1 | __all__ = ["model", "skydip"]
|
---|
2 | import os
|
---|
3 | import math
|
---|
4 | from asap.scantable import scantable
|
---|
5 | from asap.asapmath import merge
|
---|
6 | from asap.asapfitter import fitter
|
---|
7 | from asap.selector import selector
|
---|
8 | from asap._asap import atmosphere
|
---|
9 |
|
---|
10 |
|
---|
11 | class model(object):
|
---|
12 | def _to_pascals(self, val):
|
---|
13 | if val > 2000:
|
---|
14 | return val
|
---|
15 | return val*100
|
---|
16 |
|
---|
17 | def __init__(self, temperature=288, pressure=101325., humidity=0.5,
|
---|
18 | elevation=700.):
|
---|
19 | """
|
---|
20 | This class implements opacity/atmospheric brightness temperature model
|
---|
21 | equivalent to the model available in MIRIAD. The actual math is a
|
---|
22 | convertion of the Fortran code written by Bob Sault for MIRIAD.
|
---|
23 | It implements a simple model of the atmosphere and Liebe's model (1985)
|
---|
24 | of the complex refractive index of air.
|
---|
25 |
|
---|
26 | The model of the atmosphere is one with an exponential fall-off in
|
---|
27 | the water vapour content (scale height of 1540 m) and a temperature
|
---|
28 | lapse rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas
|
---|
29 | equation and hydrostatic equilibrium.
|
---|
30 |
|
---|
31 | Note, the model includes atmospheric lines up to 800 GHz, but was not
|
---|
32 | rigorously tested above 100 GHz and for instruments located at
|
---|
33 | a significant elevation. For high-elevation sites it may be necessary to
|
---|
34 | adjust scale height and lapse rate.
|
---|
35 |
|
---|
36 | Parameters:
|
---|
37 | temperature: air temperature at the observatory (K)
|
---|
38 | pressure: air pressure at the sea level if the observatory
|
---|
39 | elevation is set to non-zero value (note, by
|
---|
40 | default is set to 700m) or at the observatory
|
---|
41 | ground level if the elevation is set to 0. (The
|
---|
42 | value is in Pascals or hPa, default 101325 Pa
|
---|
43 | humidity: air humidity at the observatory (fractional),
|
---|
44 | default is 0.5
|
---|
45 | elevation: observatory elevation about sea level (in meters)
|
---|
46 | """
|
---|
47 | self._atm = atmosphere(temperature, self._to_pascals(pressure),
|
---|
48 | humidity)
|
---|
49 | self.set_observatory_elevation(elevation)
|
---|
50 |
|
---|
51 | def get_opacities(self, freq, elevation=None):
|
---|
52 | """Get the opacity value(s) for the given frequency(ies).
|
---|
53 | If no elevation is given the opacities for the zenith are returned.
|
---|
54 | If an elevation is specified refraction is also taken into account.
|
---|
55 | Parameters:
|
---|
56 | freq: a frequency value in Hz, or a list of frequency values.
|
---|
57 | One opacity value per frequency is returned as a scalar
|
---|
58 | or list.
|
---|
59 | elevation: the elevation at which to compute the opacity. If `None`
|
---|
60 | is given (default) the zenith opacity is returned.
|
---|
61 |
|
---|
62 |
|
---|
63 | """
|
---|
64 | func = None
|
---|
65 | if isinstance(freq, (list, tuple)):
|
---|
66 | if elevation is None:
|
---|
67 | return self._atm.zenith_opacities(freq)
|
---|
68 | else:
|
---|
69 | elevation *= math.pi/180.
|
---|
70 | return self._atm.opacities(freq, elevation)
|
---|
71 | else:
|
---|
72 | if elevation is None:
|
---|
73 | return self._atm.zenith_opacity(freq)
|
---|
74 | else:
|
---|
75 | elevation *= math.pi/180.
|
---|
76 | return self._atm.opacity(freq, elevation)
|
---|
77 |
|
---|
78 | def set_weather(self, temperature, pressure, humidity):
|
---|
79 | """Update the model using the given environmental parameters.
|
---|
80 | Parameters:
|
---|
81 | temperature: air temperature at the observatory (K)
|
---|
82 | pressure: air pressure at the sea level if the observatory
|
---|
83 | elevation is set to non-zero value (note, by
|
---|
84 | default is set to 700m) or at the observatory
|
---|
85 | ground level if the elevation is set to 0. (The
|
---|
86 | value is in Pascals or hPa, default 101325 Pa
|
---|
87 | humidity: air humidity at the observatory (fractional),
|
---|
88 | default is 0.5
|
---|
89 | """
|
---|
90 | pressure = self._to_pascals(pressure)
|
---|
91 | self._atm.set_weather(temperature, pressure, humidity)
|
---|
92 |
|
---|
93 | def set_observatory_elevation(self, elevation):
|
---|
94 | """Update the model using the given the observatory elevation
|
---|
95 | Parameters:
|
---|
96 | elevation: the elevation at which to compute the opacity. If `None`
|
---|
97 | is given (default) the zenith opacity is returned.
|
---|
98 | """
|
---|
99 | self._atm.set_observatory_elevation(elevation)
|
---|
100 |
|
---|
101 |
|
---|
102 | def _import_data(data):
|
---|
103 | if not isinstance(data, (list,tuple)):
|
---|
104 | if isinstance(data, scantable):
|
---|
105 | return data
|
---|
106 | elif isinstance(data, str):
|
---|
107 | return scantable(data)
|
---|
108 | tables = []
|
---|
109 | for d in data:
|
---|
110 | if isinstance(d, scantable):
|
---|
111 | tables.append(d)
|
---|
112 | elif isinstance(d, str):
|
---|
113 | if os.path.exists(d):
|
---|
114 | tables.append(scantable(d))
|
---|
115 | else:
|
---|
116 | raise IOError("Data file doesn't exists")
|
---|
117 | else:
|
---|
118 | raise TypeError("data is not a scantable or valid file")
|
---|
119 | return merge(tables)
|
---|
120 |
|
---|
121 | def skydip(data, averagepol=True, tsky=300., plot=False,
|
---|
122 | temperature=288, pressure=101325., humidity=0.5):
|
---|
123 | """Determine the opacity from a set of 'skydip' obervations.
|
---|
124 | This can be any set of observations over a range of elevations,
|
---|
125 | but will ususally be a dedicated (set of) scan(s).
|
---|
126 | Return a list of 'n' opacities for 'n' IFs. In case of averagepol
|
---|
127 | being 'False' a list of 'n*m' elements where 'm' is the number of
|
---|
128 | polarisations, e.g.
|
---|
129 | nIF = 3, nPol = 2 => [if0pol0, if0pol1, if1pol0, if1pol1, if2pol0, if2pol1]
|
---|
130 |
|
---|
131 | The opacity is determined by fitting a first order polynomial to:
|
---|
132 |
|
---|
133 |
|
---|
134 | Tsys(airmass) = p0 + airmass*p1
|
---|
135 |
|
---|
136 | where
|
---|
137 |
|
---|
138 | airmass = 1/sin(elevation)
|
---|
139 |
|
---|
140 | tau = p1/Tsky
|
---|
141 |
|
---|
142 | Parameters:
|
---|
143 | data: a list of file names or scantables or a single
|
---|
144 | file name or scantable.
|
---|
145 | averagepol: Return the average of the opacities for the polarisations
|
---|
146 | This might be useful to set to 'False' if one polarisation
|
---|
147 | is corrupted (Mopra). If set to 'False', an opacity value
|
---|
148 | per polarisation is returned.
|
---|
149 | tsky: The sky temperature (default 300.0K). This might
|
---|
150 | be read from the data in the future.
|
---|
151 | plot: Plot each fit (airmass vs. Tsys). Default is 'False'
|
---|
152 | """
|
---|
153 | if plot:
|
---|
154 | from matplotlib import pylab
|
---|
155 | scan = _import_data(data)
|
---|
156 | f = fitter()
|
---|
157 | f.set_function(poly=1)
|
---|
158 | sel = selector()
|
---|
159 | basesel = scan.get_selection()
|
---|
160 | inos = scan.getifnos()
|
---|
161 | pnos = scan.getpolnos()
|
---|
162 | opacities = []
|
---|
163 | om = model(temperature, pressure, humidity)
|
---|
164 | for ino in inos:
|
---|
165 | sel.set_ifs(ino)
|
---|
166 | opacity = []
|
---|
167 | fits = []
|
---|
168 | airms = []
|
---|
169 | tsyss = []
|
---|
170 | if plot:
|
---|
171 | pylab.cla()
|
---|
172 | pylab.ioff()
|
---|
173 | pylab.clf()
|
---|
174 | pylab.xlabel("Airmass")
|
---|
175 | pylab.ylabel(r"$T_{sys}$")
|
---|
176 | for pno in pnos:
|
---|
177 | sel.set_polarisations(pno)
|
---|
178 | scan.set_selection(basesel+sel)
|
---|
179 | freq = scan.get_coordinate(0).get_reference_value()/1e9
|
---|
180 | freqstr = "%0.4f GHz" % freq
|
---|
181 | tsys = scan.get_tsys()
|
---|
182 | elev = scan.get_elevation()
|
---|
183 | airmass = [ 1./math.sin(i) for i in elev ]
|
---|
184 | airms.append(airmass)
|
---|
185 | tsyss.append(tsys)
|
---|
186 | f.set_data(airmass, tsys)
|
---|
187 | f.fit()
|
---|
188 | fits.append(f.get_fit())
|
---|
189 | params = f.get_parameters()["params"]
|
---|
190 | opacity.append(params[1]/tsky)
|
---|
191 | if averagepol:
|
---|
192 | opacities.append(sum(opacity)/len(opacity))
|
---|
193 | else:
|
---|
194 | opacities += opacity
|
---|
195 | if plot:
|
---|
196 | colors = ['b','g','k']
|
---|
197 | n = len(airms)
|
---|
198 | for i in range(n):
|
---|
199 | pylab.plot(airms[i], tsyss[i], 'o', color=colors[i])
|
---|
200 | pylab.plot(airms[i], fits[i], '-', color=colors[i])
|
---|
201 | pylab.figtext(0.7,0.3-(i/30.0),
|
---|
202 | r"$\tau_{fit}=%0.2f$" % opacity[i],
|
---|
203 | color=colors[i])
|
---|
204 | if averagepol:
|
---|
205 | pylab.figtext(0.7,0.3-(n/30.0),
|
---|
206 | r"$\tau_{avg}=%0.2f$" % opacities[-1],
|
---|
207 | color='r')
|
---|
208 | n +=1
|
---|
209 | pylab.figtext(0.7,0.3-(n/30.0),
|
---|
210 | r"$\tau_{model}=%0.2f$" % om.get_opacities(freq*1e9),
|
---|
211 | color='grey')
|
---|
212 |
|
---|
213 | pylab.title("IF%d : %s" % (ino, freqstr))
|
---|
214 |
|
---|
215 | pylab.ion()
|
---|
216 | pylab.draw()
|
---|
217 | raw_input("Hit <return> for next fit...")
|
---|
218 | sel.reset()
|
---|
219 |
|
---|
220 | scan.set_selection(basesel)
|
---|
221 | if plot:
|
---|
222 | pylab.close()
|
---|
223 | return opacities
|
---|