1 | """This module defines the scantable class."""
|
---|
2 |
|
---|
3 | import os
|
---|
4 | import tempfile
|
---|
5 | import numpy
|
---|
6 | try:
|
---|
7 | from functools import wraps as wraps_dec
|
---|
8 | except ImportError:
|
---|
9 | from asap.compatibility import wraps as wraps_dec
|
---|
10 |
|
---|
11 | from asap.env import is_casapy
|
---|
12 | from asap._asap import Scantable
|
---|
13 | from asap._asap import filler, msfiller
|
---|
14 | from asap.parameters import rcParams
|
---|
15 | from asap.logging import asaplog, asaplog_post_dec
|
---|
16 | from asap.selector import selector
|
---|
17 | from asap.linecatalog import linecatalog
|
---|
18 | from asap.coordinate import coordinate
|
---|
19 | from asap.utils import _n_bools, mask_not, mask_and, mask_or, page
|
---|
20 | from asap.asapfitter import fitter
|
---|
21 |
|
---|
22 | ###############################################################
|
---|
23 | ### WK temporarily added these lines for testing 2011/11/28 ###
|
---|
24 | ###############################################################
|
---|
25 | #from asap._asap import TestClass
|
---|
26 |
|
---|
27 | #class testclass(TestClass):
|
---|
28 | # def __init__(self, nelem):
|
---|
29 | # TestClass.__init__(self, nelem)
|
---|
30 |
|
---|
31 | ###############################################################
|
---|
32 |
|
---|
33 |
|
---|
34 | def preserve_selection(func):
|
---|
35 | @wraps_dec(func)
|
---|
36 | def wrap(obj, *args, **kw):
|
---|
37 | basesel = obj.get_selection()
|
---|
38 | try:
|
---|
39 | val = func(obj, *args, **kw)
|
---|
40 | finally:
|
---|
41 | obj.set_selection(basesel)
|
---|
42 | return val
|
---|
43 | return wrap
|
---|
44 |
|
---|
45 | def is_scantable(filename):
|
---|
46 | """Is the given file a scantable?
|
---|
47 |
|
---|
48 | Parameters:
|
---|
49 |
|
---|
50 | filename: the name of the file/directory to test
|
---|
51 |
|
---|
52 | """
|
---|
53 | if ( os.path.isdir(filename)
|
---|
54 | and os.path.exists(filename+'/table.info')
|
---|
55 | and os.path.exists(filename+'/table.dat') ):
|
---|
56 | f=open(filename+'/table.info')
|
---|
57 | l=f.readline()
|
---|
58 | f.close()
|
---|
59 | #if ( l.find('Scantable') != -1 ):
|
---|
60 | if ( l.find('Measurement Set') == -1 ):
|
---|
61 | return True
|
---|
62 | else:
|
---|
63 | return False
|
---|
64 | else:
|
---|
65 | return False
|
---|
66 | ## return (os.path.isdir(filename)
|
---|
67 | ## and not os.path.exists(filename+'/table.f1')
|
---|
68 | ## and os.path.exists(filename+'/table.info'))
|
---|
69 |
|
---|
70 | def is_ms(filename):
|
---|
71 | """Is the given file a MeasurementSet?
|
---|
72 |
|
---|
73 | Parameters:
|
---|
74 |
|
---|
75 | filename: the name of the file/directory to test
|
---|
76 |
|
---|
77 | """
|
---|
78 | if ( os.path.isdir(filename)
|
---|
79 | and os.path.exists(filename+'/table.info')
|
---|
80 | and os.path.exists(filename+'/table.dat') ):
|
---|
81 | f=open(filename+'/table.info')
|
---|
82 | l=f.readline()
|
---|
83 | f.close()
|
---|
84 | if ( l.find('Measurement Set') != -1 ):
|
---|
85 | return True
|
---|
86 | else:
|
---|
87 | return False
|
---|
88 | else:
|
---|
89 | return False
|
---|
90 |
|
---|
91 | def normalise_edge_param(edge):
|
---|
92 | """\
|
---|
93 | Convert a given edge value to a one-dimensional array that can be
|
---|
94 | given to baseline-fitting/subtraction functions.
|
---|
95 | The length of the output value will be an even because values for
|
---|
96 | the both sides of spectra are to be contained for each IF. When
|
---|
97 | the length is 2, the values will be applied to all IFs. If the length
|
---|
98 | is larger than 2, it will be 2*ifnos().
|
---|
99 | Accepted format of edge include:
|
---|
100 | * an integer - will be used for both sides of spectra of all IFs.
|
---|
101 | e.g. 10 is converted to [10,10]
|
---|
102 | * an empty list/tuple [] - converted to [0, 0] and used for all IFs.
|
---|
103 | * a list/tuple containing an integer - same as the above case.
|
---|
104 | e.g. [10] is converted to [10,10]
|
---|
105 | * a list/tuple containing two integers - will be used for all IFs.
|
---|
106 | e.g. [5,10] is output as it is. no need to convert.
|
---|
107 | * a list/tuple of lists/tuples containing TWO integers -
|
---|
108 | each element of edge will be used for each IF.
|
---|
109 | e.g. [[5,10],[15,20]] - [5,10] for IF[0] and [15,20] for IF[1].
|
---|
110 |
|
---|
111 | If an element contains the same integer values, the input 'edge'
|
---|
112 | parameter can be given in a simpler shape in the following cases:
|
---|
113 | ** when len(edge)!=2
|
---|
114 | any elements containing the same values can be replaced
|
---|
115 | to single integers.
|
---|
116 | e.g. [[15,15]] can be simplified to [15] (or [15,15] or 15 also).
|
---|
117 | e.g. [[1,1],[2,2],[3,3]] can be simplified to [1,2,3].
|
---|
118 | ** when len(edge)=2
|
---|
119 | care is needed for this case: ONLY ONE of the
|
---|
120 | elements can be a single integer,
|
---|
121 | e.g. [[5,5],[10,10]] can be simplified to [5,[10,10]]
|
---|
122 | or [[5,5],10], but can NOT be simplified to [5,10].
|
---|
123 | when [5,10] given, it is interpreted as
|
---|
124 | [[5,10],[5,10],[5,10],...] instead, as shown before.
|
---|
125 | """
|
---|
126 | from asap import _is_sequence_or_number as _is_valid
|
---|
127 | if isinstance(edge, list) or isinstance(edge, tuple):
|
---|
128 | for edgepar in edge:
|
---|
129 | if not _is_valid(edgepar, int):
|
---|
130 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
131 | to be a pair of integers or an integer."
|
---|
132 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
133 | if len(edgepar) != 2:
|
---|
134 | raise ValueError, "Each element of the 'edge' tuple has \
|
---|
135 | to be a pair of integers or an integer."
|
---|
136 | else:
|
---|
137 | if not _is_valid(edge, int):
|
---|
138 | raise ValueError, "Parameter 'edge' has to be an integer or a \
|
---|
139 | pair of integers specified as a tuple. \
|
---|
140 | Nested tuples are allowed \
|
---|
141 | to make individual selection for different IFs."
|
---|
142 |
|
---|
143 |
|
---|
144 | if isinstance(edge, int):
|
---|
145 | edge = [ edge, edge ] # e.g. 3 => [3,3]
|
---|
146 | elif isinstance(edge, list) or isinstance(edge, tuple):
|
---|
147 | if len(edge) == 0:
|
---|
148 | edge = [0, 0] # e.g. [] => [0,0]
|
---|
149 | elif len(edge) == 1:
|
---|
150 | if isinstance(edge[0], int):
|
---|
151 | edge = [ edge[0], edge[0] ] # e.g. [1] => [1,1]
|
---|
152 |
|
---|
153 | commonedge = True
|
---|
154 | if len(edge) > 2: commonedge = False
|
---|
155 | else:
|
---|
156 | for edgepar in edge:
|
---|
157 | if isinstance(edgepar, list) or isinstance(edgepar, tuple):
|
---|
158 | commonedge = False
|
---|
159 | break
|
---|
160 |
|
---|
161 | if commonedge:
|
---|
162 | if len(edge) > 1:
|
---|
163 | norm_edge = edge
|
---|
164 | else:
|
---|
165 | norm_edge = edge + edge
|
---|
166 | else:
|
---|
167 | norm_edge = []
|
---|
168 | for edgepar in edge:
|
---|
169 | if isinstance(edgepar, int):
|
---|
170 | norm_edge += [edgepar, edgepar]
|
---|
171 | else:
|
---|
172 | norm_edge += edgepar
|
---|
173 |
|
---|
174 | return norm_edge
|
---|
175 |
|
---|
176 | def raise_fitting_failure_exception(e):
|
---|
177 | msg = "The fit failed, possibly because it didn't converge."
|
---|
178 | if rcParams["verbose"]:
|
---|
179 | asaplog.push(str(e))
|
---|
180 | asaplog.push(str(msg))
|
---|
181 | else:
|
---|
182 | raise RuntimeError(str(e)+'\n'+msg)
|
---|
183 |
|
---|
184 | def pack_progress_params(showprogress, minnrow):
|
---|
185 | return str(showprogress).lower() + ',' + str(minnrow)
|
---|
186 |
|
---|
187 | class scantable(Scantable):
|
---|
188 | """\
|
---|
189 | The ASAP container for scans (single-dish data).
|
---|
190 | """
|
---|
191 |
|
---|
192 | @asaplog_post_dec
|
---|
193 | def __init__(self, filename, average=None, unit=None, parallactify=None,
|
---|
194 | **args):
|
---|
195 | """\
|
---|
196 | Create a scantable from a saved one or make a reference
|
---|
197 |
|
---|
198 | Parameters:
|
---|
199 |
|
---|
200 | filename: the name of an asap table on disk
|
---|
201 | or
|
---|
202 | the name of a rpfits/sdfits/ms file
|
---|
203 | (integrations within scans are auto averaged
|
---|
204 | and the whole file is read) or
|
---|
205 | [advanced] a reference to an existing scantable
|
---|
206 |
|
---|
207 | average: average all integrations withinb a scan on read.
|
---|
208 | The default (True) is taken from .asaprc.
|
---|
209 |
|
---|
210 | unit: brightness unit; must be consistent with K or Jy.
|
---|
211 | Over-rides the default selected by the filler
|
---|
212 | (input rpfits/sdfits/ms) or replaces the value
|
---|
213 | in existing scantables
|
---|
214 |
|
---|
215 | antenna: for MeasurementSet input data only:
|
---|
216 | Antenna selection. integer (id) or string
|
---|
217 | (name or id).
|
---|
218 |
|
---|
219 | parallactify: Indicate that the data had been parallactified.
|
---|
220 | Default (false) is taken from rc file.
|
---|
221 |
|
---|
222 | """
|
---|
223 | if average is None:
|
---|
224 | average = rcParams['scantable.autoaverage']
|
---|
225 | parallactify = parallactify or rcParams['scantable.parallactify']
|
---|
226 | varlist = vars()
|
---|
227 | from asap._asap import stmath
|
---|
228 | self._math = stmath( rcParams['insitu'] )
|
---|
229 | if isinstance(filename, Scantable):
|
---|
230 | Scantable.__init__(self, filename)
|
---|
231 | else:
|
---|
232 | if isinstance(filename, str):
|
---|
233 | filename = os.path.expandvars(filename)
|
---|
234 | filename = os.path.expanduser(filename)
|
---|
235 | if not os.path.exists(filename):
|
---|
236 | s = "File '%s' not found." % (filename)
|
---|
237 | raise IOError(s)
|
---|
238 | if is_scantable(filename):
|
---|
239 | ondisk = rcParams['scantable.storage'] == 'disk'
|
---|
240 | Scantable.__init__(self, filename, ondisk)
|
---|
241 | if unit is not None:
|
---|
242 | self.set_fluxunit(unit)
|
---|
243 | if average:
|
---|
244 | self._assign( self.average_time( scanav=True ) )
|
---|
245 | # do not reset to the default freqframe
|
---|
246 | #self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
247 | elif is_ms(filename):
|
---|
248 | # Measurement Set
|
---|
249 | opts={'ms': {}}
|
---|
250 | mskeys=['getpt','antenna']
|
---|
251 | for key in mskeys:
|
---|
252 | if key in args.keys():
|
---|
253 | opts['ms'][key] = args[key]
|
---|
254 | self._fill([filename], unit, average, opts)
|
---|
255 | elif os.path.isfile(filename):
|
---|
256 | self._fill([filename], unit, average)
|
---|
257 | # only apply to new data not "copy constructor"
|
---|
258 | self.parallactify(parallactify)
|
---|
259 | else:
|
---|
260 | msg = "The given file '%s'is not a valid " \
|
---|
261 | "asap table." % (filename)
|
---|
262 | raise IOError(msg)
|
---|
263 | elif (isinstance(filename, list) or isinstance(filename, tuple)) \
|
---|
264 | and isinstance(filename[-1], str):
|
---|
265 | self._fill(filename, unit, average)
|
---|
266 | self.parallactify(parallactify)
|
---|
267 | self._add_history("scantable", varlist)
|
---|
268 |
|
---|
269 | @asaplog_post_dec
|
---|
270 | def save(self, name=None, format=None, overwrite=False):
|
---|
271 | """\
|
---|
272 | Store the scantable on disk. This can be an asap (aips++) Table,
|
---|
273 | SDFITS or MS2 format.
|
---|
274 |
|
---|
275 | Parameters:
|
---|
276 |
|
---|
277 | name: the name of the outputfile. For format 'ASCII'
|
---|
278 | this is the root file name (data in 'name'.txt
|
---|
279 | and header in 'name'_header.txt)
|
---|
280 |
|
---|
281 | format: an optional file format. Default is ASAP.
|
---|
282 | Allowed are:
|
---|
283 |
|
---|
284 | * 'ASAP' (save as ASAP [aips++] Table),
|
---|
285 | * 'SDFITS' (save as SDFITS file)
|
---|
286 | * 'ASCII' (saves as ascii text file)
|
---|
287 | * 'MS2' (saves as an casacore MeasurementSet V2)
|
---|
288 | * 'FITS' (save as image FITS - not readable by
|
---|
289 | class)
|
---|
290 | * 'CLASS' (save as FITS readable by CLASS)
|
---|
291 |
|
---|
292 | overwrite: If the file should be overwritten if it exists.
|
---|
293 | The default False is to return with warning
|
---|
294 | without writing the output. USE WITH CARE.
|
---|
295 |
|
---|
296 | Example::
|
---|
297 |
|
---|
298 | scan.save('myscan.asap')
|
---|
299 | scan.save('myscan.sdfits', 'SDFITS')
|
---|
300 |
|
---|
301 | """
|
---|
302 | from os import path
|
---|
303 | format = format or rcParams['scantable.save']
|
---|
304 | suffix = '.'+format.lower()
|
---|
305 | if name is None or name == "":
|
---|
306 | name = 'scantable'+suffix
|
---|
307 | msg = "No filename given. Using default name %s..." % name
|
---|
308 | asaplog.push(msg)
|
---|
309 | name = path.expandvars(name)
|
---|
310 | if path.isfile(name) or path.isdir(name):
|
---|
311 | if not overwrite:
|
---|
312 | msg = "File %s exists." % name
|
---|
313 | raise IOError(msg)
|
---|
314 | format2 = format.upper()
|
---|
315 | if format2 == 'ASAP':
|
---|
316 | self._save(name)
|
---|
317 | elif format2 == 'MS2':
|
---|
318 | msopt = {'ms': {'overwrite': overwrite } }
|
---|
319 | from asap._asap import mswriter
|
---|
320 | writer = mswriter( self )
|
---|
321 | writer.write( name, msopt )
|
---|
322 | else:
|
---|
323 | from asap._asap import stwriter as stw
|
---|
324 | writer = stw(format2)
|
---|
325 | writer.write(self, name)
|
---|
326 | return
|
---|
327 |
|
---|
328 | def copy(self):
|
---|
329 | """Return a copy of this scantable.
|
---|
330 |
|
---|
331 | *Note*:
|
---|
332 |
|
---|
333 | This makes a full (deep) copy. scan2 = scan1 makes a reference.
|
---|
334 |
|
---|
335 | Example::
|
---|
336 |
|
---|
337 | copiedscan = scan.copy()
|
---|
338 |
|
---|
339 | """
|
---|
340 | sd = scantable(Scantable._copy(self))
|
---|
341 | return sd
|
---|
342 |
|
---|
343 | def drop_scan(self, scanid=None):
|
---|
344 | """\
|
---|
345 | Return a new scantable where the specified scan number(s) has(have)
|
---|
346 | been dropped.
|
---|
347 |
|
---|
348 | Parameters:
|
---|
349 |
|
---|
350 | scanid: a (list of) scan number(s)
|
---|
351 |
|
---|
352 | """
|
---|
353 | from asap import _is_sequence_or_number as _is_valid
|
---|
354 | from asap import _to_list
|
---|
355 | from asap import unique
|
---|
356 | if not _is_valid(scanid):
|
---|
357 | raise RuntimeError( 'Please specify a scanno to drop from the'
|
---|
358 | ' scantable' )
|
---|
359 | scanid = _to_list(scanid)
|
---|
360 | allscans = unique([ self.getscan(i) for i in range(self.nrow())])
|
---|
361 | for sid in scanid: allscans.remove(sid)
|
---|
362 | if len(allscans) == 0:
|
---|
363 | raise ValueError("Can't remove all scans")
|
---|
364 | sel = selector(scans=allscans)
|
---|
365 | return self._select_copy(sel)
|
---|
366 |
|
---|
367 | def _select_copy(self, selection):
|
---|
368 | orig = self.get_selection()
|
---|
369 | self.set_selection(orig+selection)
|
---|
370 | cp = self.copy()
|
---|
371 | self.set_selection(orig)
|
---|
372 | return cp
|
---|
373 |
|
---|
374 | def get_scan(self, scanid=None):
|
---|
375 | """\
|
---|
376 | Return a specific scan (by scanno) or collection of scans (by
|
---|
377 | source name) in a new scantable.
|
---|
378 |
|
---|
379 | *Note*:
|
---|
380 |
|
---|
381 | See scantable.drop_scan() for the inverse operation.
|
---|
382 |
|
---|
383 | Parameters:
|
---|
384 |
|
---|
385 | scanid: a (list of) scanno or a source name, unix-style
|
---|
386 | patterns are accepted for source name matching, e.g.
|
---|
387 | '*_R' gets all 'ref scans
|
---|
388 |
|
---|
389 | Example::
|
---|
390 |
|
---|
391 | # get all scans containing the source '323p459'
|
---|
392 | newscan = scan.get_scan('323p459')
|
---|
393 | # get all 'off' scans
|
---|
394 | refscans = scan.get_scan('*_R')
|
---|
395 | # get a susbset of scans by scanno (as listed in scan.summary())
|
---|
396 | newscan = scan.get_scan([0, 2, 7, 10])
|
---|
397 |
|
---|
398 | """
|
---|
399 | if scanid is None:
|
---|
400 | raise RuntimeError( 'Please specify a scan no or name to '
|
---|
401 | 'retrieve from the scantable' )
|
---|
402 | try:
|
---|
403 | bsel = self.get_selection()
|
---|
404 | sel = selector()
|
---|
405 | if type(scanid) is str:
|
---|
406 | sel.set_name(scanid)
|
---|
407 | return self._select_copy(sel)
|
---|
408 | elif type(scanid) is int:
|
---|
409 | sel.set_scans([scanid])
|
---|
410 | return self._select_copy(sel)
|
---|
411 | elif type(scanid) is list:
|
---|
412 | sel.set_scans(scanid)
|
---|
413 | return self._select_copy(sel)
|
---|
414 | else:
|
---|
415 | msg = "Illegal scanid type, use 'int' or 'list' if ints."
|
---|
416 | raise TypeError(msg)
|
---|
417 | except RuntimeError:
|
---|
418 | raise
|
---|
419 |
|
---|
420 | def __str__(self):
|
---|
421 | tempFile = tempfile.NamedTemporaryFile()
|
---|
422 | Scantable._summary(self, tempFile.name)
|
---|
423 | tempFile.seek(0)
|
---|
424 | asaplog.clear()
|
---|
425 | return tempFile.file.read()
|
---|
426 |
|
---|
427 | @asaplog_post_dec
|
---|
428 | def summary(self, filename=None):
|
---|
429 | """\
|
---|
430 | Print a summary of the contents of this scantable.
|
---|
431 |
|
---|
432 | Parameters:
|
---|
433 |
|
---|
434 | filename: the name of a file to write the putput to
|
---|
435 | Default - no file output
|
---|
436 |
|
---|
437 | """
|
---|
438 | if filename is not None:
|
---|
439 | if filename is "":
|
---|
440 | filename = 'scantable_summary.txt'
|
---|
441 | from os.path import expandvars, isdir
|
---|
442 | filename = expandvars(filename)
|
---|
443 | if isdir(filename):
|
---|
444 | msg = "Illegal file name '%s'." % (filename)
|
---|
445 | raise IOError(msg)
|
---|
446 | else:
|
---|
447 | filename = ""
|
---|
448 | Scantable._summary(self, filename)
|
---|
449 |
|
---|
450 | def get_spectrum(self, rowno):
|
---|
451 | """Return the spectrum for the current row in the scantable as a list.
|
---|
452 |
|
---|
453 | Parameters:
|
---|
454 |
|
---|
455 | rowno: the row number to retrieve the spectrum from
|
---|
456 |
|
---|
457 | """
|
---|
458 | return self._getspectrum(rowno)
|
---|
459 |
|
---|
460 | def get_mask(self, rowno):
|
---|
461 | """Return the mask for the current row in the scantable as a list.
|
---|
462 |
|
---|
463 | Parameters:
|
---|
464 |
|
---|
465 | rowno: the row number to retrieve the mask from
|
---|
466 |
|
---|
467 | """
|
---|
468 | return self._getmask(rowno)
|
---|
469 |
|
---|
470 | def set_spectrum(self, spec, rowno):
|
---|
471 | """Set the spectrum for the current row in the scantable.
|
---|
472 |
|
---|
473 | Parameters:
|
---|
474 |
|
---|
475 | spec: the new spectrum
|
---|
476 |
|
---|
477 | rowno: the row number to set the spectrum for
|
---|
478 |
|
---|
479 | """
|
---|
480 | assert(len(spec) == self.nchan(self.getif(rowno)))
|
---|
481 | return self._setspectrum(spec, rowno)
|
---|
482 |
|
---|
483 | def get_coordinate(self, rowno):
|
---|
484 | """Return the (spectral) coordinate for a a given 'rowno'.
|
---|
485 |
|
---|
486 | *Note*:
|
---|
487 |
|
---|
488 | * This coordinate is only valid until a scantable method modifies
|
---|
489 | the frequency axis.
|
---|
490 | * This coordinate does contain the original frequency set-up
|
---|
491 | NOT the new frame. The conversions however are done using the user
|
---|
492 | specified frame (e.g. LSRK/TOPO). To get the 'real' coordinate,
|
---|
493 | use scantable.freq_align first. Without it there is no closure,
|
---|
494 | i.e.::
|
---|
495 |
|
---|
496 | c = myscan.get_coordinate(0)
|
---|
497 | c.to_frequency(c.get_reference_pixel()) != c.get_reference_value()
|
---|
498 |
|
---|
499 | Parameters:
|
---|
500 |
|
---|
501 | rowno: the row number for the spectral coordinate
|
---|
502 |
|
---|
503 | """
|
---|
504 | return coordinate(Scantable.get_coordinate(self, rowno))
|
---|
505 |
|
---|
506 | def get_selection(self):
|
---|
507 | """\
|
---|
508 | Get the selection object currently set on this scantable.
|
---|
509 |
|
---|
510 | Example::
|
---|
511 |
|
---|
512 | sel = scan.get_selection()
|
---|
513 | sel.set_ifs(0) # select IF 0
|
---|
514 | scan.set_selection(sel) # apply modified selection
|
---|
515 |
|
---|
516 | """
|
---|
517 | return selector(self._getselection())
|
---|
518 |
|
---|
519 | def set_selection(self, selection=None, **kw):
|
---|
520 | """\
|
---|
521 | Select a subset of the data. All following operations on this scantable
|
---|
522 | are only applied to thi selection.
|
---|
523 |
|
---|
524 | Parameters:
|
---|
525 |
|
---|
526 | selection: a selector object (default unset the selection), or
|
---|
527 | any combination of 'pols', 'ifs', 'beams', 'scans',
|
---|
528 | 'cycles', 'name', 'query'
|
---|
529 |
|
---|
530 | Examples::
|
---|
531 |
|
---|
532 | sel = selector() # create a selection object
|
---|
533 | self.set_scans([0, 3]) # select SCANNO 0 and 3
|
---|
534 | scan.set_selection(sel) # set the selection
|
---|
535 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
536 | scan.set_selection() # unset the selection
|
---|
537 | # or the equivalent
|
---|
538 | scan.set_selection(scans=[0,3])
|
---|
539 | scan.summary() # will only print summary of scanno 0 an 3
|
---|
540 | scan.set_selection() # unset the selection
|
---|
541 |
|
---|
542 | """
|
---|
543 | if selection is None:
|
---|
544 | # reset
|
---|
545 | if len(kw) == 0:
|
---|
546 | selection = selector()
|
---|
547 | else:
|
---|
548 | # try keywords
|
---|
549 | for k in kw:
|
---|
550 | if k not in selector.fields:
|
---|
551 | raise KeyError("Invalid selection key '%s', "
|
---|
552 | "valid keys are %s" % (k,
|
---|
553 | selector.fields))
|
---|
554 | selection = selector(**kw)
|
---|
555 | self._setselection(selection)
|
---|
556 |
|
---|
557 | def get_row(self, row=0, insitu=None):
|
---|
558 | """\
|
---|
559 | Select a row in the scantable.
|
---|
560 | Return a scantable with single row.
|
---|
561 |
|
---|
562 | Parameters:
|
---|
563 |
|
---|
564 | row: row no of integration, default is 0.
|
---|
565 | insitu: if False a new scantable is returned. Otherwise, the
|
---|
566 | scaling is done in-situ. The default is taken from .asaprc
|
---|
567 | (False)
|
---|
568 |
|
---|
569 | """
|
---|
570 | if insitu is None:
|
---|
571 | insitu = rcParams['insitu']
|
---|
572 | if not insitu:
|
---|
573 | workscan = self.copy()
|
---|
574 | else:
|
---|
575 | workscan = self
|
---|
576 | # Select a row
|
---|
577 | sel = selector()
|
---|
578 | sel.set_rows([row])
|
---|
579 | workscan.set_selection(sel)
|
---|
580 | if not workscan.nrow() == 1:
|
---|
581 | msg = "Could not identify single row. %d rows selected." \
|
---|
582 | % (workscan.nrow())
|
---|
583 | raise RuntimeError(msg)
|
---|
584 | if insitu:
|
---|
585 | self._assign(workscan)
|
---|
586 | else:
|
---|
587 | return workscan
|
---|
588 |
|
---|
589 | @asaplog_post_dec
|
---|
590 | def stats(self, stat='stddev', mask=None, form='3.3f', row=None):
|
---|
591 | """\
|
---|
592 | Determine the specified statistic of the current beam/if/pol
|
---|
593 | Takes a 'mask' as an optional parameter to specify which
|
---|
594 | channels should be excluded.
|
---|
595 |
|
---|
596 | Parameters:
|
---|
597 |
|
---|
598 | stat: 'min', 'max', 'min_abc', 'max_abc', 'sumsq', 'sum',
|
---|
599 | 'mean', 'var', 'stddev', 'avdev', 'rms', 'median'
|
---|
600 |
|
---|
601 | mask: an optional mask specifying where the statistic
|
---|
602 | should be determined.
|
---|
603 |
|
---|
604 | form: format string to print statistic values
|
---|
605 |
|
---|
606 | row: row number of spectrum to process.
|
---|
607 | (default is None: for all rows)
|
---|
608 |
|
---|
609 | Example:
|
---|
610 | scan.set_unit('channel')
|
---|
611 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
612 | scan.stats(stat='mean', mask=m)
|
---|
613 |
|
---|
614 | """
|
---|
615 | mask = mask or []
|
---|
616 | if not self._check_ifs():
|
---|
617 | raise ValueError("Cannot apply mask as the IFs have different "
|
---|
618 | "number of channels. Please use setselection() "
|
---|
619 | "to select individual IFs")
|
---|
620 | rtnabc = False
|
---|
621 | if stat.lower().endswith('_abc'): rtnabc = True
|
---|
622 | getchan = False
|
---|
623 | if stat.lower().startswith('min') or stat.lower().startswith('max'):
|
---|
624 | chan = self._math._minmaxchan(self, mask, stat)
|
---|
625 | getchan = True
|
---|
626 | statvals = []
|
---|
627 | if not rtnabc:
|
---|
628 | if row == None:
|
---|
629 | statvals = self._math._stats(self, mask, stat)
|
---|
630 | else:
|
---|
631 | statvals = self._math._statsrow(self, mask, stat, int(row))
|
---|
632 |
|
---|
633 | #def cb(i):
|
---|
634 | # return statvals[i]
|
---|
635 |
|
---|
636 | #return self._row_callback(cb, stat)
|
---|
637 |
|
---|
638 | label=stat
|
---|
639 | #callback=cb
|
---|
640 | out = ""
|
---|
641 | #outvec = []
|
---|
642 | sep = '-'*50
|
---|
643 |
|
---|
644 | if row == None:
|
---|
645 | rows = xrange(self.nrow())
|
---|
646 | elif isinstance(row, int):
|
---|
647 | rows = [ row ]
|
---|
648 |
|
---|
649 | for i in rows:
|
---|
650 | refstr = ''
|
---|
651 | statunit= ''
|
---|
652 | if getchan:
|
---|
653 | qx, qy = self.chan2data(rowno=i, chan=chan[i])
|
---|
654 | if rtnabc:
|
---|
655 | statvals.append(qx['value'])
|
---|
656 | refstr = ('(value: %'+form) % (qy['value'])+' ['+qy['unit']+'])'
|
---|
657 | statunit= '['+qx['unit']+']'
|
---|
658 | else:
|
---|
659 | refstr = ('(@ %'+form) % (qx['value'])+' ['+qx['unit']+'])'
|
---|
660 |
|
---|
661 | tm = self._gettime(i)
|
---|
662 | src = self._getsourcename(i)
|
---|
663 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
664 | out += 'Time[%s]:\n' % (tm)
|
---|
665 | if self.nbeam(-1) > 1: out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
666 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
667 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
668 | #outvec.append(callback(i))
|
---|
669 | if len(rows) > 1:
|
---|
670 | # out += ('= %'+form) % (outvec[i]) +' '+refstr+'\n'
|
---|
671 | out += ('= %'+form) % (statvals[i]) +' '+refstr+'\n'
|
---|
672 | else:
|
---|
673 | # out += ('= %'+form) % (outvec[0]) +' '+refstr+'\n'
|
---|
674 | out += ('= %'+form) % (statvals[0]) +' '+refstr+'\n'
|
---|
675 | out += sep+"\n"
|
---|
676 |
|
---|
677 | import os
|
---|
678 | if os.environ.has_key( 'USER' ):
|
---|
679 | usr = os.environ['USER']
|
---|
680 | else:
|
---|
681 | import commands
|
---|
682 | usr = commands.getoutput( 'whoami' )
|
---|
683 | tmpfile = '/tmp/tmp_'+usr+'_casapy_asap_scantable_stats'
|
---|
684 | f = open(tmpfile,'w')
|
---|
685 | print >> f, sep
|
---|
686 | print >> f, ' %s %s' % (label, statunit)
|
---|
687 | print >> f, sep
|
---|
688 | print >> f, out
|
---|
689 | f.close()
|
---|
690 | f = open(tmpfile,'r')
|
---|
691 | x = f.readlines()
|
---|
692 | f.close()
|
---|
693 | asaplog.push(''.join(x), False)
|
---|
694 |
|
---|
695 | return statvals
|
---|
696 |
|
---|
697 | def chan2data(self, rowno=0, chan=0):
|
---|
698 | """\
|
---|
699 | Returns channel/frequency/velocity and spectral value
|
---|
700 | at an arbitrary row and channel in the scantable.
|
---|
701 |
|
---|
702 | Parameters:
|
---|
703 |
|
---|
704 | rowno: a row number in the scantable. Default is the
|
---|
705 | first row, i.e. rowno=0
|
---|
706 |
|
---|
707 | chan: a channel in the scantable. Default is the first
|
---|
708 | channel, i.e. pos=0
|
---|
709 |
|
---|
710 | """
|
---|
711 | if isinstance(rowno, int) and isinstance(chan, int):
|
---|
712 | qx = {'unit': self.get_unit(),
|
---|
713 | 'value': self._getabcissa(rowno)[chan]}
|
---|
714 | qy = {'unit': self.get_fluxunit(),
|
---|
715 | 'value': self._getspectrum(rowno)[chan]}
|
---|
716 | return qx, qy
|
---|
717 |
|
---|
718 | def stddev(self, mask=None):
|
---|
719 | """\
|
---|
720 | Determine the standard deviation of the current beam/if/pol
|
---|
721 | Takes a 'mask' as an optional parameter to specify which
|
---|
722 | channels should be excluded.
|
---|
723 |
|
---|
724 | Parameters:
|
---|
725 |
|
---|
726 | mask: an optional mask specifying where the standard
|
---|
727 | deviation should be determined.
|
---|
728 |
|
---|
729 | Example::
|
---|
730 |
|
---|
731 | scan.set_unit('channel')
|
---|
732 | msk = scan.create_mask([100, 200], [500, 600])
|
---|
733 | scan.stddev(mask=m)
|
---|
734 |
|
---|
735 | """
|
---|
736 | return self.stats(stat='stddev', mask=mask);
|
---|
737 |
|
---|
738 |
|
---|
739 | def get_column_names(self):
|
---|
740 | """\
|
---|
741 | Return a list of column names, which can be used for selection.
|
---|
742 | """
|
---|
743 | return list(Scantable.get_column_names(self))
|
---|
744 |
|
---|
745 | def get_tsys(self, row=-1):
|
---|
746 | """\
|
---|
747 | Return the System temperatures.
|
---|
748 |
|
---|
749 | Parameters:
|
---|
750 |
|
---|
751 | row: the rowno to get the information for. (default all rows)
|
---|
752 |
|
---|
753 | Returns:
|
---|
754 |
|
---|
755 | a list of Tsys values for the current selection
|
---|
756 |
|
---|
757 | """
|
---|
758 | if row > -1:
|
---|
759 | return self._get_column(self._gettsys, row)
|
---|
760 | return self._row_callback(self._gettsys, "Tsys")
|
---|
761 |
|
---|
762 | def get_tsysspectrum(self, row=-1):
|
---|
763 | """\
|
---|
764 | Return the channel dependent system temperatures.
|
---|
765 |
|
---|
766 | Parameters:
|
---|
767 |
|
---|
768 | row: the rowno to get the information for. (default all rows)
|
---|
769 |
|
---|
770 | Returns:
|
---|
771 |
|
---|
772 | a list of Tsys values for the current selection
|
---|
773 |
|
---|
774 | """
|
---|
775 | return self._get_column( self._gettsysspectrum, row )
|
---|
776 |
|
---|
777 | def get_weather(self, row=-1):
|
---|
778 | """\
|
---|
779 | Return the weather informations.
|
---|
780 |
|
---|
781 | Parameters:
|
---|
782 |
|
---|
783 | row: the rowno to get the information for. (default all rows)
|
---|
784 |
|
---|
785 | Returns:
|
---|
786 |
|
---|
787 | a dict or list of of dicts of values for the current selection
|
---|
788 |
|
---|
789 | """
|
---|
790 |
|
---|
791 | values = self._get_column(self._get_weather, row)
|
---|
792 | if row > -1:
|
---|
793 | return {'temperature': values[0],
|
---|
794 | 'pressure': values[1], 'humidity' : values[2],
|
---|
795 | 'windspeed' : values[3], 'windaz' : values[4]
|
---|
796 | }
|
---|
797 | else:
|
---|
798 | out = []
|
---|
799 | for r in values:
|
---|
800 |
|
---|
801 | out.append({'temperature': r[0],
|
---|
802 | 'pressure': r[1], 'humidity' : r[2],
|
---|
803 | 'windspeed' : r[3], 'windaz' : r[4]
|
---|
804 | })
|
---|
805 | return out
|
---|
806 |
|
---|
807 | def _row_callback(self, callback, label):
|
---|
808 | out = ""
|
---|
809 | outvec = []
|
---|
810 | sep = '-'*50
|
---|
811 | for i in range(self.nrow()):
|
---|
812 | tm = self._gettime(i)
|
---|
813 | src = self._getsourcename(i)
|
---|
814 | out += 'Scan[%d] (%s) ' % (self.getscan(i), src)
|
---|
815 | out += 'Time[%s]:\n' % (tm)
|
---|
816 | if self.nbeam(-1) > 1:
|
---|
817 | out += ' Beam[%d] ' % (self.getbeam(i))
|
---|
818 | if self.nif(-1) > 1: out += ' IF[%d] ' % (self.getif(i))
|
---|
819 | if self.npol(-1) > 1: out += ' Pol[%d] ' % (self.getpol(i))
|
---|
820 | outvec.append(callback(i))
|
---|
821 | out += '= %3.3f\n' % (outvec[i])
|
---|
822 | out += sep+'\n'
|
---|
823 |
|
---|
824 | asaplog.push(sep)
|
---|
825 | asaplog.push(" %s" % (label))
|
---|
826 | asaplog.push(sep)
|
---|
827 | asaplog.push(out)
|
---|
828 | asaplog.post()
|
---|
829 | return outvec
|
---|
830 |
|
---|
831 | def _get_column(self, callback, row=-1, *args):
|
---|
832 | """
|
---|
833 | """
|
---|
834 | if row == -1:
|
---|
835 | return [callback(i, *args) for i in range(self.nrow())]
|
---|
836 | else:
|
---|
837 | if 0 <= row < self.nrow():
|
---|
838 | return callback(row, *args)
|
---|
839 |
|
---|
840 |
|
---|
841 | def get_time(self, row=-1, asdatetime=False, prec=-1):
|
---|
842 | """\
|
---|
843 | Get a list of time stamps for the observations.
|
---|
844 | Return a datetime object or a string (default) for each
|
---|
845 | integration time stamp in the scantable.
|
---|
846 |
|
---|
847 | Parameters:
|
---|
848 |
|
---|
849 | row: row no of integration. Default -1 return all rows
|
---|
850 |
|
---|
851 | asdatetime: return values as datetime objects rather than strings
|
---|
852 |
|
---|
853 | prec: number of digits shown. Default -1 to automatic
|
---|
854 | calculation.
|
---|
855 | Note this number is equals to the digits of MVTime,
|
---|
856 | i.e., 0<prec<3: dates with hh:: only,
|
---|
857 | <5: with hh:mm:, <7 or 0: with hh:mm:ss,
|
---|
858 | and 6> : with hh:mm:ss.tt... (prec-6 t's added)
|
---|
859 |
|
---|
860 | """
|
---|
861 | from datetime import datetime
|
---|
862 | if prec < 0:
|
---|
863 | # automagically set necessary precision +1
|
---|
864 | prec = 7 - \
|
---|
865 | numpy.floor(numpy.log10(numpy.min(self.get_inttime(row))))
|
---|
866 | prec = max(6, int(prec))
|
---|
867 | else:
|
---|
868 | prec = max(0, prec)
|
---|
869 | if asdatetime:
|
---|
870 | #precision can be 1 millisecond at max
|
---|
871 | prec = min(12, prec)
|
---|
872 |
|
---|
873 | times = self._get_column(self._gettime, row, prec)
|
---|
874 | if not asdatetime:
|
---|
875 | return times
|
---|
876 | format = "%Y/%m/%d/%H:%M:%S.%f"
|
---|
877 | if prec < 7:
|
---|
878 | nsub = 1 + (((6-prec)/2) % 3)
|
---|
879 | substr = [".%f","%S","%M"]
|
---|
880 | for i in range(nsub):
|
---|
881 | format = format.replace(substr[i],"")
|
---|
882 | if isinstance(times, list):
|
---|
883 | return [datetime.strptime(i, format) for i in times]
|
---|
884 | else:
|
---|
885 | return datetime.strptime(times, format)
|
---|
886 |
|
---|
887 |
|
---|
888 | def get_inttime(self, row=-1):
|
---|
889 | """\
|
---|
890 | Get a list of integration times for the observations.
|
---|
891 | Return a time in seconds for each integration in the scantable.
|
---|
892 |
|
---|
893 | Parameters:
|
---|
894 |
|
---|
895 | row: row no of integration. Default -1 return all rows.
|
---|
896 |
|
---|
897 | """
|
---|
898 | return self._get_column(self._getinttime, row)
|
---|
899 |
|
---|
900 |
|
---|
901 | def get_sourcename(self, row=-1):
|
---|
902 | """\
|
---|
903 | Get a list source names for the observations.
|
---|
904 | Return a string for each integration in the scantable.
|
---|
905 | Parameters:
|
---|
906 |
|
---|
907 | row: row no of integration. Default -1 return all rows.
|
---|
908 |
|
---|
909 | """
|
---|
910 | return self._get_column(self._getsourcename, row)
|
---|
911 |
|
---|
912 | def get_elevation(self, row=-1):
|
---|
913 | """\
|
---|
914 | Get a list of elevations for the observations.
|
---|
915 | Return a float for each integration in the scantable.
|
---|
916 |
|
---|
917 | Parameters:
|
---|
918 |
|
---|
919 | row: row no of integration. Default -1 return all rows.
|
---|
920 |
|
---|
921 | """
|
---|
922 | return self._get_column(self._getelevation, row)
|
---|
923 |
|
---|
924 | def get_azimuth(self, row=-1):
|
---|
925 | """\
|
---|
926 | Get a list of azimuths for the observations.
|
---|
927 | Return a float for each integration in the scantable.
|
---|
928 |
|
---|
929 | Parameters:
|
---|
930 | row: row no of integration. Default -1 return all rows.
|
---|
931 |
|
---|
932 | """
|
---|
933 | return self._get_column(self._getazimuth, row)
|
---|
934 |
|
---|
935 | def get_parangle(self, row=-1):
|
---|
936 | """\
|
---|
937 | Get a list of parallactic angles for the observations.
|
---|
938 | Return a float for each integration in the scantable.
|
---|
939 |
|
---|
940 | Parameters:
|
---|
941 |
|
---|
942 | row: row no of integration. Default -1 return all rows.
|
---|
943 |
|
---|
944 | """
|
---|
945 | return self._get_column(self._getparangle, row)
|
---|
946 |
|
---|
947 | def get_direction(self, row=-1):
|
---|
948 | """
|
---|
949 | Get a list of Positions on the sky (direction) for the observations.
|
---|
950 | Return a string for each integration in the scantable.
|
---|
951 |
|
---|
952 | Parameters:
|
---|
953 |
|
---|
954 | row: row no of integration. Default -1 return all rows
|
---|
955 |
|
---|
956 | """
|
---|
957 | return self._get_column(self._getdirection, row)
|
---|
958 |
|
---|
959 | def get_directionval(self, row=-1):
|
---|
960 | """\
|
---|
961 | Get a list of Positions on the sky (direction) for the observations.
|
---|
962 | Return a float for each integration in the scantable.
|
---|
963 |
|
---|
964 | Parameters:
|
---|
965 |
|
---|
966 | row: row no of integration. Default -1 return all rows
|
---|
967 |
|
---|
968 | """
|
---|
969 | return self._get_column(self._getdirectionvec, row)
|
---|
970 |
|
---|
971 | @asaplog_post_dec
|
---|
972 | def set_unit(self, unit='channel'):
|
---|
973 | """\
|
---|
974 | Set the unit for all following operations on this scantable
|
---|
975 |
|
---|
976 | Parameters:
|
---|
977 |
|
---|
978 | unit: optional unit, default is 'channel'. Use one of '*Hz',
|
---|
979 | 'km/s', 'channel' or equivalent ''
|
---|
980 |
|
---|
981 | """
|
---|
982 | varlist = vars()
|
---|
983 | if unit in ['', 'pixel', 'channel']:
|
---|
984 | unit = ''
|
---|
985 | inf = list(self._getcoordinfo())
|
---|
986 | inf[0] = unit
|
---|
987 | self._setcoordinfo(inf)
|
---|
988 | self._add_history("set_unit", varlist)
|
---|
989 |
|
---|
990 | @asaplog_post_dec
|
---|
991 | def set_instrument(self, instr):
|
---|
992 | """\
|
---|
993 | Set the instrument for subsequent processing.
|
---|
994 |
|
---|
995 | Parameters:
|
---|
996 |
|
---|
997 | instr: Select from 'ATPKSMB', 'ATPKSHOH', 'ATMOPRA',
|
---|
998 | 'DSS-43' (Tid), 'CEDUNA', and 'HOBART'
|
---|
999 |
|
---|
1000 | """
|
---|
1001 | self._setInstrument(instr)
|
---|
1002 | self._add_history("set_instument", vars())
|
---|
1003 |
|
---|
1004 | @asaplog_post_dec
|
---|
1005 | def set_feedtype(self, feedtype):
|
---|
1006 | """\
|
---|
1007 | Overwrite the feed type, which might not be set correctly.
|
---|
1008 |
|
---|
1009 | Parameters:
|
---|
1010 |
|
---|
1011 | feedtype: 'linear' or 'circular'
|
---|
1012 |
|
---|
1013 | """
|
---|
1014 | self._setfeedtype(feedtype)
|
---|
1015 | self._add_history("set_feedtype", vars())
|
---|
1016 |
|
---|
1017 | @asaplog_post_dec
|
---|
1018 | def set_doppler(self, doppler='RADIO'):
|
---|
1019 | """\
|
---|
1020 | Set the doppler for all following operations on this scantable.
|
---|
1021 |
|
---|
1022 | Parameters:
|
---|
1023 |
|
---|
1024 | doppler: One of 'RADIO', 'OPTICAL', 'Z', 'BETA', 'GAMMA'
|
---|
1025 |
|
---|
1026 | """
|
---|
1027 | varlist = vars()
|
---|
1028 | inf = list(self._getcoordinfo())
|
---|
1029 | inf[2] = doppler
|
---|
1030 | self._setcoordinfo(inf)
|
---|
1031 | self._add_history("set_doppler", vars())
|
---|
1032 |
|
---|
1033 | @asaplog_post_dec
|
---|
1034 | def set_freqframe(self, frame=None):
|
---|
1035 | """\
|
---|
1036 | Set the frame type of the Spectral Axis.
|
---|
1037 |
|
---|
1038 | Parameters:
|
---|
1039 |
|
---|
1040 | frame: an optional frame type, default 'LSRK'. Valid frames are:
|
---|
1041 | 'TOPO', 'LSRD', 'LSRK', 'BARY',
|
---|
1042 | 'GEO', 'GALACTO', 'LGROUP', 'CMB'
|
---|
1043 |
|
---|
1044 | Example::
|
---|
1045 |
|
---|
1046 | scan.set_freqframe('BARY')
|
---|
1047 |
|
---|
1048 | """
|
---|
1049 | frame = frame or rcParams['scantable.freqframe']
|
---|
1050 | varlist = vars()
|
---|
1051 | # "REST" is not implemented in casacore
|
---|
1052 | #valid = ['REST', 'TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
1053 | # 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
1054 | valid = ['TOPO', 'LSRD', 'LSRK', 'BARY', \
|
---|
1055 | 'GEO', 'GALACTO', 'LGROUP', 'CMB']
|
---|
1056 |
|
---|
1057 | if frame in valid:
|
---|
1058 | inf = list(self._getcoordinfo())
|
---|
1059 | inf[1] = frame
|
---|
1060 | self._setcoordinfo(inf)
|
---|
1061 | self._add_history("set_freqframe", varlist)
|
---|
1062 | else:
|
---|
1063 | msg = "Please specify a valid freq type. Valid types are:\n", valid
|
---|
1064 | raise TypeError(msg)
|
---|
1065 |
|
---|
1066 | @asaplog_post_dec
|
---|
1067 | def set_dirframe(self, frame=""):
|
---|
1068 | """\
|
---|
1069 | Set the frame type of the Direction on the sky.
|
---|
1070 |
|
---|
1071 | Parameters:
|
---|
1072 |
|
---|
1073 | frame: an optional frame type, default ''. Valid frames are:
|
---|
1074 | 'J2000', 'B1950', 'GALACTIC'
|
---|
1075 |
|
---|
1076 | Example:
|
---|
1077 |
|
---|
1078 | scan.set_dirframe('GALACTIC')
|
---|
1079 |
|
---|
1080 | """
|
---|
1081 | varlist = vars()
|
---|
1082 | Scantable.set_dirframe(self, frame)
|
---|
1083 | self._add_history("set_dirframe", varlist)
|
---|
1084 |
|
---|
1085 | def get_unit(self):
|
---|
1086 | """\
|
---|
1087 | Get the default unit set in this scantable
|
---|
1088 |
|
---|
1089 | Returns:
|
---|
1090 |
|
---|
1091 | A unit string
|
---|
1092 |
|
---|
1093 | """
|
---|
1094 | inf = self._getcoordinfo()
|
---|
1095 | unit = inf[0]
|
---|
1096 | if unit == '': unit = 'channel'
|
---|
1097 | return unit
|
---|
1098 |
|
---|
1099 | @asaplog_post_dec
|
---|
1100 | def get_abcissa(self, rowno=0):
|
---|
1101 | """\
|
---|
1102 | Get the abcissa in the current coordinate setup for the currently
|
---|
1103 | selected Beam/IF/Pol
|
---|
1104 |
|
---|
1105 | Parameters:
|
---|
1106 |
|
---|
1107 | rowno: an optional row number in the scantable. Default is the
|
---|
1108 | first row, i.e. rowno=0
|
---|
1109 |
|
---|
1110 | Returns:
|
---|
1111 |
|
---|
1112 | The abcissa values and the format string (as a dictionary)
|
---|
1113 |
|
---|
1114 | """
|
---|
1115 | abc = self._getabcissa(rowno)
|
---|
1116 | lbl = self._getabcissalabel(rowno)
|
---|
1117 | return abc, lbl
|
---|
1118 |
|
---|
1119 | @asaplog_post_dec
|
---|
1120 | def flag(self, mask=None, unflag=False, row=-1):
|
---|
1121 | """\
|
---|
1122 | Flag the selected data using an optional channel mask.
|
---|
1123 |
|
---|
1124 | Parameters:
|
---|
1125 |
|
---|
1126 | mask: an optional channel mask, created with create_mask. Default
|
---|
1127 | (no mask) is all channels.
|
---|
1128 |
|
---|
1129 | unflag: if True, unflag the data
|
---|
1130 |
|
---|
1131 | row: an optional row number in the scantable.
|
---|
1132 | Default -1 flags all rows
|
---|
1133 |
|
---|
1134 | """
|
---|
1135 | varlist = vars()
|
---|
1136 | mask = mask or []
|
---|
1137 | self._flag(row, mask, unflag)
|
---|
1138 | self._add_history("flag", varlist)
|
---|
1139 |
|
---|
1140 | @asaplog_post_dec
|
---|
1141 | def flag_row(self, rows=None, unflag=False):
|
---|
1142 | """\
|
---|
1143 | Flag the selected data in row-based manner.
|
---|
1144 |
|
---|
1145 | Parameters:
|
---|
1146 |
|
---|
1147 | rows: list of row numbers to be flagged. Default is no row
|
---|
1148 | (must be explicitly specified to execute row-based
|
---|
1149 | flagging).
|
---|
1150 |
|
---|
1151 | unflag: if True, unflag the data.
|
---|
1152 |
|
---|
1153 | """
|
---|
1154 | varlist = vars()
|
---|
1155 | if rows is None:
|
---|
1156 | rows = []
|
---|
1157 | self._flag_row(rows, unflag)
|
---|
1158 | self._add_history("flag_row", varlist)
|
---|
1159 |
|
---|
1160 | @asaplog_post_dec
|
---|
1161 | def clip(self, uthres=None, dthres=None, clipoutside=True, unflag=False):
|
---|
1162 | """\
|
---|
1163 | Flag the selected data outside a specified range (in channel-base)
|
---|
1164 |
|
---|
1165 | Parameters:
|
---|
1166 |
|
---|
1167 | uthres: upper threshold.
|
---|
1168 |
|
---|
1169 | dthres: lower threshold
|
---|
1170 |
|
---|
1171 | clipoutside: True for flagging data outside the range
|
---|
1172 | [dthres:uthres].
|
---|
1173 | False for flagging data inside the range.
|
---|
1174 |
|
---|
1175 | unflag: if True, unflag the data.
|
---|
1176 |
|
---|
1177 | """
|
---|
1178 | varlist = vars()
|
---|
1179 | self._clip(uthres, dthres, clipoutside, unflag)
|
---|
1180 | self._add_history("clip", varlist)
|
---|
1181 |
|
---|
1182 | @asaplog_post_dec
|
---|
1183 | def lag_flag(self, start, end, unit="MHz", insitu=None):
|
---|
1184 | """\
|
---|
1185 | Flag the data in 'lag' space by providing a frequency to remove.
|
---|
1186 | Flagged data in the scantable get interpolated over the region.
|
---|
1187 | No taper is applied.
|
---|
1188 |
|
---|
1189 | Parameters:
|
---|
1190 |
|
---|
1191 | start: the start frequency (really a period within the
|
---|
1192 | bandwidth) or period to remove
|
---|
1193 |
|
---|
1194 | end: the end frequency or period to remove
|
---|
1195 |
|
---|
1196 | unit: the frequency unit (default 'MHz') or '' for
|
---|
1197 | explicit lag channels
|
---|
1198 |
|
---|
1199 | *Notes*:
|
---|
1200 |
|
---|
1201 | It is recommended to flag edges of the band or strong
|
---|
1202 | signals beforehand.
|
---|
1203 |
|
---|
1204 | """
|
---|
1205 | if insitu is None: insitu = rcParams['insitu']
|
---|
1206 | self._math._setinsitu(insitu)
|
---|
1207 | varlist = vars()
|
---|
1208 | base = { "GHz": 1000000000., "MHz": 1000000., "kHz": 1000., "Hz": 1.}
|
---|
1209 | if not (unit == "" or base.has_key(unit)):
|
---|
1210 | raise ValueError("%s is not a valid unit." % unit)
|
---|
1211 | if unit == "":
|
---|
1212 | s = scantable(self._math._lag_flag(self, start, end, "lags"))
|
---|
1213 | else:
|
---|
1214 | s = scantable(self._math._lag_flag(self, start*base[unit],
|
---|
1215 | end*base[unit], "frequency"))
|
---|
1216 | s._add_history("lag_flag", varlist)
|
---|
1217 | if insitu:
|
---|
1218 | self._assign(s)
|
---|
1219 | else:
|
---|
1220 | return s
|
---|
1221 |
|
---|
1222 | @asaplog_post_dec
|
---|
1223 | def fft(self, rowno=None, mask=None, getrealimag=False):
|
---|
1224 | """\
|
---|
1225 | Apply FFT to the spectra.
|
---|
1226 | Flagged data in the scantable get interpolated over the region.
|
---|
1227 |
|
---|
1228 | Parameters:
|
---|
1229 |
|
---|
1230 | rowno: The row number(s) to be processed. int, list
|
---|
1231 | and tuple are accepted. By default (None), FFT
|
---|
1232 | is applied to the whole data.
|
---|
1233 |
|
---|
1234 | mask: Auxiliary channel mask(s). Given as a boolean
|
---|
1235 | list, it is applied to all specified rows.
|
---|
1236 | A list of boolean lists can also be used to
|
---|
1237 | apply different masks. In the latter case, the
|
---|
1238 | length of 'mask' must be the same as that of
|
---|
1239 | 'rowno'. The default is None.
|
---|
1240 |
|
---|
1241 | getrealimag: If True, returns the real and imaginary part
|
---|
1242 | values of the complex results.
|
---|
1243 | If False (the default), returns the amplitude
|
---|
1244 | (absolute value) normalised with Ndata/2 and
|
---|
1245 | phase (argument, in unit of radian).
|
---|
1246 |
|
---|
1247 | Returns:
|
---|
1248 |
|
---|
1249 | A list of dictionaries containing the results for each spectrum.
|
---|
1250 | Each dictionary contains two values, the real and the imaginary
|
---|
1251 | parts when getrealimag = True, or the amplitude(absolute value)
|
---|
1252 | and the phase(argument) when getrealimag = False. The key for
|
---|
1253 | these values are 'real' and 'imag', or 'ampl' and 'phase',
|
---|
1254 | respectively.
|
---|
1255 | """
|
---|
1256 | if rowno is None:
|
---|
1257 | rowno = []
|
---|
1258 | if isinstance(rowno, int):
|
---|
1259 | rowno = [rowno]
|
---|
1260 | elif not (isinstance(rowno, list) or isinstance(rowno, tuple)):
|
---|
1261 | raise TypeError("The row number(s) must be int, list or tuple.")
|
---|
1262 | if len(rowno) == 0: rowno = [i for i in xrange(self.nrow())]
|
---|
1263 |
|
---|
1264 | usecommonmask = True
|
---|
1265 |
|
---|
1266 | if mask is None:
|
---|
1267 | mask = []
|
---|
1268 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
1269 | if len(mask) == 0:
|
---|
1270 | mask = [[]]
|
---|
1271 | else:
|
---|
1272 | if isinstance(mask[0], bool):
|
---|
1273 | if len(mask) != self.nchan(self.getif(rowno[0])):
|
---|
1274 | raise ValueError("The spectra and the mask have "
|
---|
1275 | "different length.")
|
---|
1276 | mask = [mask]
|
---|
1277 | elif isinstance(mask[0], list) or isinstance(mask[0], tuple):
|
---|
1278 | usecommonmask = False
|
---|
1279 | if len(mask) != len(rowno):
|
---|
1280 | raise ValueError("When specifying masks for each "
|
---|
1281 | "spectrum, the numbers of them "
|
---|
1282 | "must be identical.")
|
---|
1283 | for i in xrange(mask):
|
---|
1284 | if len(mask[i]) != self.nchan(self.getif(rowno[i])):
|
---|
1285 | raise ValueError("The spectra and the mask have "
|
---|
1286 | "different length.")
|
---|
1287 | else:
|
---|
1288 | raise TypeError("The mask must be a boolean list or "
|
---|
1289 | "a list of boolean list.")
|
---|
1290 | else:
|
---|
1291 | raise TypeError("The mask must be a boolean list or a list of "
|
---|
1292 | "boolean list.")
|
---|
1293 |
|
---|
1294 | res = []
|
---|
1295 |
|
---|
1296 | imask = 0
|
---|
1297 | for whichrow in rowno:
|
---|
1298 | fspec = self._fft(whichrow, mask[imask], getrealimag)
|
---|
1299 | nspec = len(fspec)
|
---|
1300 |
|
---|
1301 | i = 0
|
---|
1302 | v1 = []
|
---|
1303 | v2 = []
|
---|
1304 | reselem = {"real":[],"imag":[]} if getrealimag \
|
---|
1305 | else {"ampl":[],"phase":[]}
|
---|
1306 |
|
---|
1307 | while (i < nspec):
|
---|
1308 | v1.append(fspec[i])
|
---|
1309 | v2.append(fspec[i+1])
|
---|
1310 | i += 2
|
---|
1311 |
|
---|
1312 | if getrealimag:
|
---|
1313 | reselem["real"] += v1
|
---|
1314 | reselem["imag"] += v2
|
---|
1315 | else:
|
---|
1316 | reselem["ampl"] += v1
|
---|
1317 | reselem["phase"] += v2
|
---|
1318 |
|
---|
1319 | res.append(reselem)
|
---|
1320 |
|
---|
1321 | if not usecommonmask:
|
---|
1322 | imask += 1
|
---|
1323 |
|
---|
1324 | return res
|
---|
1325 |
|
---|
1326 | @asaplog_post_dec
|
---|
1327 | def create_mask(self, *args, **kwargs):
|
---|
1328 | """\
|
---|
1329 | Compute and return a mask based on [min, max] windows.
|
---|
1330 | The specified windows are to be INCLUDED, when the mask is
|
---|
1331 | applied.
|
---|
1332 |
|
---|
1333 | Parameters:
|
---|
1334 |
|
---|
1335 | [min, max], [min2, max2], ...
|
---|
1336 | Pairs of start/end points (inclusive)specifying the regions
|
---|
1337 | to be masked
|
---|
1338 |
|
---|
1339 | invert: optional argument. If specified as True,
|
---|
1340 | return an inverted mask, i.e. the regions
|
---|
1341 | specified are EXCLUDED
|
---|
1342 |
|
---|
1343 | row: create the mask using the specified row for
|
---|
1344 | unit conversions, default is row=0
|
---|
1345 | only necessary if frequency varies over rows.
|
---|
1346 |
|
---|
1347 | Examples::
|
---|
1348 |
|
---|
1349 | scan.set_unit('channel')
|
---|
1350 | # a)
|
---|
1351 | msk = scan.create_mask([400, 500], [800, 900])
|
---|
1352 | # masks everything outside 400 and 500
|
---|
1353 | # and 800 and 900 in the unit 'channel'
|
---|
1354 |
|
---|
1355 | # b)
|
---|
1356 | msk = scan.create_mask([400, 500], [800, 900], invert=True)
|
---|
1357 | # masks the regions between 400 and 500
|
---|
1358 | # and 800 and 900 in the unit 'channel'
|
---|
1359 |
|
---|
1360 | # c)
|
---|
1361 | #mask only channel 400
|
---|
1362 | msk = scan.create_mask([400])
|
---|
1363 |
|
---|
1364 | """
|
---|
1365 | row = kwargs.get("row", 0)
|
---|
1366 | data = self._getabcissa(row)
|
---|
1367 | u = self._getcoordinfo()[0]
|
---|
1368 | if u == "":
|
---|
1369 | u = "channel"
|
---|
1370 | msg = "The current mask window unit is %s" % u
|
---|
1371 | i = self._check_ifs()
|
---|
1372 | if not i:
|
---|
1373 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
1374 | asaplog.push(msg)
|
---|
1375 | n = len(data)
|
---|
1376 | msk = _n_bools(n, False)
|
---|
1377 | # test if args is a 'list' or a 'normal *args - UGLY!!!
|
---|
1378 |
|
---|
1379 | ws = (isinstance(args[-1][-1], int)
|
---|
1380 | or isinstance(args[-1][-1], float)) and args or args[0]
|
---|
1381 | for window in ws:
|
---|
1382 | if len(window) == 1:
|
---|
1383 | window = [window[0], window[0]]
|
---|
1384 | if len(window) == 0 or len(window) > 2:
|
---|
1385 | raise ValueError("A window needs to be defined as "
|
---|
1386 | "[start(, end)]")
|
---|
1387 | if window[0] > window[1]:
|
---|
1388 | tmp = window[0]
|
---|
1389 | window[0] = window[1]
|
---|
1390 | window[1] = tmp
|
---|
1391 | for i in range(n):
|
---|
1392 | if data[i] >= window[0] and data[i] <= window[1]:
|
---|
1393 | msk[i] = True
|
---|
1394 | if kwargs.has_key('invert'):
|
---|
1395 | if kwargs.get('invert'):
|
---|
1396 | msk = mask_not(msk)
|
---|
1397 | return msk
|
---|
1398 |
|
---|
1399 | def get_masklist(self, mask=None, row=0, silent=False):
|
---|
1400 | """\
|
---|
1401 | Compute and return a list of mask windows, [min, max].
|
---|
1402 |
|
---|
1403 | Parameters:
|
---|
1404 |
|
---|
1405 | mask: channel mask, created with create_mask.
|
---|
1406 |
|
---|
1407 | row: calcutate the masklist using the specified row
|
---|
1408 | for unit conversions, default is row=0
|
---|
1409 | only necessary if frequency varies over rows.
|
---|
1410 |
|
---|
1411 | Returns:
|
---|
1412 |
|
---|
1413 | [min, max], [min2, max2], ...
|
---|
1414 | Pairs of start/end points (inclusive)specifying
|
---|
1415 | the masked regions
|
---|
1416 |
|
---|
1417 | """
|
---|
1418 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
1419 | raise TypeError("The mask should be list or tuple.")
|
---|
1420 | if len(mask) <= 0:
|
---|
1421 | raise TypeError("The mask elements should be > 0")
|
---|
1422 | data = self._getabcissa(row)
|
---|
1423 | if len(data) != len(mask):
|
---|
1424 | msg = "Number of channels in scantable != number of mask elements"
|
---|
1425 | raise TypeError(msg)
|
---|
1426 | u = self._getcoordinfo()[0]
|
---|
1427 | if u == "":
|
---|
1428 | u = "channel"
|
---|
1429 | msg = "The current mask window unit is %s" % u
|
---|
1430 | i = self._check_ifs()
|
---|
1431 | if not i:
|
---|
1432 | msg += "\nThis mask is only valid for IF=%d" % (self.getif(i))
|
---|
1433 | if not silent:
|
---|
1434 | asaplog.push(msg)
|
---|
1435 | masklist = []
|
---|
1436 | ist, ien = None, None
|
---|
1437 | ist, ien=self.get_mask_indices(mask)
|
---|
1438 | if ist is not None and ien is not None:
|
---|
1439 | for i in xrange(len(ist)):
|
---|
1440 | range=[data[ist[i]],data[ien[i]]]
|
---|
1441 | range.sort()
|
---|
1442 | masklist.append([range[0],range[1]])
|
---|
1443 | return masklist
|
---|
1444 |
|
---|
1445 | def get_mask_indices(self, mask=None):
|
---|
1446 | """\
|
---|
1447 | Compute and Return lists of mask start indices and mask end indices.
|
---|
1448 |
|
---|
1449 | Parameters:
|
---|
1450 |
|
---|
1451 | mask: channel mask, created with create_mask.
|
---|
1452 |
|
---|
1453 | Returns:
|
---|
1454 |
|
---|
1455 | List of mask start indices and that of mask end indices,
|
---|
1456 | i.e., [istart1,istart2,....], [iend1,iend2,....].
|
---|
1457 |
|
---|
1458 | """
|
---|
1459 | if not (isinstance(mask,list) or isinstance(mask, tuple)):
|
---|
1460 | raise TypeError("The mask should be list or tuple.")
|
---|
1461 | if len(mask) <= 0:
|
---|
1462 | raise TypeError("The mask elements should be > 0")
|
---|
1463 | istart = []
|
---|
1464 | iend = []
|
---|
1465 | if mask[0]:
|
---|
1466 | istart.append(0)
|
---|
1467 | for i in range(len(mask)-1):
|
---|
1468 | if not mask[i] and mask[i+1]:
|
---|
1469 | istart.append(i+1)
|
---|
1470 | elif mask[i] and not mask[i+1]:
|
---|
1471 | iend.append(i)
|
---|
1472 | if mask[len(mask)-1]:
|
---|
1473 | iend.append(len(mask)-1)
|
---|
1474 | if len(istart) != len(iend):
|
---|
1475 | raise RuntimeError("Numbers of mask start != mask end.")
|
---|
1476 | for i in range(len(istart)):
|
---|
1477 | if istart[i] > iend[i]:
|
---|
1478 | raise RuntimeError("Mask start index > mask end index")
|
---|
1479 | break
|
---|
1480 | return istart,iend
|
---|
1481 |
|
---|
1482 | @asaplog_post_dec
|
---|
1483 | def parse_maskexpr(self, maskstring):
|
---|
1484 | """
|
---|
1485 | Parse CASA type mask selection syntax (IF dependent).
|
---|
1486 |
|
---|
1487 | Parameters:
|
---|
1488 | maskstring : A string mask selection expression.
|
---|
1489 | A comma separated selections mean different IF -
|
---|
1490 | channel combinations. IFs and channel selections
|
---|
1491 | are partitioned by a colon, ':'.
|
---|
1492 | examples:
|
---|
1493 | '' = all IFs (all channels)
|
---|
1494 | '<2,4~6,9' = IFs 0,1,4,5,6,9 (all channels)
|
---|
1495 | '3:3~45;60' = channels 3 to 45 and 60 in IF 3
|
---|
1496 | '0~1:2~6,8' = channels 2 to 6 in IFs 0,1, and
|
---|
1497 | all channels in IF8
|
---|
1498 | Returns:
|
---|
1499 | A dictionary of selected (valid) IF and masklist pairs,
|
---|
1500 | e.g. {'0': [[50,250],[350,462]], '2': [[100,400],[550,974]]}
|
---|
1501 | """
|
---|
1502 | if not isinstance(maskstring,str):
|
---|
1503 | asaplog.post()
|
---|
1504 | asaplog.push("Invalid mask expression")
|
---|
1505 | asaplog.post("ERROR")
|
---|
1506 |
|
---|
1507 | valid_ifs = self.getifnos()
|
---|
1508 | frequnit = self.get_unit()
|
---|
1509 | seldict = {}
|
---|
1510 | if maskstring == "":
|
---|
1511 | maskstring = str(valid_ifs)[1:-1]
|
---|
1512 | ## split each selection
|
---|
1513 | sellist = maskstring.split(',')
|
---|
1514 | for currselstr in sellist:
|
---|
1515 | selset = currselstr.split(':')
|
---|
1516 | # spw and mask string (may include ~, < or >)
|
---|
1517 | spwmasklist = self._parse_selection(selset[0], typestr='integer',
|
---|
1518 | offset=1, minval=min(valid_ifs),
|
---|
1519 | maxval=max(valid_ifs))
|
---|
1520 | for spwlist in spwmasklist:
|
---|
1521 | selspws = []
|
---|
1522 | for ispw in range(spwlist[0],spwlist[1]+1):
|
---|
1523 | # Put into the list only if ispw exists
|
---|
1524 | if valid_ifs.count(ispw):
|
---|
1525 | selspws.append(ispw)
|
---|
1526 | del spwmasklist, spwlist
|
---|
1527 |
|
---|
1528 | # parse frequency mask list
|
---|
1529 | if len(selset) > 1:
|
---|
1530 | freqmasklist = self._parse_selection(selset[1], typestr='float',
|
---|
1531 | offset=0.)
|
---|
1532 | else:
|
---|
1533 | # want to select the whole spectrum
|
---|
1534 | freqmasklist = [None]
|
---|
1535 |
|
---|
1536 | ## define a dictionary of spw - masklist combination
|
---|
1537 | for ispw in selspws:
|
---|
1538 | #print "working on", ispw
|
---|
1539 | spwstr = str(ispw)
|
---|
1540 | if len(selspws) == 0:
|
---|
1541 | # empty spw
|
---|
1542 | continue
|
---|
1543 | else:
|
---|
1544 | ## want to get min and max of the spw and
|
---|
1545 | ## offset to set for '<' and '>'
|
---|
1546 | if frequnit == 'channel':
|
---|
1547 | minfreq = 0
|
---|
1548 | maxfreq = self.nchan(ifno=ispw)
|
---|
1549 | offset = 0.5
|
---|
1550 | else:
|
---|
1551 | ## This is ugly part. need improvement
|
---|
1552 | for ifrow in xrange(self.nrow()):
|
---|
1553 | if self.getif(ifrow) == ispw:
|
---|
1554 | #print "IF",ispw,"found in row =",ifrow
|
---|
1555 | break
|
---|
1556 | freqcoord = self.get_coordinate(ifrow)
|
---|
1557 | freqs = self._getabcissa(ifrow)
|
---|
1558 | minfreq = min(freqs)
|
---|
1559 | maxfreq = max(freqs)
|
---|
1560 | if len(freqs) == 1:
|
---|
1561 | offset = 0.5
|
---|
1562 | elif frequnit.find('Hz') > 0:
|
---|
1563 | offset = abs(freqcoord.to_frequency(1,
|
---|
1564 | unit=frequnit)
|
---|
1565 | -freqcoord.to_frequency(0,
|
---|
1566 | unit=frequnit)
|
---|
1567 | )*0.5
|
---|
1568 | elif frequnit.find('m/s') > 0:
|
---|
1569 | offset = abs(freqcoord.to_velocity(1,
|
---|
1570 | unit=frequnit)
|
---|
1571 | -freqcoord.to_velocity(0,
|
---|
1572 | unit=frequnit)
|
---|
1573 | )*0.5
|
---|
1574 | else:
|
---|
1575 | asaplog.post()
|
---|
1576 | asaplog.push("Invalid frequency unit")
|
---|
1577 | asaplog.post("ERROR")
|
---|
1578 | del freqs, freqcoord, ifrow
|
---|
1579 | for freq in freqmasklist:
|
---|
1580 | selmask = freq or [minfreq, maxfreq]
|
---|
1581 | if selmask[0] == None:
|
---|
1582 | ## selection was "<freq[1]".
|
---|
1583 | if selmask[1] < minfreq:
|
---|
1584 | ## avoid adding region selection
|
---|
1585 | selmask = None
|
---|
1586 | else:
|
---|
1587 | selmask = [minfreq,selmask[1]-offset]
|
---|
1588 | elif selmask[1] == None:
|
---|
1589 | ## selection was ">freq[0]"
|
---|
1590 | if selmask[0] > maxfreq:
|
---|
1591 | ## avoid adding region selection
|
---|
1592 | selmask = None
|
---|
1593 | else:
|
---|
1594 | selmask = [selmask[0]+offset,maxfreq]
|
---|
1595 | if selmask:
|
---|
1596 | if not seldict.has_key(spwstr):
|
---|
1597 | # new spw selection
|
---|
1598 | seldict[spwstr] = []
|
---|
1599 | seldict[spwstr] += [selmask]
|
---|
1600 | del minfreq,maxfreq,offset,freq,selmask
|
---|
1601 | del spwstr
|
---|
1602 | del freqmasklist
|
---|
1603 | del valid_ifs
|
---|
1604 | if len(seldict) == 0:
|
---|
1605 | asaplog.post()
|
---|
1606 | asaplog.push("No valid selection in the mask expression: "
|
---|
1607 | +maskstring)
|
---|
1608 | asaplog.post("WARN")
|
---|
1609 | return None
|
---|
1610 | msg = "Selected masklist:\n"
|
---|
1611 | for sif, lmask in seldict.iteritems():
|
---|
1612 | msg += " IF"+sif+" - "+str(lmask)+"\n"
|
---|
1613 | asaplog.push(msg)
|
---|
1614 | return seldict
|
---|
1615 |
|
---|
1616 | def _parse_selection(self, selstr, typestr='float', offset=0.,
|
---|
1617 | minval=None, maxval=None):
|
---|
1618 | """
|
---|
1619 | Parameters:
|
---|
1620 | selstr : The Selection string, e.g., '<3;5~7;100~103;9'
|
---|
1621 | typestr : The type of the values in returned list
|
---|
1622 | ('integer' or 'float')
|
---|
1623 | offset : The offset value to subtract from or add to
|
---|
1624 | the boundary value if the selection string
|
---|
1625 | includes '<' or '>'
|
---|
1626 | minval, maxval : The minimum/maximum values to set if the
|
---|
1627 | selection string includes '<' or '>'.
|
---|
1628 | The list element is filled with None by default.
|
---|
1629 | Returns:
|
---|
1630 | A list of min/max pair of selections.
|
---|
1631 | Example:
|
---|
1632 | _parseSelection('<3;5~7;9',typestr='int',offset=1,minval=0)
|
---|
1633 | returns [[0,2],[5,7],[9,9]]
|
---|
1634 | """
|
---|
1635 | selgroups = selstr.split(';')
|
---|
1636 | sellists = []
|
---|
1637 | if typestr.lower().startswith('int'):
|
---|
1638 | formatfunc = int
|
---|
1639 | else:
|
---|
1640 | formatfunc = float
|
---|
1641 |
|
---|
1642 | for currsel in selgroups:
|
---|
1643 | if currsel.find('~') > 0:
|
---|
1644 | minsel = formatfunc(currsel.split('~')[0].strip())
|
---|
1645 | maxsel = formatfunc(currsel.split('~')[1].strip())
|
---|
1646 | elif currsel.strip().startswith('<'):
|
---|
1647 | minsel = minval
|
---|
1648 | maxsel = formatfunc(currsel.split('<')[1].strip()) \
|
---|
1649 | - formatfunc(offset)
|
---|
1650 | elif currsel.strip().startswith('>'):
|
---|
1651 | minsel = formatfunc(currsel.split('>')[1].strip()) \
|
---|
1652 | + formatfunc(offset)
|
---|
1653 | maxsel = maxval
|
---|
1654 | else:
|
---|
1655 | minsel = formatfunc(currsel)
|
---|
1656 | maxsel = formatfunc(currsel)
|
---|
1657 | sellists.append([minsel,maxsel])
|
---|
1658 | return sellists
|
---|
1659 |
|
---|
1660 | # def get_restfreqs(self):
|
---|
1661 | # """
|
---|
1662 | # Get the restfrequency(s) stored in this scantable.
|
---|
1663 | # The return value(s) are always of unit 'Hz'
|
---|
1664 | # Parameters:
|
---|
1665 | # none
|
---|
1666 | # Returns:
|
---|
1667 | # a list of doubles
|
---|
1668 | # """
|
---|
1669 | # return list(self._getrestfreqs())
|
---|
1670 |
|
---|
1671 | def get_restfreqs(self, ids=None):
|
---|
1672 | """\
|
---|
1673 | Get the restfrequency(s) stored in this scantable.
|
---|
1674 | The return value(s) are always of unit 'Hz'
|
---|
1675 |
|
---|
1676 | Parameters:
|
---|
1677 |
|
---|
1678 | ids: (optional) a list of MOLECULE_ID for that restfrequency(s) to
|
---|
1679 | be retrieved
|
---|
1680 |
|
---|
1681 | Returns:
|
---|
1682 |
|
---|
1683 | dictionary containing ids and a list of doubles for each id
|
---|
1684 |
|
---|
1685 | """
|
---|
1686 | if ids is None:
|
---|
1687 | rfreqs = {}
|
---|
1688 | idlist = self.getmolnos()
|
---|
1689 | for i in idlist:
|
---|
1690 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
1691 | return rfreqs
|
---|
1692 | else:
|
---|
1693 | if type(ids) == list or type(ids) == tuple:
|
---|
1694 | rfreqs = {}
|
---|
1695 | for i in ids:
|
---|
1696 | rfreqs[i] = list(self._getrestfreqs(i))
|
---|
1697 | return rfreqs
|
---|
1698 | else:
|
---|
1699 | return list(self._getrestfreqs(ids))
|
---|
1700 |
|
---|
1701 | @asaplog_post_dec
|
---|
1702 | def set_restfreqs(self, freqs=None, unit='Hz'):
|
---|
1703 | """\
|
---|
1704 | Set or replace the restfrequency specified and
|
---|
1705 | if the 'freqs' argument holds a scalar,
|
---|
1706 | then that rest frequency will be applied to all the selected
|
---|
1707 | data. If the 'freqs' argument holds
|
---|
1708 | a vector, then it MUST be of equal or smaller length than
|
---|
1709 | the number of IFs (and the available restfrequencies will be
|
---|
1710 | replaced by this vector). In this case, *all* data have
|
---|
1711 | the restfrequency set per IF according
|
---|
1712 | to the corresponding value you give in the 'freqs' vector.
|
---|
1713 | E.g. 'freqs=[1e9, 2e9]' would mean IF 0 gets restfreq 1e9 and
|
---|
1714 | IF 1 gets restfreq 2e9.
|
---|
1715 |
|
---|
1716 | You can also specify the frequencies via a linecatalog.
|
---|
1717 |
|
---|
1718 | Parameters:
|
---|
1719 |
|
---|
1720 | freqs: list of rest frequency values or string idenitfiers
|
---|
1721 |
|
---|
1722 | unit: unit for rest frequency (default 'Hz')
|
---|
1723 |
|
---|
1724 |
|
---|
1725 | Example::
|
---|
1726 |
|
---|
1727 | # set the given restfrequency for the all currently selected IFs
|
---|
1728 | scan.set_restfreqs(freqs=1.4e9)
|
---|
1729 | # set restfrequencies for the n IFs (n > 1) in the order of the
|
---|
1730 | # list, i.e
|
---|
1731 | # IF0 -> 1.4e9, IF1 -> 1.41e9, IF3 -> 1.42e9
|
---|
1732 | # len(list_of_restfreqs) == nIF
|
---|
1733 | # for nIF == 1 the following will set multiple restfrequency for
|
---|
1734 | # that IF
|
---|
1735 | scan.set_restfreqs(freqs=[1.4e9, 1.41e9, 1.42e9])
|
---|
1736 | # set multiple restfrequencies per IF. as a list of lists where
|
---|
1737 | # the outer list has nIF elements, the inner s arbitrary
|
---|
1738 | scan.set_restfreqs(freqs=[[1.4e9, 1.41e9], [1.67e9]])
|
---|
1739 |
|
---|
1740 | *Note*:
|
---|
1741 |
|
---|
1742 | To do more sophisticate Restfrequency setting, e.g. on a
|
---|
1743 | source and IF basis, use scantable.set_selection() before using
|
---|
1744 | this function::
|
---|
1745 |
|
---|
1746 | # provided your scantable is called scan
|
---|
1747 | selection = selector()
|
---|
1748 | selection.set_name('ORION*')
|
---|
1749 | selection.set_ifs([1])
|
---|
1750 | scan.set_selection(selection)
|
---|
1751 | scan.set_restfreqs(freqs=86.6e9)
|
---|
1752 |
|
---|
1753 | """
|
---|
1754 | varlist = vars()
|
---|
1755 | from asap import linecatalog
|
---|
1756 | # simple value
|
---|
1757 | if isinstance(freqs, int) or isinstance(freqs, float):
|
---|
1758 | self._setrestfreqs([freqs], [""], unit)
|
---|
1759 | # list of values
|
---|
1760 | elif isinstance(freqs, list) or isinstance(freqs, tuple):
|
---|
1761 | # list values are scalars
|
---|
1762 | if isinstance(freqs[-1], int) or isinstance(freqs[-1], float):
|
---|
1763 | if len(freqs) == 1:
|
---|
1764 | self._setrestfreqs(freqs, [""], unit)
|
---|
1765 | else:
|
---|
1766 | # allow the 'old' mode of setting mulitple IFs
|
---|
1767 | sel = selector()
|
---|
1768 | savesel = self._getselection()
|
---|
1769 | iflist = self.getifnos()
|
---|
1770 | if len(freqs)>len(iflist):
|
---|
1771 | raise ValueError("number of elements in list of list "
|
---|
1772 | "exeeds the current IF selections")
|
---|
1773 | iflist = self.getifnos()
|
---|
1774 | for i, fval in enumerate(freqs):
|
---|
1775 | sel.set_ifs(iflist[i])
|
---|
1776 | self._setselection(sel)
|
---|
1777 | self._setrestfreqs([fval], [""], unit)
|
---|
1778 | self._setselection(savesel)
|
---|
1779 |
|
---|
1780 | # list values are dict, {'value'=, 'name'=)
|
---|
1781 | elif isinstance(freqs[-1], dict):
|
---|
1782 | values = []
|
---|
1783 | names = []
|
---|
1784 | for d in freqs:
|
---|
1785 | values.append(d["value"])
|
---|
1786 | names.append(d["name"])
|
---|
1787 | self._setrestfreqs(values, names, unit)
|
---|
1788 | elif isinstance(freqs[-1], list) or isinstance(freqs[-1], tuple):
|
---|
1789 | sel = selector()
|
---|
1790 | savesel = self._getselection()
|
---|
1791 | iflist = self.getifnos()
|
---|
1792 | if len(freqs)>len(iflist):
|
---|
1793 | raise ValueError("number of elements in list of list exeeds"
|
---|
1794 | " the current IF selections")
|
---|
1795 | for i, fval in enumerate(freqs):
|
---|
1796 | sel.set_ifs(iflist[i])
|
---|
1797 | self._setselection(sel)
|
---|
1798 | self._setrestfreqs(fval, [""], unit)
|
---|
1799 | self._setselection(savesel)
|
---|
1800 | # freqs are to be taken from a linecatalog
|
---|
1801 | elif isinstance(freqs, linecatalog):
|
---|
1802 | sel = selector()
|
---|
1803 | savesel = self._getselection()
|
---|
1804 | for i in xrange(freqs.nrow()):
|
---|
1805 | sel.set_ifs(iflist[i])
|
---|
1806 | self._setselection(sel)
|
---|
1807 | self._setrestfreqs([freqs.get_frequency(i)],
|
---|
1808 | [freqs.get_name(i)], "MHz")
|
---|
1809 | # ensure that we are not iterating past nIF
|
---|
1810 | if i == self.nif()-1: break
|
---|
1811 | self._setselection(savesel)
|
---|
1812 | else:
|
---|
1813 | return
|
---|
1814 | self._add_history("set_restfreqs", varlist)
|
---|
1815 |
|
---|
1816 | @asaplog_post_dec
|
---|
1817 | def shift_refpix(self, delta):
|
---|
1818 | """\
|
---|
1819 | Shift the reference pixel of the Spectra Coordinate by an
|
---|
1820 | integer amount.
|
---|
1821 |
|
---|
1822 | Parameters:
|
---|
1823 |
|
---|
1824 | delta: the amount to shift by
|
---|
1825 |
|
---|
1826 | *Note*:
|
---|
1827 |
|
---|
1828 | Be careful using this with broadband data.
|
---|
1829 |
|
---|
1830 | """
|
---|
1831 | varlist = vars()
|
---|
1832 | Scantable.shift_refpix(self, delta)
|
---|
1833 | s._add_history("shift_refpix", varlist)
|
---|
1834 |
|
---|
1835 | @asaplog_post_dec
|
---|
1836 | def history(self, filename=None):
|
---|
1837 | """\
|
---|
1838 | Print the history. Optionally to a file.
|
---|
1839 |
|
---|
1840 | Parameters:
|
---|
1841 |
|
---|
1842 | filename: The name of the file to save the history to.
|
---|
1843 |
|
---|
1844 | """
|
---|
1845 | hist = list(self._gethistory())
|
---|
1846 | out = "-"*80
|
---|
1847 | for h in hist:
|
---|
1848 | if h.startswith("---"):
|
---|
1849 | out = "\n".join([out, h])
|
---|
1850 | else:
|
---|
1851 | items = h.split("##")
|
---|
1852 | date = items[0]
|
---|
1853 | func = items[1]
|
---|
1854 | items = items[2:]
|
---|
1855 | out += "\n"+date+"\n"
|
---|
1856 | out += "Function: %s\n Parameters:" % (func)
|
---|
1857 | for i in items:
|
---|
1858 | if i == '':
|
---|
1859 | continue
|
---|
1860 | s = i.split("=")
|
---|
1861 | out += "\n %s = %s" % (s[0], s[1])
|
---|
1862 | out = "\n".join([out, "-"*80])
|
---|
1863 | if filename is not None:
|
---|
1864 | if filename is "":
|
---|
1865 | filename = 'scantable_history.txt'
|
---|
1866 | import os
|
---|
1867 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
1868 | if not os.path.isdir(filename):
|
---|
1869 | data = open(filename, 'w')
|
---|
1870 | data.write(out)
|
---|
1871 | data.close()
|
---|
1872 | else:
|
---|
1873 | msg = "Illegal file name '%s'." % (filename)
|
---|
1874 | raise IOError(msg)
|
---|
1875 | return page(out)
|
---|
1876 |
|
---|
1877 | #
|
---|
1878 | # Maths business
|
---|
1879 | #
|
---|
1880 | @asaplog_post_dec
|
---|
1881 | def average_time(self, mask=None, scanav=False, weight='tint', align=False):
|
---|
1882 | """\
|
---|
1883 | Return the (time) weighted average of a scan. Scans will be averaged
|
---|
1884 | only if the source direction (RA/DEC) is within 1' otherwise
|
---|
1885 |
|
---|
1886 | *Note*:
|
---|
1887 |
|
---|
1888 | in channels only - align if necessary
|
---|
1889 |
|
---|
1890 | Parameters:
|
---|
1891 |
|
---|
1892 | mask: an optional mask (only used for 'var' and 'tsys'
|
---|
1893 | weighting)
|
---|
1894 |
|
---|
1895 | scanav: True averages each scan separately
|
---|
1896 | False (default) averages all scans together,
|
---|
1897 |
|
---|
1898 | weight: Weighting scheme.
|
---|
1899 | 'none' (mean no weight)
|
---|
1900 | 'var' (1/var(spec) weighted)
|
---|
1901 | 'tsys' (1/Tsys**2 weighted)
|
---|
1902 | 'tint' (integration time weighted)
|
---|
1903 | 'tintsys' (Tint/Tsys**2)
|
---|
1904 | 'median' ( median averaging)
|
---|
1905 | The default is 'tint'
|
---|
1906 |
|
---|
1907 | align: align the spectra in velocity before averaging. It takes
|
---|
1908 | the time of the first spectrum as reference time.
|
---|
1909 |
|
---|
1910 | Example::
|
---|
1911 |
|
---|
1912 | # time average the scantable without using a mask
|
---|
1913 | newscan = scan.average_time()
|
---|
1914 |
|
---|
1915 | """
|
---|
1916 | varlist = vars()
|
---|
1917 | weight = weight or 'TINT'
|
---|
1918 | mask = mask or ()
|
---|
1919 | scanav = (scanav and 'SCAN') or 'NONE'
|
---|
1920 | scan = (self, )
|
---|
1921 |
|
---|
1922 | if align:
|
---|
1923 | scan = (self.freq_align(insitu=False), )
|
---|
1924 | s = None
|
---|
1925 | if weight.upper() == 'MEDIAN':
|
---|
1926 | s = scantable(self._math._averagechannel(scan[0], 'MEDIAN',
|
---|
1927 | scanav))
|
---|
1928 | else:
|
---|
1929 | s = scantable(self._math._average(scan, mask, weight.upper(),
|
---|
1930 | scanav))
|
---|
1931 | s._add_history("average_time", varlist)
|
---|
1932 | return s
|
---|
1933 |
|
---|
1934 | @asaplog_post_dec
|
---|
1935 | def convert_flux(self, jyperk=None, eta=None, d=None, insitu=None):
|
---|
1936 | """\
|
---|
1937 | Return a scan where all spectra are converted to either
|
---|
1938 | Jansky or Kelvin depending upon the flux units of the scan table.
|
---|
1939 | By default the function tries to look the values up internally.
|
---|
1940 | If it can't find them (or if you want to over-ride), you must
|
---|
1941 | specify EITHER jyperk OR eta (and D which it will try to look up
|
---|
1942 | also if you don't set it). jyperk takes precedence if you set both.
|
---|
1943 |
|
---|
1944 | Parameters:
|
---|
1945 |
|
---|
1946 | jyperk: the Jy / K conversion factor
|
---|
1947 |
|
---|
1948 | eta: the aperture efficiency
|
---|
1949 |
|
---|
1950 | d: the geometric diameter (metres)
|
---|
1951 |
|
---|
1952 | insitu: if False a new scantable is returned.
|
---|
1953 | Otherwise, the scaling is done in-situ
|
---|
1954 | The default is taken from .asaprc (False)
|
---|
1955 |
|
---|
1956 | """
|
---|
1957 | if insitu is None: insitu = rcParams['insitu']
|
---|
1958 | self._math._setinsitu(insitu)
|
---|
1959 | varlist = vars()
|
---|
1960 | jyperk = jyperk or -1.0
|
---|
1961 | d = d or -1.0
|
---|
1962 | eta = eta or -1.0
|
---|
1963 | s = scantable(self._math._convertflux(self, d, eta, jyperk))
|
---|
1964 | s._add_history("convert_flux", varlist)
|
---|
1965 | if insitu: self._assign(s)
|
---|
1966 | else: return s
|
---|
1967 |
|
---|
1968 | @asaplog_post_dec
|
---|
1969 | def gain_el(self, poly=None, filename="", method="linear", insitu=None):
|
---|
1970 | """\
|
---|
1971 | Return a scan after applying a gain-elevation correction.
|
---|
1972 | The correction can be made via either a polynomial or a
|
---|
1973 | table-based interpolation (and extrapolation if necessary).
|
---|
1974 | You specify polynomial coefficients, an ascii table or neither.
|
---|
1975 | If you specify neither, then a polynomial correction will be made
|
---|
1976 | with built in coefficients known for certain telescopes (an error
|
---|
1977 | will occur if the instrument is not known).
|
---|
1978 | The data and Tsys are *divided* by the scaling factors.
|
---|
1979 |
|
---|
1980 | Parameters:
|
---|
1981 |
|
---|
1982 | poly: Polynomial coefficients (default None) to compute a
|
---|
1983 | gain-elevation correction as a function of
|
---|
1984 | elevation (in degrees).
|
---|
1985 |
|
---|
1986 | filename: The name of an ascii file holding correction factors.
|
---|
1987 | The first row of the ascii file must give the column
|
---|
1988 | names and these MUST include columns
|
---|
1989 | 'ELEVATION' (degrees) and 'FACTOR' (multiply data
|
---|
1990 | by this) somewhere.
|
---|
1991 | The second row must give the data type of the
|
---|
1992 | column. Use 'R' for Real and 'I' for Integer.
|
---|
1993 | An example file would be
|
---|
1994 | (actual factors are arbitrary) :
|
---|
1995 |
|
---|
1996 | TIME ELEVATION FACTOR
|
---|
1997 | R R R
|
---|
1998 | 0.1 0 0.8
|
---|
1999 | 0.2 20 0.85
|
---|
2000 | 0.3 40 0.9
|
---|
2001 | 0.4 60 0.85
|
---|
2002 | 0.5 80 0.8
|
---|
2003 | 0.6 90 0.75
|
---|
2004 |
|
---|
2005 | method: Interpolation method when correcting from a table.
|
---|
2006 | Values are 'nearest', 'linear' (default), 'cubic'
|
---|
2007 | and 'spline'
|
---|
2008 |
|
---|
2009 | insitu: if False a new scantable is returned.
|
---|
2010 | Otherwise, the scaling is done in-situ
|
---|
2011 | The default is taken from .asaprc (False)
|
---|
2012 |
|
---|
2013 | """
|
---|
2014 |
|
---|
2015 | if insitu is None: insitu = rcParams['insitu']
|
---|
2016 | self._math._setinsitu(insitu)
|
---|
2017 | varlist = vars()
|
---|
2018 | poly = poly or ()
|
---|
2019 | from os.path import expandvars
|
---|
2020 | filename = expandvars(filename)
|
---|
2021 | s = scantable(self._math._gainel(self, poly, filename, method))
|
---|
2022 | s._add_history("gain_el", varlist)
|
---|
2023 | if insitu:
|
---|
2024 | self._assign(s)
|
---|
2025 | else:
|
---|
2026 | return s
|
---|
2027 |
|
---|
2028 | @asaplog_post_dec
|
---|
2029 | def freq_align(self, reftime=None, method='cubic', insitu=None):
|
---|
2030 | """\
|
---|
2031 | Return a scan where all rows have been aligned in frequency/velocity.
|
---|
2032 | The alignment frequency frame (e.g. LSRK) is that set by function
|
---|
2033 | set_freqframe.
|
---|
2034 |
|
---|
2035 | Parameters:
|
---|
2036 |
|
---|
2037 | reftime: reference time to align at. By default, the time of
|
---|
2038 | the first row of data is used.
|
---|
2039 |
|
---|
2040 | method: Interpolation method for regridding the spectra.
|
---|
2041 | Choose from 'nearest', 'linear', 'cubic' (default)
|
---|
2042 | and 'spline'
|
---|
2043 |
|
---|
2044 | insitu: if False a new scantable is returned.
|
---|
2045 | Otherwise, the scaling is done in-situ
|
---|
2046 | The default is taken from .asaprc (False)
|
---|
2047 |
|
---|
2048 | """
|
---|
2049 | if insitu is None: insitu = rcParams["insitu"]
|
---|
2050 | oldInsitu = self._math._insitu()
|
---|
2051 | self._math._setinsitu(insitu)
|
---|
2052 | varlist = vars()
|
---|
2053 | reftime = reftime or ""
|
---|
2054 | s = scantable(self._math._freq_align(self, reftime, method))
|
---|
2055 | s._add_history("freq_align", varlist)
|
---|
2056 | self._math._setinsitu(oldInsitu)
|
---|
2057 | if insitu:
|
---|
2058 | self._assign(s)
|
---|
2059 | else:
|
---|
2060 | return s
|
---|
2061 |
|
---|
2062 | @asaplog_post_dec
|
---|
2063 | def opacity(self, tau=None, insitu=None):
|
---|
2064 | """\
|
---|
2065 | Apply an opacity correction. The data
|
---|
2066 | and Tsys are multiplied by the correction factor.
|
---|
2067 |
|
---|
2068 | Parameters:
|
---|
2069 |
|
---|
2070 | tau: (list of) opacity from which the correction factor is
|
---|
2071 | exp(tau*ZD)
|
---|
2072 | where ZD is the zenith-distance.
|
---|
2073 | If a list is provided, it has to be of length nIF,
|
---|
2074 | nIF*nPol or 1 and in order of IF/POL, e.g.
|
---|
2075 | [opif0pol0, opif0pol1, opif1pol0 ...]
|
---|
2076 | if tau is `None` the opacities are determined from a
|
---|
2077 | model.
|
---|
2078 |
|
---|
2079 | insitu: if False a new scantable is returned.
|
---|
2080 | Otherwise, the scaling is done in-situ
|
---|
2081 | The default is taken from .asaprc (False)
|
---|
2082 |
|
---|
2083 | """
|
---|
2084 | if insitu is None:
|
---|
2085 | insitu = rcParams['insitu']
|
---|
2086 | self._math._setinsitu(insitu)
|
---|
2087 | varlist = vars()
|
---|
2088 | if not hasattr(tau, "__len__"):
|
---|
2089 | tau = [tau]
|
---|
2090 | s = scantable(self._math._opacity(self, tau))
|
---|
2091 | s._add_history("opacity", varlist)
|
---|
2092 | if insitu:
|
---|
2093 | self._assign(s)
|
---|
2094 | else:
|
---|
2095 | return s
|
---|
2096 |
|
---|
2097 | @asaplog_post_dec
|
---|
2098 | def bin(self, width=5, insitu=None):
|
---|
2099 | """\
|
---|
2100 | Return a scan where all spectra have been binned up.
|
---|
2101 |
|
---|
2102 | Parameters:
|
---|
2103 |
|
---|
2104 | width: The bin width (default=5) in pixels
|
---|
2105 |
|
---|
2106 | insitu: if False a new scantable is returned.
|
---|
2107 | Otherwise, the scaling is done in-situ
|
---|
2108 | The default is taken from .asaprc (False)
|
---|
2109 |
|
---|
2110 | """
|
---|
2111 | if insitu is None:
|
---|
2112 | insitu = rcParams['insitu']
|
---|
2113 | self._math._setinsitu(insitu)
|
---|
2114 | varlist = vars()
|
---|
2115 | s = scantable(self._math._bin(self, width))
|
---|
2116 | s._add_history("bin", varlist)
|
---|
2117 | if insitu:
|
---|
2118 | self._assign(s)
|
---|
2119 | else:
|
---|
2120 | return s
|
---|
2121 |
|
---|
2122 | @asaplog_post_dec
|
---|
2123 | def resample(self, width=5, method='cubic', insitu=None):
|
---|
2124 | """\
|
---|
2125 | Return a scan where all spectra have been binned up.
|
---|
2126 |
|
---|
2127 | Parameters:
|
---|
2128 |
|
---|
2129 | width: The bin width (default=5) in pixels
|
---|
2130 |
|
---|
2131 | method: Interpolation method when correcting from a table.
|
---|
2132 | Values are 'nearest', 'linear', 'cubic' (default)
|
---|
2133 | and 'spline'
|
---|
2134 |
|
---|
2135 | insitu: if False a new scantable is returned.
|
---|
2136 | Otherwise, the scaling is done in-situ
|
---|
2137 | The default is taken from .asaprc (False)
|
---|
2138 |
|
---|
2139 | """
|
---|
2140 | if insitu is None:
|
---|
2141 | insitu = rcParams['insitu']
|
---|
2142 | self._math._setinsitu(insitu)
|
---|
2143 | varlist = vars()
|
---|
2144 | s = scantable(self._math._resample(self, method, width))
|
---|
2145 | s._add_history("resample", varlist)
|
---|
2146 | if insitu:
|
---|
2147 | self._assign(s)
|
---|
2148 | else:
|
---|
2149 | return s
|
---|
2150 |
|
---|
2151 | @asaplog_post_dec
|
---|
2152 | def average_pol(self, mask=None, weight='none'):
|
---|
2153 | """\
|
---|
2154 | Average the Polarisations together.
|
---|
2155 |
|
---|
2156 | Parameters:
|
---|
2157 |
|
---|
2158 | mask: An optional mask defining the region, where the
|
---|
2159 | averaging will be applied. The output will have all
|
---|
2160 | specified points masked.
|
---|
2161 |
|
---|
2162 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
2163 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
2164 |
|
---|
2165 | """
|
---|
2166 | varlist = vars()
|
---|
2167 | mask = mask or ()
|
---|
2168 | s = scantable(self._math._averagepol(self, mask, weight.upper()))
|
---|
2169 | s._add_history("average_pol", varlist)
|
---|
2170 | return s
|
---|
2171 |
|
---|
2172 | @asaplog_post_dec
|
---|
2173 | def average_beam(self, mask=None, weight='none'):
|
---|
2174 | """\
|
---|
2175 | Average the Beams together.
|
---|
2176 |
|
---|
2177 | Parameters:
|
---|
2178 | mask: An optional mask defining the region, where the
|
---|
2179 | averaging will be applied. The output will have all
|
---|
2180 | specified points masked.
|
---|
2181 |
|
---|
2182 | weight: Weighting scheme. 'none' (default), 'var' (1/var(spec)
|
---|
2183 | weighted), or 'tsys' (1/Tsys**2 weighted)
|
---|
2184 |
|
---|
2185 | """
|
---|
2186 | varlist = vars()
|
---|
2187 | mask = mask or ()
|
---|
2188 | s = scantable(self._math._averagebeams(self, mask, weight.upper()))
|
---|
2189 | s._add_history("average_beam", varlist)
|
---|
2190 | return s
|
---|
2191 |
|
---|
2192 | def parallactify(self, pflag):
|
---|
2193 | """\
|
---|
2194 | Set a flag to indicate whether this data should be treated as having
|
---|
2195 | been 'parallactified' (total phase == 0.0)
|
---|
2196 |
|
---|
2197 | Parameters:
|
---|
2198 |
|
---|
2199 | pflag: Bool indicating whether to turn this on (True) or
|
---|
2200 | off (False)
|
---|
2201 |
|
---|
2202 | """
|
---|
2203 | varlist = vars()
|
---|
2204 | self._parallactify(pflag)
|
---|
2205 | self._add_history("parallactify", varlist)
|
---|
2206 |
|
---|
2207 | @asaplog_post_dec
|
---|
2208 | def convert_pol(self, poltype=None):
|
---|
2209 | """\
|
---|
2210 | Convert the data to a different polarisation type.
|
---|
2211 | Note that you will need cross-polarisation terms for most conversions.
|
---|
2212 |
|
---|
2213 | Parameters:
|
---|
2214 |
|
---|
2215 | poltype: The new polarisation type. Valid types are:
|
---|
2216 | 'linear', 'circular', 'stokes' and 'linpol'
|
---|
2217 |
|
---|
2218 | """
|
---|
2219 | varlist = vars()
|
---|
2220 | s = scantable(self._math._convertpol(self, poltype))
|
---|
2221 | s._add_history("convert_pol", varlist)
|
---|
2222 | return s
|
---|
2223 |
|
---|
2224 | @asaplog_post_dec
|
---|
2225 | def smooth(self, kernel="hanning", width=5.0, order=2, plot=False,
|
---|
2226 | insitu=None):
|
---|
2227 | """\
|
---|
2228 | Smooth the spectrum by the specified kernel (conserving flux).
|
---|
2229 |
|
---|
2230 | Parameters:
|
---|
2231 |
|
---|
2232 | kernel: The type of smoothing kernel. Select from
|
---|
2233 | 'hanning' (default), 'gaussian', 'boxcar', 'rmedian'
|
---|
2234 | or 'poly'
|
---|
2235 |
|
---|
2236 | width: The width of the kernel in pixels. For hanning this is
|
---|
2237 | ignored otherwise it defauls to 5 pixels.
|
---|
2238 | For 'gaussian' it is the Full Width Half
|
---|
2239 | Maximum. For 'boxcar' it is the full width.
|
---|
2240 | For 'rmedian' and 'poly' it is the half width.
|
---|
2241 |
|
---|
2242 | order: Optional parameter for 'poly' kernel (default is 2), to
|
---|
2243 | specify the order of the polnomial. Ignored by all other
|
---|
2244 | kernels.
|
---|
2245 |
|
---|
2246 | plot: plot the original and the smoothed spectra.
|
---|
2247 | In this each indivual fit has to be approved, by
|
---|
2248 | typing 'y' or 'n'
|
---|
2249 |
|
---|
2250 | insitu: if False a new scantable is returned.
|
---|
2251 | Otherwise, the scaling is done in-situ
|
---|
2252 | The default is taken from .asaprc (False)
|
---|
2253 |
|
---|
2254 | """
|
---|
2255 | if insitu is None: insitu = rcParams['insitu']
|
---|
2256 | self._math._setinsitu(insitu)
|
---|
2257 | varlist = vars()
|
---|
2258 |
|
---|
2259 | if plot: orgscan = self.copy()
|
---|
2260 |
|
---|
2261 | s = scantable(self._math._smooth(self, kernel.lower(), width, order))
|
---|
2262 | s._add_history("smooth", varlist)
|
---|
2263 |
|
---|
2264 | if plot:
|
---|
2265 | from asap.asapplotter import new_asaplot
|
---|
2266 | theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
2267 | from matplotlib import rc as rcp
|
---|
2268 | rcp('lines', linewidth=1)
|
---|
2269 | theplot.set_panels()
|
---|
2270 | ylab=s._get_ordinate_label()
|
---|
2271 | #theplot.palette(0,["#777777","red"])
|
---|
2272 | for r in xrange(s.nrow()):
|
---|
2273 | xsm=s._getabcissa(r)
|
---|
2274 | ysm=s._getspectrum(r)
|
---|
2275 | xorg=orgscan._getabcissa(r)
|
---|
2276 | yorg=orgscan._getspectrum(r)
|
---|
2277 | theplot.clear()
|
---|
2278 | theplot.hold()
|
---|
2279 | theplot.set_axes('ylabel',ylab)
|
---|
2280 | theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
2281 | theplot.set_axes('title',s._getsourcename(r))
|
---|
2282 | theplot.set_line(label='Original',color="#777777")
|
---|
2283 | theplot.plot(xorg,yorg)
|
---|
2284 | theplot.set_line(label='Smoothed',color="red")
|
---|
2285 | theplot.plot(xsm,ysm)
|
---|
2286 | ### Ugly part for legend
|
---|
2287 | for i in [0,1]:
|
---|
2288 | theplot.subplots[0]['lines'].append(
|
---|
2289 | [theplot.subplots[0]['axes'].lines[i]]
|
---|
2290 | )
|
---|
2291 | theplot.release()
|
---|
2292 | ### Ugly part for legend
|
---|
2293 | theplot.subplots[0]['lines']=[]
|
---|
2294 | res = raw_input("Accept smoothing ([y]/n): ")
|
---|
2295 | if res.upper() == 'N':
|
---|
2296 | s._setspectrum(yorg, r)
|
---|
2297 | theplot.quit()
|
---|
2298 | del theplot
|
---|
2299 | del orgscan
|
---|
2300 |
|
---|
2301 | if insitu: self._assign(s)
|
---|
2302 | else: return s
|
---|
2303 |
|
---|
2304 | @asaplog_post_dec
|
---|
2305 | def regrid_channel(self, width=5, plot=False, insitu=None):
|
---|
2306 | """\
|
---|
2307 | Regrid the spectra by the specified channel width
|
---|
2308 |
|
---|
2309 | Parameters:
|
---|
2310 |
|
---|
2311 | width: The channel width (float) of regridded spectra
|
---|
2312 | in the current spectral unit.
|
---|
2313 |
|
---|
2314 | plot: [NOT IMPLEMENTED YET]
|
---|
2315 | plot the original and the regridded spectra.
|
---|
2316 | In this each indivual fit has to be approved, by
|
---|
2317 | typing 'y' or 'n'
|
---|
2318 |
|
---|
2319 | insitu: if False a new scantable is returned.
|
---|
2320 | Otherwise, the scaling is done in-situ
|
---|
2321 | The default is taken from .asaprc (False)
|
---|
2322 |
|
---|
2323 | """
|
---|
2324 | if insitu is None: insitu = rcParams['insitu']
|
---|
2325 | varlist = vars()
|
---|
2326 |
|
---|
2327 | if plot:
|
---|
2328 | asaplog.post()
|
---|
2329 | asaplog.push("Verification plot is not implemtnetd yet.")
|
---|
2330 | asaplog.post("WARN")
|
---|
2331 |
|
---|
2332 | s = self.copy()
|
---|
2333 | s._regrid_specchan(width)
|
---|
2334 |
|
---|
2335 | s._add_history("regrid_channel", varlist)
|
---|
2336 |
|
---|
2337 | # if plot:
|
---|
2338 | # from asap.asapplotter import new_asaplot
|
---|
2339 | # theplot = new_asaplot(rcParams['plotter.gui'])
|
---|
2340 | # from matplotlib import rc as rcp
|
---|
2341 | # rcp('lines', linewidth=1)
|
---|
2342 | # theplot.set_panels()
|
---|
2343 | # ylab=s._get_ordinate_label()
|
---|
2344 | # #theplot.palette(0,["#777777","red"])
|
---|
2345 | # for r in xrange(s.nrow()):
|
---|
2346 | # xsm=s._getabcissa(r)
|
---|
2347 | # ysm=s._getspectrum(r)
|
---|
2348 | # xorg=orgscan._getabcissa(r)
|
---|
2349 | # yorg=orgscan._getspectrum(r)
|
---|
2350 | # theplot.clear()
|
---|
2351 | # theplot.hold()
|
---|
2352 | # theplot.set_axes('ylabel',ylab)
|
---|
2353 | # theplot.set_axes('xlabel',s._getabcissalabel(r))
|
---|
2354 | # theplot.set_axes('title',s._getsourcename(r))
|
---|
2355 | # theplot.set_line(label='Original',color="#777777")
|
---|
2356 | # theplot.plot(xorg,yorg)
|
---|
2357 | # theplot.set_line(label='Smoothed',color="red")
|
---|
2358 | # theplot.plot(xsm,ysm)
|
---|
2359 | # ### Ugly part for legend
|
---|
2360 | # for i in [0,1]:
|
---|
2361 | # theplot.subplots[0]['lines'].append(
|
---|
2362 | # [theplot.subplots[0]['axes'].lines[i]]
|
---|
2363 | # )
|
---|
2364 | # theplot.release()
|
---|
2365 | # ### Ugly part for legend
|
---|
2366 | # theplot.subplots[0]['lines']=[]
|
---|
2367 | # res = raw_input("Accept smoothing ([y]/n): ")
|
---|
2368 | # if res.upper() == 'N':
|
---|
2369 | # s._setspectrum(yorg, r)
|
---|
2370 | # theplot.quit()
|
---|
2371 | # del theplot
|
---|
2372 | # del orgscan
|
---|
2373 |
|
---|
2374 | if insitu: self._assign(s)
|
---|
2375 | else: return s
|
---|
2376 |
|
---|
2377 | @asaplog_post_dec
|
---|
2378 | def _parse_wn(self, wn):
|
---|
2379 | if isinstance(wn, list) or isinstance(wn, tuple):
|
---|
2380 | return wn
|
---|
2381 | elif isinstance(wn, int):
|
---|
2382 | return [ wn ]
|
---|
2383 | elif isinstance(wn, str):
|
---|
2384 | if '-' in wn: # case 'a-b' : return [a,a+1,...,b-1,b]
|
---|
2385 | val = wn.split('-')
|
---|
2386 | val = [int(val[0]), int(val[1])]
|
---|
2387 | val.sort()
|
---|
2388 | res = [i for i in xrange(val[0], val[1]+1)]
|
---|
2389 | elif wn[:2] == '<=' or wn[:2] == '=<': # cases '<=a','=<a' : return [0,1,...,a-1,a]
|
---|
2390 | val = int(wn[2:])+1
|
---|
2391 | res = [i for i in xrange(val)]
|
---|
2392 | elif wn[-2:] == '>=' or wn[-2:] == '=>': # cases 'a>=','a=>' : return [0,1,...,a-1,a]
|
---|
2393 | val = int(wn[:-2])+1
|
---|
2394 | res = [i for i in xrange(val)]
|
---|
2395 | elif wn[0] == '<': # case '<a' : return [0,1,...,a-2,a-1]
|
---|
2396 | val = int(wn[1:])
|
---|
2397 | res = [i for i in xrange(val)]
|
---|
2398 | elif wn[-1] == '>': # case 'a>' : return [0,1,...,a-2,a-1]
|
---|
2399 | val = int(wn[:-1])
|
---|
2400 | res = [i for i in xrange(val)]
|
---|
2401 | elif wn[:2] == '>=' or wn[:2] == '=>': # cases '>=a','=>a' : return [a,-999], which is
|
---|
2402 | # then interpreted in C++
|
---|
2403 | # side as [a,a+1,...,a_nyq]
|
---|
2404 | # (CAS-3759)
|
---|
2405 | val = int(wn[2:])
|
---|
2406 | res = [val, -999]
|
---|
2407 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
2408 | elif wn[-2:] == '<=' or wn[-2:] == '=<': # cases 'a<=','a=<' : return [a,-999], which is
|
---|
2409 | # then interpreted in C++
|
---|
2410 | # side as [a,a+1,...,a_nyq]
|
---|
2411 | # (CAS-3759)
|
---|
2412 | val = int(wn[:-2])
|
---|
2413 | res = [val, -999]
|
---|
2414 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
2415 | elif wn[0] == '>': # case '>a' : return [a+1,-999], which is
|
---|
2416 | # then interpreted in C++
|
---|
2417 | # side as [a+1,a+2,...,a_nyq]
|
---|
2418 | # (CAS-3759)
|
---|
2419 | val = int(wn[1:])+1
|
---|
2420 | res = [val, -999]
|
---|
2421 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
2422 | elif wn[-1] == '<': # case 'a<' : return [a+1,-999], which is
|
---|
2423 | # then interpreted in C++
|
---|
2424 | # side as [a+1,a+2,...,a_nyq]
|
---|
2425 | # (CAS-3759)
|
---|
2426 | val = int(wn[:-1])+1
|
---|
2427 | res = [val, -999]
|
---|
2428 | #res = [i for i in xrange(val, self.nchan()/2+1)]
|
---|
2429 |
|
---|
2430 | return res
|
---|
2431 | else:
|
---|
2432 | msg = 'wrong value given for addwn/rejwn'
|
---|
2433 | raise RuntimeError(msg)
|
---|
2434 |
|
---|
2435 |
|
---|
2436 | @asaplog_post_dec
|
---|
2437 | def sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
2438 | fftmethod=None, fftthresh=None,
|
---|
2439 | addwn=None, rejwn=None, clipthresh=None,
|
---|
2440 | clipniter=None, plot=None,
|
---|
2441 | getresidual=None, showprogress=None,
|
---|
2442 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
2443 | """\
|
---|
2444 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
2445 | functions.
|
---|
2446 |
|
---|
2447 | Parameters:
|
---|
2448 | insitu: if False a new scantable is returned.
|
---|
2449 | Otherwise, the scaling is done in-situ
|
---|
2450 | The default is taken from .asaprc (False)
|
---|
2451 | mask: an optional mask
|
---|
2452 | applyfft: if True use some method, such as FFT, to find
|
---|
2453 | strongest sinusoidal components in the wavenumber
|
---|
2454 | domain to be used for baseline fitting.
|
---|
2455 | default is True.
|
---|
2456 | fftmethod: method to find the strong sinusoidal components.
|
---|
2457 | now only 'fft' is available and it is the default.
|
---|
2458 | fftthresh: the threshold to select wave numbers to be used for
|
---|
2459 | fitting from the distribution of amplitudes in the
|
---|
2460 | wavenumber domain.
|
---|
2461 | both float and string values accepted.
|
---|
2462 | given a float value, the unit is set to sigma.
|
---|
2463 | for string values, allowed formats include:
|
---|
2464 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
2465 | '3sigma'), or
|
---|
2466 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
2467 | default is 3.0 (unit: sigma).
|
---|
2468 | addwn: the additional wave numbers to be used for fitting.
|
---|
2469 | list or integer value is accepted to specify every
|
---|
2470 | wave numbers. also string value can be used in case
|
---|
2471 | you need to specify wave numbers in a certain range,
|
---|
2472 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
2473 | '<a' (= 0,1,...,a-2,a-1),
|
---|
2474 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
2475 | number corresponding to the Nyquist
|
---|
2476 | frequency for the case of FFT).
|
---|
2477 | default is [0].
|
---|
2478 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
2479 | can be set just as addwn but has higher priority:
|
---|
2480 | wave numbers which are specified both in addwn
|
---|
2481 | and rejwn will NOT be used. default is [].
|
---|
2482 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
2483 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
2484 | clipping (default is 0)
|
---|
2485 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
2486 | plot the fit and the residual. In this each
|
---|
2487 | indivual fit has to be approved, by typing 'y'
|
---|
2488 | or 'n'
|
---|
2489 | getresidual: if False, returns best-fit values instead of
|
---|
2490 | residual. (default is True)
|
---|
2491 | showprogress: show progress status for large data.
|
---|
2492 | default is True.
|
---|
2493 | minnrow: minimum number of input spectra to show.
|
---|
2494 | default is 1000.
|
---|
2495 | outlog: Output the coefficients of the best-fit
|
---|
2496 | function to logger (default is False)
|
---|
2497 | blfile: Name of a text file in which the best-fit
|
---|
2498 | parameter values to be written
|
---|
2499 | (default is '': no file/logger output)
|
---|
2500 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
2501 |
|
---|
2502 | Example:
|
---|
2503 | # return a scan baselined by a combination of sinusoidal curves
|
---|
2504 | # having wave numbers in spectral window up to 10,
|
---|
2505 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
2506 | bscan = scan.sinusoid_baseline(addwn='<=10',clipthresh=3.0,clipniter=4)
|
---|
2507 |
|
---|
2508 | Note:
|
---|
2509 | The best-fit parameter values output in logger and/or blfile are now
|
---|
2510 | based on specunit of 'channel'.
|
---|
2511 | """
|
---|
2512 |
|
---|
2513 | try:
|
---|
2514 | varlist = vars()
|
---|
2515 |
|
---|
2516 | if insitu is None: insitu = rcParams['insitu']
|
---|
2517 | if insitu:
|
---|
2518 | workscan = self
|
---|
2519 | else:
|
---|
2520 | workscan = self.copy()
|
---|
2521 |
|
---|
2522 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
2523 | if mask is None: mask = []
|
---|
2524 | if applyfft is None: applyfft = True
|
---|
2525 | if fftmethod is None: fftmethod = 'fft'
|
---|
2526 | if fftthresh is None: fftthresh = 3.0
|
---|
2527 | if addwn is None: addwn = [0]
|
---|
2528 | if rejwn is None: rejwn = []
|
---|
2529 | if clipthresh is None: clipthresh = 3.0
|
---|
2530 | if clipniter is None: clipniter = 0
|
---|
2531 | if plot is None: plot = False
|
---|
2532 | if getresidual is None: getresidual = True
|
---|
2533 | if showprogress is None: showprogress = True
|
---|
2534 | if minnrow is None: minnrow = 1000
|
---|
2535 | if outlog is None: outlog = False
|
---|
2536 | if blfile is None: blfile = ''
|
---|
2537 | if csvformat is None: csvformat = False
|
---|
2538 |
|
---|
2539 | if csvformat:
|
---|
2540 | scsvformat = "T"
|
---|
2541 | else:
|
---|
2542 | scsvformat = "F"
|
---|
2543 |
|
---|
2544 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
2545 | workscan._sinusoid_baseline(mask, applyfft, fftmethod.lower(),
|
---|
2546 | str(fftthresh).lower(),
|
---|
2547 | workscan._parse_wn(addwn),
|
---|
2548 | workscan._parse_wn(rejwn),
|
---|
2549 | clipthresh, clipniter,
|
---|
2550 | getresidual,
|
---|
2551 | pack_progress_params(showprogress,
|
---|
2552 | minnrow),
|
---|
2553 | outlog, scsvformat+blfile)
|
---|
2554 | workscan._add_history('sinusoid_baseline', varlist)
|
---|
2555 |
|
---|
2556 | if insitu:
|
---|
2557 | self._assign(workscan)
|
---|
2558 | else:
|
---|
2559 | return workscan
|
---|
2560 |
|
---|
2561 | except RuntimeError, e:
|
---|
2562 | raise_fitting_failure_exception(e)
|
---|
2563 |
|
---|
2564 |
|
---|
2565 | @asaplog_post_dec
|
---|
2566 | def auto_sinusoid_baseline(self, insitu=None, mask=None, applyfft=None,
|
---|
2567 | fftmethod=None, fftthresh=None,
|
---|
2568 | addwn=None, rejwn=None, clipthresh=None,
|
---|
2569 | clipniter=None, edge=None, threshold=None,
|
---|
2570 | chan_avg_limit=None, plot=None,
|
---|
2571 | getresidual=None, showprogress=None,
|
---|
2572 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
2573 | """\
|
---|
2574 | Return a scan which has been baselined (all rows) with sinusoidal
|
---|
2575 | functions.
|
---|
2576 | Spectral lines are detected first using linefinder and masked out
|
---|
2577 | to avoid them affecting the baseline solution.
|
---|
2578 |
|
---|
2579 | Parameters:
|
---|
2580 | insitu: if False a new scantable is returned.
|
---|
2581 | Otherwise, the scaling is done in-situ
|
---|
2582 | The default is taken from .asaprc (False)
|
---|
2583 | mask: an optional mask retreived from scantable
|
---|
2584 | applyfft: if True use some method, such as FFT, to find
|
---|
2585 | strongest sinusoidal components in the wavenumber
|
---|
2586 | domain to be used for baseline fitting.
|
---|
2587 | default is True.
|
---|
2588 | fftmethod: method to find the strong sinusoidal components.
|
---|
2589 | now only 'fft' is available and it is the default.
|
---|
2590 | fftthresh: the threshold to select wave numbers to be used for
|
---|
2591 | fitting from the distribution of amplitudes in the
|
---|
2592 | wavenumber domain.
|
---|
2593 | both float and string values accepted.
|
---|
2594 | given a float value, the unit is set to sigma.
|
---|
2595 | for string values, allowed formats include:
|
---|
2596 | 'xsigma' or 'x' (= x-sigma level. e.g.,
|
---|
2597 | '3sigma'), or
|
---|
2598 | 'topx' (= the x strongest ones, e.g. 'top5').
|
---|
2599 | default is 3.0 (unit: sigma).
|
---|
2600 | addwn: the additional wave numbers to be used for fitting.
|
---|
2601 | list or integer value is accepted to specify every
|
---|
2602 | wave numbers. also string value can be used in case
|
---|
2603 | you need to specify wave numbers in a certain range,
|
---|
2604 | e.g., 'a-b' (= a, a+1, a+2, ..., b-1, b),
|
---|
2605 | '<a' (= 0,1,...,a-2,a-1),
|
---|
2606 | '>=a' (= a, a+1, ... up to the maximum wave
|
---|
2607 | number corresponding to the Nyquist
|
---|
2608 | frequency for the case of FFT).
|
---|
2609 | default is [0].
|
---|
2610 | rejwn: the wave numbers NOT to be used for fitting.
|
---|
2611 | can be set just as addwn but has higher priority:
|
---|
2612 | wave numbers which are specified both in addwn
|
---|
2613 | and rejwn will NOT be used. default is [].
|
---|
2614 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
2615 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
2616 | clipping (default is 0)
|
---|
2617 | edge: an optional number of channel to drop at
|
---|
2618 | the edge of spectrum. If only one value is
|
---|
2619 | specified, the same number will be dropped
|
---|
2620 | from both sides of the spectrum. Default
|
---|
2621 | is to keep all channels. Nested tuples
|
---|
2622 | represent individual edge selection for
|
---|
2623 | different IFs (a number of spectral channels
|
---|
2624 | can be different)
|
---|
2625 | threshold: the threshold used by line finder. It is
|
---|
2626 | better to keep it large as only strong lines
|
---|
2627 | affect the baseline solution.
|
---|
2628 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
2629 | channels to average during the search of
|
---|
2630 | weak and broad lines. The default is no
|
---|
2631 | averaging (and no search for weak lines).
|
---|
2632 | If such lines can affect the fitted baseline
|
---|
2633 | (e.g. a high order polynomial is fitted),
|
---|
2634 | increase this parameter (usually values up
|
---|
2635 | to 8 are reasonable). Most users of this
|
---|
2636 | method should find the default value sufficient.
|
---|
2637 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
2638 | plot the fit and the residual. In this each
|
---|
2639 | indivual fit has to be approved, by typing 'y'
|
---|
2640 | or 'n'
|
---|
2641 | getresidual: if False, returns best-fit values instead of
|
---|
2642 | residual. (default is True)
|
---|
2643 | showprogress: show progress status for large data.
|
---|
2644 | default is True.
|
---|
2645 | minnrow: minimum number of input spectra to show.
|
---|
2646 | default is 1000.
|
---|
2647 | outlog: Output the coefficients of the best-fit
|
---|
2648 | function to logger (default is False)
|
---|
2649 | blfile: Name of a text file in which the best-fit
|
---|
2650 | parameter values to be written
|
---|
2651 | (default is "": no file/logger output)
|
---|
2652 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
2653 |
|
---|
2654 | Example:
|
---|
2655 | bscan = scan.auto_sinusoid_baseline(addwn='<=10', insitu=False)
|
---|
2656 |
|
---|
2657 | Note:
|
---|
2658 | The best-fit parameter values output in logger and/or blfile are now
|
---|
2659 | based on specunit of 'channel'.
|
---|
2660 | """
|
---|
2661 |
|
---|
2662 | try:
|
---|
2663 | varlist = vars()
|
---|
2664 |
|
---|
2665 | if insitu is None: insitu = rcParams['insitu']
|
---|
2666 | if insitu:
|
---|
2667 | workscan = self
|
---|
2668 | else:
|
---|
2669 | workscan = self.copy()
|
---|
2670 |
|
---|
2671 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
2672 | if mask is None: mask = []
|
---|
2673 | if applyfft is None: applyfft = True
|
---|
2674 | if fftmethod is None: fftmethod = 'fft'
|
---|
2675 | if fftthresh is None: fftthresh = 3.0
|
---|
2676 | if addwn is None: addwn = [0]
|
---|
2677 | if rejwn is None: rejwn = []
|
---|
2678 | if clipthresh is None: clipthresh = 3.0
|
---|
2679 | if clipniter is None: clipniter = 0
|
---|
2680 | if edge is None: edge = (0,0)
|
---|
2681 | if threshold is None: threshold = 3
|
---|
2682 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
2683 | if plot is None: plot = False
|
---|
2684 | if getresidual is None: getresidual = True
|
---|
2685 | if showprogress is None: showprogress = True
|
---|
2686 | if minnrow is None: minnrow = 1000
|
---|
2687 | if outlog is None: outlog = False
|
---|
2688 | if blfile is None: blfile = ''
|
---|
2689 | if csvformat is None: csvformat = False
|
---|
2690 |
|
---|
2691 | if csvformat:
|
---|
2692 | scsvformat = "T"
|
---|
2693 | else:
|
---|
2694 | scsvformat = "F"
|
---|
2695 |
|
---|
2696 | #CURRENTLY, PLOT=true is UNAVAILABLE UNTIL sinusoidal fitting is implemented as a fitter method.
|
---|
2697 | workscan._auto_sinusoid_baseline(mask, applyfft,
|
---|
2698 | fftmethod.lower(),
|
---|
2699 | str(fftthresh).lower(),
|
---|
2700 | workscan._parse_wn(addwn),
|
---|
2701 | workscan._parse_wn(rejwn),
|
---|
2702 | clipthresh, clipniter,
|
---|
2703 | normalise_edge_param(edge),
|
---|
2704 | threshold, chan_avg_limit,
|
---|
2705 | getresidual,
|
---|
2706 | pack_progress_params(showprogress,
|
---|
2707 | minnrow),
|
---|
2708 | outlog, scsvformat+blfile)
|
---|
2709 | workscan._add_history("auto_sinusoid_baseline", varlist)
|
---|
2710 |
|
---|
2711 | if insitu:
|
---|
2712 | self._assign(workscan)
|
---|
2713 | else:
|
---|
2714 | return workscan
|
---|
2715 |
|
---|
2716 | except RuntimeError, e:
|
---|
2717 | raise_fitting_failure_exception(e)
|
---|
2718 |
|
---|
2719 | @asaplog_post_dec
|
---|
2720 | def cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
2721 | clipthresh=None, clipniter=None, plot=None,
|
---|
2722 | getresidual=None, showprogress=None, minnrow=None,
|
---|
2723 | outlog=None, blfile=None, csvformat=None):
|
---|
2724 | """\
|
---|
2725 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
2726 | function (piecewise cubic polynomial).
|
---|
2727 |
|
---|
2728 | Parameters:
|
---|
2729 | insitu: If False a new scantable is returned.
|
---|
2730 | Otherwise, the scaling is done in-situ
|
---|
2731 | The default is taken from .asaprc (False)
|
---|
2732 | mask: An optional mask
|
---|
2733 | npiece: Number of pieces. (default is 2)
|
---|
2734 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
2735 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
2736 | clipping (default is 0)
|
---|
2737 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
2738 | plot the fit and the residual. In this each
|
---|
2739 | indivual fit has to be approved, by typing 'y'
|
---|
2740 | or 'n'
|
---|
2741 | getresidual: if False, returns best-fit values instead of
|
---|
2742 | residual. (default is True)
|
---|
2743 | showprogress: show progress status for large data.
|
---|
2744 | default is True.
|
---|
2745 | minnrow: minimum number of input spectra to show.
|
---|
2746 | default is 1000.
|
---|
2747 | outlog: Output the coefficients of the best-fit
|
---|
2748 | function to logger (default is False)
|
---|
2749 | blfile: Name of a text file in which the best-fit
|
---|
2750 | parameter values to be written
|
---|
2751 | (default is "": no file/logger output)
|
---|
2752 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
2753 |
|
---|
2754 | Example:
|
---|
2755 | # return a scan baselined by a cubic spline consisting of 2 pieces
|
---|
2756 | # (i.e., 1 internal knot),
|
---|
2757 | # also with 3-sigma clipping, iteration up to 4 times
|
---|
2758 | bscan = scan.cspline_baseline(npiece=2,clipthresh=3.0,clipniter=4)
|
---|
2759 |
|
---|
2760 | Note:
|
---|
2761 | The best-fit parameter values output in logger and/or blfile are now
|
---|
2762 | based on specunit of 'channel'.
|
---|
2763 | """
|
---|
2764 |
|
---|
2765 | try:
|
---|
2766 | varlist = vars()
|
---|
2767 |
|
---|
2768 | if insitu is None: insitu = rcParams['insitu']
|
---|
2769 | if insitu:
|
---|
2770 | workscan = self
|
---|
2771 | else:
|
---|
2772 | workscan = self.copy()
|
---|
2773 |
|
---|
2774 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
2775 | if mask is None: mask = []
|
---|
2776 | if npiece is None: npiece = 2
|
---|
2777 | if clipthresh is None: clipthresh = 3.0
|
---|
2778 | if clipniter is None: clipniter = 0
|
---|
2779 | if plot is None: plot = False
|
---|
2780 | if getresidual is None: getresidual = True
|
---|
2781 | if showprogress is None: showprogress = True
|
---|
2782 | if minnrow is None: minnrow = 1000
|
---|
2783 | if outlog is None: outlog = False
|
---|
2784 | if blfile is None: blfile = ''
|
---|
2785 | if csvformat is None: csvformat = False
|
---|
2786 |
|
---|
2787 | if csvformat:
|
---|
2788 | scsvformat = "T"
|
---|
2789 | else:
|
---|
2790 | scsvformat = "F"
|
---|
2791 |
|
---|
2792 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
2793 | workscan._cspline_baseline(mask, npiece, clipthresh, clipniter,
|
---|
2794 | getresidual,
|
---|
2795 | pack_progress_params(showprogress,
|
---|
2796 | minnrow),
|
---|
2797 | outlog, scsvformat+blfile)
|
---|
2798 | workscan._add_history("cspline_baseline", varlist)
|
---|
2799 |
|
---|
2800 | if insitu:
|
---|
2801 | self._assign(workscan)
|
---|
2802 | else:
|
---|
2803 | return workscan
|
---|
2804 |
|
---|
2805 | except RuntimeError, e:
|
---|
2806 | raise_fitting_failure_exception(e)
|
---|
2807 |
|
---|
2808 | @asaplog_post_dec
|
---|
2809 | def auto_cspline_baseline(self, insitu=None, mask=None, npiece=None,
|
---|
2810 | clipthresh=None, clipniter=None,
|
---|
2811 | edge=None, threshold=None, chan_avg_limit=None,
|
---|
2812 | getresidual=None, plot=None,
|
---|
2813 | showprogress=None, minnrow=None, outlog=None,
|
---|
2814 | blfile=None, csvformat=None):
|
---|
2815 | """\
|
---|
2816 | Return a scan which has been baselined (all rows) by cubic spline
|
---|
2817 | function (piecewise cubic polynomial).
|
---|
2818 | Spectral lines are detected first using linefinder and masked out
|
---|
2819 | to avoid them affecting the baseline solution.
|
---|
2820 |
|
---|
2821 | Parameters:
|
---|
2822 | insitu: if False a new scantable is returned.
|
---|
2823 | Otherwise, the scaling is done in-situ
|
---|
2824 | The default is taken from .asaprc (False)
|
---|
2825 | mask: an optional mask retreived from scantable
|
---|
2826 | npiece: Number of pieces. (default is 2)
|
---|
2827 | clipthresh: Clipping threshold. (default is 3.0, unit: sigma)
|
---|
2828 | clipniter: maximum number of iteration of 'clipthresh'-sigma
|
---|
2829 | clipping (default is 0)
|
---|
2830 | edge: an optional number of channel to drop at
|
---|
2831 | the edge of spectrum. If only one value is
|
---|
2832 | specified, the same number will be dropped
|
---|
2833 | from both sides of the spectrum. Default
|
---|
2834 | is to keep all channels. Nested tuples
|
---|
2835 | represent individual edge selection for
|
---|
2836 | different IFs (a number of spectral channels
|
---|
2837 | can be different)
|
---|
2838 | threshold: the threshold used by line finder. It is
|
---|
2839 | better to keep it large as only strong lines
|
---|
2840 | affect the baseline solution.
|
---|
2841 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
2842 | channels to average during the search of
|
---|
2843 | weak and broad lines. The default is no
|
---|
2844 | averaging (and no search for weak lines).
|
---|
2845 | If such lines can affect the fitted baseline
|
---|
2846 | (e.g. a high order polynomial is fitted),
|
---|
2847 | increase this parameter (usually values up
|
---|
2848 | to 8 are reasonable). Most users of this
|
---|
2849 | method should find the default value sufficient.
|
---|
2850 | plot: *** CURRENTLY UNAVAILABLE, ALWAYS FALSE ***
|
---|
2851 | plot the fit and the residual. In this each
|
---|
2852 | indivual fit has to be approved, by typing 'y'
|
---|
2853 | or 'n'
|
---|
2854 | getresidual: if False, returns best-fit values instead of
|
---|
2855 | residual. (default is True)
|
---|
2856 | showprogress: show progress status for large data.
|
---|
2857 | default is True.
|
---|
2858 | minnrow: minimum number of input spectra to show.
|
---|
2859 | default is 1000.
|
---|
2860 | outlog: Output the coefficients of the best-fit
|
---|
2861 | function to logger (default is False)
|
---|
2862 | blfile: Name of a text file in which the best-fit
|
---|
2863 | parameter values to be written
|
---|
2864 | (default is "": no file/logger output)
|
---|
2865 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
2866 |
|
---|
2867 | Example:
|
---|
2868 | bscan = scan.auto_cspline_baseline(npiece=3, insitu=False)
|
---|
2869 |
|
---|
2870 | Note:
|
---|
2871 | The best-fit parameter values output in logger and/or blfile are now
|
---|
2872 | based on specunit of 'channel'.
|
---|
2873 | """
|
---|
2874 |
|
---|
2875 | try:
|
---|
2876 | varlist = vars()
|
---|
2877 |
|
---|
2878 | if insitu is None: insitu = rcParams['insitu']
|
---|
2879 | if insitu:
|
---|
2880 | workscan = self
|
---|
2881 | else:
|
---|
2882 | workscan = self.copy()
|
---|
2883 |
|
---|
2884 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
2885 | if mask is None: mask = []
|
---|
2886 | if npiece is None: npiece = 2
|
---|
2887 | if clipthresh is None: clipthresh = 3.0
|
---|
2888 | if clipniter is None: clipniter = 0
|
---|
2889 | if edge is None: edge = (0, 0)
|
---|
2890 | if threshold is None: threshold = 3
|
---|
2891 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
2892 | if plot is None: plot = False
|
---|
2893 | if getresidual is None: getresidual = True
|
---|
2894 | if showprogress is None: showprogress = True
|
---|
2895 | if minnrow is None: minnrow = 1000
|
---|
2896 | if outlog is None: outlog = False
|
---|
2897 | if blfile is None: blfile = ''
|
---|
2898 | if csvformat is None: csvformat = False
|
---|
2899 |
|
---|
2900 | if csvformat:
|
---|
2901 | scsvformat = "T"
|
---|
2902 | else:
|
---|
2903 | scsvformat = "F"
|
---|
2904 |
|
---|
2905 | #CURRENTLY, PLOT=true UNAVAILABLE UNTIL cubic spline fitting is implemented as a fitter method.
|
---|
2906 | workscan._auto_cspline_baseline(mask, npiece, clipthresh,
|
---|
2907 | clipniter,
|
---|
2908 | normalise_edge_param(edge),
|
---|
2909 | threshold,
|
---|
2910 | chan_avg_limit, getresidual,
|
---|
2911 | pack_progress_params(showprogress,
|
---|
2912 | minnrow),
|
---|
2913 | outlog, scsvformat+blfile)
|
---|
2914 | workscan._add_history("auto_cspline_baseline", varlist)
|
---|
2915 |
|
---|
2916 | if insitu:
|
---|
2917 | self._assign(workscan)
|
---|
2918 | else:
|
---|
2919 | return workscan
|
---|
2920 |
|
---|
2921 | except RuntimeError, e:
|
---|
2922 | raise_fitting_failure_exception(e)
|
---|
2923 |
|
---|
2924 | @asaplog_post_dec
|
---|
2925 | def poly_baseline(self, mask=None, order=None, insitu=None, plot=None,
|
---|
2926 | getresidual=None, showprogress=None, minnrow=None,
|
---|
2927 | outlog=None, blfile=None, csvformat=None):
|
---|
2928 | """\
|
---|
2929 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
2930 | Parameters:
|
---|
2931 | insitu: if False a new scantable is returned.
|
---|
2932 | Otherwise, the scaling is done in-situ
|
---|
2933 | The default is taken from .asaprc (False)
|
---|
2934 | mask: an optional mask
|
---|
2935 | order: the order of the polynomial (default is 0)
|
---|
2936 | plot: plot the fit and the residual. In this each
|
---|
2937 | indivual fit has to be approved, by typing 'y'
|
---|
2938 | or 'n'
|
---|
2939 | getresidual: if False, returns best-fit values instead of
|
---|
2940 | residual. (default is True)
|
---|
2941 | showprogress: show progress status for large data.
|
---|
2942 | default is True.
|
---|
2943 | minnrow: minimum number of input spectra to show.
|
---|
2944 | default is 1000.
|
---|
2945 | outlog: Output the coefficients of the best-fit
|
---|
2946 | function to logger (default is False)
|
---|
2947 | blfile: Name of a text file in which the best-fit
|
---|
2948 | parameter values to be written
|
---|
2949 | (default is "": no file/logger output)
|
---|
2950 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
2951 |
|
---|
2952 | Example:
|
---|
2953 | # return a scan baselined by a third order polynomial,
|
---|
2954 | # not using a mask
|
---|
2955 | bscan = scan.poly_baseline(order=3)
|
---|
2956 | """
|
---|
2957 |
|
---|
2958 | try:
|
---|
2959 | varlist = vars()
|
---|
2960 |
|
---|
2961 | if insitu is None:
|
---|
2962 | insitu = rcParams["insitu"]
|
---|
2963 | if insitu:
|
---|
2964 | workscan = self
|
---|
2965 | else:
|
---|
2966 | workscan = self.copy()
|
---|
2967 |
|
---|
2968 | #if mask is None: mask = [True for i in \
|
---|
2969 | # xrange(workscan.nchan())]
|
---|
2970 | if mask is None: mask = []
|
---|
2971 | if order is None: order = 0
|
---|
2972 | if plot is None: plot = False
|
---|
2973 | if getresidual is None: getresidual = True
|
---|
2974 | if showprogress is None: showprogress = True
|
---|
2975 | if minnrow is None: minnrow = 1000
|
---|
2976 | if outlog is None: outlog = False
|
---|
2977 | if blfile is None: blfile = ""
|
---|
2978 | if csvformat is None: csvformat = False
|
---|
2979 |
|
---|
2980 | if csvformat:
|
---|
2981 | scsvformat = "T"
|
---|
2982 | else:
|
---|
2983 | scsvformat = "F"
|
---|
2984 |
|
---|
2985 | if plot:
|
---|
2986 | outblfile = (blfile != "") and \
|
---|
2987 | os.path.exists(os.path.expanduser(
|
---|
2988 | os.path.expandvars(blfile))
|
---|
2989 | )
|
---|
2990 | if outblfile:
|
---|
2991 | blf = open(blfile, "a")
|
---|
2992 |
|
---|
2993 | f = fitter()
|
---|
2994 | f.set_function(lpoly=order)
|
---|
2995 |
|
---|
2996 | rows = xrange(workscan.nrow())
|
---|
2997 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
2998 |
|
---|
2999 | for r in rows:
|
---|
3000 | f.x = workscan._getabcissa(r)
|
---|
3001 | f.y = workscan._getspectrum(r)
|
---|
3002 | if mask:
|
---|
3003 | f.mask = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
3004 | else: # mask=None
|
---|
3005 | f.mask = workscan._getmask(r)
|
---|
3006 |
|
---|
3007 | f.data = None
|
---|
3008 | f.fit()
|
---|
3009 |
|
---|
3010 | f.plot(residual=True)
|
---|
3011 | accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
3012 | if accept_fit.upper() == "N":
|
---|
3013 | #workscan._append_blinfo(None, None, None)
|
---|
3014 | continue
|
---|
3015 |
|
---|
3016 | blpars = f.get_parameters()
|
---|
3017 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
3018 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
3019 | workscan._setspectrum((f.fitter.getresidual()
|
---|
3020 | if getresidual else f.fitter.getfit()), r)
|
---|
3021 |
|
---|
3022 | if outblfile:
|
---|
3023 | rms = workscan.get_rms(f.mask, r)
|
---|
3024 | dataout = \
|
---|
3025 | workscan.format_blparams_row(blpars["params"],
|
---|
3026 | blpars["fixed"],
|
---|
3027 | rms, str(masklist),
|
---|
3028 | r, True, csvformat)
|
---|
3029 | blf.write(dataout)
|
---|
3030 |
|
---|
3031 | f._p.unmap()
|
---|
3032 | f._p = None
|
---|
3033 |
|
---|
3034 | if outblfile:
|
---|
3035 | blf.close()
|
---|
3036 | else:
|
---|
3037 | workscan._poly_baseline(mask, order, getresidual,
|
---|
3038 | pack_progress_params(showprogress,
|
---|
3039 | minnrow),
|
---|
3040 | outlog, scsvformat+blfile)
|
---|
3041 |
|
---|
3042 | workscan._add_history("poly_baseline", varlist)
|
---|
3043 |
|
---|
3044 | if insitu:
|
---|
3045 | self._assign(workscan)
|
---|
3046 | else:
|
---|
3047 | return workscan
|
---|
3048 |
|
---|
3049 | except RuntimeError, e:
|
---|
3050 | raise_fitting_failure_exception(e)
|
---|
3051 |
|
---|
3052 | @asaplog_post_dec
|
---|
3053 | def auto_poly_baseline(self, mask=None, order=None, edge=None,
|
---|
3054 | threshold=None, chan_avg_limit=None,
|
---|
3055 | plot=None, insitu=None,
|
---|
3056 | getresidual=None, showprogress=None,
|
---|
3057 | minnrow=None, outlog=None, blfile=None, csvformat=None):
|
---|
3058 | """\
|
---|
3059 | Return a scan which has been baselined (all rows) by a polynomial.
|
---|
3060 | Spectral lines are detected first using linefinder and masked out
|
---|
3061 | to avoid them affecting the baseline solution.
|
---|
3062 |
|
---|
3063 | Parameters:
|
---|
3064 | insitu: if False a new scantable is returned.
|
---|
3065 | Otherwise, the scaling is done in-situ
|
---|
3066 | The default is taken from .asaprc (False)
|
---|
3067 | mask: an optional mask retreived from scantable
|
---|
3068 | order: the order of the polynomial (default is 0)
|
---|
3069 | edge: an optional number of channel to drop at
|
---|
3070 | the edge of spectrum. If only one value is
|
---|
3071 | specified, the same number will be dropped
|
---|
3072 | from both sides of the spectrum. Default
|
---|
3073 | is to keep all channels. Nested tuples
|
---|
3074 | represent individual edge selection for
|
---|
3075 | different IFs (a number of spectral channels
|
---|
3076 | can be different)
|
---|
3077 | threshold: the threshold used by line finder. It is
|
---|
3078 | better to keep it large as only strong lines
|
---|
3079 | affect the baseline solution.
|
---|
3080 | chan_avg_limit: a maximum number of consequtive spectral
|
---|
3081 | channels to average during the search of
|
---|
3082 | weak and broad lines. The default is no
|
---|
3083 | averaging (and no search for weak lines).
|
---|
3084 | If such lines can affect the fitted baseline
|
---|
3085 | (e.g. a high order polynomial is fitted),
|
---|
3086 | increase this parameter (usually values up
|
---|
3087 | to 8 are reasonable). Most users of this
|
---|
3088 | method should find the default value sufficient.
|
---|
3089 | plot: plot the fit and the residual. In this each
|
---|
3090 | indivual fit has to be approved, by typing 'y'
|
---|
3091 | or 'n'
|
---|
3092 | getresidual: if False, returns best-fit values instead of
|
---|
3093 | residual. (default is True)
|
---|
3094 | showprogress: show progress status for large data.
|
---|
3095 | default is True.
|
---|
3096 | minnrow: minimum number of input spectra to show.
|
---|
3097 | default is 1000.
|
---|
3098 | outlog: Output the coefficients of the best-fit
|
---|
3099 | function to logger (default is False)
|
---|
3100 | blfile: Name of a text file in which the best-fit
|
---|
3101 | parameter values to be written
|
---|
3102 | (default is "": no file/logger output)
|
---|
3103 | csvformat: if True blfile is csv-formatted, default is False.
|
---|
3104 |
|
---|
3105 | Example:
|
---|
3106 | bscan = scan.auto_poly_baseline(order=7, insitu=False)
|
---|
3107 | """
|
---|
3108 |
|
---|
3109 | try:
|
---|
3110 | varlist = vars()
|
---|
3111 |
|
---|
3112 | if insitu is None:
|
---|
3113 | insitu = rcParams['insitu']
|
---|
3114 | if insitu:
|
---|
3115 | workscan = self
|
---|
3116 | else:
|
---|
3117 | workscan = self.copy()
|
---|
3118 |
|
---|
3119 | #if mask is None: mask = [True for i in xrange(workscan.nchan())]
|
---|
3120 | if mask is None: mask = []
|
---|
3121 | if order is None: order = 0
|
---|
3122 | if edge is None: edge = (0, 0)
|
---|
3123 | if threshold is None: threshold = 3
|
---|
3124 | if chan_avg_limit is None: chan_avg_limit = 1
|
---|
3125 | if plot is None: plot = False
|
---|
3126 | if getresidual is None: getresidual = True
|
---|
3127 | if showprogress is None: showprogress = True
|
---|
3128 | if minnrow is None: minnrow = 1000
|
---|
3129 | if outlog is None: outlog = False
|
---|
3130 | if blfile is None: blfile = ''
|
---|
3131 | if csvformat is None: csvformat = False
|
---|
3132 |
|
---|
3133 | if csvformat:
|
---|
3134 | scsvformat = "T"
|
---|
3135 | else:
|
---|
3136 | scsvformat = "F"
|
---|
3137 |
|
---|
3138 | edge = normalise_edge_param(edge)
|
---|
3139 |
|
---|
3140 | if plot:
|
---|
3141 | outblfile = (blfile != "") and \
|
---|
3142 | os.path.exists(os.path.expanduser(os.path.expandvars(blfile)))
|
---|
3143 | if outblfile: blf = open(blfile, "a")
|
---|
3144 |
|
---|
3145 | from asap.asaplinefind import linefinder
|
---|
3146 | fl = linefinder()
|
---|
3147 | fl.set_options(threshold=threshold, avg_limit=chan_avg_limit)
|
---|
3148 | fl.set_scan(workscan)
|
---|
3149 |
|
---|
3150 | f = fitter()
|
---|
3151 | f.set_function(lpoly=order)
|
---|
3152 |
|
---|
3153 | rows = xrange(workscan.nrow())
|
---|
3154 | #if len(rows) > 0: workscan._init_blinfo()
|
---|
3155 |
|
---|
3156 | for r in rows:
|
---|
3157 | idx = 2*workscan.getif(r)
|
---|
3158 | if mask:
|
---|
3159 | msk = mask_and(mask, workscan._getmask(r)) # (CAS-1434)
|
---|
3160 | else: # mask=None
|
---|
3161 | msk = workscan._getmask(r)
|
---|
3162 | fl.find_lines(r, msk, edge[idx:idx+2])
|
---|
3163 |
|
---|
3164 | f.x = workscan._getabcissa(r)
|
---|
3165 | f.y = workscan._getspectrum(r)
|
---|
3166 | f.mask = fl.get_mask()
|
---|
3167 | f.data = None
|
---|
3168 | f.fit()
|
---|
3169 |
|
---|
3170 | f.plot(residual=True)
|
---|
3171 | accept_fit = raw_input("Accept fit ( [y]/n ): ")
|
---|
3172 | if accept_fit.upper() == "N":
|
---|
3173 | #workscan._append_blinfo(None, None, None)
|
---|
3174 | continue
|
---|
3175 |
|
---|
3176 | blpars = f.get_parameters()
|
---|
3177 | masklist = workscan.get_masklist(f.mask, row=r, silent=True)
|
---|
3178 | #workscan._append_blinfo(blpars, masklist, f.mask)
|
---|
3179 | workscan._setspectrum(
|
---|
3180 | (f.fitter.getresidual() if getresidual
|
---|
3181 | else f.fitter.getfit()), r
|
---|
3182 | )
|
---|
3183 |
|
---|
3184 | if outblfile:
|
---|
3185 | rms = workscan.get_rms(f.mask, r)
|
---|
3186 | dataout = \
|
---|
3187 | workscan.format_blparams_row(blpars["params"],
|
---|
3188 | blpars["fixed"],
|
---|
3189 | rms, str(masklist),
|
---|
3190 | r, True, csvformat)
|
---|
3191 | blf.write(dataout)
|
---|
3192 |
|
---|
3193 | f._p.unmap()
|
---|
3194 | f._p = None
|
---|
3195 |
|
---|
3196 | if outblfile: blf.close()
|
---|
3197 | else:
|
---|
3198 | workscan._auto_poly_baseline(mask, order, edge, threshold,
|
---|
3199 | chan_avg_limit, getresidual,
|
---|
3200 | pack_progress_params(showprogress,
|
---|
3201 | minnrow),
|
---|
3202 | outlog, scsvformat+blfile)
|
---|
3203 |
|
---|
3204 | workscan._add_history("auto_poly_baseline", varlist)
|
---|
3205 |
|
---|
3206 | if insitu:
|
---|
3207 | self._assign(workscan)
|
---|
3208 | else:
|
---|
3209 | return workscan
|
---|
3210 |
|
---|
3211 | except RuntimeError, e:
|
---|
3212 | raise_fitting_failure_exception(e)
|
---|
3213 |
|
---|
3214 | def _init_blinfo(self):
|
---|
3215 | """\
|
---|
3216 | Initialise the following three auxiliary members:
|
---|
3217 | blpars : parameters of the best-fit baseline,
|
---|
3218 | masklists : mask data (edge positions of masked channels) and
|
---|
3219 | actualmask : mask data (in boolean list),
|
---|
3220 | to keep for use later (including output to logger/text files).
|
---|
3221 | Used by poly_baseline() and auto_poly_baseline() in case of
|
---|
3222 | 'plot=True'.
|
---|
3223 | """
|
---|
3224 | self.blpars = []
|
---|
3225 | self.masklists = []
|
---|
3226 | self.actualmask = []
|
---|
3227 | return
|
---|
3228 |
|
---|
3229 | def _append_blinfo(self, data_blpars, data_masklists, data_actualmask):
|
---|
3230 | """\
|
---|
3231 | Append baseline-fitting related info to blpars, masklist and
|
---|
3232 | actualmask.
|
---|
3233 | """
|
---|
3234 | self.blpars.append(data_blpars)
|
---|
3235 | self.masklists.append(data_masklists)
|
---|
3236 | self.actualmask.append(data_actualmask)
|
---|
3237 | return
|
---|
3238 |
|
---|
3239 | @asaplog_post_dec
|
---|
3240 | def rotate_linpolphase(self, angle):
|
---|
3241 | """\
|
---|
3242 | Rotate the phase of the complex polarization O=Q+iU correlation.
|
---|
3243 | This is always done in situ in the raw data. So if you call this
|
---|
3244 | function more than once then each call rotates the phase further.
|
---|
3245 |
|
---|
3246 | Parameters:
|
---|
3247 |
|
---|
3248 | angle: The angle (degrees) to rotate (add) by.
|
---|
3249 |
|
---|
3250 | Example::
|
---|
3251 |
|
---|
3252 | scan.rotate_linpolphase(2.3)
|
---|
3253 |
|
---|
3254 | """
|
---|
3255 | varlist = vars()
|
---|
3256 | self._math._rotate_linpolphase(self, angle)
|
---|
3257 | self._add_history("rotate_linpolphase", varlist)
|
---|
3258 | return
|
---|
3259 |
|
---|
3260 | @asaplog_post_dec
|
---|
3261 | def rotate_xyphase(self, angle):
|
---|
3262 | """\
|
---|
3263 | Rotate the phase of the XY correlation. This is always done in situ
|
---|
3264 | in the data. So if you call this function more than once
|
---|
3265 | then each call rotates the phase further.
|
---|
3266 |
|
---|
3267 | Parameters:
|
---|
3268 |
|
---|
3269 | angle: The angle (degrees) to rotate (add) by.
|
---|
3270 |
|
---|
3271 | Example::
|
---|
3272 |
|
---|
3273 | scan.rotate_xyphase(2.3)
|
---|
3274 |
|
---|
3275 | """
|
---|
3276 | varlist = vars()
|
---|
3277 | self._math._rotate_xyphase(self, angle)
|
---|
3278 | self._add_history("rotate_xyphase", varlist)
|
---|
3279 | return
|
---|
3280 |
|
---|
3281 | @asaplog_post_dec
|
---|
3282 | def swap_linears(self):
|
---|
3283 | """\
|
---|
3284 | Swap the linear polarisations XX and YY, or better the first two
|
---|
3285 | polarisations as this also works for ciculars.
|
---|
3286 | """
|
---|
3287 | varlist = vars()
|
---|
3288 | self._math._swap_linears(self)
|
---|
3289 | self._add_history("swap_linears", varlist)
|
---|
3290 | return
|
---|
3291 |
|
---|
3292 | @asaplog_post_dec
|
---|
3293 | def invert_phase(self):
|
---|
3294 | """\
|
---|
3295 | Invert the phase of the complex polarisation
|
---|
3296 | """
|
---|
3297 | varlist = vars()
|
---|
3298 | self._math._invert_phase(self)
|
---|
3299 | self._add_history("invert_phase", varlist)
|
---|
3300 | return
|
---|
3301 |
|
---|
3302 | @asaplog_post_dec
|
---|
3303 | def add(self, offset, insitu=None):
|
---|
3304 | """\
|
---|
3305 | Return a scan where all spectra have the offset added
|
---|
3306 |
|
---|
3307 | Parameters:
|
---|
3308 |
|
---|
3309 | offset: the offset
|
---|
3310 |
|
---|
3311 | insitu: if False a new scantable is returned.
|
---|
3312 | Otherwise, the scaling is done in-situ
|
---|
3313 | The default is taken from .asaprc (False)
|
---|
3314 |
|
---|
3315 | """
|
---|
3316 | if insitu is None: insitu = rcParams['insitu']
|
---|
3317 | self._math._setinsitu(insitu)
|
---|
3318 | varlist = vars()
|
---|
3319 | s = scantable(self._math._unaryop(self, offset, "ADD", False))
|
---|
3320 | s._add_history("add", varlist)
|
---|
3321 | if insitu:
|
---|
3322 | self._assign(s)
|
---|
3323 | else:
|
---|
3324 | return s
|
---|
3325 |
|
---|
3326 | @asaplog_post_dec
|
---|
3327 | def scale(self, factor, tsys=True, insitu=None):
|
---|
3328 | """\
|
---|
3329 |
|
---|
3330 | Return a scan where all spectra are scaled by the given 'factor'
|
---|
3331 |
|
---|
3332 | Parameters:
|
---|
3333 |
|
---|
3334 | factor: the scaling factor (float or 1D float list)
|
---|
3335 |
|
---|
3336 | insitu: if False a new scantable is returned.
|
---|
3337 | Otherwise, the scaling is done in-situ
|
---|
3338 | The default is taken from .asaprc (False)
|
---|
3339 |
|
---|
3340 | tsys: if True (default) then apply the operation to Tsys
|
---|
3341 | as well as the data
|
---|
3342 |
|
---|
3343 | """
|
---|
3344 | if insitu is None: insitu = rcParams['insitu']
|
---|
3345 | self._math._setinsitu(insitu)
|
---|
3346 | varlist = vars()
|
---|
3347 | s = None
|
---|
3348 | import numpy
|
---|
3349 | if isinstance(factor, list) or isinstance(factor, numpy.ndarray):
|
---|
3350 | if isinstance(factor[0], list) or isinstance(factor[0],
|
---|
3351 | numpy.ndarray):
|
---|
3352 | from asapmath import _array2dOp
|
---|
3353 | s = _array2dOp( self, factor, "MUL", tsys, insitu )
|
---|
3354 | else:
|
---|
3355 | s = scantable( self._math._arrayop( self, factor,
|
---|
3356 | "MUL", tsys ) )
|
---|
3357 | else:
|
---|
3358 | s = scantable(self._math._unaryop(self, factor, "MUL", tsys))
|
---|
3359 | s._add_history("scale", varlist)
|
---|
3360 | if insitu:
|
---|
3361 | self._assign(s)
|
---|
3362 | else:
|
---|
3363 | return s
|
---|
3364 |
|
---|
3365 | @preserve_selection
|
---|
3366 | def set_sourcetype(self, match, matchtype="pattern",
|
---|
3367 | sourcetype="reference"):
|
---|
3368 | """\
|
---|
3369 | Set the type of the source to be an source or reference scan
|
---|
3370 | using the provided pattern.
|
---|
3371 |
|
---|
3372 | Parameters:
|
---|
3373 |
|
---|
3374 | match: a Unix style pattern, regular expression or selector
|
---|
3375 |
|
---|
3376 | matchtype: 'pattern' (default) UNIX style pattern or
|
---|
3377 | 'regex' regular expression
|
---|
3378 |
|
---|
3379 | sourcetype: the type of the source to use (source/reference)
|
---|
3380 |
|
---|
3381 | """
|
---|
3382 | varlist = vars()
|
---|
3383 | stype = -1
|
---|
3384 | if sourcetype.lower().startswith("r") or sourcetype.lower() == "off":
|
---|
3385 | stype = 1
|
---|
3386 | elif sourcetype.lower().startswith("s") or sourcetype.lower() == "on":
|
---|
3387 | stype = 0
|
---|
3388 | else:
|
---|
3389 | raise ValueError("Illegal sourcetype use s(ource)/on or r(eference)/off")
|
---|
3390 | if matchtype.lower().startswith("p"):
|
---|
3391 | matchtype = "pattern"
|
---|
3392 | elif matchtype.lower().startswith("r"):
|
---|
3393 | matchtype = "regex"
|
---|
3394 | else:
|
---|
3395 | raise ValueError("Illegal matchtype, use p(attern) or r(egex)")
|
---|
3396 | sel = selector()
|
---|
3397 | if isinstance(match, selector):
|
---|
3398 | sel = match
|
---|
3399 | else:
|
---|
3400 | sel.set_query("SRCNAME=%s('%s')" % (matchtype, match))
|
---|
3401 | self.set_selection(sel)
|
---|
3402 | self._setsourcetype(stype)
|
---|
3403 | self._add_history("set_sourcetype", varlist)
|
---|
3404 |
|
---|
3405 | @asaplog_post_dec
|
---|
3406 | @preserve_selection
|
---|
3407 | def auto_quotient(self, preserve=True, mode='paired', verify=False):
|
---|
3408 | """\
|
---|
3409 | This function allows to build quotients automatically.
|
---|
3410 | It assumes the observation to have the same number of
|
---|
3411 | "ons" and "offs"
|
---|
3412 |
|
---|
3413 | Parameters:
|
---|
3414 |
|
---|
3415 | preserve: you can preserve (default) the continuum or
|
---|
3416 | remove it. The equations used are
|
---|
3417 |
|
---|
3418 | preserve: Output = Toff * (on/off) - Toff
|
---|
3419 |
|
---|
3420 | remove: Output = Toff * (on/off) - Ton
|
---|
3421 |
|
---|
3422 | mode: the on/off detection mode
|
---|
3423 | 'paired' (default)
|
---|
3424 | identifies 'off' scans by the
|
---|
3425 | trailing '_R' (Mopra/Parkes) or
|
---|
3426 | '_e'/'_w' (Tid) and matches
|
---|
3427 | on/off pairs from the observing pattern
|
---|
3428 | 'time'
|
---|
3429 | finds the closest off in time
|
---|
3430 |
|
---|
3431 | .. todo:: verify argument is not implemented
|
---|
3432 |
|
---|
3433 | """
|
---|
3434 | varlist = vars()
|
---|
3435 | modes = ["time", "paired"]
|
---|
3436 | if not mode in modes:
|
---|
3437 | msg = "please provide valid mode. Valid modes are %s" % (modes)
|
---|
3438 | raise ValueError(msg)
|
---|
3439 | s = None
|
---|
3440 | if mode.lower() == "paired":
|
---|
3441 | sel = self.get_selection()
|
---|
3442 | sel.set_query("SRCTYPE==psoff")
|
---|
3443 | self.set_selection(sel)
|
---|
3444 | offs = self.copy()
|
---|
3445 | sel.set_query("SRCTYPE==pson")
|
---|
3446 | self.set_selection(sel)
|
---|
3447 | ons = self.copy()
|
---|
3448 | s = scantable(self._math._quotient(ons, offs, preserve))
|
---|
3449 | elif mode.lower() == "time":
|
---|
3450 | s = scantable(self._math._auto_quotient(self, mode, preserve))
|
---|
3451 | s._add_history("auto_quotient", varlist)
|
---|
3452 | return s
|
---|
3453 |
|
---|
3454 | @asaplog_post_dec
|
---|
3455 | def mx_quotient(self, mask = None, weight='median', preserve=True):
|
---|
3456 | """\
|
---|
3457 | Form a quotient using "off" beams when observing in "MX" mode.
|
---|
3458 |
|
---|
3459 | Parameters:
|
---|
3460 |
|
---|
3461 | mask: an optional mask to be used when weight == 'stddev'
|
---|
3462 |
|
---|
3463 | weight: How to average the off beams. Default is 'median'.
|
---|
3464 |
|
---|
3465 | preserve: you can preserve (default) the continuum or
|
---|
3466 | remove it. The equations used are:
|
---|
3467 |
|
---|
3468 | preserve: Output = Toff * (on/off) - Toff
|
---|
3469 |
|
---|
3470 | remove: Output = Toff * (on/off) - Ton
|
---|
3471 |
|
---|
3472 | """
|
---|
3473 | mask = mask or ()
|
---|
3474 | varlist = vars()
|
---|
3475 | on = scantable(self._math._mx_extract(self, 'on'))
|
---|
3476 | preoff = scantable(self._math._mx_extract(self, 'off'))
|
---|
3477 | off = preoff.average_time(mask=mask, weight=weight, scanav=False)
|
---|
3478 | from asapmath import quotient
|
---|
3479 | q = quotient(on, off, preserve)
|
---|
3480 | q._add_history("mx_quotient", varlist)
|
---|
3481 | return q
|
---|
3482 |
|
---|
3483 | @asaplog_post_dec
|
---|
3484 | def freq_switch(self, insitu=None):
|
---|
3485 | """\
|
---|
3486 | Apply frequency switching to the data.
|
---|
3487 |
|
---|
3488 | Parameters:
|
---|
3489 |
|
---|
3490 | insitu: if False a new scantable is returned.
|
---|
3491 | Otherwise, the swictching is done in-situ
|
---|
3492 | The default is taken from .asaprc (False)
|
---|
3493 |
|
---|
3494 | """
|
---|
3495 | if insitu is None: insitu = rcParams['insitu']
|
---|
3496 | self._math._setinsitu(insitu)
|
---|
3497 | varlist = vars()
|
---|
3498 | s = scantable(self._math._freqswitch(self))
|
---|
3499 | s._add_history("freq_switch", varlist)
|
---|
3500 | if insitu:
|
---|
3501 | self._assign(s)
|
---|
3502 | else:
|
---|
3503 | return s
|
---|
3504 |
|
---|
3505 | @asaplog_post_dec
|
---|
3506 | def recalc_azel(self):
|
---|
3507 | """Recalculate the azimuth and elevation for each position."""
|
---|
3508 | varlist = vars()
|
---|
3509 | self._recalcazel()
|
---|
3510 | self._add_history("recalc_azel", varlist)
|
---|
3511 | return
|
---|
3512 |
|
---|
3513 | @asaplog_post_dec
|
---|
3514 | def __add__(self, other):
|
---|
3515 | """
|
---|
3516 | implicit on all axes and on Tsys
|
---|
3517 | """
|
---|
3518 | varlist = vars()
|
---|
3519 | s = self.__op( other, "ADD" )
|
---|
3520 | s._add_history("operator +", varlist)
|
---|
3521 | return s
|
---|
3522 |
|
---|
3523 | @asaplog_post_dec
|
---|
3524 | def __sub__(self, other):
|
---|
3525 | """
|
---|
3526 | implicit on all axes and on Tsys
|
---|
3527 | """
|
---|
3528 | varlist = vars()
|
---|
3529 | s = self.__op( other, "SUB" )
|
---|
3530 | s._add_history("operator -", varlist)
|
---|
3531 | return s
|
---|
3532 |
|
---|
3533 | @asaplog_post_dec
|
---|
3534 | def __mul__(self, other):
|
---|
3535 | """
|
---|
3536 | implicit on all axes and on Tsys
|
---|
3537 | """
|
---|
3538 | varlist = vars()
|
---|
3539 | s = self.__op( other, "MUL" ) ;
|
---|
3540 | s._add_history("operator *", varlist)
|
---|
3541 | return s
|
---|
3542 |
|
---|
3543 |
|
---|
3544 | @asaplog_post_dec
|
---|
3545 | def __div__(self, other):
|
---|
3546 | """
|
---|
3547 | implicit on all axes and on Tsys
|
---|
3548 | """
|
---|
3549 | varlist = vars()
|
---|
3550 | s = self.__op( other, "DIV" )
|
---|
3551 | s._add_history("operator /", varlist)
|
---|
3552 | return s
|
---|
3553 |
|
---|
3554 | @asaplog_post_dec
|
---|
3555 | def __op( self, other, mode ):
|
---|
3556 | s = None
|
---|
3557 | if isinstance(other, scantable):
|
---|
3558 | s = scantable(self._math._binaryop(self, other, mode))
|
---|
3559 | elif isinstance(other, float):
|
---|
3560 | if other == 0.0:
|
---|
3561 | raise ZeroDivisionError("Dividing by zero is not recommended")
|
---|
3562 | s = scantable(self._math._unaryop(self, other, mode, False))
|
---|
3563 | elif isinstance(other, list) or isinstance(other, numpy.ndarray):
|
---|
3564 | if isinstance(other[0], list) \
|
---|
3565 | or isinstance(other[0], numpy.ndarray):
|
---|
3566 | from asapmath import _array2dOp
|
---|
3567 | s = _array2dOp( self, other, mode, False )
|
---|
3568 | else:
|
---|
3569 | s = scantable( self._math._arrayop( self, other,
|
---|
3570 | mode, False ) )
|
---|
3571 | else:
|
---|
3572 | raise TypeError("Other input is not a scantable or float value")
|
---|
3573 | return s
|
---|
3574 |
|
---|
3575 | @asaplog_post_dec
|
---|
3576 | def get_fit(self, row=0):
|
---|
3577 | """\
|
---|
3578 | Print or return the stored fits for a row in the scantable
|
---|
3579 |
|
---|
3580 | Parameters:
|
---|
3581 |
|
---|
3582 | row: the row which the fit has been applied to.
|
---|
3583 |
|
---|
3584 | """
|
---|
3585 | if row > self.nrow():
|
---|
3586 | return
|
---|
3587 | from asap.asapfit import asapfit
|
---|
3588 | fit = asapfit(self._getfit(row))
|
---|
3589 | asaplog.push( '%s' %(fit) )
|
---|
3590 | return fit.as_dict()
|
---|
3591 |
|
---|
3592 | @preserve_selection
|
---|
3593 | def flag_nans(self):
|
---|
3594 | """\
|
---|
3595 | Utility function to flag NaN values in the scantable.
|
---|
3596 | """
|
---|
3597 | import numpy
|
---|
3598 | basesel = self.get_selection()
|
---|
3599 | for i in range(self.nrow()):
|
---|
3600 | sel = self.get_row_selector(i)
|
---|
3601 | self.set_selection(basesel+sel)
|
---|
3602 | nans = numpy.isnan(self._getspectrum(0))
|
---|
3603 | if numpy.any(nans):
|
---|
3604 | bnans = [ bool(v) for v in nans]
|
---|
3605 | self.flag(bnans)
|
---|
3606 |
|
---|
3607 | def get_row_selector(self, rowno):
|
---|
3608 | return selector(rows=[rowno])
|
---|
3609 |
|
---|
3610 | def _add_history(self, funcname, parameters):
|
---|
3611 | if not rcParams['scantable.history']:
|
---|
3612 | return
|
---|
3613 | # create date
|
---|
3614 | sep = "##"
|
---|
3615 | from datetime import datetime
|
---|
3616 | dstr = datetime.now().strftime('%Y/%m/%d %H:%M:%S')
|
---|
3617 | hist = dstr+sep
|
---|
3618 | hist += funcname+sep#cdate+sep
|
---|
3619 | if parameters.has_key('self'):
|
---|
3620 | del parameters['self']
|
---|
3621 | for k, v in parameters.iteritems():
|
---|
3622 | if type(v) is dict:
|
---|
3623 | for k2, v2 in v.iteritems():
|
---|
3624 | hist += k2
|
---|
3625 | hist += "="
|
---|
3626 | if isinstance(v2, scantable):
|
---|
3627 | hist += 'scantable'
|
---|
3628 | elif k2 == 'mask':
|
---|
3629 | if isinstance(v2, list) or isinstance(v2, tuple):
|
---|
3630 | hist += str(self._zip_mask(v2))
|
---|
3631 | else:
|
---|
3632 | hist += str(v2)
|
---|
3633 | else:
|
---|
3634 | hist += str(v2)
|
---|
3635 | else:
|
---|
3636 | hist += k
|
---|
3637 | hist += "="
|
---|
3638 | if isinstance(v, scantable):
|
---|
3639 | hist += 'scantable'
|
---|
3640 | elif k == 'mask':
|
---|
3641 | if isinstance(v, list) or isinstance(v, tuple):
|
---|
3642 | hist += str(self._zip_mask(v))
|
---|
3643 | else:
|
---|
3644 | hist += str(v)
|
---|
3645 | else:
|
---|
3646 | hist += str(v)
|
---|
3647 | hist += sep
|
---|
3648 | hist = hist[:-2] # remove trailing '##'
|
---|
3649 | self._addhistory(hist)
|
---|
3650 |
|
---|
3651 |
|
---|
3652 | def _zip_mask(self, mask):
|
---|
3653 | mask = list(mask)
|
---|
3654 | i = 0
|
---|
3655 | segments = []
|
---|
3656 | while mask[i:].count(1):
|
---|
3657 | i += mask[i:].index(1)
|
---|
3658 | if mask[i:].count(0):
|
---|
3659 | j = i + mask[i:].index(0)
|
---|
3660 | else:
|
---|
3661 | j = len(mask)
|
---|
3662 | segments.append([i, j])
|
---|
3663 | i = j
|
---|
3664 | return segments
|
---|
3665 |
|
---|
3666 | def _get_ordinate_label(self):
|
---|
3667 | fu = "("+self.get_fluxunit()+")"
|
---|
3668 | import re
|
---|
3669 | lbl = "Intensity"
|
---|
3670 | if re.match(".K.", fu):
|
---|
3671 | lbl = "Brightness Temperature "+ fu
|
---|
3672 | elif re.match(".Jy.", fu):
|
---|
3673 | lbl = "Flux density "+ fu
|
---|
3674 | return lbl
|
---|
3675 |
|
---|
3676 | def _check_ifs(self):
|
---|
3677 | # return len(set([self.nchan(i) for i in self.getifnos()])) == 1
|
---|
3678 | nchans = [self.nchan(i) for i in self.getifnos()]
|
---|
3679 | nchans = filter(lambda t: t > 0, nchans)
|
---|
3680 | return (sum(nchans)/len(nchans) == nchans[0])
|
---|
3681 |
|
---|
3682 | @asaplog_post_dec
|
---|
3683 | def _fill(self, names, unit, average, opts={}):
|
---|
3684 | first = True
|
---|
3685 | fullnames = []
|
---|
3686 | for name in names:
|
---|
3687 | name = os.path.expandvars(name)
|
---|
3688 | name = os.path.expanduser(name)
|
---|
3689 | if not os.path.exists(name):
|
---|
3690 | msg = "File '%s' does not exists" % (name)
|
---|
3691 | raise IOError(msg)
|
---|
3692 | fullnames.append(name)
|
---|
3693 | if average:
|
---|
3694 | asaplog.push('Auto averaging integrations')
|
---|
3695 | stype = int(rcParams['scantable.storage'].lower() == 'disk')
|
---|
3696 | for name in fullnames:
|
---|
3697 | tbl = Scantable(stype)
|
---|
3698 | if is_ms( name ):
|
---|
3699 | r = msfiller( tbl )
|
---|
3700 | else:
|
---|
3701 | r = filler( tbl )
|
---|
3702 | msg = "Importing %s..." % (name)
|
---|
3703 | asaplog.push(msg, False)
|
---|
3704 | r.open(name, opts)
|
---|
3705 | rx = rcParams['scantable.reference']
|
---|
3706 | r.setreferenceexpr(rx)
|
---|
3707 | r.fill()
|
---|
3708 | if average:
|
---|
3709 | tbl = self._math._average((tbl, ), (), 'NONE', 'SCAN')
|
---|
3710 | if not first:
|
---|
3711 | tbl = self._math._merge([self, tbl])
|
---|
3712 | Scantable.__init__(self, tbl)
|
---|
3713 | r.close()
|
---|
3714 | del r, tbl
|
---|
3715 | first = False
|
---|
3716 | #flush log
|
---|
3717 | asaplog.post()
|
---|
3718 | if unit is not None:
|
---|
3719 | self.set_fluxunit(unit)
|
---|
3720 | if not is_casapy():
|
---|
3721 | self.set_freqframe(rcParams['scantable.freqframe'])
|
---|
3722 |
|
---|
3723 |
|
---|
3724 | def __getitem__(self, key):
|
---|
3725 | if key < 0:
|
---|
3726 | key += self.nrow()
|
---|
3727 | if key >= self.nrow():
|
---|
3728 | raise IndexError("Row index out of range.")
|
---|
3729 | return self._getspectrum(key)
|
---|
3730 |
|
---|
3731 | def __setitem__(self, key, value):
|
---|
3732 | if key < 0:
|
---|
3733 | key += self.nrow()
|
---|
3734 | if key >= self.nrow():
|
---|
3735 | raise IndexError("Row index out of range.")
|
---|
3736 | if not hasattr(value, "__len__") or \
|
---|
3737 | len(value) > self.nchan(self.getif(key)):
|
---|
3738 | raise ValueError("Spectrum length doesn't match.")
|
---|
3739 | return self._setspectrum(value, key)
|
---|
3740 |
|
---|
3741 | def __len__(self):
|
---|
3742 | return self.nrow()
|
---|
3743 |
|
---|
3744 | def __iter__(self):
|
---|
3745 | for i in range(len(self)):
|
---|
3746 | yield self[i]
|
---|