1 | //#---------------------------------------------------------------------------
|
---|
2 | //# STAtmosphere.h: Model of atmospheric opacity
|
---|
3 | //#---------------------------------------------------------------------------
|
---|
4 | //# Copyright (C) 2004
|
---|
5 | //# ATNF
|
---|
6 | //#
|
---|
7 | //# The code is based on the Fortran code written by Bob Sault for MIRIAD.
|
---|
8 | //# Converted to C++ by Max Voronkov. This code uses a simple model of the
|
---|
9 | //# atmosphere and Liebe's model (1985) of the complex refractive index of
|
---|
10 | //# air.
|
---|
11 | //#
|
---|
12 | //# The model of the atmosphere is one with an exponential fall-off in
|
---|
13 | //# the water vapour content (scale height of 1540 m) and a temperature lapse
|
---|
14 | //# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
|
---|
15 | //# and hydrostatic equilibrium.
|
---|
16 | //#
|
---|
17 | //# This program is free software; you can redistribute it and/or modify it
|
---|
18 | //# under the terms of the GNU General Public License as published by the Free
|
---|
19 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
20 | //# any later version.
|
---|
21 | //#
|
---|
22 | //# This program is distributed in the hope that it will be useful, but
|
---|
23 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
24 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
25 | //# Public License for more details.
|
---|
26 | //#
|
---|
27 | //# You should have received a copy of the GNU General Public License along
|
---|
28 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
29 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
30 | //#
|
---|
31 | //# Correspondence concerning this software should be addressed as follows:
|
---|
32 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
33 | //# Postal address: Malte Marquarding,
|
---|
34 | //# Australia Telescope National Facility,
|
---|
35 | //# P.O. Box 76,
|
---|
36 | //# Epping, NSW, 2121,
|
---|
37 | //# AUSTRALIA
|
---|
38 | //#
|
---|
39 | //# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $
|
---|
40 | //#---------------------------------------------------------------------------
|
---|
41 |
|
---|
42 | #ifndef STATMOSPHERE_H
|
---|
43 | #define STATMOSPHERE_H
|
---|
44 |
|
---|
45 | // std includes
|
---|
46 | #include <vector>
|
---|
47 | #include <complex>
|
---|
48 |
|
---|
49 | namespace asap {
|
---|
50 |
|
---|
51 | /**
|
---|
52 | * This class implements opacity/atmospheric brightness temperature model
|
---|
53 | * equivalent to the model available in MIRIAD. The actual math is a
|
---|
54 | * convertion of the Fortran code written by Bob Sault for MIRIAD.
|
---|
55 | * It implements a simple model of the atmosphere and Liebe's model (1985)
|
---|
56 | * of the complex refractive index of air.
|
---|
57 | *
|
---|
58 | * The model of the atmosphere is one with an exponential fall-off in
|
---|
59 | * the water vapour content (scale height of 1540 m) and a temperature lapse
|
---|
60 | * rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
|
---|
61 | * and hydrostatic equilibrium.
|
---|
62 | *
|
---|
63 | * Note, the model includes atmospheric lines up to 800 GHz, but was not
|
---|
64 | * rigorously tested above 100 GHz and for instruments located at
|
---|
65 | * a significant elevation. For high-elevation sites it may be necessary to
|
---|
66 | * adjust scale height and lapse rate.
|
---|
67 | *
|
---|
68 | * @brief The ASAP atmosphere opacity model
|
---|
69 | * @author Max Voronkov
|
---|
70 | * @date $Date: 2010-03-17 14:55:17 +1000 (Thu, 26 Apr 2007) $
|
---|
71 | * @version
|
---|
72 | */
|
---|
73 | class STAtmosphere {
|
---|
74 | public:
|
---|
75 | /**
|
---|
76 | * Default Constructor (apart from optional parameters).
|
---|
77 | * The class set up this way will assume International Standard Atmosphere (ISA) conditions,
|
---|
78 | * except for humidity. The latter is assumed to be 50%, which seems more realistic for
|
---|
79 | * Australian telescopes than 0%.
|
---|
80 | * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
|
---|
81 | * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
|
---|
82 | * this height, default is 10000m to match MIRIAD.
|
---|
83 | * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
|
---|
84 | * default is 50 to match MIRIAD.
|
---|
85 | **/
|
---|
86 | explicit STAtmosphere(double wvScale = 1540., double maxAlt = 10000.0, size_t nLayers = 50);
|
---|
87 |
|
---|
88 | /**
|
---|
89 | * Constructor with explicitly given parameters of the atmosphere
|
---|
90 | * @param[in] temperature air temperature at the observatory (K)
|
---|
91 | * @param[in] pressure air pressure at the sea level if the observatory elevation
|
---|
92 | * is set to non-zero value (note, by default is set to 200m) or at the
|
---|
93 | * observatory ground level if the elevation is set to 0. (The value is in Pascals)
|
---|
94 | * @param[in] pressure air pressure at the observatory (Pascals)
|
---|
95 | * @param[in] humidity air humidity at the observatory (fraction)
|
---|
96 | * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA
|
---|
97 | * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
|
---|
98 | * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
|
---|
99 | * this height, default is 10000m to match MIRIAD.
|
---|
100 | * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
|
---|
101 | * default is 50 to match MIRIAD.
|
---|
102 | **/
|
---|
103 | STAtmosphere(double temperature, double pressure, double humidity, double lapseRate = 0.0065,
|
---|
104 | double wvScale = 1540., double maxAlt = 10000.0, size_t nLayers = 50);
|
---|
105 |
|
---|
106 | /**
|
---|
107 | * Set the new weather station data, recompute the model
|
---|
108 | * @param[in] temperature air temperature at the observatory (K)
|
---|
109 | * @param[in] pressure air pressure at the sea level if the observatory elevation
|
---|
110 | * is set to non-zero value (note, by default is set to 200m) or at the
|
---|
111 | * observatory ground level if the elevation is set to 0. (The value is in Pascals)
|
---|
112 | * @param[in] humidity air humidity at the observatory (fraction)
|
---|
113 | **/
|
---|
114 | void setWeather(double temperature, double pressure, double humidity);
|
---|
115 |
|
---|
116 | /**
|
---|
117 | * Set the elevation of the observatory (height above mean sea level)
|
---|
118 | *
|
---|
119 | * The observatory elevation affects only interpretation of the pressure supplied as part
|
---|
120 | * of the weather data, if this value is non-zero, the pressure (e.g. in setWeather or
|
---|
121 | * constructor) is that at mean sea level. If the observatory elevation is set to zero,
|
---|
122 | * regardless on real elevation, the pressure is that at the observatory ground level.
|
---|
123 | *
|
---|
124 | * By default, 200m is assumed.
|
---|
125 | * @param[in] elev elevation in metres
|
---|
126 | **/
|
---|
127 | void setObservatoryElevation(double elev);
|
---|
128 |
|
---|
129 | /**
|
---|
130 | * Calculate zenith opacity at the given frequency. This is a simplified version
|
---|
131 | * of the routine implemented in MIRIAD, which calculates just zenith opacity and
|
---|
132 | * nothing else. Note, that if the opacity is high, 1/sin(el) law is not correct
|
---|
133 | * even in the plane parallel case due to refraction.
|
---|
134 | * @param[in] freq frequency of interest in Hz
|
---|
135 | * @return zenith opacity (nepers, i.e. dimensionless)
|
---|
136 | **/
|
---|
137 | double zenithOpacity(double freq) const;
|
---|
138 |
|
---|
139 | /**
|
---|
140 | * Calculate zenith opacity for the range of frequencies. Same as zenithOpacity, but
|
---|
141 | * for a vector of frequencies.
|
---|
142 | * @param[in] freqs vector of frequencies in Hz
|
---|
143 | * @return vector of zenith opacities, one value per frequency (nepers, i.e. dimensionless)
|
---|
144 | **/
|
---|
145 | std::vector<double> zenithOpacities(const std::vector<double> &freqs) const;
|
---|
146 |
|
---|
147 | /**
|
---|
148 | * Calculate opacity at the given frequency and elevation. This is a simplified
|
---|
149 | * version of the routine implemented in MIRIAD, which calculates just the opacity and
|
---|
150 | * nothing else. In contract to zenithOpacity, this method takes into account refraction
|
---|
151 | * and is more accurate than if one assumes 1/sin(el) factor.
|
---|
152 | * @param[in] freq frequency of interest in Hz
|
---|
153 | * @param[in] el elevation in radians
|
---|
154 | * @return zenith opacity (nepers, i.e. dimensionless)
|
---|
155 | **/
|
---|
156 | double opacity(double freq, double el) const;
|
---|
157 |
|
---|
158 | /**
|
---|
159 | * Calculate opacities for the range of frequencies at the given elevation. Same as
|
---|
160 | * opacity, but for a vector of frequencies.
|
---|
161 | * @param[in] freqs vector of frequencies in Hz
|
---|
162 | * @param[in] el elevation in radians
|
---|
163 | * @return vector of opacities, one value per frequency (nepers, i.e. dimensionless)
|
---|
164 | **/
|
---|
165 | std::vector<double> opacities(const std::vector<double> &freqs, double el) const;
|
---|
166 |
|
---|
167 | protected:
|
---|
168 | /**
|
---|
169 | * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic
|
---|
170 | * equilibrium. The model parameters are taken from the data members of this class.
|
---|
171 | **/
|
---|
172 | void recomputeAtmosphereModel();
|
---|
173 |
|
---|
174 | /**
|
---|
175 | * Obtain the number of model layers, do consistency check that everything is
|
---|
176 | * resized accordingly
|
---|
177 | * @retrun number of model layers
|
---|
178 | **/
|
---|
179 | size_t nLayers() const;
|
---|
180 |
|
---|
181 | /**
|
---|
182 | * Determine the saturation pressure of water vapour for the given temperature.
|
---|
183 | *
|
---|
184 | * Reference:
|
---|
185 | * Waters, Refraction effects in the neutral atmosphere. Methods of
|
---|
186 | * Experimental Physics, vol 12B, p 186-200 (1976).
|
---|
187 | *
|
---|
188 | * @param[in] temperature temperature in K
|
---|
189 | * @return vapour saturation pressure (Pascals)
|
---|
190 | **/
|
---|
191 | static double wvSaturationPressure(double temperature);
|
---|
192 |
|
---|
193 | /**
|
---|
194 | * Compute the complex refractivity of the dry components of the atmosphere
|
---|
195 | * (oxygen lines) at the given frequency.
|
---|
196 | * @param[in] freq frequency (Hz)
|
---|
197 | * @param[in] temperature air temperature (K)
|
---|
198 | * @param[in] pDry partial pressure of dry components (Pascals)
|
---|
199 | * @param[in] pVapour partial pressure of water vapour (Pascals)
|
---|
200 | * @return complex refractivity
|
---|
201 | *
|
---|
202 | * Reference:
|
---|
203 | * Liebe, An updated model for millimeter wave propogation in moist air,
|
---|
204 | * Radio Science, 20, 1069-1089 (1985).
|
---|
205 | **/
|
---|
206 | static std::complex<double> dryRefractivity(double freq, double temperature,
|
---|
207 | double pDry, double pVapour);
|
---|
208 |
|
---|
209 | /**
|
---|
210 | * Compute the complex refractivity of the water vapour monomers
|
---|
211 | * at the given frequency.
|
---|
212 | * @param[in] freq frequency (Hz)
|
---|
213 | * @param[in] temperature air temperature (K)
|
---|
214 | * @param[in] pDry partial pressure of dry components (Pascals)
|
---|
215 | * @param[in] pVapour partial pressure of water vapour (Pascals)
|
---|
216 | * @return complex refractivity
|
---|
217 | *
|
---|
218 | * Reference:
|
---|
219 | * Liebe, An updated model for millimeter wave propogation in moist air,
|
---|
220 | * Radio Science, 20, 1069-1089 (1985).
|
---|
221 | **/
|
---|
222 | static std::complex<double> vapourRefractivity(double freq, double temperature,
|
---|
223 | double pDry, double pVapour);
|
---|
224 |
|
---|
225 | private:
|
---|
226 |
|
---|
227 | // heights of all model layers
|
---|
228 | std::vector<double> itsHeights;
|
---|
229 |
|
---|
230 | // temperatures of all model layers
|
---|
231 | std::vector<double> itsTemperatures;
|
---|
232 |
|
---|
233 | // partial pressures of dry component for all model layers
|
---|
234 | std::vector<double> itsDryPressures;
|
---|
235 |
|
---|
236 | // partial pressure of water vapour for all model layers
|
---|
237 | std::vector<double> itsVapourPressures;
|
---|
238 |
|
---|
239 | /**
|
---|
240 | * Atmosphere parameters
|
---|
241 | **/
|
---|
242 |
|
---|
243 | // ground level temperature (K)
|
---|
244 | double itsGndTemperature;
|
---|
245 |
|
---|
246 | // sea level pressure (Pascals)
|
---|
247 | double itsPressure;
|
---|
248 |
|
---|
249 | // ground level humidity (fraction)
|
---|
250 | double itsGndHumidity;
|
---|
251 |
|
---|
252 | // lapse rate (K/m)
|
---|
253 | double itsLapseRate;
|
---|
254 |
|
---|
255 | // water vapour scale height (m)
|
---|
256 | double itsWVScale;
|
---|
257 |
|
---|
258 | // altitude of the highest layer of the model (m)
|
---|
259 | double itsMaxAlt;
|
---|
260 |
|
---|
261 | // observatory elevation (m)
|
---|
262 | double itsObsHeight;
|
---|
263 | };
|
---|
264 |
|
---|
265 | } // namespace asap
|
---|
266 |
|
---|
267 | #endif // #ifndef STATMOSPHERE_H
|
---|
268 |
|
---|