1 | //#---------------------------------------------------------------------------
|
---|
2 | //# STAtmosphere.h: Model of atmospheric opacity
|
---|
3 | //#---------------------------------------------------------------------------
|
---|
4 | //# Copyright (C) 2004
|
---|
5 | //# ATNF
|
---|
6 | //#
|
---|
7 | //# The code is based on the Fortran code written by Bob Sault for MIRIAD.
|
---|
8 | //# Converted to C++ by Max Voronkov. This code uses a simple model of the
|
---|
9 | //# atmosphere and Liebe's model (1985) of the complex refractive index of
|
---|
10 | //# air.
|
---|
11 | //#
|
---|
12 | //# The model of the atmosphere is one with an exponential fall-off in
|
---|
13 | //# the water vapour content (scale height of 1540 m) and a temperature lapse
|
---|
14 | //# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
|
---|
15 | //# and hydrostatic equilibrium.
|
---|
16 | //#
|
---|
17 | //# This program is free software; you can redistribute it and/or modify it
|
---|
18 | //# under the terms of the GNU General Public License as published by the Free
|
---|
19 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
20 | //# any later version.
|
---|
21 | //#
|
---|
22 | //# This program is distributed in the hope that it will be useful, but
|
---|
23 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
24 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
25 | //# Public License for more details.
|
---|
26 | //#
|
---|
27 | //# You should have received a copy of the GNU General Public License along
|
---|
28 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
29 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
30 | //#
|
---|
31 | //# Correspondence concerning this software should be addressed as follows:
|
---|
32 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
33 | //# Postal address: Malte Marquarding,
|
---|
34 | //# Australia Telescope National Facility,
|
---|
35 | //# P.O. Box 76,
|
---|
36 | //# Epping, NSW, 2121,
|
---|
37 | //# AUSTRALIA
|
---|
38 | //#
|
---|
39 | //# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $
|
---|
40 | //#---------------------------------------------------------------------------
|
---|
41 |
|
---|
42 | // own includes
|
---|
43 | #include "STAtmosphere.h"
|
---|
44 |
|
---|
45 | // casa includes
|
---|
46 | #include <casa/Utilities/Assert.h>
|
---|
47 | #include <casa/Quanta.h>
|
---|
48 |
|
---|
49 | // std includes
|
---|
50 | #include <cmath>
|
---|
51 |
|
---|
52 | using namespace casa;
|
---|
53 | using namespace asap;
|
---|
54 |
|
---|
55 | /**
|
---|
56 | * Default Constructor (apart from optional parameters).
|
---|
57 | * The class set up this way will assume International Standard Atmosphere (ISA) conditions,
|
---|
58 | * except for humidity. The latter is assumed to be 50%, which seems more realistic for
|
---|
59 | * Australian telescopes than 0%.
|
---|
60 | * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
|
---|
61 | * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
|
---|
62 | * this height, default is 10000m to match MIRIAD.
|
---|
63 | * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
|
---|
64 | * default is 50 to match MIRIAD.
|
---|
65 | **/
|
---|
66 | STAtmosphere::STAtmosphere(double wvScale, double maxAlt, size_t nLayers) :
|
---|
67 | itsHeights(nLayers), itsTemperatures(nLayers),
|
---|
68 | itsDryPressures(nLayers), itsVapourPressures(nLayers),
|
---|
69 | itsGndTemperature(288.), itsPressure(101325.), itsGndHumidity(0.5),
|
---|
70 | itsLapseRate(0.0065), itsWVScale(wvScale), itsMaxAlt(maxAlt), itsObsHeight(200.)
|
---|
71 | {
|
---|
72 | recomputeAtmosphereModel();
|
---|
73 | }
|
---|
74 |
|
---|
75 | /**
|
---|
76 | * Constructor with explicitly given parameters of the atmosphere
|
---|
77 | * @param[in] temperature air temperature at the observatory (K)
|
---|
78 | * @param[in] pressure air pressure at the sea level if the observatory elevation is set
|
---|
79 | * (default is set to 200m) or at the observatory ground level if the elevation
|
---|
80 | * is set to 0 (Pascals)
|
---|
81 | * @param[in] humidity air humidity at the observatory (fraction)
|
---|
82 | * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA
|
---|
83 | * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
|
---|
84 | * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
|
---|
85 | * this height, default is 10000m to match MIRIAD.
|
---|
86 | * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
|
---|
87 | * default is 50 to match MIRIAD.
|
---|
88 | **/
|
---|
89 | STAtmosphere::STAtmosphere(double temperature, double pressure, double humidity, double lapseRate,
|
---|
90 | double wvScale, double maxAlt, size_t nLayers) :
|
---|
91 | itsHeights(nLayers), itsTemperatures(nLayers),
|
---|
92 | itsDryPressures(nLayers), itsVapourPressures(nLayers),
|
---|
93 | itsGndTemperature(temperature), itsPressure(pressure), itsGndHumidity(humidity),
|
---|
94 | itsLapseRate(lapseRate), itsWVScale(wvScale), itsMaxAlt(maxAlt), itsObsHeight(200.)
|
---|
95 | {
|
---|
96 | recomputeAtmosphereModel();
|
---|
97 | }
|
---|
98 |
|
---|
99 | /**
|
---|
100 | * Set the new weather station data, recompute the model
|
---|
101 | * @param[in] temperature air temperature at the observatory (K)
|
---|
102 | * @param[in] pressure air pressure at the sea level if the observatory elevation is set to non-zero value
|
---|
103 | * (default is set to 200m) or at the observatory ground level if the elevation
|
---|
104 | * is set to 0 (Pascals)
|
---|
105 | * @param[in] humidity air humidity at the observatory (fraction)
|
---|
106 | **/
|
---|
107 | void STAtmosphere::setWeather(double temperature, double pressure, double humidity)
|
---|
108 | {
|
---|
109 | itsGndTemperature = temperature;
|
---|
110 | itsPressure = pressure;
|
---|
111 | itsGndHumidity = humidity;
|
---|
112 | recomputeAtmosphereModel();
|
---|
113 | }
|
---|
114 |
|
---|
115 | /**
|
---|
116 | * Set the elevation of the observatory (height above mean sea level)
|
---|
117 | * It affects only interpretation of the pressure supplied as part of the weather data, if this value
|
---|
118 | * is non-zero, the pressure (e.g. in setWeather or constructor) is that at mean sea level. If the
|
---|
119 | * observatory elevation is set to zero, regardless on real elevation, the pressure is that at the
|
---|
120 | * observatory ground level.
|
---|
121 | *
|
---|
122 | * By default, 200m is assumed and the pressure should be a mean sea level pressure..
|
---|
123 | * @param[in] elev elevation in metres
|
---|
124 | **/
|
---|
125 | void STAtmosphere::setObservatoryElevation(double elev)
|
---|
126 | {
|
---|
127 | itsObsHeight = elev;
|
---|
128 | recomputeAtmosphereModel();
|
---|
129 | }
|
---|
130 |
|
---|
131 |
|
---|
132 | /**
|
---|
133 | * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic
|
---|
134 | * equilibrium. The model parameters are taken from the data members of this class.
|
---|
135 | **/
|
---|
136 | void STAtmosphere::recomputeAtmosphereModel()
|
---|
137 | {
|
---|
138 | AlwaysAssert(itsGndTemperature > 0, AipsError);
|
---|
139 | AlwaysAssert(itsPressure > 0., AipsError);
|
---|
140 | AlwaysAssert((itsGndHumidity >= 0.) && (itsGndHumidity<=1.), AipsError);
|
---|
141 | AlwaysAssert(itsMaxAlt > 0., AipsError);
|
---|
142 | AlwaysAssert(itsWVScale > 0., AipsError);
|
---|
143 |
|
---|
144 | const double heightStep = itsMaxAlt/double(nLayers());
|
---|
145 | // molar mass of the air
|
---|
146 | const double M = 28.96e-3;
|
---|
147 | // free-fall acceleration
|
---|
148 | const double g = 9.81;
|
---|
149 |
|
---|
150 | const double wvGndSaturationPressure = wvSaturationPressure(itsGndTemperature);
|
---|
151 | const double gndPressure = itsPressure*exp(-M*g/(QC::R.get().getValue()*itsGndTemperature)*
|
---|
152 | (itsObsHeight+0.5*itsLapseRate*itsObsHeight*itsObsHeight/itsGndTemperature));
|
---|
153 | for (size_t layer = 0; layer < nLayers(); ++layer) {
|
---|
154 | const double height = double(layer)*heightStep;
|
---|
155 | itsHeights[layer] = height;
|
---|
156 | itsTemperatures[layer] = itsGndTemperature/(1.+itsLapseRate*height/itsGndTemperature);
|
---|
157 | const double pressure = gndPressure * exp(-M*g/(QC::R.get().getValue()*itsGndTemperature)*
|
---|
158 | (height+0.5*itsLapseRate*height*height/itsGndTemperature));
|
---|
159 | itsVapourPressures[layer] = casa::min(itsGndHumidity*exp(-height/itsWVScale)*wvGndSaturationPressure,
|
---|
160 | wvSaturationPressure(itsTemperatures[layer]));
|
---|
161 | itsDryPressures[layer] = pressure - itsVapourPressures[layer];
|
---|
162 | //std::cout<<"layer="<<layer<<": H="<<itsHeights[layer]<<" T="<<itsTemperatures[layer]<<
|
---|
163 | // " Pvap="<<itsVapourPressures[layer]<<" Pdry="<<itsDryPressures[layer]<<endl;
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 | /**
|
---|
168 | * Obtain the number of model layers, do consistency check that everything is
|
---|
169 | * resized accordingly
|
---|
170 | * @retrun number of model layers
|
---|
171 | **/
|
---|
172 | size_t STAtmosphere::nLayers() const
|
---|
173 | {
|
---|
174 | const size_t result = itsHeights.size();
|
---|
175 | DebugAssert(result > 2, AipsError);
|
---|
176 | DebugAssert(itsTemperatures.size() == result, AipsError);
|
---|
177 | DebugAssert(itsDryPressures.size() == result, AipsError);
|
---|
178 | DebugAssert(itsVapourPressures.size() == result, AipsError);
|
---|
179 | return result;
|
---|
180 | }
|
---|
181 |
|
---|
182 | /**
|
---|
183 | * Determine the saturation pressure of water vapour for the given temperature.
|
---|
184 | *
|
---|
185 | * Reference:
|
---|
186 | * Waters, Refraction effects in the neutral atmosphere. Methods of
|
---|
187 | * Experimental Physics, vol 12B, p 186-200 (1976).
|
---|
188 | *
|
---|
189 | * @param[in] temperature temperature in K
|
---|
190 | * @return vapour saturation pressure (Pascals)
|
---|
191 | **/
|
---|
192 | double STAtmosphere::wvSaturationPressure(double temperature)
|
---|
193 | {
|
---|
194 | if (temperature <= 215.) {
|
---|
195 | return 0.;
|
---|
196 | }
|
---|
197 | const double theta = 300.0/temperature;
|
---|
198 | return 1e5/(41.51/std::pow(theta,5)*std::pow(10.,9.834*theta-10.0));
|
---|
199 | }
|
---|
200 |
|
---|
201 | /**
|
---|
202 | * Compute the complex refractivity of the dry components of the atmosphere
|
---|
203 | * (oxygen lines) at the given frequency.
|
---|
204 | * @param[in] freq frequency (Hz)
|
---|
205 | * @param[in] temperature air temperature (K)
|
---|
206 | * @param[in] pDry partial pressure of dry components (Pascals)
|
---|
207 | * @param[in] pVapour partial pressure of water vapour (Pascals)
|
---|
208 | * @return complex refractivity
|
---|
209 | *
|
---|
210 | * Reference:
|
---|
211 | * Liebe, An updated model for millimeter wave propogation in moist air,
|
---|
212 | * Radio Science, 20, 1069-1089 (1985).
|
---|
213 | **/
|
---|
214 | std::complex<double> STAtmosphere::dryRefractivity(double freq, double temperature,
|
---|
215 | double pDry, double pVapour)
|
---|
216 | {
|
---|
217 | // the number of parameters per atmospheric line and the number of lines taken into account
|
---|
218 | const size_t nLineParams = 7;
|
---|
219 | const size_t nLines = 48;
|
---|
220 | // actual tabulated values
|
---|
221 | const double lines[nLines][nLineParams] =
|
---|
222 | {{49.452379, 0.12E-6, 11.830, 8.40E-3, 0.0, 5.60E-3, 1.7},
|
---|
223 | {49.962257, 0.34E-6, 10.720, 8.50E-3, 0.0, 5.60E-3, 1.7},
|
---|
224 | {50.474238, 0.94E-6, 9.690, 8.60E-3, 0.0, 5.60E-3, 1.7},
|
---|
225 | {50.987748, 2.46E-6, 8.690, 8.70E-3, 0.0, 5.50E-3, 1.7},
|
---|
226 | {51.503350, 6.08E-6, 7.740, 8.90E-3, 0.0, 5.60E-3, 1.8},
|
---|
227 | {52.021409, 14.14E-6, 6.840, 9.20E-3, 0.0, 5.50E-3, 1.8},
|
---|
228 | {52.542393, 31.02E-6, 6.000, 9.40E-3, 0.0, 5.70E-3, 1.8},
|
---|
229 | {53.066906, 64.10E-6, 5.220, 9.70E-3, 0.0, 5.30E-3, 1.9},
|
---|
230 | {53.595748, 124.70E-6, 4.480, 10.00E-3, 0.0, 5.40E-3, 1.8},
|
---|
231 | {54.129999, 228.00E-6, 3.810, 10.20E-3, 0.0, 4.80E-3, 2.0},
|
---|
232 | {54.671157, 391.80E-6, 3.190, 10.50E-3, 0.0, 4.80E-3, 1.9},
|
---|
233 | {55.221365, 631.60E-6, 2.620, 10.79E-3, 0.0, 4.17E-3, 2.1},
|
---|
234 | {55.783800, 953.50E-6, 2.115, 11.10E-3, 0.0, 3.75E-3, 2.1},
|
---|
235 | {56.264777, 548.90E-6, 0.010, 16.46E-3, 0.0, 7.74E-3, 0.9},
|
---|
236 | {56.363387, 1344.00E-6, 1.655, 11.44E-3, 0.0, 2.97E-3, 2.3},
|
---|
237 | {56.968180, 1763.00E-6, 1.255, 11.81E-3, 0.0, 2.12E-3, 2.5},
|
---|
238 | {57.612481, 2141.00E-6, 0.910, 12.21E-3, 0.0, 0.94E-3, 3.7},
|
---|
239 | {58.323874, 2386.00E-6, 0.621, 12.66E-3, 0.0, -0.55E-3, -3.1},
|
---|
240 | {58.446589, 1457.00E-6, 0.079, 14.49E-3, 0.0, 5.97E-3, 0.8},
|
---|
241 | {59.164204, 2404.00E-6, 0.386, 13.19E-3, 0.0, -2.44E-3, 0.1},
|
---|
242 | {59.590982, 2112.00E-6, 0.207, 13.60E-3, 0.0, 3.44E-3, 0.5},
|
---|
243 | {60.306057, 2124.00E-6, 0.207, 13.82E-3, 0.0, -4.13E-3, 0.7},
|
---|
244 | {60.434775, 2461.00E-6, 0.386, 12.97E-3, 0.0, 1.32E-3, -1.0},
|
---|
245 | {61.150558, 2504.00E-6, 0.621, 12.48E-3, 0.0, -0.36E-3, 5.8},
|
---|
246 | {61.800152, 2298.00E-6, 0.910, 12.07E-3, 0.0, -1.59E-3, 2.9},
|
---|
247 | {62.411212, 1933.00E-6, 1.255, 11.71E-3, 0.0, -2.66E-3, 2.3},
|
---|
248 | {62.486253, 1517.00E-6, 0.078, 14.68E-3, 0.0, -4.77E-3, 0.9},
|
---|
249 | {62.997974, 1503.00E-6, 1.660, 11.39E-3, 0.0, -3.34E-3, 2.2},
|
---|
250 | {63.568515, 1087.00E-6, 2.110, 11.08E-3, 0.0, -4.17E-3, 2.0},
|
---|
251 | {64.127764, 733.50E-6, 2.620, 10.78E-3, 0.0, -4.48E-3, 2.0},
|
---|
252 | {64.678900, 463.50E-6, 3.190, 10.50E-3, 0.0, -5.10E-3, 1.8},
|
---|
253 | {65.224067, 274.80E-6, 3.810, 10.20E-3, 0.0, -5.10E-3, 1.9},
|
---|
254 | {65.764769, 153.00E-6, 4.480, 10.00E-3, 0.0, -5.70E-3, 1.8},
|
---|
255 | {66.302088, 80.09E-6, 5.220, 9.70E-3, 0.0, -5.50E-3, 1.8},
|
---|
256 | {66.836827, 39.46E-6, 6.000, 9.40E-3, 0.0, -5.90E-3, 1.7},
|
---|
257 | {67.369595, 18.32E-6, 6.840, 9.20E-3, 0.0, -5.60E-3, 1.8},
|
---|
258 | {67.900862, 8.01E-6, 7.740, 8.90E-3, 0.0, -5.80E-3, 1.7},
|
---|
259 | {68.431001, 3.30E-6, 8.690, 8.70E-3, 0.0, -5.70E-3, 1.7},
|
---|
260 | {68.960306, 1.28E-6, 9.690, 8.60E-3, 0.0, -5.60E-3, 1.7},
|
---|
261 | {69.489021, 0.47E-6, 10.720, 8.50E-3, 0.0, -5.60E-3, 1.7},
|
---|
262 | {70.017342, 0.16E-6, 11.830, 8.40E-3, 0.0, -5.60E-3, 1.7},
|
---|
263 | {118.750341, 945.00E-6, 0.000, 15.92E-3, 0.0, -0.44E-3, 0.9},
|
---|
264 | {368.498350, 67.90E-6, 0.020, 19.20E-3, 0.6, 0.00E00, 1.0},
|
---|
265 | {424.763120, 638.00E-6, 0.011, 19.16E-3, 0.6, 0.00E00, 1.0},
|
---|
266 | {487.249370, 235.00E-6, 0.011, 19.20E-3, 0.6, 0.00E00, 1.0},
|
---|
267 | {715.393150, 99.60E-6, 0.089, 18.10E-3, 0.6, 0.00E00, 1.0},
|
---|
268 | {773.838730, 671.00E-6, 0.079, 18.10E-3, 0.6, 0.00E00, 1.0},
|
---|
269 | {834.145330, 180.00E-6, 0.079, 18.10E-3, 0.6, 0.00E00, 1.0}};
|
---|
270 |
|
---|
271 | // convert to the units of Liebe
|
---|
272 | const double theta = 300./temperature;
|
---|
273 | const double kPaPVap = 0.001*pVapour;
|
---|
274 | const double kPaPDry = 0.001*pDry;
|
---|
275 | const double fGHz = freq * 1e-9;
|
---|
276 |
|
---|
277 | // some coefficients
|
---|
278 | const double ap = 1.4e-10*(1-1.2e-5*std::pow(fGHz,1.5));
|
---|
279 | const double gamma0 = 5.6e-3*(kPaPDry + 1.1*kPaPVap)*std::pow(theta,0.8);
|
---|
280 | // initial refractivity
|
---|
281 | std::complex<double> result(2.588*kPaPDry*theta +
|
---|
282 | 3.07e-4*(1.0/(1.0+std::pow(fGHz/gamma0,2))-1)*kPaPDry*theta*theta,
|
---|
283 | (2*3.07e-4/(gamma0*(1+std::pow(fGHz/gamma0,2))*(1+std::pow(fGHz/60,2))) +
|
---|
284 | ap*kPaPDry*std::pow(theta,2.5))*fGHz*kPaPDry*theta*theta);
|
---|
285 |
|
---|
286 | // sum the contributions of all the lines
|
---|
287 | for (size_t l = 0; l < nLines; ++l) {
|
---|
288 | const double S = lines[l][1]*kPaPDry*std::pow(theta,3)*exp(lines[l][2]*(1.-theta));
|
---|
289 | const double gamma = lines[l][3]*(kPaPDry*std::pow(theta,0.8-lines[l][4]) + 1.1*kPaPVap*theta);
|
---|
290 | const double delta = lines[l][5]*kPaPDry*std::pow(theta,lines[l][6]);
|
---|
291 | const double x = (lines[l][0]-fGHz)*(lines[l][0]-fGHz) + gamma*gamma;
|
---|
292 | const double y = (lines[l][0]+fGHz)*(lines[l][0]+fGHz) + gamma*gamma;
|
---|
293 | const double z = (lines[l][0]+gamma*gamma/lines[l][0]);
|
---|
294 | result += std::complex<double> (S*( (z-fGHz)/x + (z+fGHz)/y - 2./lines[l][0] +
|
---|
295 | delta*(1/x-1/y)*gamma*fGHz/lines[l][0]),
|
---|
296 | S*( (1/x+1/y)*gamma*fGHz/lines[l][0] -
|
---|
297 | delta*((lines[l][0]-fGHz)/x + (lines[l][0]+fGHz)/y)*fGHz/lines[l][0]));
|
---|
298 | }
|
---|
299 |
|
---|
300 | return result;
|
---|
301 | }
|
---|
302 |
|
---|
303 | /**
|
---|
304 | * Compute the complex refractivity of the water vapour monomers
|
---|
305 | * at the given frequency.
|
---|
306 | * @param[in] freq frequency (Hz)
|
---|
307 | * @param[in] temperature air temperature (K)
|
---|
308 | * @param[in] pDry partial pressure of dry components (Pascals)
|
---|
309 | * @param[in] pVapour partial pressure of water vapour (Pascals)
|
---|
310 | * @return complex refractivity
|
---|
311 | *
|
---|
312 | * Reference:
|
---|
313 | * Liebe, An updated model for millimeter wave propogation in moist air,
|
---|
314 | * Radio Science, 20, 1069-1089 (1985).
|
---|
315 | **/
|
---|
316 | std::complex<double> STAtmosphere::vapourRefractivity(double freq, double temperature,
|
---|
317 | double pDry, double pVapour)
|
---|
318 | {
|
---|
319 | // the number of parameters per atmospheric line and the number of lines taken into account
|
---|
320 | const size_t nLineParams = 4;
|
---|
321 | const size_t nLines = 30;
|
---|
322 | // actual tabulated values
|
---|
323 | const double lines[nLines][nLineParams] =
|
---|
324 | {{22.235080, 0.1090, 2.143, 27.84E-3},
|
---|
325 | {67.813960, 0.0011, 8.730, 27.60E-3},
|
---|
326 | {119.995940, 0.0007, 8.347, 27.00E-3},
|
---|
327 | {183.310117, 2.3000, 0.653, 28.35E-3},
|
---|
328 | {321.225644, 0.0464, 6.156, 21.40E-3},
|
---|
329 | {325.152919, 1.5400, 1.515, 27.00E-3},
|
---|
330 | {336.187000, 0.0010, 9.802, 26.50E-3},
|
---|
331 | {380.197372, 11.9000, 1.018, 27.60E-3},
|
---|
332 | {390.134508, 0.0044, 7.318, 19.00E-3},
|
---|
333 | {437.346667, 0.0637, 5.015, 13.70E-3},
|
---|
334 | {439.150812, 0.9210, 3.561, 16.40E-3},
|
---|
335 | {443.018295, 0.1940, 5.015, 14.40E-3},
|
---|
336 | {448.001075, 10.6000, 1.370, 23.80E-3},
|
---|
337 | {470.888947, 0.3300, 3.561, 18.20E-3},
|
---|
338 | {474.689127, 1.2800, 2.342, 19.80E-3},
|
---|
339 | {488.491133, 0.2530, 2.814, 24.90E-3},
|
---|
340 | {503.568532, 0.0374, 6.693, 11.50E-3},
|
---|
341 | {504.482692, 0.0125, 6.693, 11.90E-3},
|
---|
342 | {556.936002, 510.000, 0.114, 30.00E-3},
|
---|
343 | {620.700807, 5.0900, 2.150, 22.30E-3},
|
---|
344 | {658.006500, 0.2740, 7.767, 30.00E-3},
|
---|
345 | {752.033227, 250.000, 0.336, 28.60E-3},
|
---|
346 | {841.073593, 0.0130, 8.113, 14.10E-3},
|
---|
347 | {859.865000, 0.1330, 7.989, 28.60E-3},
|
---|
348 | {899.407000, 0.0550, 7.845, 28.60E-3},
|
---|
349 | {902.555000, 0.0380, 8.360, 26.40E-3},
|
---|
350 | {906.205524, 0.1830, 5.039, 23.40E-3},
|
---|
351 | {916.171582, 8.5600, 1.369, 25.30E-3},
|
---|
352 | {970.315022, 9.1600, 1.842, 24.00E-3},
|
---|
353 | {987.926764, 138.000, 0.178, 28.60E-3}};
|
---|
354 |
|
---|
355 | // convert to the units of Liebe
|
---|
356 | const double theta = 300./temperature;
|
---|
357 | const double kPaPVap = 0.001*pVapour;
|
---|
358 | const double kPaPDry = 0.001*pDry;
|
---|
359 | const double fGHz = freq * 1e-9;
|
---|
360 |
|
---|
361 | // initial refractivity
|
---|
362 | std::complex<double> result(2.39*kPaPVap*theta + 41.6*kPaPVap*theta*theta +
|
---|
363 | 6.47e-6*std::pow(fGHz,2.05)*kPaPVap*std::pow(theta,2.4),
|
---|
364 | (0.915*1.40e-6*kPaPDry + 5.41e-5*kPaPVap*theta*theta*theta)*
|
---|
365 | fGHz*kPaPVap*std::pow(theta,2.5));
|
---|
366 |
|
---|
367 | // sum contributions of all the lines
|
---|
368 | for (size_t l = 0; l < nLines; ++l) {
|
---|
369 | const double S = lines[l][1]*kPaPVap*std::pow(theta,3.5)*exp(lines[l][2]*(1.-theta));
|
---|
370 | const double gamma = lines[l][3]*(kPaPDry*std::pow(theta,0.8) + 4.80*kPaPVap*theta);
|
---|
371 | const double x = (lines[l][0]-fGHz)*(lines[l][0]-fGHz) + gamma*gamma;
|
---|
372 | const double y = (lines[l][0]+fGHz)*(lines[l][0]+fGHz) + gamma*gamma;
|
---|
373 | const double z = (lines[l][0]+gamma*gamma/lines[l][0]);
|
---|
374 | result += std::complex<double>(S*((z-fGHz)/x + (z+fGHz)/y - 2./lines[l][0]),
|
---|
375 | S*((1./x+1./y)*gamma*fGHz/lines[l][0]));
|
---|
376 | }
|
---|
377 |
|
---|
378 | return result;
|
---|
379 | }
|
---|
380 |
|
---|
381 | /**
|
---|
382 | * Calculate zenith opacity at the given frequency. This is a simplified version
|
---|
383 | * of the routine implemented in MIRIAD, which calculates just zenith opacity and
|
---|
384 | * nothing else. Note, that if the opacity is high, 1/sin(el) law is not correct
|
---|
385 | * even in the plane parallel case due to refraction.
|
---|
386 | * @param[in] freq frequency of interest in Hz
|
---|
387 | * @return zenith opacity (nepers, i.e. dimensionless)
|
---|
388 | **/
|
---|
389 | double STAtmosphere::zenithOpacity(double freq) const
|
---|
390 | {
|
---|
391 | // essentially a numerical integration with the Trapezium method
|
---|
392 | double tau = 0.;
|
---|
393 | for (int layer = int(nLayers()) - 1; layer>=0; --layer) {
|
---|
394 | double dH = 0.;
|
---|
395 | if (layer == 0) {
|
---|
396 | dH = 0.5*(itsHeights[1]-itsHeights[0]);
|
---|
397 | } else if (layer + 1 == int(nLayers())) {
|
---|
398 | dH = 0.5*(itsHeights[nLayers()-1]-itsHeights[nLayers()-2]);
|
---|
399 | } else {
|
---|
400 | dH = 0.5*(itsHeights[layer+1]-itsHeights[layer-1]);
|
---|
401 | }
|
---|
402 | // imaginary part of the total complex refractivity
|
---|
403 | const double nImag = 1e-6*std::imag(dryRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer],
|
---|
404 | itsVapourPressures[layer])+vapourRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer],
|
---|
405 | itsVapourPressures[layer]));
|
---|
406 | tau += dH*4.*casa::C::pi/QC::c.get().getValue()*freq*nImag;
|
---|
407 | }
|
---|
408 | return tau;
|
---|
409 | }
|
---|
410 |
|
---|
411 | /**
|
---|
412 | * Calculate zenith opacity for the range of frequencies. Same as zenithOpacity, but
|
---|
413 | * for a vector of frequencies.
|
---|
414 | * @param[in] freqs vector of frequencies in Hz
|
---|
415 | * @return vector of zenith opacities, one value per frequency (nepers, i.e. dimensionless)
|
---|
416 | **/
|
---|
417 | std::vector<double> STAtmosphere::zenithOpacities(const std::vector<double> &freqs) const
|
---|
418 | {
|
---|
419 | std::vector<double> result(freqs.size());
|
---|
420 | for (size_t ch = 0; ch<freqs.size(); ++ch) {
|
---|
421 | result[ch] = zenithOpacity(freqs[ch]);
|
---|
422 | }
|
---|
423 | return result;
|
---|
424 | }
|
---|
425 |
|
---|
426 | /**
|
---|
427 | * Calculate opacity at the given frequency and elevation. This is a simplified
|
---|
428 | * version of the routine implemented in MIRIAD, which calculates just the opacity and
|
---|
429 | * nothing else. In contract to zenithOpacity, this method takes into account refraction
|
---|
430 | * and is more accurate than if one assumes 1/sin(el) factor.
|
---|
431 | * @param[in] freq frequency of interest in Hz
|
---|
432 | * @param[in] el elevation in radians
|
---|
433 | * @return zenith opacity (nepers, i.e. dimensionless)
|
---|
434 | **/
|
---|
435 | double STAtmosphere::opacity(double freq, double el) const
|
---|
436 | {
|
---|
437 | // essentially a numerical integration with the Trapezium method
|
---|
438 | double tau = 0.;
|
---|
439 | const double sineEl = sin(el);
|
---|
440 | for (int layer = int(nLayers()) - 1; layer>=0; --layer) {
|
---|
441 | double dH = 0.;
|
---|
442 | if (layer == 0) {
|
---|
443 | dH = 0.5*(itsHeights[1]-itsHeights[0]);
|
---|
444 | } else if (layer + 1 == int(nLayers())) {
|
---|
445 | dH = 0.5*(itsHeights[nLayers()-1]-itsHeights[nLayers()-2]);
|
---|
446 | } else {
|
---|
447 | dH = 0.5*(itsHeights[layer+1]-itsHeights[layer-1]);
|
---|
448 | }
|
---|
449 | // total complex refractivity
|
---|
450 | const std::complex<double> n = dryRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer],
|
---|
451 | itsVapourPressures[layer]) +
|
---|
452 | vapourRefractivity(freq,itsTemperatures[layer],itsDryPressures[layer],
|
---|
453 | itsVapourPressures[layer]);
|
---|
454 | // real and imaginary part of the total complex refractivity scaled appropriately
|
---|
455 | const double nImag = 1e-6*std::imag(n);
|
---|
456 | const double nReal = 1. + 1e-6*std::real(n);
|
---|
457 | // length increment
|
---|
458 | const double dL = dH*nReal/sqrt(nReal*nReal+sineEl*sineEl-1.);
|
---|
459 | tau += dL*4.*casa::C::pi/QC::c.get().getValue()*freq*nImag;
|
---|
460 | }
|
---|
461 | return tau;
|
---|
462 | }
|
---|
463 |
|
---|
464 | /**
|
---|
465 | * Calculate opacities for the range of frequencies at the given elevation. Same as
|
---|
466 | * opacity, but for a vector of frequencies.
|
---|
467 | * @param[in] freqs vector of frequencies in Hz
|
---|
468 | * @param[in] el elevation in radians
|
---|
469 | * @return vector of opacities, one value per frequency (nepers, i.e. dimensionless)
|
---|
470 | **/
|
---|
471 | std::vector<double> STAtmosphere::opacities(const std::vector<double> &freqs, double el) const
|
---|
472 | {
|
---|
473 | std::vector<double> result(freqs.size());
|
---|
474 | for (size_t ch = 0; ch<freqs.size(); ++ch) {
|
---|
475 | result[ch] = opacity(freqs[ch],el);
|
---|
476 | }
|
---|
477 | return result;
|
---|
478 | }
|
---|
479 |
|
---|