            }
3581          }
3582          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3583            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3584              uInt ifno = ifnoCol( jrow ) ;
3585              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3586              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3587              Double dx = tdir[0] - direction[0] ;
3588              Double dy = tdir[1] - direction[1] ;
3589              Double dd = sqrt( dx * dx + dy * dy ) ;
3590              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3591              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3592                Vector<Float> spec = specCols( jrow ) ;
3593                Vector<uChar> flag = flagCols( jrow ) ;
3594                vector<Float> svec ;
3595                spec.tovector( svec ) ;
3596                vector<uChar> fvec ;
3597                flag.tovector( fvec ) ;
3598                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3599                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3600                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3601                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3602              }
3603            }
3604          }
3605          // set SPECTRA and FRAGTRA
3606          Vector<Float> newspec( specout[igrp] ) ;
3607          Vector<uChar> newflag( flagout[igrp] ) ;
3608          specColOut.put( irow, newspec ) ;
3609          flagColOut.put( irow, newflag ) ;
3610          // IFNO renumbering
3611          ifnoColOut.put( irow, igrp ) ;
3612        }
3613      }
3614      iter++ ;
3615    }
3616    // update FREQUENCIES subtable
3617    vector<bool> updated( freqgrp.size(), false ) ;
3618    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3619      uInt index = 0 ;
3620      uInt pixShift = 0 ;
3621      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3622        pixShift += sizes[igrp][index++] ;
3623      }
3624      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3625        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3626          uInt freqidOut = freqidColOut( irow ) ;
3627          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3628          double refpix ;
3629          double refval ;
3630          double increm ;
3631          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3632          refpix += pixShift ;
3633          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3634          updated[igrp] = true ;
3635        }
3636      }
3637    }
3638
3639    //out = tmpout ;
3640
3641    coordinfo = tmpout->getCoordInfo() ;
3642    coordinfo[0] = oldinfo[0] ;
3643    tmpout->setCoordInfo( coordinfo ) ;
3644  }
3645  else {
3646    // simple average
3647    out =  average( in, mask, weight, avmode ) ;
3648  }
3649 
3650  return out ;
3651}
3652
3653CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3654                                     const String calmode,
3655                                     const String antname )
3656{
3657  // frequency switch
3658  if ( calmode == "fs" ) {
3659    return cwcalfs( s, antname ) ;
3660  }
3661  else {
3662    vector<bool> masks = s->getMask( 0 ) ;
3663    vector<int> types ;
3664
3665    // sky scan
3666    STSelector sel = STSelector() ;
3667    types.push_back( SrcType::SKY ) ;
3668    sel.setTypes( types ) ;
3669    s->setSelection( sel ) ;
3670    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3671    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3672    s->unsetSelection() ;
3673    sel.reset() ;
3674    types.clear() ;
3675
3676    // hot scan
3677    types.push_back( SrcType::HOT ) ;
3678    sel.setTypes( types ) ;
3679    s->setSelection( sel ) ;
3680    tmp.clear() ;
3681    tmp.push_back( getScantable( s, false ) ) ;
3682    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3683    s->unsetSelection() ;
3684    sel.reset() ;
3685    types.clear() ;
3686   
3687    // cold scan
3688    CountedPtr<Scantable> acold ;
3689//     types.push_back( SrcType::COLD ) ;
3690//     sel.setTypes( types ) ;
3691//     s->setSelection( sel ) ;
3692//     tmp.clear() ;
3693//     tmp.push_back( getScantable( s, false ) ) ;
3694//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3695//     s->unsetSelection() ;
3696//     sel.reset() ;
3697//     types.clear() ;
3698
3699    // off scan
3700    types.push_back( SrcType::PSOFF ) ;
3701    sel.setTypes( types ) ;
3702    s->setSelection( sel ) ;
3703    tmp.clear() ;
3704    tmp.push_back( getScantable( s, false ) ) ;
3705    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3706    s->unsetSelection() ;
3707    sel.reset() ;
3708    types.clear() ;
3709   
3710    // on scan
3711    bool insitu = insitu_ ;
3712    insitu_ = false ;
3713    CountedPtr<Scantable> out = getScantable( s, true ) ;
3714    insitu_ = insitu ;
3715    types.push_back( SrcType::PSON ) ;
3716    sel.setTypes( types ) ;
3717    s->setSelection( sel ) ;
3718    TableCopy::copyRows( out->table(), s->table() ) ;
3719    s->unsetSelection() ;
3720    sel.reset() ;
3721    types.clear() ;
3722   
3723    // process each on scan
3724    ArrayColumn<Float> tsysCol ;
3725    tsysCol.attach( out->table(), "TSYS" ) ;
3726    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3727      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3728      out->setSpectrum( sp, i ) ;
3729      string reftime = out->getTime( i ) ;
3730      vector<int> ii( 1, out->getIF( i ) ) ;
3731      vector<int> ib( 1, out->getBeam( i ) ) ;
3732      vector<int> ip( 1, out->getPol( i ) ) ;
3733      sel.setIFs( ii ) ;
3734      sel.setBeams( ib ) ;
3735      sel.setPolarizations( ip ) ;
3736      asky->setSelection( sel ) ;   
3737      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3738      const Vector<Float> Vtsys( sptsys ) ;
3739      tsysCol.put( i, Vtsys ) ;
3740      asky->unsetSelection() ;
3741      sel.reset() ;
3742    }
3743
3744    // flux unit
3745    out->setFluxUnit( "K" ) ;
3746
3747    return out ;
3748  }
3749}
3750 
3751CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3752                                       const String calmode )
3753{
3754  // frequency switch
3755  if ( calmode == "fs" ) {
3756    return almacalfs( s ) ;
3757  }
3758  else {
3759    vector<bool> masks = s->getMask( 0 ) ;
3760   
3761    // off scan
3762    STSelector sel = STSelector() ;
3763    vector<int> types ;
3764    types.push_back( SrcType::PSOFF ) ;
3765    sel.setTypes( types ) ;
3766    s->setSelection( sel ) ;
3767    // TODO 2010/01/08 TN
3768    // Grouping by time should be needed before averaging.
3769    // Each group must have own unique SCANNO (should be renumbered).
3770    // See PIPELINE/SDCalibration.py
3771    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3772    Table ttab = soff->table() ;
3773    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3774    uInt nrow = timeCol.nrow() ;
3775    Vector<Double> timeSep( nrow - 1 ) ;
3776    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3777      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3778    }
3779    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3780    Vector<Double> interval = intervalCol.getColumn() ;
3781    interval /= 86400.0 ;
3782    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3783    vector<uInt> glist ;
3784    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3785      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3786      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3787      if ( gap > 1.1 ) {
3788        glist.push_back( i ) ;
3789      }
3790    }
3791    Vector<uInt> gaplist( glist ) ;
3792    //cout << "gaplist = " << gaplist << endl ;
3793    uInt newid = 0 ;
3794    for ( uInt i = 0 ; i < nrow ; i++ ) {
3795      scanCol.put( i, newid ) ;
3796      if ( i == gaplist[newid] ) {
3797        newid++ ;
3798      }
3799    }
3800    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3801    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3802    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3803    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3804    s->unsetSelection() ;
3805    sel.reset() ;
3806    types.clear() ;
3807   
3808    // on scan
3809    bool insitu = insitu_ ;
3810    insitu_ = false ;
3811    CountedPtr<Scantable> out = getScantable( s, true ) ;
3812    insitu_ = insitu ;
3813    types.push_back( SrcType::PSON ) ;
3814    sel.setTypes( types ) ;
3815    s->setSelection( sel ) ;
3816    TableCopy::copyRows( out->table(), s->table() ) ;
3817    s->unsetSelection() ;
3818    sel.reset() ;
3819    types.clear() ;
3820   
3821    // process each on scan
3822    ArrayColumn<Float> tsysCol ;
3823    tsysCol.attach( out->table(), "TSYS" ) ;
3824    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3825      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3826      out->setSpectrum( sp, i ) ;
3827    }
3828
3829    // flux unit
3830    out->setFluxUnit( "K" ) ;
3831
3832    return out ;
3833  }
3834}
3835
3836CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3837                                       const String antname )
3838{
3839  vector<int> types ;
3840
3841  // APEX calibration mode
3842  int apexcalmode = 1 ;
3843 
3844  if ( antname.find( "APEX" ) != string::npos ) {
3845    // check if off scan exists or not
3846    STSelector sel = STSelector() ;
3847    //sel.setName( offstr1 ) ;
3848    types.push_back( SrcType::FLOOFF ) ;
3849    sel.setTypes( types ) ;
3850    try {
3851      s->setSelection( sel ) ;
3852    }
3853    catch ( AipsError &e ) {
3854      apexcalmode = 0 ;
3855    }
3856    sel.reset() ;
3857  }
3858  s->unsetSelection() ;
3859  types.clear() ;
3860
3861  vector<bool> masks = s->getMask( 0 ) ;
3862  CountedPtr<Scantable> ssig, sref ;
3863  CountedPtr<Scantable> out ;
3864
3865  if ( antname.find( "APEX" ) != string::npos ) {
3866    // APEX calibration
3867    // sky scan
3868    STSelector sel = STSelector() ;
3869    types.push_back( SrcType::FLOSKY ) ;
3870    sel.setTypes( types ) ;
3871    s->setSelection( sel ) ;
3872    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3873    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3874    s->unsetSelection() ;
3875    sel.reset() ;
3876    types.clear() ;
3877    types.push_back( SrcType::FHISKY ) ;
3878    sel.setTypes( types ) ;
3879    s->setSelection( sel ) ;
3880    tmp.clear() ;
3881    tmp.push_back( getScantable( s, false ) ) ;
3882    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3883    s->unsetSelection() ;
3884    sel.reset() ;
3885    types.clear() ;
3886   
3887    // hot scan
3888    types.push_back( SrcType::FLOHOT ) ;
3889    sel.setTypes( types ) ;
3890    s->setSelection( sel ) ;
3891    tmp.clear() ;
3892    tmp.push_back( getScantable( s, false ) ) ;
3893    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3894    s->unsetSelection() ;
3895    sel.reset() ;
3896    types.clear() ;
3897    types.push_back( SrcType::FHIHOT ) ;
3898    sel.setTypes( types ) ;
3899    s->setSelection( sel ) ;
3900    tmp.clear() ;
3901    tmp.push_back( getScantable( s, false ) ) ;
3902    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3903    s->unsetSelection() ;
3904    sel.reset() ;
3905    types.clear() ;
3906   
3907    // cold scan
3908    CountedPtr<Scantable> acoldlo, acoldhi ;
3909//     types.push_back( SrcType::FLOCOLD ) ;
3910//     sel.setTypes( types ) ;
3911//     s->setSelection( sel ) ;
3912//     tmp.clear() ;
3913//     tmp.push_back( getScantable( s, false ) ) ;
3914//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3915//     s->unsetSelection() ;
3916//     sel.reset() ;
3917//     types.clear() ;
3918//     types.push_back( SrcType::FHICOLD ) ;
3919//     sel.setTypes( types ) ;
3920//     s->setSelection( sel ) ;
3921//     tmp.clear() ;
3922//     tmp.push_back( getScantable( s, false ) ) ;
3923//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3924//     s->unsetSelection() ;
3925//     sel.reset() ;
3926//     types.clear() ;
3927
3928    // ref scan
3929    bool insitu = insitu_ ;
3930    insitu_ = false ;
3931    sref = getScantable( s, true ) ;
3932    insitu_ = insitu ;
3933    types.push_back( SrcType::FSLO ) ;
3934    sel.setTypes( types ) ;
3935    s->setSelection( sel ) ;
3936    TableCopy::copyRows( sref->table(), s->table() ) ;
3937    s->unsetSelection() ;
3938    sel.reset() ;
3939    types.clear() ;
3940   
3941    // sig scan
3942    insitu_ = false ;
3943    ssig = getScantable( s, true ) ;
3944    insitu_ = insitu ;
3945    types.push_back( SrcType::FSHI ) ;
3946    sel.setTypes( types ) ;
3947    s->setSelection( sel ) ;
3948    TableCopy::copyRows( ssig->table(), s->table() ) ;
3949    s->unsetSelection() ;
3950    sel.reset() ; 
3951    types.clear() ;
3952         
3953    if ( apexcalmode == 0 ) {
3954      // APEX fs data without off scan
3955      // process each sig and ref scan
3956      ArrayColumn<Float> tsysCollo ;
3957      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3958      ArrayColumn<Float> tsysColhi ;
3959      tsysColhi.attach( sref->table(), "TSYS" ) ;
3960      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3961        vector< CountedPtr<Scantable> > sky( 2 ) ;
3962        sky[0] = askylo ;
3963        sky[1] = askyhi ;
3964        vector< CountedPtr<Scantable> > hot( 2 ) ;
3965        hot[0] = ahotlo ;
3966        hot[1] = ahothi ;
3967        vector< CountedPtr<Scantable> > cold( 2 ) ;
3968        //cold[0] = acoldlo ;
3969        //cold[1] = acoldhi ;
3970        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
3971        ssig->setSpectrum( sp, i ) ;
3972        string reftime = ssig->getTime( i ) ;
3973        vector<int> ii( 1, ssig->getIF( i ) ) ;
3974        vector<int> ib( 1, ssig->getBeam( i ) ) ;
3975        vector<int> ip( 1, ssig->getPol( i ) ) ;
3976        sel.setIFs( ii ) ;
3977        sel.setBeams( ib ) ;
3978        sel.setPolarizations( ip ) ;
3979        askylo->setSelection( sel ) ;
3980        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
3981        const Vector<Float> Vtsyslo( sptsys ) ;
3982        tsysCollo.put( i, Vtsyslo ) ;
3983        askylo->unsetSelection() ;
3984        sel.reset() ;
3985        sky[0] = askyhi ;
3986        sky[1] = askylo ;
3987        hot[0] = ahothi ;
3988        hot[1] = ahotlo ;
3989        cold[0] = acoldhi ;
3990        cold[1] = acoldlo ;
3991        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
3992        sref->setSpectrum( sp, i ) ;
3993        reftime = sref->getTime( i ) ;
3994        ii[0] = sref->getIF( i )  ;
3995        ib[0] = sref->getBeam( i ) ;
3996        ip[0] = sref->getPol( i ) ;
3997        sel.setIFs( ii ) ;
3998        sel.setBeams( ib ) ;
3999        sel.setPolarizations( ip ) ;
4000        askyhi->setSelection( sel ) ;   
4001        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4002        const Vector<Float> Vtsyshi( sptsys ) ;
4003        tsysColhi.put( i, Vtsyshi ) ;
4004        askyhi->unsetSelection() ;
4005        sel.reset() ;
4006      }
4007    }
4008    else if ( apexcalmode == 1 ) {
4009      // APEX fs data with off scan
4010      // off scan
4011      types.push_back( SrcType::FLOOFF ) ;
4012      sel.setTypes( types ) ;
4013      s->setSelection( sel ) ;
4014      tmp.clear() ;
4015      tmp.push_back( getScantable( s, false ) ) ;
4016      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4017      s->unsetSelection() ;
4018      sel.reset() ;
4019      types.clear() ;
4020      types.push_back( SrcType::FHIOFF ) ;
4021      sel.setTypes( types ) ;
4022      s->setSelection( sel ) ;
4023      tmp.clear() ;
4024      tmp.push_back( getScantable( s, false ) ) ;
4025      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4026      s->unsetSelection() ;
4027      sel.reset() ;
4028      types.clear() ;
4029     
4030      // process each sig and ref scan
4031      ArrayColumn<Float> tsysCollo ;
4032      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4033      ArrayColumn<Float> tsysColhi ;
4034      tsysColhi.attach( sref->table(), "TSYS" ) ;
4035      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4036        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4037        ssig->setSpectrum( sp, i ) ;
4038        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4039        string reftime = ssig->getTime( i ) ;
4040        vector<int> ii( 1, ssig->getIF( i ) ) ;
4041        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4042        vector<int> ip( 1, ssig->getPol( i ) ) ;
4043        sel.setIFs( ii ) ;
4044        sel.setBeams( ib ) ;
4045        sel.setPolarizations( ip ) ;
4046        askylo->setSelection( sel ) ;
4047        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4048        const Vector<Float> Vtsyslo( sptsys ) ;
4049        tsysCollo.put( i, Vtsyslo ) ;
4050        askylo->unsetSelection() ;
4051        sel.reset() ;
4052        sref->setSpectrum( sp, i ) ;
4053        reftime = sref->getTime( i ) ;
4054        ii[0] = sref->getIF( i )  ;
4055        ib[0] = sref->getBeam( i ) ;
4056        ip[0] = sref->getPol( i ) ;
4057        sel.setIFs( ii ) ;
4058        sel.setBeams( ib ) ;
4059        sel.setPolarizations( ip ) ;
4060        askyhi->setSelection( sel ) ;   
4061        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4062        const Vector<Float> Vtsyshi( sptsys ) ;
4063        tsysColhi.put( i, Vtsyshi ) ;
4064        askyhi->unsetSelection() ;
4065        sel.reset() ;
4066      }
4067    }
4068  }
4069  else {
4070    // non-APEX fs data
4071    // sky scan
4072    STSelector sel = STSelector() ;
4073    types.push_back( SrcType::SKY ) ;
4074    sel.setTypes( types ) ;
4075    s->setSelection( sel ) ;
4076    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4077    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4078    s->unsetSelection() ;
4079    sel.reset() ;
4080    types.clear() ;
4081   
4082    // hot scan
4083    types.push_back( SrcType::HOT ) ;
4084    sel.setTypes( types ) ;
4085    s->setSelection( sel ) ;
4086    tmp.clear() ;
4087    tmp.push_back( getScantable( s, false ) ) ;
4088    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4089    s->unsetSelection() ;
4090    sel.reset() ;
4091    types.clear() ;
4092
4093    // cold scan
4094    CountedPtr<Scantable> acold ;
4095//     types.push_back( SrcType::COLD ) ;
4096//     sel.setTypes( types ) ;
4097//     s->setSelection( sel ) ;
4098//     tmp.clear() ;
4099//     tmp.push_back( getScantable( s, false ) ) ;
4100//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4101//     s->unsetSelection() ;
4102//     sel.reset() ;
4103//     types.clear() ;
4104   
4105    // ref scan
4106    bool insitu = insitu_ ;
4107    insitu_ = false ;
4108    sref = getScantable( s, true ) ;
4109    insitu_ = insitu ;
4110    types.push_back( SrcType::FSOFF ) ;
4111    sel.setTypes( types ) ;
4112    s->setSelection( sel ) ;
4113    TableCopy::copyRows( sref->table(), s->table() ) ;
4114    s->unsetSelection() ;
4115    sel.reset() ;
4116    types.clear() ;
4117   
4118    // sig scan
4119    insitu_ = false ;
4120    ssig = getScantable( s, true ) ;
4121    insitu_ = insitu ;
4122    types.push_back( SrcType::FSON ) ;
4123    sel.setTypes( types ) ;
4124    s->setSelection( sel ) ;
4125    TableCopy::copyRows( ssig->table(), s->table() ) ;
4126    s->unsetSelection() ;
4127    sel.reset() ;
4128    types.clear() ;
4129
4130    // process each sig and ref scan
4131    ArrayColumn<Float> tsysColsig ;
4132    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4133    ArrayColumn<Float> tsysColref ;
4134    tsysColref.attach( ssig->table(), "TSYS" ) ;
4135    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4136      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4137      ssig->setSpectrum( sp, i ) ;
4138      string reftime = ssig->getTime( i ) ;
4139      vector<int> ii( 1, ssig->getIF( i ) ) ;
4140      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4141      vector<int> ip( 1, ssig->getPol( i ) ) ;
4142      sel.setIFs( ii ) ;
4143      sel.setBeams( ib ) ;
4144      sel.setPolarizations( ip ) ;
4145      asky->setSelection( sel ) ;
4146      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4147      const Vector<Float> Vtsys( sptsys ) ;
4148      tsysColsig.put( i, Vtsys ) ;
4149      asky->unsetSelection() ;
4150      sel.reset() ;
4151      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4152      sref->setSpectrum( sp, i ) ;
4153      tsysColref.put( i, Vtsys ) ;
4154    }
4155  }
4156
4157  // do folding if necessary
4158  Table sigtab = ssig->table() ;
4159  Table reftab = sref->table() ;
4160  ScalarColumn<uInt> sigifnoCol ;
4161  ScalarColumn<uInt> refifnoCol ;
4162  ScalarColumn<uInt> sigfidCol ;
4163  ScalarColumn<uInt> reffidCol ;
4164  Int nchan = (Int)ssig->nchan() ;
4165  sigifnoCol.attach( sigtab, "IFNO" ) ;
4166  refifnoCol.attach( reftab, "IFNO" ) ;
4167  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4168  reffidCol.attach( reftab, "FREQ_ID" ) ;
4169  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4170  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4171  vector<uInt> sfids_unique ;
4172  vector<uInt> rfids_unique ;
4173  vector<uInt> sifno_unique ;
4174  vector<uInt> rifno_unique ;
4175  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4176    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4177      sfids_unique.push_back( sfids[i] ) ;
4178      sifno_unique.push_back( ssig->getIF( i ) ) ;
4179    }
4180    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4181      rfids_unique.push_back( rfids[i] ) ;
4182      rifno_unique.push_back( sref->getIF( i ) ) ;
4183    }
4184  }
4185  double refpix_sig, refval_sig, increment_sig ;
4186  double refpix_ref, refval_ref, increment_ref ;
4187  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4188  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4189    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4190    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4191    if ( refpix_sig == refpix_ref ) {
4192      double foffset = refval_ref - refval_sig ;
4193      int choffset = static_cast<int>(foffset/increment_sig) ;
4194      double doffset = foffset / increment_sig ;
4195      if ( abs(choffset) >= nchan ) {
4196        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4197        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4198        os << "Just return signal data" << LogIO::POST ;
4199        //std::vector< CountedPtr<Scantable> > tabs ;
4200        //tabs.push_back( ssig ) ;
4201        //tabs.push_back( sref ) ;
4202        //out = merge( tabs ) ;
4203        tmp[i] = ssig ;
4204      }
4205      else {
4206        STSelector sel = STSelector() ;
4207        vector<int> v( 1, sifno_unique[i] ) ;
4208        sel.setIFs( v ) ;
4209        ssig->setSelection( sel ) ;
4210        sel.reset() ;
4211        v[0] = rifno_unique[i] ;
4212        sel.setIFs( v ) ;
4213        sref->setSelection( sel ) ;
4214        sel.reset() ;
4215        if ( antname.find( "APEX" ) != string::npos ) {
4216          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4217          //tmp[i] = dofold( ssig, sref, doffset ) ;
4218        }
4219        else {
4220          tmp[i] = dofold( ssig, sref, doffset ) ;
4221        }
4222        ssig->unsetSelection() ;
4223        sref->unsetSelection() ;
4224      }
4225    }
4226  }
4227
4228  if ( tmp.size() > 1 ) {
4229    out = merge( tmp ) ;
4230  }
4231  else {
4232    out = tmp[0] ;
4233  }
4234
4235  // flux unit
4236  out->setFluxUnit( "K" ) ;
4237
4238  return out ;
4239}
4240
4241CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4242{
4243  CountedPtr<Scantable> out ;
4244
4245  return out ;
4246}
4247
4248vector<float> STMath::getSpectrumFromTime( string reftime,
4249                                           CountedPtr<Scantable>& s,
4250                                           string mode )
4251{
4252  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4253  vector<float> sp ;
4254
4255  if ( s->nrow() == 0 ) {
4256    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4257    return sp ;
4258  }
4259  else if ( s->nrow() == 1 ) {
4260    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4261    return s->getSpectrum( 0 ) ;
4262  }
4263  else {
4264    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4265    if ( mode == "before" ) {
4266      int id = -1 ;
4267      if ( idx[0] != -1 ) {
4268        id = idx[0] ;
4269      }
4270      else if ( idx[1] != -1 ) {
4271        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4272        id = idx[1] ;
4273      }
4274      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4275      sp = s->getSpectrum( id ) ;
4276    }
4277    else if ( mode == "after" ) {
4278      int id = -1 ;
4279      if ( idx[1] != -1 ) {
4280        id = idx[1] ;
4281      }
4282      else if ( idx[0] != -1 ) {
4283        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4284        id = idx[1] ;
4285      }
4286      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4287      sp = s->getSpectrum( id ) ;
4288    }
4289    else if ( mode == "nearest" ) {
4290      int id = -1 ;
4291      if ( idx[0] == -1 ) {
4292        id = idx[1] ;
4293      }
4294      else if ( idx[1] == -1 ) {
4295        id = idx[0] ;
4296      }
4297      else if ( idx[0] == idx[1] ) {
4298        id = idx[0] ;
4299      }
4300      else {
4301        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4302        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4303        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4304        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4305        double tref = getMJD( reftime ) ;
4306        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4307          id = idx[1] ;
4308        }
4309        else {
4310          id = idx[0] ;
4311        }
4312      }
4313      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4314      sp = s->getSpectrum( id ) ;     
4315    }
4316    else if ( mode == "linear" ) {
4317      if ( idx[0] == -1 ) {
4318        // use after
4319        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4320        int id = idx[1] ;
4321        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4322        sp = s->getSpectrum( id ) ;
4323      }
4324      else if ( idx[1] == -1 ) {
4325        // use before
4326        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4327        int id = idx[0] ;
4328        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4329        sp = s->getSpectrum( id ) ;
4330      }
4331      else if ( idx[0] == idx[1] ) {
4332        // use before
4333        //os << "No need to interporate." << LogIO::POST ;
4334        int id = idx[0] ;
4335        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4336        sp = s->getSpectrum( id ) ;
4337      }
4338      else {
4339        // do interpolation
4340        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4341        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4342        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4343        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4344        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4345        double tref = getMJD( reftime ) ;
4346        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4347        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4348        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4349          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4350          sp.push_back( v ) ;
4351        }
4352      }
4353    }
4354    else {
4355      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4356    }
4357    return sp ;
4358  }
4359}
4360
4361double STMath::getMJD( string strtime )
4362{
4363  if ( strtime.find("/") == string::npos ) {
4364    // MJD time string
4365    return atof( strtime.c_str() ) ;
4366  }
4367  else {
4368    // string in YYYY/MM/DD/HH:MM:SS format
4369    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4370    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4371    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4372    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4373    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4374    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4375    Time t( year, month, day, hour, minute, sec ) ;
4376    return t.modifiedJulianDay() ;
4377  }
4378}
4379
4380vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4381{
4382  double reft = getMJD( reftime ) ;
4383  double dtmin = 1.0e100 ;
4384  double dtmax = -1.0e100 ;
4385  vector<double> dt ;
4386  int just_before = -1 ;
4387  int just_after = -1 ;
4388  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4389    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4390  }
4391  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4392    if ( dt[i] > 0.0 ) {
4393      // after reftime
4394      if ( dt[i] < dtmin ) {
4395        just_after = i ;
4396        dtmin = dt[i] ;
4397      }
4398    }
4399    else if ( dt[i] < 0.0 ) {
4400      // before reftime
4401      if ( dt[i] > dtmax ) {
4402        just_before = i ;
4403        dtmax = dt[i] ;
4404      }
4405    }
4406    else {
4407      // just a reftime
4408      just_before = i ;
4409      just_after = i ;
4410      dtmax = 0 ;
4411      dtmin = 0 ;
4412      break ;
4413    }
4414  }
4415
4416  vector<int> v ;
4417  v.push_back( just_before ) ;
4418  v.push_back( just_after ) ;
4419
4420  return v ;
4421}
4422
4423vector<float> STMath::getTcalFromTime( string reftime,
4424                                       CountedPtr<Scantable>& s,
4425                                       string mode )
4426{
4427  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4428  vector<float> tcal ;
4429  STTcal tcalTable = s->tcal() ;
4430  String time ;
4431  Vector<Float> tcalval ;
4432  if ( s->nrow() == 0 ) {
4433    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4434    return tcal ;
4435  }
4436  else if ( s->nrow() == 1 ) {
4437    uInt tcalid = s->getTcalId( 0 ) ;
4438    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4439    tcalTable.getEntry( time, tcalval, tcalid ) ;
4440    tcalval.tovector( tcal ) ;
4441    return tcal ;
4442  }
4443  else {
4444    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4445    if ( mode == "before" ) {
4446      int id = -1 ;
4447      if ( idx[0] != -1 ) {
4448        id = idx[0] ;
4449      }
4450      else if ( idx[1] != -1 ) {
4451        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4452        id = idx[1] ;
4453      }
4454      uInt tcalid = s->getTcalId( id ) ;
4455      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4456      tcalTable.getEntry( time, tcalval, tcalid ) ;
4457      tcalval.tovector( tcal ) ;
4458    }
4459    else if ( mode == "after" ) {
4460      int id = -1 ;
4461      if ( idx[1] != -1 ) {
4462        id = idx[1] ;
4463      }
4464      else if ( idx[0] != -1 ) {
4465        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4466        id = idx[1] ;
4467      }
4468      uInt tcalid = s->getTcalId( id ) ;
4469      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4470      tcalTable.getEntry( time, tcalval, tcalid ) ;
4471      tcalval.tovector( tcal ) ;
4472    }
4473    else if ( mode == "nearest" ) {
4474      int id = -1 ;
4475      if ( idx[0] == -1 ) {
4476        id = idx[1] ;
4477      }
4478      else if ( idx[1] == -1 ) {
4479        id = idx[0] ;
4480      }
4481      else if ( idx[0] == idx[1] ) {
4482        id = idx[0] ;
4483      }
4484      else {
4485        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4486        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4487        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4488        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4489        double tref = getMJD( reftime ) ;
4490        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4491          id = idx[1] ;
4492        }
4493        else {
4494          id = idx[0] ;
4495        }
4496      }
4497      uInt tcalid = s->getTcalId( id ) ;
4498      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4499      tcalTable.getEntry( time, tcalval, tcalid ) ;
4500      tcalval.tovector( tcal ) ;
4501    }
4502    else if ( mode == "linear" ) {
4503      if ( idx[0] == -1 ) {
4504        // use after
4505        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4506        int id = idx[1] ;
4507        uInt tcalid = s->getTcalId( id ) ;
4508        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4509        tcalTable.getEntry( time, tcalval, tcalid ) ;
4510        tcalval.tovector( tcal ) ;
4511      }
4512      else if ( idx[1] == -1 ) {
4513        // use before
4514        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4515        int id = idx[0] ;
4516        uInt tcalid = s->getTcalId( id ) ;
4517        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4518        tcalTable.getEntry( time, tcalval, tcalid ) ;
4519        tcalval.tovector( tcal ) ;
4520      }
4521      else if ( idx[0] == idx[1] ) {
4522        // use before
4523        //os << "No need to interporate." << LogIO::POST ;
4524        int id = idx[0] ;
4525        uInt tcalid = s->getTcalId( id ) ;
4526        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4527        tcalTable.getEntry( time, tcalval, tcalid ) ;
4528        tcalval.tovector( tcal ) ;
4529      }
4530      else {
4531        // do interpolation
4532        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4533        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4534        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4535        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4536        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4537        double tref = getMJD( reftime ) ;
4538        vector<float> tcal0 ;
4539        vector<float> tcal1 ;
4540        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4541        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4542        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4543        tcalval.tovector( tcal0 ) ;
4544        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4545        tcalval.tovector( tcal1 ) ;       
4546        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4547          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4548          tcal.push_back( v ) ;
4549        }
4550      }
4551    }
4552    else {
4553      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4554    }
4555    return tcal ;
4556  }
4557}
4558
4559vector<float> STMath::getTsysFromTime( string reftime,
4560                                       CountedPtr<Scantable>& s,
4561                                       string mode )
4562{
4563  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4564  ArrayColumn<Float> tsysCol ;
4565  tsysCol.attach( s->table(), "TSYS" ) ;
4566  vector<float> tsys ;
4567  String time ;
4568  Vector<Float> tsysval ;
4569  if ( s->nrow() == 0 ) {
4570    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4571    return tsys ;
4572  }
4573  else if ( s->nrow() == 1 ) {
4574    //os << "use row " << 0 << LogIO::POST ;
4575    tsysval = tsysCol( 0 ) ;
4576    tsysval.tovector( tsys ) ;
4577    return tsys ;
4578  }
4579  else {
4580    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4581    if ( mode == "before" ) {
4582      int id = -1 ;
4583      if ( idx[0] != -1 ) {
4584        id = idx[0] ;
4585      }
4586      else if ( idx[1] != -1 ) {
4587        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4588        id = idx[1] ;
4589      }
4590      //os << "use row " << id << LogIO::POST ;
4591      tsysval = tsysCol( id ) ;
4592      tsysval.tovector( tsys ) ;
4593    }
4594    else if ( mode == "after" ) {
4595      int id = -1 ;
4596      if ( idx[1] != -1 ) {
4597        id = idx[1] ;
4598      }
4599      else if ( idx[0] != -1 ) {
4600        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4601        id = idx[1] ;
4602      }
4603      //os << "use row " << id << LogIO::POST ;
4604      tsysval = tsysCol( id ) ;
4605      tsysval.tovector( tsys ) ;
4606    }
4607    else if ( mode == "nearest" ) {
4608      int id = -1 ;
4609      if ( idx[0] == -1 ) {
4610        id = idx[1] ;
4611      }
4612      else if ( idx[1] == -1 ) {
4613        id = idx[0] ;
4614      }
4615      else if ( idx[0] == idx[1] ) {
4616        id = idx[0] ;
4617      }
4618      else {
4619        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4620        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4621        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4622        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4623        double tref = getMJD( reftime ) ;
4624        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4625          id = idx[1] ;
4626        }
4627        else {
4628          id = idx[0] ;
4629        }
4630      }
4631      //os << "use row " << id << LogIO::POST ;
4632      tsysval = tsysCol( id ) ;
4633      tsysval.tovector( tsys ) ;
4634    }
4635    else if ( mode == "linear" ) {
4636      if ( idx[0] == -1 ) {
4637        // use after
4638        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4639        int id = idx[1] ;
4640        //os << "use row " << id << LogIO::POST ;
4641        tsysval = tsysCol( id ) ;
4642        tsysval.tovector( tsys ) ;
4643      }
4644      else if ( idx[1] == -1 ) {
4645        // use before
4646        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4647        int id = idx[0] ;
4648        //os << "use row " << id << LogIO::POST ;
4649        tsysval = tsysCol( id ) ;
4650        tsysval.tovector( tsys ) ;
4651      }
4652      else if ( idx[0] == idx[1] ) {
4653        // use before
4654        //os << "No need to interporate." << LogIO::POST ;
4655        int id = idx[0] ;
4656        //os << "use row " << id << LogIO::POST ;
4657        tsysval = tsysCol( id ) ;
4658        tsysval.tovector( tsys ) ;
4659      }
4660      else {
4661        // do interpolation
4662        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4663        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4664        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4665        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4666        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4667        double tref = getMJD( reftime ) ;
4668        vector<float> tsys0 ;
4669        vector<float> tsys1 ;
4670        tsysval = tsysCol( idx[0] ) ;
4671        tsysval.tovector( tsys0 ) ;
4672        tsysval = tsysCol( idx[1] ) ;
4673        tsysval.tovector( tsys1 ) ;       
4674        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4675          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4676          tsys.push_back( v ) ;
4677        }
4678      }
4679    }
4680    else {
4681      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4682    }
4683    return tsys ;
4684  }
4685}
4686
4687vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4688                                            CountedPtr<Scantable>& off,
4689                                            CountedPtr<Scantable>& sky,
4690                                            CountedPtr<Scantable>& hot,
4691                                            CountedPtr<Scantable>& cold,
4692                                            int index,
4693                                            string antname )
4694{
4695  string reftime = on->getTime( index ) ;
4696  vector<int> ii( 1, on->getIF( index ) ) ;
4697  vector<int> ib( 1, on->getBeam( index ) ) ;
4698  vector<int> ip( 1, on->getPol( index ) ) ;
4699  vector<int> ic( 1, on->getScan( index ) ) ;
4700  STSelector sel = STSelector() ;
4701  sel.setIFs( ii ) ;
4702  sel.setBeams( ib ) ;
4703  sel.setPolarizations( ip ) ;
4704  sky->setSelection( sel ) ;
4705  hot->setSelection( sel ) ;
4706  //cold->setSelection( sel ) ;
4707  off->setSelection( sel ) ;
4708  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4709  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4710  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4711  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4712  vector<float> spec = on->getSpectrum( index ) ;
4713  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4714  vector<float> sp( tcal.size() ) ;
4715  if ( antname.find( "APEX" ) != string::npos ) {
4716    // using gain array
4717    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4718      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4719        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4720      sp[j] = v ;
4721    }
4722  }
4723  else {
4724    // Chopper-Wheel calibration (Ulich & Haas 1976)
4725    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4726      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4727      sp[j] = v ;
4728    }
4729  }
4730  sel.reset() ;
4731  sky->unsetSelection() ;
4732  hot->unsetSelection() ;
4733  //cold->unsetSelection() ;
4734  off->unsetSelection() ;
4735
4736  return sp ;
4737}
4738
4739vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4740                                            CountedPtr<Scantable>& off,
4741                                            int index )
4742{
4743  string reftime = on->getTime( index ) ;
4744  vector<int> ii( 1, on->getIF( index ) ) ;
4745  vector<int> ib( 1, on->getBeam( index ) ) ;
4746  vector<int> ip( 1, on->getPol( index ) ) ;
4747  vector<int> ic( 1, on->getScan( index ) ) ;
4748  STSelector sel = STSelector() ;
4749  sel.setIFs( ii ) ;
4750  sel.setBeams( ib ) ;
4751  sel.setPolarizations( ip ) ;
4752  off->setSelection( sel ) ;
4753  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4754  vector<float> spec = on->getSpectrum( index ) ;
4755  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4756  //vector<float> tsys = on->getTsysVec( index ) ;
4757  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4758  Vector<Float> tsys = tsysCol( index ) ;
4759  vector<float> sp( spec.size() ) ;
4760  // ALMA Calibration
4761  //
4762  // Ta* = Tsys * ( ON - OFF ) / OFF
4763  //
4764  // 2010/01/07 Takeshi Nakazato
4765  unsigned int tsyssize = tsys.nelements() ;
4766  unsigned int spsize = sp.size() ;
4767  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4768    float tscale = 0.0 ;
4769    if ( tsyssize == spsize )
4770      tscale = tsys[j] ;
4771    else
4772      tscale = tsys[0] ;
4773    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4774    sp[j] = v ;
4775  }
4776  sel.reset() ;
4777  off->unsetSelection() ;
4778
4779  return sp ;
4780}
4781
4782vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4783                                              CountedPtr<Scantable>& ref,
4784                                              CountedPtr<Scantable>& sky,
4785                                              CountedPtr<Scantable>& hot,
4786                                              CountedPtr<Scantable>& cold,
4787                                              int index )
4788{
4789  string reftime = sig->getTime( index ) ;
4790  vector<int> ii( 1, sig->getIF( index ) ) ;
4791  vector<int> ib( 1, sig->getBeam( index ) ) ;
4792  vector<int> ip( 1, sig->getPol( index ) ) ;
4793  vector<int> ic( 1, sig->getScan( index ) ) ;
4794  STSelector sel = STSelector() ;
4795  sel.setIFs( ii ) ;
4796  sel.setBeams( ib ) ;
4797  sel.setPolarizations( ip ) ;
4798  sky->setSelection( sel ) ;
4799  hot->setSelection( sel ) ;
4800  //cold->setSelection( sel ) ;
4801  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4802  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4803  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4804  vector<float> spref = ref->getSpectrum( index ) ;
4805  vector<float> spsig = sig->getSpectrum( index ) ;
4806  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4807  vector<float> sp( tcal.size() ) ;
4808  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4809    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4810    sp[j] = v ;
4811  }
4812  sel.reset() ;
4813  sky->unsetSelection() ;
4814  hot->unsetSelection() ;
4815  //cold->unsetSelection() ;
4816
4817  return sp ;
4818}
4819
4820vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4821                                              CountedPtr<Scantable>& ref,
4822                                              vector< CountedPtr<Scantable> >& sky,
4823                                              vector< CountedPtr<Scantable> >& hot,
4824                                              vector< CountedPtr<Scantable> >& cold,
4825                                              int index )
4826{
4827  string reftime = sig->getTime( index ) ;
4828  vector<int> ii( 1, sig->getIF( index ) ) ;
4829  vector<int> ib( 1, sig->getBeam( index ) ) ;
4830  vector<int> ip( 1, sig->getPol( index ) ) ;
4831  vector<int> ic( 1, sig->getScan( index ) ) ;
4832  STSelector sel = STSelector() ;
4833  sel.setIFs( ii ) ;
4834  sel.setBeams( ib ) ;
4835  sel.setPolarizations( ip ) ;
4836  sky[0]->setSelection( sel ) ;
4837  hot[0]->setSelection( sel ) ;
4838  //cold[0]->setSelection( sel ) ;
4839  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4840  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4841  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4842  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4843  sel.reset() ;
4844  ii[0] = ref->getIF( index ) ;
4845  sel.setIFs( ii ) ;
4846  sel.setBeams( ib ) ;
4847  sel.setPolarizations( ip ) ;
4848  sky[1]->setSelection( sel ) ;
4849  hot[1]->setSelection( sel ) ;
4850  //cold[1]->setSelection( sel ) ;
4851  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4852  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4853  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4854  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4855  vector<float> spref = ref->getSpectrum( index ) ;
4856  vector<float> spsig = sig->getSpectrum( index ) ;
4857  vector<float> sp( tcals.size() ) ;
4858  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4859    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4860    sp[j] = v ;
4861  }
4862  sel.reset() ;
4863  sky[0]->unsetSelection() ;
4864  hot[0]->unsetSelection() ;
4865  //cold[0]->unsetSelection() ;
4866  sky[1]->unsetSelection() ;
4867  hot[1]->unsetSelection() ;
4868  //cold[1]->unsetSelection() ;
4869
4870  return sp ;
4871}
Note: See TracBrowser for help on using the repository browser.