1 | //#---------------------------------------------------------------------------
|
---|
2 | //# STLineFinder.cc: A class for automated spectral line search
|
---|
3 | //#--------------------------------------------------------------------------
|
---|
4 | //# Copyright (C) 2004
|
---|
5 | //# ATNF
|
---|
6 | //#
|
---|
7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
10 | //# any later version.
|
---|
11 | //#
|
---|
12 | //# This program is distributed in the hope that it will be useful, but
|
---|
13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
15 | //# Public License for more details.
|
---|
16 | //#
|
---|
17 | //# You should have received a copy of the GNU General Public License along
|
---|
18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
20 | //#
|
---|
21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
23 | //# Postal address: Malte Marquarding,
|
---|
24 | //# Australia Telescope National Facility,
|
---|
25 | //# P.O. Box 76,
|
---|
26 | //# Epping, NSW, 2121,
|
---|
27 | //# AUSTRALIA
|
---|
28 | //#
|
---|
29 | //# $Id: STLineFinder.cpp 1757 2010-06-09 09:03:06Z KanaSugimoto $
|
---|
30 | //#---------------------------------------------------------------------------
|
---|
31 |
|
---|
32 |
|
---|
33 | // ASAP
|
---|
34 | #include "STLineFinder.h"
|
---|
35 | #include "STFitter.h"
|
---|
36 | #include "IndexedCompare.h"
|
---|
37 |
|
---|
38 | // STL
|
---|
39 | #include <functional>
|
---|
40 | #include <algorithm>
|
---|
41 | #include <iostream>
|
---|
42 | #include <fstream>
|
---|
43 |
|
---|
44 | using namespace asap;
|
---|
45 | using namespace casa;
|
---|
46 | using namespace std;
|
---|
47 |
|
---|
48 | namespace asap {
|
---|
49 |
|
---|
50 | ///////////////////////////////////////////////////////////////////////////////
|
---|
51 | //
|
---|
52 | // RunningBox - a running box calculator. This class implements
|
---|
53 | // iterations over the specified spectrum and calculates
|
---|
54 | // running box filter statistics.
|
---|
55 | //
|
---|
56 |
|
---|
57 | class RunningBox {
|
---|
58 | // The input data to work with. Use reference symantics to avoid
|
---|
59 | // an unnecessary copying
|
---|
60 | const casa::Vector<casa::Float> &spectrum; // a buffer for the spectrum
|
---|
61 | const casa::Vector<casa::Bool> &mask; // associated mask
|
---|
62 | const std::pair<int,int> &edge; // start and stop+1 channels
|
---|
63 | // to work with
|
---|
64 |
|
---|
65 | // statistics for running box filtering
|
---|
66 | casa::Float sumf; // sum of fluxes
|
---|
67 | casa::Float sumf2; // sum of squares of fluxes
|
---|
68 | casa::Float sumch; // sum of channel numbers (for linear fit)
|
---|
69 | casa::Float sumch2; // sum of squares of channel numbers (for linear fit)
|
---|
70 | casa::Float sumfch; // sum of flux*(channel number) (for linear fit)
|
---|
71 |
|
---|
72 | int box_chan_cntr; // actual number of channels in the box
|
---|
73 | int max_box_nchan; // maximum allowed number of channels in the box
|
---|
74 | // (calculated from boxsize and actual spectrum size)
|
---|
75 | // cache for derivative statistics
|
---|
76 | mutable casa::Bool need2recalculate; // if true, values of the statistics
|
---|
77 | // below are invalid
|
---|
78 | mutable casa::Float linmean; // a value of the linear fit to the
|
---|
79 | // points in the running box
|
---|
80 | mutable casa::Float linvariance; // the same for variance
|
---|
81 | int cur_channel; // the number of the current channel
|
---|
82 | int start_advance; // number of channel from which the box can
|
---|
83 | // be moved (the middle of the box, if there is no
|
---|
84 | // masking)
|
---|
85 | public:
|
---|
86 | // set up the object with the references to actual data
|
---|
87 | // as well as the number of channels in the running box
|
---|
88 | RunningBox(const casa::Vector<casa::Float> &in_spectrum,
|
---|
89 | const casa::Vector<casa::Bool> &in_mask,
|
---|
90 | const std::pair<int,int> &in_edge,
|
---|
91 | int in_max_box_nchan) throw(AipsError);
|
---|
92 |
|
---|
93 | // access to the statistics
|
---|
94 | const casa::Float& getLinMean() const throw(AipsError);
|
---|
95 | const casa::Float& getLinVariance() const throw(AipsError);
|
---|
96 | const casa::Float aboveMean() const throw(AipsError);
|
---|
97 | int getChannel() const throw();
|
---|
98 |
|
---|
99 | // actual number of channels in the box (max_box_nchan, if no channels
|
---|
100 | // are masked)
|
---|
101 | int getNumberOfBoxPoints() const throw();
|
---|
102 |
|
---|
103 | // next channel
|
---|
104 | void next() throw(AipsError);
|
---|
105 |
|
---|
106 | // checking whether there are still elements
|
---|
107 | casa::Bool haveMore() const throw();
|
---|
108 |
|
---|
109 | // go to start
|
---|
110 | void rewind() throw(AipsError);
|
---|
111 |
|
---|
112 | protected:
|
---|
113 | // supplementary function to control running mean/median calculations.
|
---|
114 | // It adds a specified channel to the running box and
|
---|
115 | // removes (ch-maxboxnchan+1)'th channel from there
|
---|
116 | // Channels, for which the mask is false or index is beyond the
|
---|
117 | // allowed range, are ignored
|
---|
118 | void advanceRunningBox(int ch) throw(casa::AipsError);
|
---|
119 |
|
---|
120 | // calculate derivative statistics. This function is const, because
|
---|
121 | // it updates the cache only
|
---|
122 | void updateDerivativeStatistics() const throw(AipsError);
|
---|
123 | };
|
---|
124 |
|
---|
125 | //
|
---|
126 | ///////////////////////////////////////////////////////////////////////////////
|
---|
127 |
|
---|
128 | ///////////////////////////////////////////////////////////////////////////////
|
---|
129 | //
|
---|
130 | // LFAboveThreshold An algorithm for line detection using running box
|
---|
131 | // statistics. Line is detected if it is above the
|
---|
132 | // specified threshold at the specified number of
|
---|
133 | // consequtive channels. Prefix LF stands for Line Finder
|
---|
134 | //
|
---|
135 | class LFAboveThreshold : protected LFLineListOperations {
|
---|
136 | // temporary line edge channels and flag, which is True if the line
|
---|
137 | // was detected in the previous channels.
|
---|
138 | std::pair<int,int> cur_line;
|
---|
139 | casa::Bool is_detected_before;
|
---|
140 | int min_nchan; // A minimum number of consequtive
|
---|
141 | // channels, which should satisfy
|
---|
142 | // the detection criterion, to be
|
---|
143 | // a detection
|
---|
144 | casa::Float threshold; // detection threshold - the
|
---|
145 | // minimal signal to noise ratio
|
---|
146 | std::list<pair<int,int> > &lines; // list where detections are saved
|
---|
147 | // (pair: start and stop+1 channel)
|
---|
148 | RunningBox *running_box; // running box filter
|
---|
149 | casa::Vector<Int> signs; // An array to store the signs of
|
---|
150 | // the value - current mean
|
---|
151 | // (used to search wings)
|
---|
152 | casa::Int last_sign; // a sign (+1, -1 or 0) of the
|
---|
153 | // last point of the detected line
|
---|
154 | //
|
---|
155 | bool itsUseMedian; // true if median statistics is used
|
---|
156 | // to determine the noise level, otherwise
|
---|
157 | // it is the mean of the lowest 80% of deviations
|
---|
158 | // (default)
|
---|
159 | int itsNoiseSampleSize; // sample size used to estimate the noise statistics
|
---|
160 | // Negative value means the whole spectrum is used (default)
|
---|
161 | public:
|
---|
162 |
|
---|
163 | // set up the detection criterion
|
---|
164 | LFAboveThreshold(std::list<pair<int,int> > &in_lines,
|
---|
165 | int in_min_nchan = 3,
|
---|
166 | casa::Float in_threshold = 5,
|
---|
167 | bool use_median = false,
|
---|
168 | int noise_sample_size = -1) throw();
|
---|
169 | virtual ~LFAboveThreshold() throw();
|
---|
170 |
|
---|
171 | // replace the detection criterion
|
---|
172 | void setCriterion(int in_min_nchan, casa::Float in_threshold) throw();
|
---|
173 |
|
---|
174 | // return the array with signs of the value-current mean
|
---|
175 | // An element is +1 if value>mean, -1 if less, 0 if equal.
|
---|
176 | // This array is updated each time the findLines method is called and
|
---|
177 | // is used to search the line wings
|
---|
178 | const casa::Vector<Int>& getSigns() const throw();
|
---|
179 |
|
---|
180 | // find spectral lines and add them into list
|
---|
181 | // if statholder is not NULL, the accumulate function of it will be
|
---|
182 | // called for each channel to save statistics
|
---|
183 | // spectrum, mask and edge - reference to the data
|
---|
184 | // max_box_nchan - number of channels in the running box
|
---|
185 | void findLines(const casa::Vector<casa::Float> &spectrum,
|
---|
186 | const casa::Vector<casa::Bool> &mask,
|
---|
187 | const std::pair<int,int> &edge,
|
---|
188 | int max_box_nchan) throw(casa::AipsError);
|
---|
189 |
|
---|
190 | protected:
|
---|
191 |
|
---|
192 | // process a channel: update curline and is_detected before and
|
---|
193 | // add a new line to the list, if necessary using processCurLine()
|
---|
194 | // detect=true indicates that the current channel satisfies the criterion
|
---|
195 | void processChannel(Bool detect, const casa::Vector<casa::Bool> &mask)
|
---|
196 | throw(casa::AipsError);
|
---|
197 |
|
---|
198 | // process the interval of channels stored in curline
|
---|
199 | // if it satisfies the criterion, add this interval as a new line
|
---|
200 | void processCurLine(const casa::Vector<casa::Bool> &mask)
|
---|
201 | throw(casa::AipsError);
|
---|
202 |
|
---|
203 | // get the sign of runningBox->aboveMean(). The RunningBox pointer
|
---|
204 | // should be defined
|
---|
205 | casa::Int getAboveMeanSign() const throw();
|
---|
206 | };
|
---|
207 |
|
---|
208 | //
|
---|
209 | ///////////////////////////////////////////////////////////////////////////////
|
---|
210 |
|
---|
211 | ///////////////////////////////////////////////////////////////////////////////
|
---|
212 | //
|
---|
213 | // LFNoiseEstimator a helper class designed to estimate off-line variance
|
---|
214 | // using statistics depending on the distribution of
|
---|
215 | // values (e.g. like a median)
|
---|
216 | //
|
---|
217 | // Two statistics are supported: median and an average of
|
---|
218 | // 80% of smallest values.
|
---|
219 | //
|
---|
220 |
|
---|
221 | struct LFNoiseEstimator {
|
---|
222 | // construct an object
|
---|
223 | // size - maximum sample size. After a size number of elements is processed
|
---|
224 | // any new samples would cause the algorithm to drop the oldest samples in the
|
---|
225 | // buffer.
|
---|
226 | explicit LFNoiseEstimator(size_t size);
|
---|
227 |
|
---|
228 | // add a new sample
|
---|
229 | // in - the new value
|
---|
230 | void add(float in);
|
---|
231 |
|
---|
232 | // median of the distribution
|
---|
233 | float median() const;
|
---|
234 |
|
---|
235 | // mean of lowest 80% of the samples
|
---|
236 | float meanLowest80Percent() const;
|
---|
237 |
|
---|
238 | // return true if the buffer is full (i.e. statistics are representative)
|
---|
239 | inline bool filledToCapacity() const { return itsBufferFull;}
|
---|
240 |
|
---|
241 | protected:
|
---|
242 | // update cache of sorted indices
|
---|
243 | // (it is assumed that itsSampleNumber points to the newly
|
---|
244 | // replaced element)
|
---|
245 | void updateSortedCache() const;
|
---|
246 |
|
---|
247 | // build sorted cache from the scratch
|
---|
248 | void buildSortedCache() const;
|
---|
249 |
|
---|
250 | // number of samples accumulated so far
|
---|
251 | // (can be less than the buffer size)
|
---|
252 | size_t numberOfSamples() const;
|
---|
253 |
|
---|
254 | // this helper method builds the cache if
|
---|
255 | // necessary using one of the methods
|
---|
256 | void fillCacheIfNecessary() const;
|
---|
257 |
|
---|
258 | private:
|
---|
259 | // buffer with samples (unsorted)
|
---|
260 | std::vector<float> itsVariances;
|
---|
261 | // current sample number (<=itsVariances.size())
|
---|
262 | size_t itsSampleNumber;
|
---|
263 | // true, if the buffer all values in the sample buffer are used
|
---|
264 | bool itsBufferFull;
|
---|
265 | // cached indices into vector of samples
|
---|
266 | mutable std::vector<size_t> itsSortedIndices;
|
---|
267 | // true if any of the statistics have been obtained at least
|
---|
268 | // once. This flag allows to implement a more efficient way of
|
---|
269 | // calculating statistics, if they are needed at once and not
|
---|
270 | // after each addition of a new element
|
---|
271 | mutable bool itsStatisticsAccessed;
|
---|
272 | };
|
---|
273 |
|
---|
274 | //
|
---|
275 | ///////////////////////////////////////////////////////////////////////////////
|
---|
276 |
|
---|
277 |
|
---|
278 | } // namespace asap
|
---|
279 |
|
---|
280 | ///////////////////////////////////////////////////////////////////////////////
|
---|
281 | //
|
---|
282 | // LFNoiseEstimator a helper class designed to estimate off-line variance
|
---|
283 | // using statistics depending on the distribution of
|
---|
284 | // values (e.g. like a median)
|
---|
285 | //
|
---|
286 | // Two statistics are supported: median and an average of
|
---|
287 | // 80% of smallest values.
|
---|
288 | //
|
---|
289 |
|
---|
290 | // construct an object
|
---|
291 | // size - maximum sample size. After a size number of elements is processed
|
---|
292 | // any new samples would cause the algorithm to drop the oldest samples in the
|
---|
293 | // buffer.
|
---|
294 | LFNoiseEstimator::LFNoiseEstimator(size_t size) : itsVariances(size),
|
---|
295 | itsSampleNumber(0), itsBufferFull(false), itsSortedIndices(size),
|
---|
296 | itsStatisticsAccessed(false)
|
---|
297 | {
|
---|
298 | AlwaysAssert(size>0,AipsError);
|
---|
299 | }
|
---|
300 |
|
---|
301 |
|
---|
302 | // add a new sample
|
---|
303 | // in - the new value
|
---|
304 | void LFNoiseEstimator::add(float in)
|
---|
305 | {
|
---|
306 | if (isnan(in)) {
|
---|
307 | // normally it shouldn't happen
|
---|
308 | return;
|
---|
309 | }
|
---|
310 | itsVariances[itsSampleNumber] = in;
|
---|
311 |
|
---|
312 | if (itsStatisticsAccessed) {
|
---|
313 | // only do element by element addition if on-the-fly
|
---|
314 | // statistics are needed
|
---|
315 | updateSortedCache();
|
---|
316 | }
|
---|
317 |
|
---|
318 | // advance itsSampleNumber now
|
---|
319 | ++itsSampleNumber;
|
---|
320 | if (itsSampleNumber == itsVariances.size()) {
|
---|
321 | itsSampleNumber = 0;
|
---|
322 | itsBufferFull = true;
|
---|
323 | }
|
---|
324 | AlwaysAssert(itsSampleNumber<itsVariances.size(),AipsError);
|
---|
325 | }
|
---|
326 |
|
---|
327 | // number of samples accumulated so far
|
---|
328 | // (can be less than the buffer size)
|
---|
329 | size_t LFNoiseEstimator::numberOfSamples() const
|
---|
330 | {
|
---|
331 | // the number of samples accumulated so far may be less than the
|
---|
332 | // buffer size
|
---|
333 | const size_t nSamples = itsBufferFull ? itsVariances.size(): itsSampleNumber;
|
---|
334 | AlwaysAssert( (nSamples > 0) && (nSamples <= itsVariances.size()), AipsError);
|
---|
335 | return nSamples;
|
---|
336 | }
|
---|
337 |
|
---|
338 | // this helper method builds the cache if
|
---|
339 | // necessary using one of the methods
|
---|
340 | void LFNoiseEstimator::fillCacheIfNecessary() const
|
---|
341 | {
|
---|
342 | if (!itsStatisticsAccessed) {
|
---|
343 | if ((itsSampleNumber!=0) || itsBufferFull) {
|
---|
344 | // build the whole cache efficiently
|
---|
345 | buildSortedCache();
|
---|
346 | } else {
|
---|
347 | updateSortedCache();
|
---|
348 | }
|
---|
349 | itsStatisticsAccessed = true;
|
---|
350 | } // otherwise, it is updated in 'add' using on-the-fly method
|
---|
351 | }
|
---|
352 |
|
---|
353 | // median of the distribution
|
---|
354 | float LFNoiseEstimator::median() const
|
---|
355 | {
|
---|
356 | fillCacheIfNecessary();
|
---|
357 | // the number of samples accumulated so far may be less than the
|
---|
358 | // buffer size
|
---|
359 | const size_t nSamples = numberOfSamples();
|
---|
360 | const size_t medSample = nSamples / 2;
|
---|
361 | AlwaysAssert(medSample < itsSortedIndices.size(), AipsError);
|
---|
362 | return itsVariances[itsSortedIndices[medSample]];
|
---|
363 | }
|
---|
364 |
|
---|
365 | // mean of lowest 80% of the samples
|
---|
366 | float LFNoiseEstimator::meanLowest80Percent() const
|
---|
367 | {
|
---|
368 | fillCacheIfNecessary();
|
---|
369 | // the number of samples accumulated so far may be less than the
|
---|
370 | // buffer size
|
---|
371 | const size_t nSamples = numberOfSamples();
|
---|
372 | float result = 0;
|
---|
373 | size_t numpt=size_t(0.8*nSamples);
|
---|
374 | if (!numpt) {
|
---|
375 | numpt=nSamples; // no much else left,
|
---|
376 | // although it is very inaccurate
|
---|
377 | }
|
---|
378 | AlwaysAssert( (numpt > 0) && (numpt<itsSortedIndices.size()), AipsError);
|
---|
379 | for (size_t ch=0; ch<numpt; ++ch) {
|
---|
380 | result += itsVariances[itsSortedIndices[ch]];
|
---|
381 | }
|
---|
382 | result /= float(numpt);
|
---|
383 | return result;
|
---|
384 | }
|
---|
385 |
|
---|
386 | // update cache of sorted indices
|
---|
387 | // (it is assumed that itsSampleNumber points to the newly
|
---|
388 | // replaced element)
|
---|
389 | void LFNoiseEstimator::updateSortedCache() const
|
---|
390 | {
|
---|
391 | // the number of samples accumulated so far may be less than the
|
---|
392 | // buffer size
|
---|
393 | const size_t nSamples = numberOfSamples();
|
---|
394 |
|
---|
395 | if (itsBufferFull) {
|
---|
396 | // first find the index of the element which is being replaced
|
---|
397 | size_t index = nSamples;
|
---|
398 | for (size_t i=0; i<nSamples; ++i) {
|
---|
399 | AlwaysAssert(i < itsSortedIndices.size(), AipsError);
|
---|
400 | if (itsSortedIndices[i] == itsSampleNumber) {
|
---|
401 | index = i;
|
---|
402 | break;
|
---|
403 | }
|
---|
404 | }
|
---|
405 | AlwaysAssert( index < nSamples, AipsError);
|
---|
406 |
|
---|
407 | const vector<size_t>::iterator indStart = itsSortedIndices.begin();
|
---|
408 | // merge this element with preceeding block first
|
---|
409 | if (index != 0) {
|
---|
410 | // merge indices on the basis of variances
|
---|
411 | inplace_merge(indStart,indStart+index,indStart+index+1,
|
---|
412 | indexedCompare<size_t>(itsVariances.begin()));
|
---|
413 | }
|
---|
414 | // merge with the following block
|
---|
415 | if (index + 1 != nSamples) {
|
---|
416 | // merge indices on the basis of variances
|
---|
417 | inplace_merge(indStart,indStart+index+1,indStart+nSamples,
|
---|
418 | indexedCompare<size_t>(itsVariances.begin()));
|
---|
419 | }
|
---|
420 | } else {
|
---|
421 | // itsSampleNumber is the index of the new element
|
---|
422 | AlwaysAssert(itsSampleNumber < itsSortedIndices.size(), AipsError);
|
---|
423 | itsSortedIndices[itsSampleNumber] = itsSampleNumber;
|
---|
424 | if (itsSampleNumber >= 1) {
|
---|
425 | // we have to place this new sample in
|
---|
426 | const vector<size_t>::iterator indStart = itsSortedIndices.begin();
|
---|
427 | // merge indices on the basis of variances
|
---|
428 | inplace_merge(indStart,indStart+itsSampleNumber,indStart+itsSampleNumber+1,
|
---|
429 | indexedCompare<size_t>(itsVariances.begin()));
|
---|
430 | }
|
---|
431 | }
|
---|
432 | }
|
---|
433 |
|
---|
434 | // build sorted cache from the scratch
|
---|
435 | void LFNoiseEstimator::buildSortedCache() const
|
---|
436 | {
|
---|
437 | // the number of samples accumulated so far may be less than the
|
---|
438 | // buffer size
|
---|
439 | const size_t nSamples = numberOfSamples();
|
---|
440 | AlwaysAssert(nSamples <= itsSortedIndices.size(), AipsError);
|
---|
441 | for (size_t i=0; i<nSamples; ++i) {
|
---|
442 | itsSortedIndices[i]=i;
|
---|
443 | }
|
---|
444 |
|
---|
445 | // sort indices, but check the array of variances
|
---|
446 | const vector<size_t>::iterator indStart = itsSortedIndices.begin();
|
---|
447 | stable_sort(indStart,indStart+nSamples, indexedCompare<size_t>(itsVariances.begin()));
|
---|
448 | }
|
---|
449 |
|
---|
450 | //
|
---|
451 | ///////////////////////////////////////////////////////////////////////////////
|
---|
452 |
|
---|
453 | ///////////////////////////////////////////////////////////////////////////////
|
---|
454 | //
|
---|
455 | // RunningBox - a running box calculator. This class implements
|
---|
456 | // interations over the specified spectrum and calculates
|
---|
457 | // running box filter statistics.
|
---|
458 | //
|
---|
459 |
|
---|
460 | // set up the object with the references to actual data
|
---|
461 | // and the number of channels in the running box
|
---|
462 | RunningBox::RunningBox(const casa::Vector<casa::Float> &in_spectrum,
|
---|
463 | const casa::Vector<casa::Bool> &in_mask,
|
---|
464 | const std::pair<int,int> &in_edge,
|
---|
465 | int in_max_box_nchan) throw(AipsError) :
|
---|
466 | spectrum(in_spectrum), mask(in_mask), edge(in_edge),
|
---|
467 | max_box_nchan(in_max_box_nchan)
|
---|
468 | {
|
---|
469 | rewind();
|
---|
470 | }
|
---|
471 |
|
---|
472 | void RunningBox::rewind() throw(AipsError) {
|
---|
473 | // fill statistics for initial box
|
---|
474 | box_chan_cntr=0; // no channels are currently in the box
|
---|
475 | sumf=0.; // initialize statistics
|
---|
476 | sumf2=0.;
|
---|
477 | sumch=0.;
|
---|
478 | sumch2=0.;
|
---|
479 | sumfch=0.;
|
---|
480 | int initial_box_ch=edge.first;
|
---|
481 | for (;initial_box_ch<edge.second && box_chan_cntr<max_box_nchan;
|
---|
482 | ++initial_box_ch)
|
---|
483 | advanceRunningBox(initial_box_ch);
|
---|
484 |
|
---|
485 | if (initial_box_ch==edge.second)
|
---|
486 | throw AipsError("RunningBox::rewind - too much channels are masked");
|
---|
487 |
|
---|
488 | cur_channel=edge.first;
|
---|
489 | start_advance=initial_box_ch-max_box_nchan/2;
|
---|
490 | }
|
---|
491 |
|
---|
492 | // access to the statistics
|
---|
493 | const casa::Float& RunningBox::getLinMean() const throw(AipsError)
|
---|
494 | {
|
---|
495 | DebugAssert(cur_channel<edge.second, AipsError);
|
---|
496 | if (need2recalculate) updateDerivativeStatistics();
|
---|
497 | return linmean;
|
---|
498 | }
|
---|
499 |
|
---|
500 | const casa::Float& RunningBox::getLinVariance() const throw(AipsError)
|
---|
501 | {
|
---|
502 | DebugAssert(cur_channel<edge.second, AipsError);
|
---|
503 | if (need2recalculate) updateDerivativeStatistics();
|
---|
504 | return linvariance;
|
---|
505 | }
|
---|
506 |
|
---|
507 | const casa::Float RunningBox::aboveMean() const throw(AipsError)
|
---|
508 | {
|
---|
509 | DebugAssert(cur_channel<edge.second, AipsError);
|
---|
510 | if (need2recalculate) updateDerivativeStatistics();
|
---|
511 | return spectrum[cur_channel]-linmean;
|
---|
512 | }
|
---|
513 |
|
---|
514 | int RunningBox::getChannel() const throw()
|
---|
515 | {
|
---|
516 | return cur_channel;
|
---|
517 | }
|
---|
518 |
|
---|
519 | // actual number of channels in the box (max_box_nchan, if no channels
|
---|
520 | // are masked)
|
---|
521 | int RunningBox::getNumberOfBoxPoints() const throw()
|
---|
522 | {
|
---|
523 | return box_chan_cntr;
|
---|
524 | }
|
---|
525 |
|
---|
526 | // supplementary function to control running mean/median calculations.
|
---|
527 | // It adds a specified channel to the running box and
|
---|
528 | // removes (ch-max_box_nchan+1)'th channel from there
|
---|
529 | // Channels, for which the mask is false or index is beyond the
|
---|
530 | // allowed range, are ignored
|
---|
531 | void RunningBox::advanceRunningBox(int ch) throw(AipsError)
|
---|
532 | {
|
---|
533 | if (ch>=edge.first && ch<edge.second)
|
---|
534 | if (mask[ch]) { // ch is a valid channel
|
---|
535 | ++box_chan_cntr;
|
---|
536 | sumf+=spectrum[ch];
|
---|
537 | sumf2+=square(spectrum[ch]);
|
---|
538 | sumch+=Float(ch);
|
---|
539 | sumch2+=square(Float(ch));
|
---|
540 | sumfch+=spectrum[ch]*Float(ch);
|
---|
541 | need2recalculate=True;
|
---|
542 | }
|
---|
543 | int ch2remove=ch-max_box_nchan;
|
---|
544 | if (ch2remove>=edge.first && ch2remove<edge.second)
|
---|
545 | if (mask[ch2remove]) { // ch2remove is a valid channel
|
---|
546 | --box_chan_cntr;
|
---|
547 | sumf-=spectrum[ch2remove];
|
---|
548 | sumf2-=square(spectrum[ch2remove]);
|
---|
549 | sumch-=Float(ch2remove);
|
---|
550 | sumch2-=square(Float(ch2remove));
|
---|
551 | sumfch-=spectrum[ch2remove]*Float(ch2remove);
|
---|
552 | need2recalculate=True;
|
---|
553 | }
|
---|
554 | }
|
---|
555 |
|
---|
556 | // next channel
|
---|
557 | void RunningBox::next() throw(AipsError)
|
---|
558 | {
|
---|
559 | AlwaysAssert(cur_channel<edge.second,AipsError);
|
---|
560 | ++cur_channel;
|
---|
561 | if (cur_channel+max_box_nchan/2<edge.second && cur_channel>=start_advance)
|
---|
562 | advanceRunningBox(cur_channel+max_box_nchan/2); // update statistics
|
---|
563 | }
|
---|
564 |
|
---|
565 | // checking whether there are still elements
|
---|
566 | casa::Bool RunningBox::haveMore() const throw()
|
---|
567 | {
|
---|
568 | return cur_channel<edge.second;
|
---|
569 | }
|
---|
570 |
|
---|
571 | // calculate derivative statistics. This function is const, because
|
---|
572 | // it updates the cache only
|
---|
573 | void RunningBox::updateDerivativeStatistics() const throw(AipsError)
|
---|
574 | {
|
---|
575 | AlwaysAssert(box_chan_cntr, AipsError);
|
---|
576 |
|
---|
577 | Float mean=sumf/Float(box_chan_cntr);
|
---|
578 |
|
---|
579 | // linear LSF formulae
|
---|
580 | Float meanch=sumch/Float(box_chan_cntr);
|
---|
581 | Float meanch2=sumch2/Float(box_chan_cntr);
|
---|
582 | if (meanch==meanch2 || box_chan_cntr<3) {
|
---|
583 | // vertical line in the spectrum, can't calculate linmean and linvariance
|
---|
584 | linmean=0.;
|
---|
585 | linvariance=0.;
|
---|
586 | } else {
|
---|
587 | Float coeff=(sumfch/Float(box_chan_cntr)-meanch*mean)/
|
---|
588 | (meanch2-square(meanch));
|
---|
589 | linmean=coeff*(Float(cur_channel)-meanch)+mean;
|
---|
590 | linvariance=sumf2/Float(box_chan_cntr)-square(mean)-
|
---|
591 | square(coeff)*(meanch2-square(meanch));
|
---|
592 | if (linvariance<0.) {
|
---|
593 | // this shouldn't happen normally, but could be due to round-off error
|
---|
594 | linvariance = 0;
|
---|
595 | } else {
|
---|
596 | linvariance = sqrt(linvariance);
|
---|
597 | }
|
---|
598 | }
|
---|
599 | need2recalculate=False;
|
---|
600 | }
|
---|
601 |
|
---|
602 |
|
---|
603 | //
|
---|
604 | ///////////////////////////////////////////////////////////////////////////////
|
---|
605 |
|
---|
606 | ///////////////////////////////////////////////////////////////////////////////
|
---|
607 | //
|
---|
608 | // LFAboveThreshold - a running mean/median algorithm for line detection
|
---|
609 | //
|
---|
610 | //
|
---|
611 |
|
---|
612 |
|
---|
613 | // set up the detection criterion
|
---|
614 | LFAboveThreshold::LFAboveThreshold(std::list<pair<int,int> > &in_lines,
|
---|
615 | int in_min_nchan,
|
---|
616 | casa::Float in_threshold,
|
---|
617 | bool use_median,
|
---|
618 | int noise_sample_size) throw() :
|
---|
619 | min_nchan(in_min_nchan), threshold(in_threshold),
|
---|
620 | lines(in_lines), running_box(NULL), itsUseMedian(use_median),
|
---|
621 | itsNoiseSampleSize(noise_sample_size) {}
|
---|
622 |
|
---|
623 | LFAboveThreshold::~LFAboveThreshold() throw()
|
---|
624 | {
|
---|
625 | if (running_box!=NULL) delete running_box;
|
---|
626 | }
|
---|
627 |
|
---|
628 | // replace the detection criterion
|
---|
629 | void LFAboveThreshold::setCriterion(int in_min_nchan, casa::Float in_threshold)
|
---|
630 | throw()
|
---|
631 | {
|
---|
632 | min_nchan=in_min_nchan;
|
---|
633 | threshold=in_threshold;
|
---|
634 | }
|
---|
635 |
|
---|
636 | // get the sign of runningBox->aboveMean(). The RunningBox pointer
|
---|
637 | // should be defined
|
---|
638 | casa::Int LFAboveThreshold::getAboveMeanSign() const throw()
|
---|
639 | {
|
---|
640 | const Float buf=running_box->aboveMean();
|
---|
641 | if (buf>0) return 1;
|
---|
642 | if (buf<0) return -1;
|
---|
643 | return 0;
|
---|
644 | }
|
---|
645 |
|
---|
646 |
|
---|
647 | // process a channel: update cur_line and is_detected before and
|
---|
648 | // add a new line to the list, if necessary
|
---|
649 | void LFAboveThreshold::processChannel(Bool detect,
|
---|
650 | const casa::Vector<casa::Bool> &mask) throw(casa::AipsError)
|
---|
651 | {
|
---|
652 | try {
|
---|
653 | if (is_detected_before) {
|
---|
654 | // we have to check that the current detection has the
|
---|
655 | // same sign of running_box->aboveMean
|
---|
656 | // otherwise it could be a spurious detection
|
---|
657 | if (last_sign && last_sign!=getAboveMeanSign())
|
---|
658 | detect=False;
|
---|
659 | }
|
---|
660 | if (detect) {
|
---|
661 | last_sign=getAboveMeanSign();
|
---|
662 | if (is_detected_before)
|
---|
663 | cur_line.second=running_box->getChannel()+1;
|
---|
664 | else {
|
---|
665 | is_detected_before=True;
|
---|
666 | cur_line.first=running_box->getChannel();
|
---|
667 | cur_line.second=running_box->getChannel()+1;
|
---|
668 | }
|
---|
669 | } else processCurLine(mask);
|
---|
670 | }
|
---|
671 | catch (const AipsError &ae) {
|
---|
672 | throw;
|
---|
673 | }
|
---|
674 | catch (const exception &ex) {
|
---|
675 | throw AipsError(String("LFAboveThreshold::processChannel - STL error: ")+ex.what());
|
---|
676 | }
|
---|
677 | }
|
---|
678 |
|
---|
679 | // process the interval of channels stored in cur_line
|
---|
680 | // if it satisfies the criterion, add this interval as a new line
|
---|
681 | void LFAboveThreshold::processCurLine(const casa::Vector<casa::Bool> &mask)
|
---|
682 | throw(casa::AipsError)
|
---|
683 | {
|
---|
684 | try {
|
---|
685 | if (is_detected_before) {
|
---|
686 | if (cur_line.second-cur_line.first>=min_nchan) {
|
---|
687 | // it was a detection. We need to change the list
|
---|
688 | Bool add_new_line=False;
|
---|
689 | if (lines.size()) {
|
---|
690 | for (int i=lines.back().second;i<cur_line.first;++i)
|
---|
691 | if (mask[i]) { // one valid channel in between
|
---|
692 | // means that we deal with a separate line
|
---|
693 | add_new_line=True;
|
---|
694 | break;
|
---|
695 | }
|
---|
696 | } else add_new_line=True;
|
---|
697 | if (add_new_line)
|
---|
698 | lines.push_back(cur_line);
|
---|
699 | else lines.back().second=cur_line.second;
|
---|
700 | }
|
---|
701 | is_detected_before=False;
|
---|
702 | }
|
---|
703 | }
|
---|
704 | catch (const AipsError &ae) {
|
---|
705 | throw;
|
---|
706 | }
|
---|
707 | catch (const exception &ex) {
|
---|
708 | throw AipsError(String("LFAboveThreshold::processCurLine - STL error: ")+ex.what());
|
---|
709 | }
|
---|
710 | }
|
---|
711 |
|
---|
712 | // return the array with signs of the value-current mean
|
---|
713 | // An element is +1 if value>mean, -1 if less, 0 if equal.
|
---|
714 | // This array is updated each time the findLines method is called and
|
---|
715 | // is used to search the line wings
|
---|
716 | const casa::Vector<Int>& LFAboveThreshold::getSigns() const throw()
|
---|
717 | {
|
---|
718 | return signs;
|
---|
719 | }
|
---|
720 |
|
---|
721 | // find spectral lines and add them into list
|
---|
722 | void LFAboveThreshold::findLines(const casa::Vector<casa::Float> &spectrum,
|
---|
723 | const casa::Vector<casa::Bool> &mask,
|
---|
724 | const std::pair<int,int> &edge,
|
---|
725 | int max_box_nchan)
|
---|
726 | throw(casa::AipsError)
|
---|
727 | {
|
---|
728 | const int minboxnchan=4;
|
---|
729 | try {
|
---|
730 |
|
---|
731 | if (running_box!=NULL) delete running_box;
|
---|
732 | running_box=new RunningBox(spectrum,mask,edge,max_box_nchan);
|
---|
733 |
|
---|
734 | // determine the off-line variance first
|
---|
735 | // an assumption made: lines occupy a small part of the spectrum
|
---|
736 |
|
---|
737 | const size_t noiseSampleSize = itsNoiseSampleSize<0 ? size_t(edge.second-edge.first) :
|
---|
738 | std::min(size_t(itsNoiseSampleSize), size_t(edge.second-edge.first));
|
---|
739 | DebugAssert(noiseSampleSize,AipsError);
|
---|
740 | const bool globalNoise = (size_t(edge.second - edge.first) == noiseSampleSize);
|
---|
741 | LFNoiseEstimator ne(noiseSampleSize);
|
---|
742 |
|
---|
743 | for (;running_box->haveMore();running_box->next()) {
|
---|
744 | ne.add(running_box->getLinVariance());
|
---|
745 | if (ne.filledToCapacity()) {
|
---|
746 | break;
|
---|
747 | }
|
---|
748 | }
|
---|
749 |
|
---|
750 | Float offline_variance = -1; // just a flag that it is unset
|
---|
751 |
|
---|
752 | if (globalNoise) {
|
---|
753 | offline_variance = itsUseMedian ? ne.median() : ne.meanLowest80Percent();
|
---|
754 | }
|
---|
755 |
|
---|
756 | // actual search algorithm
|
---|
757 | is_detected_before=False;
|
---|
758 |
|
---|
759 | // initiate the signs array
|
---|
760 | signs.resize(spectrum.nelements());
|
---|
761 | signs=Vector<Int>(spectrum.nelements(),0);
|
---|
762 |
|
---|
763 | //ofstream os("dbg.dat");
|
---|
764 | for (running_box->rewind();running_box->haveMore();
|
---|
765 | running_box->next()) {
|
---|
766 | const int ch=running_box->getChannel();
|
---|
767 | if (!globalNoise) {
|
---|
768 | // add a next point for a local noise estimate
|
---|
769 | ne.add(running_box->getLinVariance());
|
---|
770 | }
|
---|
771 | if (running_box->getNumberOfBoxPoints()>=minboxnchan) {
|
---|
772 | if (!globalNoise) {
|
---|
773 | offline_variance = itsUseMedian ? ne.median() : ne.meanLowest80Percent();
|
---|
774 | }
|
---|
775 | AlwaysAssert(offline_variance>0.,AipsError);
|
---|
776 | processChannel(mask[ch] && (fabs(running_box->aboveMean()) >=
|
---|
777 | threshold*offline_variance), mask);
|
---|
778 | } else processCurLine(mask); // just finish what was accumulated before
|
---|
779 |
|
---|
780 | signs[ch]=getAboveMeanSign();
|
---|
781 | //os<<ch<<" "<<spectrum[ch]<<" "<<fabs(running_box->aboveMean())<<" "<<
|
---|
782 | //threshold*offline_variance<<endl;
|
---|
783 | }
|
---|
784 | if (lines.size())
|
---|
785 | searchForWings(lines,signs,mask,edge);
|
---|
786 | }
|
---|
787 | catch (const AipsError &ae) {
|
---|
788 | throw;
|
---|
789 | }
|
---|
790 | catch (const exception &ex) {
|
---|
791 | throw AipsError(String("LFAboveThreshold::findLines - STL error: ")+ex.what());
|
---|
792 | }
|
---|
793 | }
|
---|
794 |
|
---|
795 | //
|
---|
796 | ///////////////////////////////////////////////////////////////////////////////
|
---|
797 |
|
---|
798 | ///////////////////////////////////////////////////////////////////////////////
|
---|
799 | //
|
---|
800 | // LFLineListOperations::IntersectsWith - An auxiliary object function
|
---|
801 | // to test whether two lines have a non-void intersection
|
---|
802 | //
|
---|
803 |
|
---|
804 |
|
---|
805 | // line1 - range of the first line: start channel and stop+1
|
---|
806 | LFLineListOperations::IntersectsWith::IntersectsWith(const std::pair<int,int> &in_line1) :
|
---|
807 | line1(in_line1) {}
|
---|
808 |
|
---|
809 |
|
---|
810 | // return true if line2 intersects with line1 with at least one
|
---|
811 | // common channel, and false otherwise
|
---|
812 | // line2 - range of the second line: start channel and stop+1
|
---|
813 | bool LFLineListOperations::IntersectsWith::operator()(const std::pair<int,int> &line2)
|
---|
814 | const throw()
|
---|
815 | {
|
---|
816 | if (line2.second<line1.first) return false; // line2 is at lower channels
|
---|
817 | if (line2.first>line1.second) return false; // line2 is at upper channels
|
---|
818 | return true; // line2 has an intersection or is adjacent to line1
|
---|
819 | }
|
---|
820 |
|
---|
821 | //
|
---|
822 | ///////////////////////////////////////////////////////////////////////////////
|
---|
823 |
|
---|
824 | ///////////////////////////////////////////////////////////////////////////////
|
---|
825 | //
|
---|
826 | // LFLineListOperations::BuildUnion - An auxiliary object function to build a union
|
---|
827 | // of several lines to account for a possibility of merging the nearby lines
|
---|
828 | //
|
---|
829 |
|
---|
830 | // set an initial line (can be a first line in the sequence)
|
---|
831 | LFLineListOperations::BuildUnion::BuildUnion(const std::pair<int,int> &line1) :
|
---|
832 | temp_line(line1) {}
|
---|
833 |
|
---|
834 | // update temp_line with a union of temp_line and new_line
|
---|
835 | // provided there is no gap between the lines
|
---|
836 | void LFLineListOperations::BuildUnion::operator()(const std::pair<int,int> &new_line)
|
---|
837 | throw()
|
---|
838 | {
|
---|
839 | if (new_line.first<temp_line.first) temp_line.first=new_line.first;
|
---|
840 | if (new_line.second>temp_line.second) temp_line.second=new_line.second;
|
---|
841 | }
|
---|
842 |
|
---|
843 | // return the result (temp_line)
|
---|
844 | const std::pair<int,int>& LFLineListOperations::BuildUnion::result() const throw()
|
---|
845 | {
|
---|
846 | return temp_line;
|
---|
847 | }
|
---|
848 |
|
---|
849 | //
|
---|
850 | ///////////////////////////////////////////////////////////////////////////////
|
---|
851 |
|
---|
852 | ///////////////////////////////////////////////////////////////////////////////
|
---|
853 | //
|
---|
854 | // LFLineListOperations::LaterThan - An auxiliary object function to test whether a
|
---|
855 | // specified line is at lower spectral channels (to preserve the order in
|
---|
856 | // the line list)
|
---|
857 | //
|
---|
858 |
|
---|
859 | // setup the line to compare with
|
---|
860 | LFLineListOperations::LaterThan::LaterThan(const std::pair<int,int> &in_line1) :
|
---|
861 | line1(in_line1) {}
|
---|
862 |
|
---|
863 | // return true if line2 should be placed later than line1
|
---|
864 | // in the ordered list (so, it is at greater channel numbers)
|
---|
865 | bool LFLineListOperations::LaterThan::operator()(const std::pair<int,int> &line2)
|
---|
866 | const throw()
|
---|
867 | {
|
---|
868 | if (line2.second<line1.first) return false; // line2 is at lower channels
|
---|
869 | if (line2.first>line1.second) return true; // line2 is at upper channels
|
---|
870 |
|
---|
871 | // line2 intersects with line1. We should have no such situation in
|
---|
872 | // practice
|
---|
873 | return line2.first>line1.first;
|
---|
874 | }
|
---|
875 |
|
---|
876 | //
|
---|
877 | ///////////////////////////////////////////////////////////////////////////////
|
---|
878 |
|
---|
879 |
|
---|
880 | ///////////////////////////////////////////////////////////////////////////////
|
---|
881 | //
|
---|
882 | // STLineFinder - a class for automated spectral line search
|
---|
883 | //
|
---|
884 | //
|
---|
885 |
|
---|
886 | STLineFinder::STLineFinder() throw() : edge(0,0)
|
---|
887 | {
|
---|
888 | setOptions();
|
---|
889 | }
|
---|
890 |
|
---|
891 | // set the parameters controlling algorithm
|
---|
892 | // in_threshold a single channel threshold default is sqrt(3), which
|
---|
893 | // means together with 3 minimum channels at least 3 sigma
|
---|
894 | // detection criterion
|
---|
895 | // For bad baseline shape, in_threshold may need to be
|
---|
896 | // increased
|
---|
897 | // in_min_nchan minimum number of channels above the threshold to report
|
---|
898 | // a detection, default is 3
|
---|
899 | // in_avg_limit perform the averaging of no more than in_avg_limit
|
---|
900 | // adjacent channels to search for broad lines
|
---|
901 | // Default is 8, but for a bad baseline shape this
|
---|
902 | // parameter should be decreased (may be even down to a
|
---|
903 | // minimum of 1 to disable this option) to avoid
|
---|
904 | // confusing of baseline undulations with a real line.
|
---|
905 | // Setting a very large value doesn't usually provide
|
---|
906 | // valid detections.
|
---|
907 | // in_box_size the box size for running mean/median calculation. Default is
|
---|
908 | // 1./5. of the whole spectrum size
|
---|
909 | // in_noise_box the box size for off-line noise estimation (if working with
|
---|
910 | // local noise. Negative value means use global noise estimate
|
---|
911 | // Default is -1 (i.e. estimate using the whole spectrum)
|
---|
912 | // in_median true if median statistics is used as opposed to average of
|
---|
913 | // the lowest 80% of deviations (default)
|
---|
914 | void STLineFinder::setOptions(const casa::Float &in_threshold,
|
---|
915 | const casa::Int &in_min_nchan,
|
---|
916 | const casa::Int &in_avg_limit,
|
---|
917 | const casa::Float &in_box_size,
|
---|
918 | const casa::Float &in_noise_box,
|
---|
919 | const casa::Bool &in_median) throw()
|
---|
920 | {
|
---|
921 | threshold=in_threshold;
|
---|
922 | min_nchan=in_min_nchan;
|
---|
923 | avg_limit=in_avg_limit;
|
---|
924 | box_size=in_box_size;
|
---|
925 | itsNoiseBox = in_noise_box;
|
---|
926 | itsUseMedian = in_median;
|
---|
927 | }
|
---|
928 |
|
---|
929 | STLineFinder::~STLineFinder() throw(AipsError) {}
|
---|
930 |
|
---|
931 | // set scan to work with (in_scan parameter)
|
---|
932 | void STLineFinder::setScan(const ScantableWrapper &in_scan) throw(AipsError)
|
---|
933 | {
|
---|
934 | scan=in_scan.getCP();
|
---|
935 | AlwaysAssert(!scan.null(),AipsError);
|
---|
936 |
|
---|
937 | }
|
---|
938 |
|
---|
939 | // search for spectral lines. Number of lines found is returned
|
---|
940 | // in_edge and in_mask control channel rejection for a given row
|
---|
941 | // if in_edge has zero length, all channels chosen by mask will be used
|
---|
942 | // if in_edge has one element only, it represents the number of
|
---|
943 | // channels to drop from both sides of the spectrum
|
---|
944 | // in_edge is introduced for convinience, although all functionality
|
---|
945 | // can be achieved using a spectrum mask only
|
---|
946 | int STLineFinder::findLines(const std::vector<bool> &in_mask,
|
---|
947 | const std::vector<int> &in_edge,
|
---|
948 | const casa::uInt &whichRow) throw(casa::AipsError)
|
---|
949 | {
|
---|
950 | if (scan.null())
|
---|
951 | throw AipsError("STLineFinder::findLines - a scan should be set first,"
|
---|
952 | " use set_scan");
|
---|
953 |
|
---|
954 | uInt nchan = scan->nchan(scan->getIF(whichRow));
|
---|
955 | // set up mask and edge rejection
|
---|
956 | // no mask given...
|
---|
957 | if (in_mask.size() == 0) {
|
---|
958 | mask = Vector<Bool>(nchan,True);
|
---|
959 | } else {
|
---|
960 | // use provided mask
|
---|
961 | mask=Vector<Bool>(in_mask);
|
---|
962 | }
|
---|
963 | if (mask.nelements()!=nchan)
|
---|
964 | throw AipsError("STLineFinder::findLines - in_scan and in_mask have different"
|
---|
965 | "number of spectral channels.");
|
---|
966 |
|
---|
967 | // taking flagged channels into account
|
---|
968 | vector<bool> flaggedChannels = scan->getMask(whichRow);
|
---|
969 | if (flaggedChannels.size()) {
|
---|
970 | // there is a mask set for this row
|
---|
971 | if (flaggedChannels.size() != mask.nelements()) {
|
---|
972 | throw AipsError("STLineFinder::findLines - internal inconsistency: number of mask elements do not match the number of channels");
|
---|
973 | }
|
---|
974 | for (size_t ch = 0; ch<mask.nelements(); ++ch) {
|
---|
975 | mask[ch] &= flaggedChannels[ch];
|
---|
976 | }
|
---|
977 | }
|
---|
978 |
|
---|
979 | // number of elements in in_edge
|
---|
980 | if (in_edge.size()>2)
|
---|
981 | throw AipsError("STLineFinder::findLines - the length of the in_edge parameter"
|
---|
982 | "should not exceed 2");
|
---|
983 | if (!in_edge.size()) {
|
---|
984 | // all spectra, no rejection
|
---|
985 | edge.first=0;
|
---|
986 | edge.second=nchan;
|
---|
987 | } else {
|
---|
988 | edge.first=in_edge[0];
|
---|
989 | if (edge.first<0)
|
---|
990 | throw AipsError("STLineFinder::findLines - the in_edge parameter has a negative"
|
---|
991 | "number of channels to drop");
|
---|
992 | if (edge.first>=int(nchan))
|
---|
993 | throw AipsError("STLineFinder::findLines - all channels are rejected by the in_edge parameter");
|
---|
994 | if (in_edge.size()==2) {
|
---|
995 | edge.second=in_edge[1];
|
---|
996 | if (edge.second<0)
|
---|
997 | throw AipsError("STLineFinder::findLines - the in_edge parameter has a negative"
|
---|
998 | "number of channels to drop");
|
---|
999 | edge.second=nchan-edge.second;
|
---|
1000 | } else edge.second=nchan-edge.first;
|
---|
1001 | if (edge.second<0 || (edge.first>=edge.second))
|
---|
1002 | throw AipsError("STLineFinder::findLines - all channels are rejected by the in_edge parameter");
|
---|
1003 | }
|
---|
1004 |
|
---|
1005 | //
|
---|
1006 | int max_box_nchan=int(nchan*box_size); // number of channels in running
|
---|
1007 | // box
|
---|
1008 | if (max_box_nchan<2)
|
---|
1009 | throw AipsError("STLineFinder::findLines - box_size is too small");
|
---|
1010 |
|
---|
1011 | // number of elements in the sample for noise estimate
|
---|
1012 | const int noise_box = itsNoiseBox<0 ? -1 : int(nchan * itsNoiseBox);
|
---|
1013 |
|
---|
1014 | if ((noise_box!= -1) and (noise_box<2))
|
---|
1015 | throw AipsError("STLineFinder::findLines - noise_box is supposed to be at least 2 elements");
|
---|
1016 |
|
---|
1017 | spectrum.resize();
|
---|
1018 | spectrum = Vector<Float>(scan->getSpectrum(whichRow));
|
---|
1019 |
|
---|
1020 | lines.resize(0); // search from the scratch
|
---|
1021 | last_row_used=whichRow;
|
---|
1022 | Vector<Bool> temp_mask(mask);
|
---|
1023 |
|
---|
1024 | Bool first_pass=True;
|
---|
1025 | Int avg_factor=1; // this number of adjacent channels is averaged together
|
---|
1026 | // the total number of the channels is not altered
|
---|
1027 | // instead, min_nchan is also scaled
|
---|
1028 | // it helps to search for broad lines
|
---|
1029 | Vector<Int> signs; // a buffer for signs of the value - mean quantity
|
---|
1030 | // see LFAboveThreshold for details
|
---|
1031 | // We need only signs resulted from last iteration
|
---|
1032 | // because all previous values may be corrupted by the
|
---|
1033 | // presence of spectral lines
|
---|
1034 | while (true) {
|
---|
1035 | // a buffer for new lines found at this iteration
|
---|
1036 | std::list<pair<int,int> > new_lines;
|
---|
1037 |
|
---|
1038 | try {
|
---|
1039 | // line find algorithm
|
---|
1040 | LFAboveThreshold lfalg(new_lines,avg_factor*min_nchan, threshold, itsUseMedian,noise_box);
|
---|
1041 | lfalg.findLines(spectrum,temp_mask,edge,max_box_nchan);
|
---|
1042 | signs.resize(lfalg.getSigns().nelements());
|
---|
1043 | signs=lfalg.getSigns();
|
---|
1044 | first_pass=False;
|
---|
1045 | if (!new_lines.size())
|
---|
1046 | throw AipsError("spurious"); // nothing new - use the same
|
---|
1047 | // code as for a real exception
|
---|
1048 | }
|
---|
1049 | catch(const AipsError &ae) {
|
---|
1050 | if (first_pass) throw;
|
---|
1051 | // nothing new - proceed to the next step of averaging, if any
|
---|
1052 | // (to search for broad lines)
|
---|
1053 | if (avg_factor>=avg_limit) break; // averaging up to avg_limit
|
---|
1054 | // adjacent channels,
|
---|
1055 | // stop after that
|
---|
1056 | avg_factor*=2; // twice as more averaging
|
---|
1057 | subtractBaseline(temp_mask,9);
|
---|
1058 | averageAdjacentChannels(temp_mask,avg_factor);
|
---|
1059 | continue;
|
---|
1060 | }
|
---|
1061 | keepStrongestOnly(temp_mask,new_lines,max_box_nchan);
|
---|
1062 | // update the list (lines) merging intervals, if necessary
|
---|
1063 | addNewSearchResult(new_lines,lines);
|
---|
1064 | // get a new mask
|
---|
1065 | temp_mask=getMask();
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | // an additional search for wings because in the presence of very strong
|
---|
1069 | // lines temporary mean used at each iteration will be higher than
|
---|
1070 | // the true mean
|
---|
1071 |
|
---|
1072 | if (lines.size())
|
---|
1073 | LFLineListOperations::searchForWings(lines,signs,mask,edge);
|
---|
1074 |
|
---|
1075 | return int(lines.size());
|
---|
1076 | }
|
---|
1077 |
|
---|
1078 | // auxiliary function to fit and subtract a polynomial from the current
|
---|
1079 | // spectrum. It uses the Fitter class. This action is required before
|
---|
1080 | // reducing the spectral resolution if the baseline shape is bad
|
---|
1081 | void STLineFinder::subtractBaseline(const casa::Vector<casa::Bool> &temp_mask,
|
---|
1082 | const casa::Int &order) throw(casa::AipsError)
|
---|
1083 | {
|
---|
1084 | AlwaysAssert(spectrum.nelements(),AipsError);
|
---|
1085 | // use the fact that temp_mask excludes channels rejected at the edge
|
---|
1086 | Fitter sdf;
|
---|
1087 | std::vector<float> absc(spectrum.nelements());
|
---|
1088 | for (unsigned int i=0;i<absc.size();++i)
|
---|
1089 | absc[i]=float(i)/float(spectrum.nelements());
|
---|
1090 | std::vector<float> spec;
|
---|
1091 | spectrum.tovector(spec);
|
---|
1092 | std::vector<bool> std_mask;
|
---|
1093 | temp_mask.tovector(std_mask);
|
---|
1094 | sdf.setData(absc,spec,std_mask);
|
---|
1095 | sdf.setExpression("poly",order);
|
---|
1096 | if (!sdf.fit()) return; // fit failed, use old spectrum
|
---|
1097 | spectrum=casa::Vector<casa::Float>(sdf.getResidual());
|
---|
1098 | }
|
---|
1099 |
|
---|
1100 | // auxiliary function to average adjacent channels and update the mask
|
---|
1101 | // if at least one channel involved in summation is masked, all
|
---|
1102 | // output channels will be masked. This function works with the
|
---|
1103 | // spectrum and edge fields of this class, but updates the mask
|
---|
1104 | // array specified, rather than the field of this class
|
---|
1105 | // boxsize - a number of adjacent channels to average
|
---|
1106 | void STLineFinder::averageAdjacentChannels(casa::Vector<casa::Bool> &mask2update,
|
---|
1107 | const casa::Int &boxsize)
|
---|
1108 | throw(casa::AipsError)
|
---|
1109 | {
|
---|
1110 | DebugAssert(mask2update.nelements()==spectrum.nelements(), AipsError);
|
---|
1111 | DebugAssert(boxsize!=0,AipsError);
|
---|
1112 |
|
---|
1113 | for (int n=edge.first;n<edge.second;n+=boxsize) {
|
---|
1114 | DebugAssert(n<spectrum.nelements(),AipsError);
|
---|
1115 | int nboxch=0; // number of channels currently in the box
|
---|
1116 | Float mean=0; // buffer for mean calculations
|
---|
1117 | for (int k=n;k<n+boxsize && k<edge.second;++k)
|
---|
1118 | if (mask2update[k]) { // k is a valid channel
|
---|
1119 | mean+=spectrum[k];
|
---|
1120 | ++nboxch;
|
---|
1121 | }
|
---|
1122 | if (nboxch<boxsize) // mask these channels
|
---|
1123 | for (int k=n;k<n+boxsize && k<edge.second;++k)
|
---|
1124 | mask2update[k]=False;
|
---|
1125 | else {
|
---|
1126 | mean/=Float(boxsize);
|
---|
1127 | for (int k=n;k<n+boxsize && k<edge.second;++k)
|
---|
1128 | spectrum[k]=mean;
|
---|
1129 | }
|
---|
1130 | }
|
---|
1131 | }
|
---|
1132 |
|
---|
1133 |
|
---|
1134 | // get the mask to mask out all lines that have been found (default)
|
---|
1135 | // if invert=true, only channels belong to lines will be unmasked
|
---|
1136 | // Note: all channels originally masked by the input mask (in_mask
|
---|
1137 | // in setScan) or dropped out by the edge parameter (in_edge
|
---|
1138 | // in setScan) are still excluded regardless on the invert option
|
---|
1139 | std::vector<bool> STLineFinder::getMask(bool invert)
|
---|
1140 | const throw(casa::AipsError)
|
---|
1141 | {
|
---|
1142 | try {
|
---|
1143 | if (scan.null())
|
---|
1144 | throw AipsError("STLineFinder::getMask - a scan should be set first,"
|
---|
1145 | " use set_scan followed by find_lines");
|
---|
1146 | DebugAssert(mask.nelements()==scan->getChannels(last_row_used), AipsError);
|
---|
1147 | /*
|
---|
1148 | if (!lines.size())
|
---|
1149 | throw AipsError("STLineFinder::getMask - one have to search for "
|
---|
1150 | "lines first, use find_lines");
|
---|
1151 | */
|
---|
1152 | std::vector<bool> res_mask(mask.nelements());
|
---|
1153 | // iterator through lines
|
---|
1154 | std::list<std::pair<int,int> >::const_iterator cli=lines.begin();
|
---|
1155 | for (int ch=0;ch<int(res_mask.size());++ch) {
|
---|
1156 | if (ch<edge.first || ch>=edge.second) res_mask[ch]=false;
|
---|
1157 | else if (!mask[ch]) res_mask[ch]=false;
|
---|
1158 | else {
|
---|
1159 | res_mask[ch]=!invert; // no line by default
|
---|
1160 | if (cli!=lines.end())
|
---|
1161 | if (ch>=cli->first && ch<cli->second)
|
---|
1162 | res_mask[ch]=invert; // this is a line
|
---|
1163 | }
|
---|
1164 | if (cli!=lines.end())
|
---|
1165 | if (ch>=cli->second) {
|
---|
1166 | ++cli; // next line in the list
|
---|
1167 | }
|
---|
1168 | }
|
---|
1169 | return res_mask;
|
---|
1170 | }
|
---|
1171 | catch (const AipsError &ae) {
|
---|
1172 | throw;
|
---|
1173 | }
|
---|
1174 | catch (const exception &ex) {
|
---|
1175 | throw AipsError(String("STLineFinder::getMask - STL error: ")+ex.what());
|
---|
1176 | }
|
---|
1177 | }
|
---|
1178 |
|
---|
1179 | // get range for all lines found. The same units as used in the scan
|
---|
1180 | // will be returned (e.g. velocity instead of channels).
|
---|
1181 | std::vector<double> STLineFinder::getLineRanges()
|
---|
1182 | const throw(casa::AipsError)
|
---|
1183 | {
|
---|
1184 | // convert to required abscissa units
|
---|
1185 | std::vector<double> vel=scan->getAbcissa(last_row_used);
|
---|
1186 | std::vector<int> ranges=getLineRangesInChannels();
|
---|
1187 | std::vector<double> res(ranges.size());
|
---|
1188 |
|
---|
1189 | std::vector<int>::const_iterator cri=ranges.begin();
|
---|
1190 | std::vector<double>::iterator outi=res.begin();
|
---|
1191 | for (;cri!=ranges.end() && outi!=res.end();++cri,++outi)
|
---|
1192 | if (uInt(*cri)>=vel.size())
|
---|
1193 | throw AipsError("STLineFinder::getLineRanges - getAbcissa provided less channels than reqired");
|
---|
1194 | else *outi=vel[*cri];
|
---|
1195 | return res;
|
---|
1196 | }
|
---|
1197 |
|
---|
1198 | // The same as getLineRanges, but channels are always used to specify
|
---|
1199 | // the range
|
---|
1200 | std::vector<int> STLineFinder::getLineRangesInChannels()
|
---|
1201 | const throw(casa::AipsError)
|
---|
1202 | {
|
---|
1203 | try {
|
---|
1204 | if (scan.null())
|
---|
1205 | throw AipsError("STLineFinder::getLineRangesInChannels - a scan should be set first,"
|
---|
1206 | " use set_scan followed by find_lines");
|
---|
1207 | DebugAssert(mask.nelements()==scan->getChannels(last_row_used), AipsError);
|
---|
1208 |
|
---|
1209 | if (!lines.size())
|
---|
1210 | throw AipsError("STLineFinder::getLineRangesInChannels - one have to search for "
|
---|
1211 | "lines first, use find_lines");
|
---|
1212 |
|
---|
1213 | std::vector<int> res(2*lines.size());
|
---|
1214 | // iterator through lines & result
|
---|
1215 | std::list<std::pair<int,int> >::const_iterator cli=lines.begin();
|
---|
1216 | std::vector<int>::iterator ri=res.begin();
|
---|
1217 | for (;cli!=lines.end() && ri!=res.end();++cli,++ri) {
|
---|
1218 | *ri=cli->first;
|
---|
1219 | if (++ri!=res.end())
|
---|
1220 | *ri=cli->second-1;
|
---|
1221 | }
|
---|
1222 | return res;
|
---|
1223 | }
|
---|
1224 | catch (const AipsError &ae) {
|
---|
1225 | throw;
|
---|
1226 | }
|
---|
1227 | catch (const exception &ex) {
|
---|
1228 | throw AipsError(String("STLineFinder::getLineRanges - STL error: ")+ex.what());
|
---|
1229 | }
|
---|
1230 | }
|
---|
1231 |
|
---|
1232 |
|
---|
1233 |
|
---|
1234 | // an auxiliary function to remove all lines from the list, except the
|
---|
1235 | // strongest one (by absolute value). If the lines removed are real,
|
---|
1236 | // they will be find again at the next iteration. This approach
|
---|
1237 | // increases the number of iterations required, but is able to remove
|
---|
1238 | // spurious detections likely to occur near strong lines.
|
---|
1239 | // Later a better criterion may be implemented, e.g.
|
---|
1240 | // taking into consideration the brightness of different lines. Now
|
---|
1241 | // use the simplest solution
|
---|
1242 | // temp_mask - mask to work with (may be different from original mask as
|
---|
1243 | // the lines previously found may be masked)
|
---|
1244 | // lines2update - a list of lines to work with
|
---|
1245 | // nothing will be done if it is empty
|
---|
1246 | // max_box_nchan - channels in the running box for baseline filtering
|
---|
1247 | void STLineFinder::keepStrongestOnly(const casa::Vector<casa::Bool> &temp_mask,
|
---|
1248 | std::list<std::pair<int, int> > &lines2update,
|
---|
1249 | int max_box_nchan)
|
---|
1250 | throw (casa::AipsError)
|
---|
1251 | {
|
---|
1252 | try {
|
---|
1253 | if (!lines2update.size()) return; // ignore an empty list
|
---|
1254 |
|
---|
1255 | // current line
|
---|
1256 | std::list<std::pair<int,int> >::iterator li=lines2update.begin();
|
---|
1257 | // strongest line
|
---|
1258 | std::list<std::pair<int,int> >::iterator strongli=lines2update.begin();
|
---|
1259 | // the flux (absolute value) of the strongest line
|
---|
1260 | Float peak_flux=-1; // negative value - a flag showing uninitialized
|
---|
1261 | // value
|
---|
1262 | // the algorithm below relies on the list being ordered
|
---|
1263 | Float tmp_flux=-1; // a temporary peak
|
---|
1264 | for (RunningBox running_box(spectrum,temp_mask,edge,max_box_nchan);
|
---|
1265 | running_box.haveMore(); running_box.next()) {
|
---|
1266 |
|
---|
1267 | if (li==lines2update.end()) break; // no more lines
|
---|
1268 | const int ch=running_box.getChannel();
|
---|
1269 | if (ch>=li->first && ch<li->second)
|
---|
1270 | if (temp_mask[ch] && tmp_flux<fabs(running_box.aboveMean()))
|
---|
1271 | tmp_flux=fabs(running_box.aboveMean());
|
---|
1272 | if (ch==li->second-1) {
|
---|
1273 | if (peak_flux<tmp_flux) { // if peak_flux=-1, this condition
|
---|
1274 | peak_flux=tmp_flux; // will be satisfied
|
---|
1275 | strongli=li;
|
---|
1276 | }
|
---|
1277 | ++li;
|
---|
1278 | tmp_flux=-1;
|
---|
1279 | }
|
---|
1280 | }
|
---|
1281 | std::list<std::pair<int,int> > res;
|
---|
1282 | res.splice(res.end(),lines2update,strongli);
|
---|
1283 | lines2update.clear();
|
---|
1284 | lines2update.splice(lines2update.end(),res);
|
---|
1285 | }
|
---|
1286 | catch (const AipsError &ae) {
|
---|
1287 | throw;
|
---|
1288 | }
|
---|
1289 | catch (const exception &ex) {
|
---|
1290 | throw AipsError(String("STLineFinder::keepStrongestOnly - STL error: ")+ex.what());
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 | }
|
---|
1294 |
|
---|
1295 | //
|
---|
1296 | ///////////////////////////////////////////////////////////////////////////////
|
---|
1297 |
|
---|
1298 |
|
---|
1299 | ///////////////////////////////////////////////////////////////////////////////
|
---|
1300 | //
|
---|
1301 | // LFLineListOperations - a class incapsulating operations with line lists
|
---|
1302 | // The LF prefix stands for Line Finder
|
---|
1303 | //
|
---|
1304 |
|
---|
1305 | // concatenate two lists preserving the order. If two lines appear to
|
---|
1306 | // be adjacent, they are joined into the new one
|
---|
1307 | void LFLineListOperations::addNewSearchResult(const std::list<pair<int, int> > &newlines,
|
---|
1308 | std::list<std::pair<int, int> > &lines_list)
|
---|
1309 | throw(AipsError)
|
---|
1310 | {
|
---|
1311 | try {
|
---|
1312 | for (std::list<pair<int,int> >::const_iterator cli=newlines.begin();
|
---|
1313 | cli!=newlines.end();++cli) {
|
---|
1314 |
|
---|
1315 | // the first item, which has a non-void intersection or touches
|
---|
1316 | // the new line
|
---|
1317 | std::list<pair<int,int> >::iterator pos_beg=find_if(lines_list.begin(),
|
---|
1318 | lines_list.end(), IntersectsWith(*cli));
|
---|
1319 | // the last such item
|
---|
1320 | std::list<pair<int,int> >::iterator pos_end=find_if(pos_beg,
|
---|
1321 | lines_list.end(), not1(IntersectsWith(*cli)));
|
---|
1322 |
|
---|
1323 | // extract all lines which intersect or touch a new one into
|
---|
1324 | // a temporary buffer. This may invalidate the iterators
|
---|
1325 | // line_buffer may be empty, if no lines intersects with a new
|
---|
1326 | // one.
|
---|
1327 | std::list<pair<int,int> > lines_buffer;
|
---|
1328 | lines_buffer.splice(lines_buffer.end(),lines_list, pos_beg, pos_end);
|
---|
1329 |
|
---|
1330 | // build a union of all intersecting lines
|
---|
1331 | pair<int,int> union_line=for_each(lines_buffer.begin(),
|
---|
1332 | lines_buffer.end(),BuildUnion(*cli)).result();
|
---|
1333 |
|
---|
1334 | // search for a right place for the new line (union_line) and add
|
---|
1335 | std::list<pair<int,int> >::iterator pos2insert=find_if(lines_list.begin(),
|
---|
1336 | lines_list.end(), LaterThan(union_line));
|
---|
1337 | lines_list.insert(pos2insert,union_line);
|
---|
1338 | }
|
---|
1339 | }
|
---|
1340 | catch (const AipsError &ae) {
|
---|
1341 | throw;
|
---|
1342 | }
|
---|
1343 | catch (const exception &ex) {
|
---|
1344 | throw AipsError(String("LFLineListOperations::addNewSearchResult - STL error: ")+ex.what());
|
---|
1345 | }
|
---|
1346 | }
|
---|
1347 |
|
---|
1348 | // extend all line ranges to the point where a value stored in the
|
---|
1349 | // specified vector changes (e.g. value-mean change its sign)
|
---|
1350 | // This operation is necessary to include line wings, which are below
|
---|
1351 | // the detection threshold. If lines becomes adjacent, they are
|
---|
1352 | // merged together. Any masked channel stops the extension
|
---|
1353 | void LFLineListOperations::searchForWings(std::list<std::pair<int, int> > &newlines,
|
---|
1354 | const casa::Vector<casa::Int> &signs,
|
---|
1355 | const casa::Vector<casa::Bool> &mask,
|
---|
1356 | const std::pair<int,int> &edge) throw(casa::AipsError)
|
---|
1357 | {
|
---|
1358 | try {
|
---|
1359 | for (std::list<pair<int,int> >::iterator li=newlines.begin();
|
---|
1360 | li!=newlines.end();++li) {
|
---|
1361 | // update the left hand side
|
---|
1362 | for (int n=li->first-1;n>=edge.first;--n) {
|
---|
1363 | if (!mask[n]) break;
|
---|
1364 | if (signs[n]==signs[li->first] && signs[li->first])
|
---|
1365 | li->first=n;
|
---|
1366 | else break;
|
---|
1367 | }
|
---|
1368 | // update the right hand side
|
---|
1369 | for (int n=li->second;n<edge.second;++n) {
|
---|
1370 | if (!mask[n]) break;
|
---|
1371 | if (signs[n]==signs[li->second-1] && signs[li->second-1])
|
---|
1372 | li->second=n;
|
---|
1373 | else break;
|
---|
1374 | }
|
---|
1375 | }
|
---|
1376 | // need to search for possible mergers.
|
---|
1377 | std::list<std::pair<int, int> > result_buffer;
|
---|
1378 | addNewSearchResult(newlines,result_buffer);
|
---|
1379 | newlines.clear();
|
---|
1380 | newlines.splice(newlines.end(),result_buffer);
|
---|
1381 | }
|
---|
1382 | catch (const AipsError &ae) {
|
---|
1383 | throw;
|
---|
1384 | }
|
---|
1385 | catch (const exception &ex) {
|
---|
1386 | throw AipsError(String("LFLineListOperations::extendLines - STL error: ")+ex.what());
|
---|
1387 | }
|
---|
1388 | }
|
---|
1389 |
|
---|
1390 | //
|
---|
1391 | ///////////////////////////////////////////////////////////////////////////////
|
---|