| 1 | //#--------------------------------------------------------------------------- | 
|---|
| 2 | //# STAtmosphere.h: Model of atmospheric opacity | 
|---|
| 3 | //#--------------------------------------------------------------------------- | 
|---|
| 4 | //# Copyright (C) 2004 | 
|---|
| 5 | //# ATNF | 
|---|
| 6 | //# | 
|---|
| 7 | //# The code is based on the Fortran code written by Bob Sault for MIRIAD. | 
|---|
| 8 | //# Converted to C++ by Max Voronkov. This code uses a simple model of the | 
|---|
| 9 | //# atmosphere and Liebe's model (1985) of the complex refractive index of | 
|---|
| 10 | //# air. | 
|---|
| 11 | //# | 
|---|
| 12 | //# The model of the atmosphere is one with an exponential fall-off in | 
|---|
| 13 | //# the water vapour content (scale height of 1540 m) and a temperature lapse | 
|---|
| 14 | //# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation | 
|---|
| 15 | //# and hydrostatic equilibrium. | 
|---|
| 16 | //# | 
|---|
| 17 | //# This program is free software; you can redistribute it and/or modify it | 
|---|
| 18 | //# under the terms of the GNU General Public License as published by the Free | 
|---|
| 19 | //# Software Foundation; either version 2 of the License, or (at your option) | 
|---|
| 20 | //# any later version. | 
|---|
| 21 | //# | 
|---|
| 22 | //# This program is distributed in the hope that it will be useful, but | 
|---|
| 23 | //# WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 24 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General | 
|---|
| 25 | //# Public License for more details. | 
|---|
| 26 | //# | 
|---|
| 27 | //# You should have received a copy of the GNU General Public License along | 
|---|
| 28 | //# with this program; if not, write to the Free Software Foundation, Inc., | 
|---|
| 29 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA. | 
|---|
| 30 | //# | 
|---|
| 31 | //# Correspondence concerning this software should be addressed as follows: | 
|---|
| 32 | //#        Internet email: Malte.Marquarding@csiro.au | 
|---|
| 33 | //#        Postal address: Malte Marquarding, | 
|---|
| 34 | //#                        Australia Telescope National Facility, | 
|---|
| 35 | //#                        P.O. Box 76, | 
|---|
| 36 | //#                        Epping, NSW, 2121, | 
|---|
| 37 | //#                        AUSTRALIA | 
|---|
| 38 | //# | 
|---|
| 39 | //# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $ | 
|---|
| 40 | //#--------------------------------------------------------------------------- | 
|---|
| 41 |  | 
|---|
| 42 | #ifndef STATMOSPHERE_H | 
|---|
| 43 | #define STATMOSPHERE_H | 
|---|
| 44 |  | 
|---|
| 45 | // std includes | 
|---|
| 46 | #include <vector> | 
|---|
| 47 | #include <complex> | 
|---|
| 48 |  | 
|---|
| 49 | namespace asap { | 
|---|
| 50 |  | 
|---|
| 51 | /** | 
|---|
| 52 | * This class implements opacity/atmospheric brightness temperature model | 
|---|
| 53 | * equivalent to the model available in MIRIAD. The actual math is a | 
|---|
| 54 | * convertion of the Fortran code written by Bob Sault for MIRIAD. | 
|---|
| 55 | * It implements a simple model of the atmosphere and Liebe's model (1985) | 
|---|
| 56 | * of the complex refractive index of air. | 
|---|
| 57 | * | 
|---|
| 58 | * The model of the atmosphere is one with an exponential fall-off in | 
|---|
| 59 | * the water vapour content (scale height of 1540 m) and a temperature lapse | 
|---|
| 60 | * rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation | 
|---|
| 61 | * and hydrostatic equilibrium. | 
|---|
| 62 | * | 
|---|
| 63 | * Note, the model includes atmospheric lines up to 800 GHz, but was not | 
|---|
| 64 | * rigorously tested above 100 GHz and for instruments located at | 
|---|
| 65 | * a significant elevation. For high-elevation sites it may be necessary to | 
|---|
| 66 | * adjust scale height and lapse rate. | 
|---|
| 67 | * | 
|---|
| 68 | * @brief The ASAP atmosphere opacity model | 
|---|
| 69 | * @author Max Voronkov | 
|---|
| 70 | * @date $Date: 2010-03-17 14:55:17 +1000 (Thu, 26 Apr 2007) $ | 
|---|
| 71 | * @version | 
|---|
| 72 | */ | 
|---|
| 73 | class STAtmosphere { | 
|---|
| 74 | public: | 
|---|
| 75 | /** | 
|---|
| 76 | * Default Constructor (apart from optional parameters). | 
|---|
| 77 | * The class set up this way will assume International Standard Atmosphere (ISA) conditions, | 
|---|
| 78 | * except for humidity. The latter is assumed to be 50%, which seems more realistic for | 
|---|
| 79 | * Australian telescopes than 0%. | 
|---|
| 80 | * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model | 
|---|
| 81 | * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to | 
|---|
| 82 | *            this height, default is 10000m to match MIRIAD. | 
|---|
| 83 | * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration), | 
|---|
| 84 | *            default is 50 to match MIRIAD. | 
|---|
| 85 | **/ | 
|---|
| 86 | explicit STAtmosphere(double wvScale = 1540., double maxAlt = 10000.0, size_t nLayers = 50); | 
|---|
| 87 |  | 
|---|
| 88 | /** | 
|---|
| 89 | * Constructor with explicitly given parameters of the atmosphere | 
|---|
| 90 | * @param[in] temperature air temperature at the observatory (K) | 
|---|
| 91 | * @param[in] pressure air pressure at the sea level if the observatory elevation | 
|---|
| 92 | *            is set to non-zero value (note, by default is set to 200m) or at the | 
|---|
| 93 | *            observatory ground level if the elevation is set to 0. (The value is in Pascals) | 
|---|
| 94 | * @param[in] pressure air pressure at the observatory (Pascals) | 
|---|
| 95 | * @param[in] humidity air humidity at the observatory (fraction) | 
|---|
| 96 | * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA | 
|---|
| 97 | * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model | 
|---|
| 98 | * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to | 
|---|
| 99 | *            this height, default is 10000m to match MIRIAD. | 
|---|
| 100 | * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration), | 
|---|
| 101 | *            default is 50 to match MIRIAD. | 
|---|
| 102 | **/ | 
|---|
| 103 | STAtmosphere(double temperature, double pressure, double humidity, double lapseRate = 0.0065, | 
|---|
| 104 | double wvScale = 1540., double maxAlt = 10000.0, size_t nLayers = 50); | 
|---|
| 105 |  | 
|---|
| 106 | /** | 
|---|
| 107 | * Set the new weather station data, recompute the model | 
|---|
| 108 | * @param[in] temperature air temperature at the observatory (K) | 
|---|
| 109 | * @param[in] pressure air pressure at the sea level if the observatory elevation | 
|---|
| 110 | *            is set to non-zero value (note, by default is set to 200m) or at the | 
|---|
| 111 | *            observatory ground level if the elevation is set to 0. (The value is in Pascals) | 
|---|
| 112 | * @param[in] humidity air humidity at the observatory (fraction) | 
|---|
| 113 | **/ | 
|---|
| 114 | void setWeather(double temperature, double pressure, double humidity); | 
|---|
| 115 |  | 
|---|
| 116 | /** | 
|---|
| 117 | * Set the elevation of the observatory (height above mean sea level) | 
|---|
| 118 | * | 
|---|
| 119 | * The observatory elevation affects only interpretation of the pressure supplied as part | 
|---|
| 120 | * of the weather data, if this value is non-zero, the pressure (e.g. in setWeather or | 
|---|
| 121 | * constructor) is that at mean sea level. If the observatory elevation is set to zero, | 
|---|
| 122 | * regardless on real elevation, the pressure is that at the observatory ground level. | 
|---|
| 123 | * | 
|---|
| 124 | * By default, 200m is assumed. | 
|---|
| 125 | * @param[in] elev elevation in metres | 
|---|
| 126 | **/ | 
|---|
| 127 | void setObservatoryElevation(double elev); | 
|---|
| 128 |  | 
|---|
| 129 | /** | 
|---|
| 130 | * Calculate zenith opacity at the given frequency. This is a simplified version | 
|---|
| 131 | * of the routine implemented in MIRIAD, which calculates just zenith opacity and | 
|---|
| 132 | * nothing else. Note, that if the opacity is high, 1/sin(el) law is not correct | 
|---|
| 133 | * even in the plane parallel case due to refraction. | 
|---|
| 134 | * @param[in] freq frequency of interest in Hz | 
|---|
| 135 | * @return zenith opacity (nepers, i.e. dimensionless) | 
|---|
| 136 | **/ | 
|---|
| 137 | double zenithOpacity(double freq) const; | 
|---|
| 138 |  | 
|---|
| 139 | /** | 
|---|
| 140 | * Calculate zenith opacity for the range of frequencies. Same as zenithOpacity, but | 
|---|
| 141 | * for a vector of frequencies. | 
|---|
| 142 | * @param[in] freqs vector of frequencies in Hz | 
|---|
| 143 | * @return vector of zenith opacities, one value per frequency (nepers, i.e. dimensionless) | 
|---|
| 144 | **/ | 
|---|
| 145 | std::vector<double> zenithOpacities(const std::vector<double> &freqs) const; | 
|---|
| 146 |  | 
|---|
| 147 | /** | 
|---|
| 148 | * Calculate opacity at the given frequency and elevation. This is a simplified | 
|---|
| 149 | * version of the routine implemented in MIRIAD, which calculates just the opacity and | 
|---|
| 150 | * nothing else. In contract to zenithOpacity, this method takes into account refraction | 
|---|
| 151 | * and is more accurate than if one assumes 1/sin(el) factor. | 
|---|
| 152 | * @param[in] freq frequency of interest in Hz | 
|---|
| 153 | * @param[in] el elevation in radians | 
|---|
| 154 | * @return zenith opacity (nepers, i.e. dimensionless) | 
|---|
| 155 | **/ | 
|---|
| 156 | double opacity(double freq, double el) const; | 
|---|
| 157 |  | 
|---|
| 158 | /** | 
|---|
| 159 | * Calculate opacities for the range of frequencies at the given elevation. Same as | 
|---|
| 160 | * opacity, but for a vector of frequencies. | 
|---|
| 161 | * @param[in] freqs vector of frequencies in Hz | 
|---|
| 162 | * @param[in] el elevation in radians | 
|---|
| 163 | * @return vector of opacities, one value per frequency (nepers, i.e. dimensionless) | 
|---|
| 164 | **/ | 
|---|
| 165 | std::vector<double> opacities(const std::vector<double> &freqs, double el) const; | 
|---|
| 166 |  | 
|---|
| 167 | protected: | 
|---|
| 168 | /** | 
|---|
| 169 | * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic | 
|---|
| 170 | * equilibrium. The model parameters are taken from the data members of this class. | 
|---|
| 171 | **/ | 
|---|
| 172 | void recomputeAtmosphereModel(); | 
|---|
| 173 |  | 
|---|
| 174 | /** | 
|---|
| 175 | * Obtain the number of model layers, do consistency check that everything is | 
|---|
| 176 | * resized accordingly | 
|---|
| 177 | * @retrun number of model layers | 
|---|
| 178 | **/ | 
|---|
| 179 | size_t nLayers() const; | 
|---|
| 180 |  | 
|---|
| 181 | /** | 
|---|
| 182 | * Determine the saturation pressure of water vapour for the given temperature. | 
|---|
| 183 | * | 
|---|
| 184 | * Reference: | 
|---|
| 185 | * Waters, Refraction effects in the neutral atmosphere. Methods of | 
|---|
| 186 | * Experimental Physics, vol 12B, p 186-200 (1976). | 
|---|
| 187 | * | 
|---|
| 188 | * @param[in] temperature temperature in K | 
|---|
| 189 | * @return vapour saturation pressure (Pascals) | 
|---|
| 190 | **/ | 
|---|
| 191 | static double wvSaturationPressure(double temperature); | 
|---|
| 192 |  | 
|---|
| 193 | /** | 
|---|
| 194 | * Compute the complex refractivity of the dry components of the atmosphere | 
|---|
| 195 | * (oxygen lines) at the given frequency. | 
|---|
| 196 | * @param[in] freq frequency (Hz) | 
|---|
| 197 | * @param[in] temperature air temperature (K) | 
|---|
| 198 | * @param[in] pDry partial pressure of dry components (Pascals) | 
|---|
| 199 | * @param[in] pVapour partial pressure of water vapour (Pascals) | 
|---|
| 200 | * @return complex refractivity | 
|---|
| 201 | * | 
|---|
| 202 | * Reference: | 
|---|
| 203 | * Liebe, An updated model for millimeter wave propogation in moist air, | 
|---|
| 204 | * Radio Science, 20, 1069-1089 (1985). | 
|---|
| 205 | **/ | 
|---|
| 206 | static std::complex<double> dryRefractivity(double freq, double temperature, | 
|---|
| 207 | double pDry, double pVapour); | 
|---|
| 208 |  | 
|---|
| 209 | /** | 
|---|
| 210 | * Compute the complex refractivity of the water vapour monomers | 
|---|
| 211 | * at the given frequency. | 
|---|
| 212 | * @param[in] freq frequency (Hz) | 
|---|
| 213 | * @param[in] temperature air temperature (K) | 
|---|
| 214 | * @param[in] pDry partial pressure of dry components (Pascals) | 
|---|
| 215 | * @param[in] pVapour partial pressure of water vapour (Pascals) | 
|---|
| 216 | * @return complex refractivity | 
|---|
| 217 | * | 
|---|
| 218 | * Reference: | 
|---|
| 219 | * Liebe, An updated model for millimeter wave propogation in moist air, | 
|---|
| 220 | * Radio Science, 20, 1069-1089 (1985). | 
|---|
| 221 | **/ | 
|---|
| 222 | static std::complex<double> vapourRefractivity(double freq, double temperature, | 
|---|
| 223 | double pDry, double pVapour); | 
|---|
| 224 |  | 
|---|
| 225 | private: | 
|---|
| 226 |  | 
|---|
| 227 | // heights of all model layers | 
|---|
| 228 | std::vector<double> itsHeights; | 
|---|
| 229 |  | 
|---|
| 230 | // temperatures of all model layers | 
|---|
| 231 | std::vector<double> itsTemperatures; | 
|---|
| 232 |  | 
|---|
| 233 | // partial pressures of dry component for all model layers | 
|---|
| 234 | std::vector<double> itsDryPressures; | 
|---|
| 235 |  | 
|---|
| 236 | // partial pressure of water vapour for all model layers | 
|---|
| 237 | std::vector<double> itsVapourPressures; | 
|---|
| 238 |  | 
|---|
| 239 | /** | 
|---|
| 240 | *  Atmosphere parameters | 
|---|
| 241 | **/ | 
|---|
| 242 |  | 
|---|
| 243 | // ground level temperature (K) | 
|---|
| 244 | double itsGndTemperature; | 
|---|
| 245 |  | 
|---|
| 246 | // sea level pressure (Pascals) | 
|---|
| 247 | double itsPressure; | 
|---|
| 248 |  | 
|---|
| 249 | // ground level humidity (fraction) | 
|---|
| 250 | double itsGndHumidity; | 
|---|
| 251 |  | 
|---|
| 252 | // lapse rate (K/m) | 
|---|
| 253 | double itsLapseRate; | 
|---|
| 254 |  | 
|---|
| 255 | // water vapour scale height (m) | 
|---|
| 256 | double itsWVScale; | 
|---|
| 257 |  | 
|---|
| 258 | // altitude of the highest layer of the model (m) | 
|---|
| 259 | double itsMaxAlt; | 
|---|
| 260 |  | 
|---|
| 261 | // observatory elevation (m) | 
|---|
| 262 | double itsObsHeight; | 
|---|
| 263 | }; | 
|---|
| 264 |  | 
|---|
| 265 | } // namespace asap | 
|---|
| 266 |  | 
|---|
| 267 | #endif // #ifndef STATMOSPHERE_H | 
|---|
| 268 |  | 
|---|