source: branches/mergetest/external/atnf/pks/pks_maths.cc @ 1779

Last change on this file since 1779 was 1779, checked in by Kana Sugimoto, 14 years ago

New Development: Yes

JIRA Issue: No (test merging alma branch)

Ready for Test: Yes

Interface Changes: Yes

What Interface Changed:

Test Programs:

Put in Release Notes: No

Module(s):

Description:


File size: 9.9 KB
Line 
1//#---------------------------------------------------------------------------
2//# pks_maths.cc: Mathematical functions for Parkes single-dish data reduction
3//#---------------------------------------------------------------------------
4//# livedata - processing pipeline for single-dish, multibeam spectral data.
5//# Copyright (C) 2004-2009, Australia Telescope National Facility, CSIRO
6//#
7//# This file is part of livedata.
8//#
9//# livedata is free software: you can redistribute it and/or modify it under
10//# the terms of the GNU General Public License as published by the Free
11//# Software Foundation, either version 3 of the License, or (at your option)
12//# any later version.
13//#
14//# livedata is distributed in the hope that it will be useful, but WITHOUT
15//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17//# more details.
18//#
19//# You should have received a copy of the GNU General Public License along
20//# with livedata.  If not, see <http://www.gnu.org/licenses/>.
21//#
22//# Correspondence concerning livedata may be directed to:
23//#        Internet email: mcalabre@atnf.csiro.au
24//#        Postal address: Dr. Mark Calabretta
25//#                        Australia Telescope National Facility, CSIRO
26//#                        PO Box 76
27//#                        Epping NSW 1710
28//#                        AUSTRALIA
29//#
30//# http://www.atnf.csiro.au/computing/software/livedata.html
31//# $Id: pks_maths.cc,v 1.7 2009-09-29 07:45:02 cal103 Exp $
32//#---------------------------------------------------------------------------
33//# Original: 2004/07/16 Mark Calabretta
34//#---------------------------------------------------------------------------
35
36// AIPS++ includes.
37#include <casa/aips.h>
38#include <casa/math.h>
39#include <casa/Arrays/ArrayMath.h>
40#include <casa/Arrays/Vector.h>
41#include <casa/BasicSL/Constants.h>
42#include <casa/Utilities/GenSort.h>
43
44// Parkes includes.
45#include <atnf/pks/pks_maths.h>
46
47
48//----------------------------------------------------------------------- nint
49
50// Nearest integral value; halfway cases are rounded to the integral value
51// larger in value.  No check is made for integer overflow.
52
53Int nint(Double v)
54{
55  return Int(floor(v + 0.5));
56}
57
58//---------------------------------------------------------------------- anint
59
60// Nearest integral value; halfway cases are rounded to the integral value
61// larger in value.
62
63Double anint(Double v)
64{
65  return floor(v + 0.5);
66}
67
68//---------------------------------------------------------------------- round
69
70// Round value v to the nearest integral multiple of precision p.
71
72Double round(Double v, Double p)
73{
74  return p * floor(v/p + 0.5);
75}
76
77//--------------------------------------------------------------------- median
78
79// Compute the weighted median value of an array.
80
81Float median(const Vector<Float> &v, const Vector<Float> &wgt)
82{
83  uInt nElem = v.nelements();
84  if (nElem == 0) return 0.0f;
85
86  // Generate the sort index.
87  Vector<uInt> sortindex(nElem);
88  GenSortIndirect<Float>::sort(sortindex, v);
89
90  // Find the middle weight.
91  Float wgt_2 = sum(wgt)/2.0f;
92
93  // Find the corresponding vector element.
94  Float weight = 0.0f;
95  Float accwgt = 0.0f;
96  uInt j1 = 0;
97  uInt j2;
98  for (j2 = 0; j2 < nElem; j2++) {
99    weight = wgt(sortindex(j2));
100    if (weight == 0.0f) {
101      // Ignore zero-weight data;
102      continue;
103    }
104
105    // The accumulated weight.
106    accwgt += weight;
107
108    if (accwgt <= wgt_2) {
109      // Keep looping.
110      j1 = j2;
111    } else {
112      break;
113    }
114  }
115
116  // Compute weighted median.
117  Float v1 = v(sortindex(j1));
118  Float v2 = v(sortindex(j2));
119
120  // Compute pro-rata value from below.
121  Float dw = wgt_2 - (accwgt - weight);
122  v1 += (v2 - v1) * dw / weight;
123
124  // Find next non-zero-weight value.
125  for (j2++ ; j2 < nElem; j2++) {
126    weight = wgt(sortindex(j2));
127    if (weight != 0.0f) {
128      break;
129    }
130  }
131
132  if (j2 < nElem) {
133    // Compute pro-rata value from above.
134    Float v3 = v(sortindex(j2));
135
136    v2 += (v3 - v2) * dw / weight;
137  }
138
139  return (v1 + v2)/2.0f;
140}
141
142//---------------------------------------------------------------- angularDist
143
144// Determine the angular distance between two directions (angles in radians).
145
146Double angularDist(Double lng0, Double lat0, Double lng, Double lat)
147{
148  Double costheta = sin(lat0)*sin(lat) + cos(lat0)*cos(lat)*cos(lng0-lng);
149  return acos(costheta);
150}
151
152//--------------------------------------------------------------------- distPA
153
154void distPA(Double lng0, Double lat0, Double lng, Double lat, Double &dist,
155            Double &pa)
156
157// Determine the generalized position angle of the field point (lng,lat) from
158// the reference point (lng0,lat0) and the angular distance between them
159// (angles in radians).
160
161{
162  // Euler angles which rotate the coordinate frame so that (lng0,lat0) is
163  // at the pole of the new system, with the pole of the old system at zero
164  // longitude in the new.
165  Double phi0  =  C::pi_2 + lng0;
166  Double theta =  C::pi_2 - lat0;
167  Double phi   = -C::pi_2;
168
169  // Rotate the field point to the new system.
170  Double alpha, beta;
171  eulerx(lng, lat, phi0, theta, phi, alpha, beta);
172
173  dist = C::pi_2 - beta;
174  pa   = -alpha;
175  if (pa < -C::pi) pa = pa + C::_2pi;
176}
177
178//--------------------------------------------------------------------- eulerx
179
180void eulerx(Double lng0, Double lat0, Double phi0, Double theta, Double phi,
181            Double &lng1, Double &lat1)
182
183// Applies the Euler angle based transformation of spherical coordinates.
184//
185//     phi0  Longitude of the ascending node in the old system, radians.  The
186//           ascending node is the point of intersection of the equators of
187//           the two systems such that the equator of the new system crosses
188//           from south to north as viewed in the old system.
189//
190//    theta  Angle between the poles of the two systems, radians.  THETA is
191//           positive for a positive rotation about the ascending node.
192//
193//      phi  Longitude of the ascending node in the new system, radians.
194
195{
196  // Compute intermediaries.
197  Double lng0p  = lng0 - phi0;
198  Double slng0p = sin(lng0p);
199  Double clng0p = cos(lng0p);
200  Double slat0  = sin(lat0);
201  Double clat0  = cos(lat0);
202  Double ctheta = cos(theta);
203  Double stheta = sin(theta);
204
205  Double x = clat0*clng0p;
206  Double y = clat0*slng0p*ctheta + slat0*stheta;
207
208  // Longitude in the new system.
209  if (x != 0.0 || y != 0.0) {
210    lng1 = phi + atan2(y, x);
211  } else {
212    // Longitude at the poles in the new system is consistent with that
213    // specified in the old system.
214    lng1 = phi + lng0p;
215  }
216  lng1 = fmod(lng1, C::_2pi);
217  if (lng1 < 0.0) lng1 += C::_2pi;
218
219  lat1 = asin(slat0*ctheta - clat0*stheta*slng0p);
220}
221
222//------------------------------------------------------------------------ sol
223
224// Low precision coordinates of the Sun (accurate to 1 arcmin between 1800 and
225// 2200) from http://aa.usno.navy.mil/faq/docs/SunApprox.html matches closely
226// that in the Astronomical Almanac.
227
228void sol(Double mjd, Double &elng, Double &ra, Double &dec)
229{
230  Double d2r = C::pi/180.0;
231
232  // Number of days since J2000.0.
233  Double d = mjd - 51544.5;
234
235  // Mean longitude and mean anomaly of the Sun (deg).
236  Double L = 280.459 + 0.98564736*d;
237  Double g = 357.529 + 0.98560028*d;
238
239  // Apparent ecliptic longitude corrected for aberration (deg).
240  g *= d2r;
241  elng = L + 1.915*sin(g) + 0.020*sin(g+g);
242  elng = fmod(elng, 360.0);
243  if (elng < 0.0) elng += 360.0;
244
245  // Obliquity of the ecliptic (deg).
246  Double epsilon = 23.439 - 0.00000036*d;
247
248  // Transform ecliptic to equatorial coordinates.
249  elng *= d2r;
250  epsilon *= d2r;
251  ra  = atan2(cos(epsilon)*sin(elng), cos(elng));
252  dec = asin(sin(epsilon)*sin(elng));
253  if (ra < 0.0) ra += C::_2pi;
254}
255
256//------------------------------------------------------------------------ gst
257
258// Greenwich mean sidereal time, and low precision Greenwich apparent sidereal
259// time, both in radian, from http://aa.usno.navy.mil/faq/docs/GAST.html.  UT1
260// is given in MJD form.
261
262void gst(Double ut1, Double &gmst, Double &gast)
263{
264  Double d2r = C::pi/180.0;
265
266  Double d  = ut1 - 51544.5;
267  Double d0 = int(ut1) - 51544.5;
268  Double h = 24.0*(d - d0);
269  Double t = d / 35625.0;
270
271  // GMST (hr).
272  gmst = 6.697374558 + 0.06570982441908*d0 + 1.00273790935*h + 0.000026*t*t;
273  gmst = fmod(gmst, 24.0);
274
275  // Longitude of the ascending node of the Moon (deg).
276  Double Omega = 125.04 - 0.052954*d;
277
278  // Mean Longitude of the Sun (deg).
279  Double L = 280.47 + 0.98565*d;
280
281  // Obliquity of the ecliptic (deg).
282  Double epsilon = 23.4393 - 0.0000004*d;
283
284  // Approximate nutation in longitude (hr).
285  Double dpsi = -0.000319*sin(Omega*d2r) - 0.000024*sin((L+L)*d2r);
286
287  // Equation of the equinoxes (hr).
288  Double eqeq = dpsi*cos(epsilon*d2r);
289
290  // GAST (hr).
291  gast = gmst + eqeq;
292  gast = fmod(gast, 24.0);
293
294  // Convert to radian.
295  gmst *= C::pi/12.0;
296  gast *= C::pi/12.0;
297}
298
299//----------------------------------------------------------------------- azel
300
301// Convert (ra,dec) to (az,el).  Position as a Cartesian triplet in m, UT1 in
302// MJD form, and all angles in radian.
303
304void azel(const Vector<Double> position, Double ut1, Double ra, Double dec,
305          Double &az, Double &el)
306{
307  // Get geocentric longitude and latitude (rad).
308  Double x = position(0);
309  Double y = position(1);
310  Double z = position(2);
311  Double r = sqrt(x*x + y*y + z*z);
312  Double lng = atan2(y, x);
313  Double lat = asin(z/r);
314
315  // Get GAST (rad).
316  Double gast, gmst;
317  gst(ut1, gmst, gast);
318
319  // Local hour angle (rad).
320  Double ha = (gast + lng) - ra;
321
322  // Azimuth and elevation (rad).
323  az = atan2(cos(dec)*sin(ha),
324             cos(dec)*sin(lat)*cos(ha) - sin(dec)*cos(lat));
325  if (az < 0.0) az += C::_2pi;
326  el = asin(sin(dec)*sin(lat) + cos(dec)*cos(lat)*cos(ha));
327
328}
329
330//---------------------------------------------------------------------- solel
331
332// Compute the Solar elevation using the above functions.
333
334Double solel(const Vector<Double> position, Double ut1)
335{
336  Double az, dec, el, elng, gast, gmst, ra;
337  sol(ut1, elng, ra, dec);
338  gst(ut1, gmst, gast);
339  azel(position, ut1, ra, dec, az, el);
340  return el;
341}
Note: See TracBrowser for help on using the repository browser.