source: branches/newfiller/src/STFitter.cpp@ 2663

Last change on this file since 2663 was 1700, checked in by WataruKawasaki, 15 years ago

New Development: Yes

JIRA Issue: Yes (CAS-1800 + CAS-1807)

Ready to Release: Yes

Interface Changes: Yes

What Interface Changed: added parameters fitfunc for sdfit and clip, clipmaxmin, clipoutside for sdflag

Test Programs:

Put in Release Notes: No

Module(s): sdfit, sdflag

Description: Added a parameter for enabling Lorentzian line fitting with sdfit, and parameters for y-axis clipping with sdflag. Also 4 files for Lorentzian function class are (Lorentzian1D*) added.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 11.1 KB
Line 
1//#---------------------------------------------------------------------------
2//# Fitter.cc: A Fitter class for spectra
3//#--------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//# Internet email: Malte.Marquarding@csiro.au
23//# Postal address: Malte Marquarding,
24//# Australia Telescope National Facility,
25//# P.O. Box 76,
26//# Epping, NSW, 2121,
27//# AUSTRALIA
28//#
29//# $Id: STFitter.cpp 1700 2010-02-16 05:21:26Z WataruKawasaki $
30//#---------------------------------------------------------------------------
31#include <casa/aips.h>
32#include <casa/Arrays/ArrayMath.h>
33#include <casa/Arrays/ArrayLogical.h>
34#include <casa/Logging/LogIO.h>
35#include <scimath/Fitting.h>
36#include <scimath/Fitting/LinearFit.h>
37#include <scimath/Functionals/CompiledFunction.h>
38#include <scimath/Functionals/CompoundFunction.h>
39#include <scimath/Functionals/Gaussian1D.h>
40#include "Lorentzian1D.h"
41#include <scimath/Functionals/Polynomial.h>
42#include <scimath/Mathematics/AutoDiff.h>
43#include <scimath/Mathematics/AutoDiffMath.h>
44#include <scimath/Fitting/NonLinearFitLM.h>
45#include <components/SpectralComponents/SpectralEstimate.h>
46
47#include "STFitter.h"
48
49using namespace asap;
50using namespace casa;
51
52Fitter::Fitter()
53{
54}
55
56Fitter::~Fitter()
57{
58 reset();
59}
60
61void Fitter::clear()
62{
63 for (uInt i=0;i< funcs_.nelements();++i) {
64 delete funcs_[i]; funcs_[i] = 0;
65 }
66 funcs_.resize(0,True);
67 parameters_.resize();
68 fixedpar_.resize();
69 error_.resize();
70 thefit_.resize();
71 estimate_.resize();
72 chisquared_ = 0.0;
73}
74
75void Fitter::reset()
76{
77 clear();
78 x_.resize();
79 y_.resize();
80 m_.resize();
81}
82
83
84bool Fitter::computeEstimate() {
85 if (x_.nelements() == 0 || y_.nelements() == 0)
86 throw (AipsError("No x/y data specified."));
87
88 if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) == 0)
89 return false;
90 uInt n = funcs_.nelements();
91 SpectralEstimate estimator(n);
92 estimator.setQ(5);
93 Int mn,mx;
94 mn = 0;
95 mx = m_.nelements()-1;
96 for (uInt i=0; i<m_.nelements();++i) {
97 if (m_[i]) {
98 mn = i;
99 break;
100 }
101 }
102 for (uInt j=m_.nelements()-1; j>=0;--j) {
103 if (m_[j]) {
104 mx = j;
105 break;
106 }
107 }
108 //mn = 0+x_.nelements()/10;
109 //mx = x_.nelements()-x_.nelements()/10;
110 estimator.setRegion(mn,mx);
111 //estimator.setWindowing(True);
112 SpectralList listGauss = estimator.estimate(x_, y_);
113 parameters_.resize(n*3);
114 Gaussian1D<Float>* g = 0;
115 for (uInt i=0; i<n;i++) {
116 g = dynamic_cast<Gaussian1D<Float>* >(funcs_[i]);
117 if (g) {
118 (*g)[0] = listGauss[i].getAmpl();
119 (*g)[1] = listGauss[i].getCenter();
120 (*g)[2] = listGauss[i].getFWHM();
121 }
122 }
123 estimate_.resize();
124 listGauss.evaluate(estimate_,x_);
125 return true;
126}
127
128std::vector<float> Fitter::getEstimate() const
129{
130 if (estimate_.nelements() == 0)
131 throw (AipsError("No estimate set."));
132 std::vector<float> stlout;
133 estimate_.tovector(stlout);
134 return stlout;
135}
136
137
138bool Fitter::setExpression(const std::string& expr, int ncomp)
139{
140 clear();
141 if (expr == "gauss") {
142 if (ncomp < 1) throw (AipsError("Need at least one gaussian to fit."));
143 funcs_.resize(ncomp);
144 for (Int k=0; k<ncomp; ++k) {
145 funcs_[k] = new Gaussian1D<Float>();
146 }
147 } else if (expr == "poly") {
148 funcs_.resize(1);
149 funcs_[0] = new Polynomial<Float>(ncomp);
150 } else if (expr == "lorentz") {
151 if (ncomp < 1) throw (AipsError("Need at least one lorentzian to fit."));
152 funcs_.resize(ncomp);
153 for (Int k=0; k<ncomp; ++k) {
154 funcs_[k] = new Lorentzian1D<Float>();
155 }
156 } else {
157 //cerr << " compiled functions not yet implemented" << endl;
158 LogIO os( LogOrigin( "Fitter", "setExpression()", WHERE ) ) ;
159 os << LogIO::WARN << " compiled functions not yet implemented" << LogIO::POST;
160 //funcs_.resize(1);
161 //funcs_[0] = new CompiledFunction<Float>();
162 //funcs_[0]->setFunction(String(expr));
163 return false;
164 }
165 return true;
166}
167
168bool Fitter::setData(std::vector<float> absc, std::vector<float> spec,
169 std::vector<bool> mask)
170{
171 x_.resize();
172 y_.resize();
173 m_.resize();
174 // convert std::vector to casa Vector
175 Vector<Float> tmpx(absc);
176 Vector<Float> tmpy(spec);
177 Vector<Bool> tmpm(mask);
178 AlwaysAssert(tmpx.nelements() == tmpy.nelements(), AipsError);
179 x_ = tmpx;
180 y_ = tmpy;
181 m_ = tmpm;
182 return true;
183}
184
185std::vector<float> Fitter::getResidual() const
186{
187 if (residual_.nelements() == 0)
188 throw (AipsError("Function not yet fitted."));
189 std::vector<float> stlout;
190 residual_.tovector(stlout);
191 return stlout;
192}
193
194std::vector<float> Fitter::getFit() const
195{
196 Vector<Float> out = thefit_;
197 std::vector<float> stlout;
198 out.tovector(stlout);
199 return stlout;
200
201}
202
203std::vector<float> Fitter::getErrors() const
204{
205 Vector<Float> out = error_;
206 std::vector<float> stlout;
207 out.tovector(stlout);
208 return stlout;
209}
210
211bool Fitter::setParameters(std::vector<float> params)
212{
213 Vector<Float> tmppar(params);
214 if (funcs_.nelements() == 0)
215 throw (AipsError("Function not yet set."));
216 if (parameters_.nelements() > 0 && tmppar.nelements() != parameters_.nelements())
217 throw (AipsError("Number of parameters inconsistent with function."));
218 if (parameters_.nelements() == 0) {
219 parameters_.resize(tmppar.nelements());
220 if (tmppar.nelements() != fixedpar_.nelements()) {
221 fixedpar_.resize(tmppar.nelements());
222 fixedpar_ = False;
223 }
224 }
225 if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
226 uInt count = 0;
227 for (uInt j=0; j < funcs_.nelements(); ++j) {
228 for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
229 (funcs_[j]->parameters())[i] = tmppar[count];
230 parameters_[count] = tmppar[count];
231 ++count;
232 }
233 }
234 } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
235 for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
236 parameters_[i] = tmppar[i];
237 (funcs_[0]->parameters())[i] = tmppar[i];
238 }
239 } else if (dynamic_cast<Lorentzian1D<Float>* >(funcs_[0]) != 0) {
240 uInt count = 0;
241 for (uInt j=0; j < funcs_.nelements(); ++j) {
242 for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
243 (funcs_[j]->parameters())[i] = tmppar[count];
244 parameters_[count] = tmppar[count];
245 ++count;
246 }
247 }
248 }
249 // reset
250 if (params.size() == 0) {
251 parameters_.resize();
252 fixedpar_.resize();
253 }
254 return true;
255}
256
257bool Fitter::setFixedParameters(std::vector<bool> fixed)
258{
259 if (funcs_.nelements() == 0)
260 throw (AipsError("Function not yet set."));
261 if (fixedpar_.nelements() > 0 && fixed.size() != fixedpar_.nelements())
262 throw (AipsError("Number of mask elements inconsistent with function."));
263 if (fixedpar_.nelements() == 0) {
264 fixedpar_.resize(parameters_.nelements());
265 fixedpar_ = False;
266 }
267 if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
268 uInt count = 0;
269 for (uInt j=0; j < funcs_.nelements(); ++j) {
270 for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
271 funcs_[j]->mask(i) = !fixed[count];
272 fixedpar_[count] = fixed[count];
273 ++count;
274 }
275 }
276 } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
277 for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
278 fixedpar_[i] = fixed[i];
279 funcs_[0]->mask(i) = !fixed[i];
280 }
281 } else if (dynamic_cast<Lorentzian1D<Float>* >(funcs_[0]) != 0) {
282 uInt count = 0;
283 for (uInt j=0; j < funcs_.nelements(); ++j) {
284 for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
285 funcs_[j]->mask(i) = !fixed[count];
286 fixedpar_[count] = fixed[count];
287 ++count;
288 }
289 }
290 }
291 return true;
292}
293
294std::vector<float> Fitter::getParameters() const {
295 Vector<Float> out = parameters_;
296 std::vector<float> stlout;
297 out.tovector(stlout);
298 return stlout;
299}
300
301std::vector<bool> Fitter::getFixedParameters() const {
302 Vector<Bool> out(parameters_.nelements());
303 if (fixedpar_.nelements() == 0) {
304 return std::vector<bool>();
305 //throw (AipsError("No parameter mask set."));
306 } else {
307 out = fixedpar_;
308 }
309 std::vector<bool> stlout;
310 out.tovector(stlout);
311 return stlout;
312}
313
314float Fitter::getChisquared() const {
315 return chisquared_;
316}
317
318bool Fitter::fit() {
319 NonLinearFitLM<Float> fitter;
320 CompoundFunction<Float> func;
321
322 uInt n = funcs_.nelements();
323 for (uInt i=0; i<n; ++i) {
324 func.addFunction(*funcs_[i]);
325 }
326
327 fitter.setFunction(func);
328 fitter.setMaxIter(50+n*10);
329 // Convergence criterium
330 fitter.setCriteria(0.001);
331
332 // Fit
333 Vector<Float> sigma(x_.nelements());
334 sigma = 1.0;
335
336 parameters_.resize();
337 parameters_ = fitter.fit(x_, y_, sigma, &m_);
338 if ( !fitter.converged() ) {
339 return false;
340 }
341 std::vector<float> ps;
342 parameters_.tovector(ps);
343 setParameters(ps);
344
345 error_.resize();
346 error_ = fitter.errors();
347
348 chisquared_ = fitter.getChi2();
349
350 residual_.resize();
351 residual_ = y_;
352 fitter.residual(residual_,x_);
353 // use fitter.residual(model=True) to get the model
354 thefit_.resize(x_.nelements());
355 fitter.residual(thefit_,x_,True);
356 return true;
357}
358
359bool Fitter::lfit() {
360 LinearFit<Float> fitter;
361 CompoundFunction<Float> func;
362
363 uInt n = funcs_.nelements();
364 for (uInt i=0; i<n; ++i) {
365 func.addFunction(*funcs_[i]);
366 }
367
368 fitter.setFunction(func);
369 //fitter.setMaxIter(50+n*10);
370 // Convergence criterium
371 //fitter.setCriteria(0.001);
372
373 // Fit
374 Vector<Float> sigma(x_.nelements());
375 sigma = 1.0;
376
377 parameters_.resize();
378 parameters_ = fitter.fit(x_, y_, sigma, &m_);
379 std::vector<float> ps;
380 parameters_.tovector(ps);
381 setParameters(ps);
382
383 error_.resize();
384 error_ = fitter.errors();
385
386 chisquared_ = fitter.getChi2();
387
388 residual_.resize();
389 residual_ = y_;
390 fitter.residual(residual_,x_);
391 // use fitter.residual(model=True) to get the model
392 thefit_.resize(x_.nelements());
393 fitter.residual(thefit_,x_,True);
394 return true;
395}
396
397std::vector<float> Fitter::evaluate(int whichComp) const
398{
399 std::vector<float> stlout;
400 uInt idx = uInt(whichComp);
401 Float y;
402 if ( idx < funcs_.nelements() ) {
403 for (uInt i=0; i<x_.nelements(); ++i) {
404 y = (*funcs_[idx])(x_[i]);
405 stlout.push_back(float(y));
406 }
407 }
408 return stlout;
409}
410
Note: See TracBrowser for help on using the repository browser.