| 1 | import numpy
|
|---|
| 2 | from asap import rcParams
|
|---|
| 3 | from asap.scantable import scantable
|
|---|
| 4 | from asap.selector import selector
|
|---|
| 5 | from asap._asap import stgrid
|
|---|
| 6 | import pylab as pl
|
|---|
| 7 | from logging import asaplog
|
|---|
| 8 |
|
|---|
| 9 | class asapgrid:
|
|---|
| 10 | """
|
|---|
| 11 | The asapgrid class is defined to convolve data onto regular
|
|---|
| 12 | spatial grid. Typical usage is as follows:
|
|---|
| 13 |
|
|---|
| 14 | # create asapgrid instance with two input data
|
|---|
| 15 | g = asapgrid( ['testimage1.asap','testimage2.asap'] )
|
|---|
| 16 | # set IFNO if necessary
|
|---|
| 17 | g.setIF( 0 )
|
|---|
| 18 | # set POLNOs if necessary
|
|---|
| 19 | g.setPolList( [0,1] )
|
|---|
| 20 | # set SCANNOs if necessary
|
|---|
| 21 | g.setScanList( [22,23,24] )
|
|---|
| 22 | # define image with full specification
|
|---|
| 23 | # you can skip some parameters (see help for defineImage)
|
|---|
| 24 | g.defineImage( nx=12, ny=12, cellx='10arcsec', celly='10arcsec',
|
|---|
| 25 | center='J2000 10h10m10s -5d05m05s' )
|
|---|
| 26 | # set convolution function
|
|---|
| 27 | g.setFunc( func='sf', width=3 )
|
|---|
| 28 | # enable min/max clipping
|
|---|
| 29 | g.enableClip()
|
|---|
| 30 | # or, disable min/max clipping
|
|---|
| 31 | #g.disableClip()
|
|---|
| 32 | # actual gridding
|
|---|
| 33 | g.grid()
|
|---|
| 34 | # save result
|
|---|
| 35 | g.save( outfile='grid.asap' )
|
|---|
| 36 | # plot result
|
|---|
| 37 | g.plot( plotchan=1246, plotpol=-1, plotgrid=True, plotobs=True )
|
|---|
| 38 | """
|
|---|
| 39 | def __init__( self, infile ):
|
|---|
| 40 | """
|
|---|
| 41 | Create asapgrid instance.
|
|---|
| 42 |
|
|---|
| 43 | infile -- input data as a string or string list if you want
|
|---|
| 44 | to grid more than one data at once.
|
|---|
| 45 | """
|
|---|
| 46 | self.outfile = None
|
|---|
| 47 | self.ifno = None
|
|---|
| 48 | self.gridder = stgrid()
|
|---|
| 49 | self.setData( infile )
|
|---|
| 50 |
|
|---|
| 51 | def setData( self, infile ):
|
|---|
| 52 | """
|
|---|
| 53 | Set data to be processed.
|
|---|
| 54 |
|
|---|
| 55 | infile -- input data as a string or string list if you want
|
|---|
| 56 | to grid more than one data at once.
|
|---|
| 57 | """
|
|---|
| 58 | if isinstance( infile, str ):
|
|---|
| 59 | self.gridder._setin( infile )
|
|---|
| 60 | else:
|
|---|
| 61 | self.gridder._setfiles( infile )
|
|---|
| 62 | self.infile = infile
|
|---|
| 63 |
|
|---|
| 64 | def setIF( self, ifno ):
|
|---|
| 65 | """
|
|---|
| 66 | Set IFNO to be processed. Currently, asapgrid allows to process
|
|---|
| 67 | only one IFNO for one gridding run even if the data contains
|
|---|
| 68 | multiple IFs. If you didn't specify IFNO, default value, which
|
|---|
| 69 | is IFNO in the first spectrum, will be processed.
|
|---|
| 70 |
|
|---|
| 71 | ifno -- IFNO to be processed.
|
|---|
| 72 | """
|
|---|
| 73 | self.ifno = ifno
|
|---|
| 74 | self.gridder._setif( self.ifno )
|
|---|
| 75 |
|
|---|
| 76 | def setPolList( self, pollist ):
|
|---|
| 77 | """
|
|---|
| 78 | Set list of polarization components you want to process.
|
|---|
| 79 | If not specified, all POLNOs will be processed.
|
|---|
| 80 |
|
|---|
| 81 | pollist -- list of POLNOs.
|
|---|
| 82 | """
|
|---|
| 83 | self.gridder._setpollist( pollist )
|
|---|
| 84 |
|
|---|
| 85 | def setScanList( self, scanlist ):
|
|---|
| 86 | """
|
|---|
| 87 | Set list of scans you want to process. If not specified, all
|
|---|
| 88 | scans will be processed.
|
|---|
| 89 |
|
|---|
| 90 | scanlist -- list of SCANNOs.
|
|---|
| 91 | """
|
|---|
| 92 | self.gridder._setscanlist( scanlist )
|
|---|
| 93 |
|
|---|
| 94 | def defineImage( self, nx=-1, ny=-1, cellx='', celly='', center='' ):
|
|---|
| 95 | """
|
|---|
| 96 | Define spatial grid.
|
|---|
| 97 |
|
|---|
| 98 | First two parameters, nx and ny, define number of pixels of
|
|---|
| 99 | the grid. If which of those is not specified, it will be set
|
|---|
| 100 | to the same value as the other. If none of them are specified,
|
|---|
| 101 | it will be determined from map extent and cell size.
|
|---|
| 102 |
|
|---|
| 103 | Next two parameters, cellx and celly, define size of pixel.
|
|---|
| 104 | You should set those parameters as string, which is constructed
|
|---|
| 105 | numerical value and unit, e.g. '0.5arcmin', or numerical value.
|
|---|
| 106 | If those values are specified as numerical value, their units
|
|---|
| 107 | will be assumed to 'arcsec'. If which of those is not specified,
|
|---|
| 108 | it will be set to the same value as the other. If none of them
|
|---|
| 109 | are specified, it will be determined from map extent and number
|
|---|
| 110 | of pixels, or set to '1arcmin' if neither nx nor ny is set.
|
|---|
| 111 |
|
|---|
| 112 | The last parameter, center, define the central coordinate of
|
|---|
| 113 | the grid. You should specify its value as a string, like,
|
|---|
| 114 |
|
|---|
| 115 | 'J2000 05h08m50s -16d23m30s'
|
|---|
| 116 |
|
|---|
| 117 | or
|
|---|
| 118 |
|
|---|
| 119 | 'J2000 05:08:50 -16.23.30'
|
|---|
| 120 |
|
|---|
| 121 | You can omit equinox when you specify center coordinate. In that
|
|---|
| 122 | case, J2000 is assumed. If center is not specified, it will be
|
|---|
| 123 | determined from the observed positions of input data.
|
|---|
| 124 |
|
|---|
| 125 | nx -- number of pixels along x (R.A.) direction.
|
|---|
| 126 | ny -- number of pixels along y (Dec.) direction.
|
|---|
| 127 | cellx -- size of pixel in x (R.A.) direction.
|
|---|
| 128 | celly -- size of pixel in y (Dec.) direction.
|
|---|
| 129 | center -- central position of the grid.
|
|---|
| 130 | """
|
|---|
| 131 | if not isinstance( cellx, str ):
|
|---|
| 132 | cellx = '%sarcsec'%(cellx)
|
|---|
| 133 | if not isinstance( celly, str ):
|
|---|
| 134 | celly = '%sarcsec'%(celly)
|
|---|
| 135 | self.gridder._defineimage( nx, ny, cellx, celly, center )
|
|---|
| 136 |
|
|---|
| 137 | def setFunc( self, func='box', width=-1 ):
|
|---|
| 138 | """
|
|---|
| 139 | Set convolution function. Possible options are 'box' (Box-car,
|
|---|
| 140 | default), 'sf' (prolate spheroidal), and 'gauss' (Gaussian).
|
|---|
| 141 | Width of convolution function can be set using width parameter.
|
|---|
| 142 | By default (-1), width is automatically set depending on each
|
|---|
| 143 | convolution function. Default values for width are:
|
|---|
| 144 |
|
|---|
| 145 | 'box': 1 pixel
|
|---|
| 146 | 'sf': 3 pixels
|
|---|
| 147 | 'gauss': 1 pixel (width is used as HWHM)
|
|---|
| 148 |
|
|---|
| 149 | func -- Function type ('box', 'sf', 'gauss').
|
|---|
| 150 | width -- Width of convolution function. Default (-1) is to
|
|---|
| 151 | choose pre-defined value for each convolution function.
|
|---|
| 152 | """
|
|---|
| 153 | self.gridder._setfunc( func, width )
|
|---|
| 154 |
|
|---|
| 155 | def setWeight( self, weightType='uniform' ):
|
|---|
| 156 | """
|
|---|
| 157 | Set weight type. Possible options are 'uniform' (default),
|
|---|
| 158 | 'tint' (weight by integration time), 'tsys' (weight by
|
|---|
| 159 | Tsys: 1/Tsys**2), and 'tintsys' (weight by integration time
|
|---|
| 160 | as well as Tsys: tint/Tsys**2).
|
|---|
| 161 |
|
|---|
| 162 | weightType -- weight type ('uniform', 'tint', 'tsys', 'tintsys')
|
|---|
| 163 | """
|
|---|
| 164 | self.gridder._setweight( weightType )
|
|---|
| 165 |
|
|---|
| 166 | def enableClip( self ):
|
|---|
| 167 | """
|
|---|
| 168 | Enable min/max clipping.
|
|---|
| 169 |
|
|---|
| 170 | By default, min/max clipping is disabled so that you should
|
|---|
| 171 | call this method before actual gridding if you want to do
|
|---|
| 172 | clipping.
|
|---|
| 173 | """
|
|---|
| 174 | self.gridder._enableclip()
|
|---|
| 175 |
|
|---|
| 176 | def disableClip( self ):
|
|---|
| 177 | """
|
|---|
| 178 | Disable min/max clipping.
|
|---|
| 179 | """
|
|---|
| 180 | self.gridder._disableclip()
|
|---|
| 181 |
|
|---|
| 182 | def grid( self ):
|
|---|
| 183 | """
|
|---|
| 184 | Actual gridding which will be done based on several user inputs.
|
|---|
| 185 | """
|
|---|
| 186 | self.gridder._grid()
|
|---|
| 187 |
|
|---|
| 188 | def save( self, outfile='' ):
|
|---|
| 189 | """
|
|---|
| 190 | Save result. By default, output data name will be constructed
|
|---|
| 191 | from first element of input data name list (e.g. 'input.asap.grid').
|
|---|
| 192 |
|
|---|
| 193 | outfile -- output data name.
|
|---|
| 194 | """
|
|---|
| 195 | self.outfile = self.gridder._save( outfile )
|
|---|
| 196 |
|
|---|
| 197 | def plot( self, plotchan=-1, plotpol=-1, plotobs=False, plotgrid=False ):
|
|---|
| 198 | """
|
|---|
| 199 | Plot gridded data.
|
|---|
| 200 |
|
|---|
| 201 | plotchan -- Which channel you want to plot. Default (-1) is
|
|---|
| 202 | to average all the channels.
|
|---|
| 203 | plotpol -- Which polarization component you want to plot.
|
|---|
| 204 | Default (-1) is to average all the polarization
|
|---|
| 205 | components.
|
|---|
| 206 | plotobs -- Also plot observed position if True. Default
|
|---|
| 207 | is False. Setting True for large amount of spectra
|
|---|
| 208 | might be time consuming.
|
|---|
| 209 | plotgrid -- Also plot grid center if True. Default is False.
|
|---|
| 210 | Setting True for large number of grids might be
|
|---|
| 211 | time consuming.
|
|---|
| 212 | """
|
|---|
| 213 | import time
|
|---|
| 214 | t0=time.time()
|
|---|
| 215 | # to load scantable on disk
|
|---|
| 216 | storg = rcParams['scantable.storage']
|
|---|
| 217 | rcParams['scantable.storage'] = 'disk'
|
|---|
| 218 | plotter = _SDGridPlotter( self.infile, self.outfile, self.ifno )
|
|---|
| 219 | plotter.plot( chan=plotchan, pol=plotpol, plotobs=plotobs, plotgrid=plotgrid )
|
|---|
| 220 | # back to original setup
|
|---|
| 221 | rcParams['scantable.storage'] = storg
|
|---|
| 222 | t1=time.time()
|
|---|
| 223 | asaplog.push('plot: elapsed time %s sec'%(t1-t0))
|
|---|
| 224 | asaplog.post('DEBUG','asapgrid.plot')
|
|---|
| 225 |
|
|---|
| 226 | class _SDGridPlotter:
|
|---|
| 227 | def __init__( self, infile, outfile=None, ifno=-1 ):
|
|---|
| 228 | if isinstance( infile, str ):
|
|---|
| 229 | self.infile = [infile]
|
|---|
| 230 | else:
|
|---|
| 231 | self.infile = infile
|
|---|
| 232 | self.outfile = outfile
|
|---|
| 233 | if self.outfile is None:
|
|---|
| 234 | self.outfile = self.infile[0].rstrip('/')+'.grid'
|
|---|
| 235 | self.nx = -1
|
|---|
| 236 | self.ny = -1
|
|---|
| 237 | self.nchan = 0
|
|---|
| 238 | self.npol = 0
|
|---|
| 239 | self.pollist = []
|
|---|
| 240 | self.cellx = 0.0
|
|---|
| 241 | self.celly = 0.0
|
|---|
| 242 | self.center = [0.0,0.0]
|
|---|
| 243 | self.nonzero = [[0.0],[0.0]]
|
|---|
| 244 | self.ifno = ifno
|
|---|
| 245 | self.tablein = None
|
|---|
| 246 | self.nrow = 0
|
|---|
| 247 | self.blc = None
|
|---|
| 248 | self.trc = None
|
|---|
| 249 | self.get()
|
|---|
| 250 |
|
|---|
| 251 | def get( self ):
|
|---|
| 252 | s = scantable( self.outfile, average=False )
|
|---|
| 253 | self.nchan = len(s._getspectrum(0))
|
|---|
| 254 | nrow = s.nrow()
|
|---|
| 255 | pols = numpy.ones( nrow, dtype=int )
|
|---|
| 256 | for i in xrange(nrow):
|
|---|
| 257 | pols[i] = s.getpol(i)
|
|---|
| 258 | self.pollist, indices = numpy.unique( pols, return_inverse=True )
|
|---|
| 259 | self.npol = len(self.pollist)
|
|---|
| 260 | self.pollist = self.pollist[indices[:self.npol]]
|
|---|
| 261 | #print 'pollist=',self.pollist
|
|---|
| 262 | #print 'npol=',self.npol
|
|---|
| 263 | #print 'nrow=',nrow
|
|---|
| 264 |
|
|---|
| 265 | idx = 0
|
|---|
| 266 | d0 = s.get_direction( 0 ).split()[-1]
|
|---|
| 267 | while ( s.get_direction(self.npol*idx) is not None \
|
|---|
| 268 | and s.get_direction(self.npol*idx).split()[-1] == d0 ):
|
|---|
| 269 | idx += 1
|
|---|
| 270 |
|
|---|
| 271 | self.nx = idx
|
|---|
| 272 | self.ny = nrow / (self.npol * idx )
|
|---|
| 273 | #print 'nx,ny=',self.nx,self.ny
|
|---|
| 274 |
|
|---|
| 275 | self.blc = s.get_directionval( 0 )
|
|---|
| 276 | self.trc = s.get_directionval( nrow-self.npol )
|
|---|
| 277 | #print self.blc
|
|---|
| 278 | #print self.trc
|
|---|
| 279 | if nrow > 1:
|
|---|
| 280 | incrx = s.get_directionval( self.npol )
|
|---|
| 281 | incry = s.get_directionval( self.nx*self.npol )
|
|---|
| 282 | else:
|
|---|
| 283 | incrx = [0.0,0.0]
|
|---|
| 284 | incry = [0.0,0.0]
|
|---|
| 285 | self.cellx = abs( self.blc[0] - incrx[0] )
|
|---|
| 286 | self.celly = abs( self.blc[1] - incry[1] )
|
|---|
| 287 | #print 'cellx,celly=',self.cellx,self.celly
|
|---|
| 288 |
|
|---|
| 289 | def plot( self, chan=-1, pol=-1, plotobs=False, plotgrid=False ):
|
|---|
| 290 | if pol < 0:
|
|---|
| 291 | opt = 'averaged over pol'
|
|---|
| 292 | else:
|
|---|
| 293 | opt = 'pol %s'%(pol)
|
|---|
| 294 | if type(chan) is list:
|
|---|
| 295 | opt += ', averaged over channel %s-%s'%(chan[0],chan[1])
|
|---|
| 296 | elif chan < 0:
|
|---|
| 297 | opt += ', averaged over channel'
|
|---|
| 298 | else:
|
|---|
| 299 | opt += ', channel %s'%(chan)
|
|---|
| 300 | data = self.getData( chan, pol )
|
|---|
| 301 | data = numpy.fliplr( data )
|
|---|
| 302 | title = 'Gridded Image (%s)'%(opt)
|
|---|
| 303 | pl.figure(10)
|
|---|
| 304 | pl.clf()
|
|---|
| 305 | # plot grid position
|
|---|
| 306 | if plotgrid:
|
|---|
| 307 | x = numpy.arange(self.blc[0],self.trc[0]+0.5*self.cellx,self.cellx,dtype=float)
|
|---|
| 308 | #print 'len(x)=',len(x)
|
|---|
| 309 | #print 'x=',x
|
|---|
| 310 | ybase = numpy.ones(self.nx,dtype=float)*self.blc[1]
|
|---|
| 311 | #print 'len(ybase)=',len(ybase)
|
|---|
| 312 | incr = self.celly
|
|---|
| 313 | for iy in xrange(self.ny):
|
|---|
| 314 | y = ybase + iy * incr
|
|---|
| 315 | #print y
|
|---|
| 316 | pl.plot(x,y,',',color='blue')
|
|---|
| 317 | # plot observed position
|
|---|
| 318 | if plotobs:
|
|---|
| 319 | for i in xrange(len(self.infile)):
|
|---|
| 320 | self.createTableIn( self.infile[i] )
|
|---|
| 321 | irow = 0
|
|---|
| 322 | while ( irow < self.nrow ):
|
|---|
| 323 | chunk = self.getPointingChunk( irow )
|
|---|
| 324 | #print chunk
|
|---|
| 325 | pl.plot(chunk[0],chunk[1],',',color='green')
|
|---|
| 326 | irow += chunk.shape[1]
|
|---|
| 327 | #print irow
|
|---|
| 328 | # show image
|
|---|
| 329 | extent=[self.trc[0]+0.5*self.cellx,
|
|---|
| 330 | self.blc[0]-0.5*self.cellx,
|
|---|
| 331 | self.blc[1]-0.5*self.celly,
|
|---|
| 332 | self.trc[1]+0.5*self.celly]
|
|---|
| 333 | deccorr = 1.0/numpy.cos(0.5*(self.blc[1]+self.trc[1]))
|
|---|
| 334 | pl.imshow(data,extent=extent,origin='lower',interpolation='nearest')
|
|---|
| 335 | pl.colorbar()
|
|---|
| 336 | pl.xlabel('R.A. [rad]')
|
|---|
| 337 | pl.ylabel('Dec. [rad]')
|
|---|
| 338 | ax = pl.axes()
|
|---|
| 339 | ax.set_aspect(deccorr)
|
|---|
| 340 | pl.title( title )
|
|---|
| 341 |
|
|---|
| 342 | def createTableIn( self, tab ):
|
|---|
| 343 | del self.tablein
|
|---|
| 344 | self.tablein = scantable( tab, average=False )
|
|---|
| 345 | if self.ifno < 0:
|
|---|
| 346 | ifno = self.tablein.getif(0)
|
|---|
| 347 | print 'ifno=',ifno
|
|---|
| 348 | else:
|
|---|
| 349 | ifno = self.ifno
|
|---|
| 350 | sel = selector()
|
|---|
| 351 | sel.set_ifs( ifno )
|
|---|
| 352 | self.tablein.set_selection( sel )
|
|---|
| 353 | self.nchan = len(self.tablein._getspectrum(0))
|
|---|
| 354 | self.nrow = self.tablein.nrow()
|
|---|
| 355 | del sel
|
|---|
| 356 |
|
|---|
| 357 |
|
|---|
| 358 | def getPointingChunk( self, irow ):
|
|---|
| 359 | numchunk = 1000
|
|---|
| 360 | nrow = min( self.nrow-irow, numchunk )
|
|---|
| 361 | #print 'nrow=',nrow
|
|---|
| 362 | v = numpy.zeros( (2,nrow), dtype=float )
|
|---|
| 363 | idx = 0
|
|---|
| 364 | for i in xrange(irow,irow+nrow):
|
|---|
| 365 | d = self.tablein.get_directionval( i )
|
|---|
| 366 | v[0,idx] = d[0]
|
|---|
| 367 | v[1,idx] = d[1]
|
|---|
| 368 | idx += 1
|
|---|
| 369 | return v
|
|---|
| 370 |
|
|---|
| 371 | def getData( self, chan=-1, pol=-1 ):
|
|---|
| 372 | if type(chan) == list:
|
|---|
| 373 | spectra = self.__chanAverage(start=chan[0],end=chan[1])
|
|---|
| 374 | elif chan == -1:
|
|---|
| 375 | spectra = self.__chanAverage()
|
|---|
| 376 | else:
|
|---|
| 377 | spectra = self.__chanIndex( chan )
|
|---|
| 378 | data = spectra.reshape( (self.npol,self.ny,self.nx) )
|
|---|
| 379 | if pol == -1:
|
|---|
| 380 | retval = data.mean(axis=0)
|
|---|
| 381 | else:
|
|---|
| 382 | retval = data[pol]
|
|---|
| 383 | return retval
|
|---|
| 384 |
|
|---|
| 385 | def __chanAverage( self, start=-1, end=-1 ):
|
|---|
| 386 | s = scantable( self.outfile, average=False )
|
|---|
| 387 | nrow = s.nrow()
|
|---|
| 388 | spectra = numpy.zeros( (self.npol,nrow/self.npol), dtype=float )
|
|---|
| 389 | irow = 0
|
|---|
| 390 | sp = [0 for i in xrange(self.nchan)]
|
|---|
| 391 | if start < 0:
|
|---|
| 392 | start = 0
|
|---|
| 393 | if end < 0:
|
|---|
| 394 | end = self.nchan
|
|---|
| 395 | for i in xrange(nrow/self.npol):
|
|---|
| 396 | for ip in xrange(self.npol):
|
|---|
| 397 | sp = s._getspectrum( irow )[start:end]
|
|---|
| 398 | spectra[ip,i] = numpy.mean( sp )
|
|---|
| 399 | irow += 1
|
|---|
| 400 |
|
|---|
| 401 | return spectra
|
|---|
| 402 |
|
|---|
| 403 | def __chanIndex( self, idx ):
|
|---|
| 404 | s = scantable( self.outfile, average=False )
|
|---|
| 405 | nrow = s.nrow()
|
|---|
| 406 | spectra = numpy.zeros( (self.npol,nrow/self.npol), dtype=float )
|
|---|
| 407 | irow = 0
|
|---|
| 408 | sp = [0 for i in xrange(self.nchan)]
|
|---|
| 409 | for i in xrange(nrow/self.npol):
|
|---|
| 410 | for ip in xrange(self.npol):
|
|---|
| 411 | sp = s._getspectrum( irow )
|
|---|
| 412 | spectra[ip,i] = sp[idx]
|
|---|
| 413 | irow += 1
|
|---|
| 414 | return spectra
|
|---|
| 415 |
|
|---|
| 416 |
|
|---|