1 | //#---------------------------------------------------------------------------
|
---|
2 | //# SDFITSreader.cc: ATNF interface class for SDFITS input using CFITSIO.
|
---|
3 | //#---------------------------------------------------------------------------
|
---|
4 | //# livedata - processing pipeline for single-dish, multibeam spectral data.
|
---|
5 | //# Copyright (C) 2000-2009, Australia Telescope National Facility, CSIRO
|
---|
6 | //#
|
---|
7 | //# This file is part of livedata.
|
---|
8 | //#
|
---|
9 | //# livedata is free software: you can redistribute it and/or modify it under
|
---|
10 | //# the terms of the GNU General Public License as published by the Free
|
---|
11 | //# Software Foundation, either version 3 of the License, or (at your option)
|
---|
12 | //# any later version.
|
---|
13 | //#
|
---|
14 | //# livedata is distributed in the hope that it will be useful, but WITHOUT
|
---|
15 | //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
---|
16 | //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
---|
17 | //# more details.
|
---|
18 | //#
|
---|
19 | //# You should have received a copy of the GNU General Public License along
|
---|
20 | //# with livedata. If not, see <http://www.gnu.org/licenses/>.
|
---|
21 | //#
|
---|
22 | //# Correspondence concerning livedata may be directed to:
|
---|
23 | //# Internet email: mcalabre@atnf.csiro.au
|
---|
24 | //# Postal address: Dr. Mark Calabretta
|
---|
25 | //# Australia Telescope National Facility, CSIRO
|
---|
26 | //# PO Box 76
|
---|
27 | //# Epping NSW 1710
|
---|
28 | //# AUSTRALIA
|
---|
29 | //#
|
---|
30 | //# http://www.atnf.csiro.au/computing/software/livedata.html
|
---|
31 | //# $Id: SDFITSreader.cc,v 19.45 2009-09-30 07:23:48 cal103 Exp $
|
---|
32 | //#---------------------------------------------------------------------------
|
---|
33 | //# The SDFITSreader class reads single dish FITS files such as those written
|
---|
34 | //# by SDFITSwriter containing Parkes Multibeam data.
|
---|
35 | //#
|
---|
36 | //# Original: 2000/08/09, Mark Calabretta, ATNF
|
---|
37 | //#---------------------------------------------------------------------------
|
---|
38 |
|
---|
39 | #include <atnf/pks/pks_maths.h>
|
---|
40 | #include <atnf/PKSIO/PKSmsg.h>
|
---|
41 | #include <atnf/PKSIO/MBrecord.h>
|
---|
42 | #include <atnf/PKSIO/SDFITSreader.h>
|
---|
43 |
|
---|
44 | #include <casa/math.h>
|
---|
45 | #include <casa/stdio.h>
|
---|
46 |
|
---|
47 | #include <algorithm>
|
---|
48 | #include <strings.h>
|
---|
49 | #include <cstring>
|
---|
50 |
|
---|
51 | class FITSparm
|
---|
52 | {
|
---|
53 | public:
|
---|
54 | char *name; // Keyword or column name.
|
---|
55 | int type; // Expected keyvalue or column data type.
|
---|
56 | int colnum; // Column number; 0 for keyword; -1 absent.
|
---|
57 | int coltype; // Column data type, as found.
|
---|
58 | long nelem; // Column data repeat count; < 0 for vardim.
|
---|
59 | int tdimcol; // TDIM column number; 0 for keyword; -1 absent.
|
---|
60 | char units[32]; // Units from TUNITn keyword.
|
---|
61 | };
|
---|
62 |
|
---|
63 | // Numerical constants.
|
---|
64 | const double PI = 3.141592653589793238462643;
|
---|
65 |
|
---|
66 | // Factor to convert radians to degrees.
|
---|
67 | const double D2R = PI / 180.0;
|
---|
68 |
|
---|
69 | //---------------------------------------------------- SDFITSreader::(statics)
|
---|
70 |
|
---|
71 | int SDFITSreader::sInit = 1;
|
---|
72 | int SDFITSreader::sReset = 0;
|
---|
73 | int (*SDFITSreader::sALFAcalNon)[2] = (int (*)[2])(new float[16]);
|
---|
74 | int (*SDFITSreader::sALFAcalNoff)[2] = (int (*)[2])(new float[16]);
|
---|
75 | float (*SDFITSreader::sALFAcalOn)[2] = (float (*)[2])(new float[16]);
|
---|
76 | float (*SDFITSreader::sALFAcalOff)[2] = (float (*)[2])(new float[16]);
|
---|
77 | float (*SDFITSreader::sALFAcal)[2] = (float (*)[2])(new float[16]);
|
---|
78 |
|
---|
79 | //------------------------------------------------- SDFITSreader::SDFITSreader
|
---|
80 |
|
---|
81 | SDFITSreader::SDFITSreader()
|
---|
82 | {
|
---|
83 | // Default constructor.
|
---|
84 | cSDptr = 0x0;
|
---|
85 |
|
---|
86 | // Allocate space for data descriptors.
|
---|
87 | cData = new FITSparm[NDATA];
|
---|
88 |
|
---|
89 | for (int iData = 0; iData < NDATA; iData++) {
|
---|
90 | cData[iData].colnum = -1;
|
---|
91 | }
|
---|
92 |
|
---|
93 | // Initialize pointers.
|
---|
94 | cBeams = 0x0;
|
---|
95 | cIFs = 0x0;
|
---|
96 | cStartChan = 0x0;
|
---|
97 | cEndChan = 0x0;
|
---|
98 | cRefChan = 0x0;
|
---|
99 |
|
---|
100 | // By default, messages are written to stderr.
|
---|
101 | initMsg();
|
---|
102 | }
|
---|
103 |
|
---|
104 | //------------------------------------------------ SDFITSreader::~SDFITSreader
|
---|
105 |
|
---|
106 | SDFITSreader::~SDFITSreader()
|
---|
107 | {
|
---|
108 | close();
|
---|
109 |
|
---|
110 | delete [] cData;
|
---|
111 | }
|
---|
112 |
|
---|
113 | //--------------------------------------------------------- SDFITSreader::open
|
---|
114 |
|
---|
115 | // Open an SDFITS file for reading.
|
---|
116 |
|
---|
117 | int SDFITSreader::open(
|
---|
118 | char* sdName,
|
---|
119 | int &nBeam,
|
---|
120 | int* &beams,
|
---|
121 | int &nIF,
|
---|
122 | int* &IFs,
|
---|
123 | int* &nChan,
|
---|
124 | int* &nPol,
|
---|
125 | int* &haveXPol,
|
---|
126 | int &haveBase,
|
---|
127 | int &haveSpectra,
|
---|
128 | int &extraSysCal)
|
---|
129 | {
|
---|
130 | // Clear the message stack.
|
---|
131 | clearMsg();
|
---|
132 |
|
---|
133 | if (cSDptr) {
|
---|
134 | close();
|
---|
135 | }
|
---|
136 |
|
---|
137 | // Open the SDFITS file.
|
---|
138 | cStatus = 0;
|
---|
139 | if (fits_open_file(&cSDptr, sdName, READONLY, &cStatus)) {
|
---|
140 | sprintf(cMsg, "ERROR: Failed to open SDFITS file\n %s", sdName);
|
---|
141 | logMsg(cMsg);
|
---|
142 | return 1;
|
---|
143 | }
|
---|
144 |
|
---|
145 | // Move to the SDFITS extension.
|
---|
146 | cALFA = cALFA_BD = cALFA_CIMA = 0;
|
---|
147 | if (fits_movnam_hdu(cSDptr, BINARY_TBL, "SINGLE DISH", 0, &cStatus)) {
|
---|
148 | // No SDFITS table, look for BDFITS or CIMAFITS.
|
---|
149 | cStatus = 0;
|
---|
150 | if (fits_movnam_hdu(cSDptr, BINARY_TBL, "BDFITS", 0, &cStatus) == 0) {
|
---|
151 | cALFA_BD = 1;
|
---|
152 |
|
---|
153 | } else {
|
---|
154 | cStatus = 0;
|
---|
155 | if (fits_movnam_hdu(cSDptr, BINARY_TBL, "CIMAFITS", 0, &cStatus) == 0) {
|
---|
156 | cALFA_CIMA = 1;
|
---|
157 |
|
---|
158 | // Check for later versions of CIMAFITS.
|
---|
159 | float version;
|
---|
160 | readParm("VERSION", TFLOAT, &version);
|
---|
161 | if (version >= 2.0f) cALFA_CIMA = int(version);
|
---|
162 |
|
---|
163 | } else {
|
---|
164 | logMsg("ERROR: Failed to locate SDFITS binary table.");
|
---|
165 | close();
|
---|
166 | return 1;
|
---|
167 | }
|
---|
168 | }
|
---|
169 |
|
---|
170 | // Arecibo ALFA data of some kind.
|
---|
171 | cALFA = 1;
|
---|
172 | if (sInit) {
|
---|
173 | for (int iBeam = 0; iBeam < 8; iBeam++) {
|
---|
174 | for (int iPol = 0; iPol < 2; iPol++) {
|
---|
175 | sALFAcalOn[iBeam][iPol] = 0.0f;
|
---|
176 | sALFAcalOff[iBeam][iPol] = 0.0f;
|
---|
177 |
|
---|
178 | // Nominal factor to calibrate spectra in Jy.
|
---|
179 | sALFAcal[iBeam][iPol] = 3.0f;
|
---|
180 | }
|
---|
181 | }
|
---|
182 |
|
---|
183 | sInit = 0;
|
---|
184 | }
|
---|
185 | }
|
---|
186 |
|
---|
187 | // GBT data.
|
---|
188 | char telescope[32];
|
---|
189 | readParm("TELESCOP", TSTRING, telescope); // Core.
|
---|
190 | cGBT = strncmp(telescope, "GBT", 3) == 0 ||
|
---|
191 | strncmp(telescope, "NRAO_GBT", 8) == 0;
|
---|
192 |
|
---|
193 |
|
---|
194 | // Check that the DATA array column is present.
|
---|
195 | findData(DATA, "DATA", TFLOAT);
|
---|
196 | haveSpectra = cHaveSpectra = cData[DATA].colnum > 0;
|
---|
197 |
|
---|
198 | cNAxisTime = 0;
|
---|
199 | if (cHaveSpectra) {
|
---|
200 | // Find the number of data axes (must be the same for each IF).
|
---|
201 | cNAxes = 5;
|
---|
202 | if (readDim(DATA, 1, &cNAxes, cNAxis)) {
|
---|
203 | logMsg();
|
---|
204 | close();
|
---|
205 | return 1;
|
---|
206 | }
|
---|
207 |
|
---|
208 | if (cALFA_BD) {
|
---|
209 | // ALFA BDFITS: variable length arrays don't actually vary and there is
|
---|
210 | // no TDIM (or MAXISn) card; use the LAGS_IN value.
|
---|
211 | cNAxes = 5;
|
---|
212 | readParm("LAGS_IN", TLONG, cNAxis);
|
---|
213 | cNAxis[1] = 1;
|
---|
214 | cNAxis[2] = 1;
|
---|
215 | cNAxis[3] = 1;
|
---|
216 | cNAxis[4] = 1;
|
---|
217 | cData[DATA].nelem = cNAxis[0];
|
---|
218 | }
|
---|
219 |
|
---|
220 | if (cNAxes < 4) {
|
---|
221 | // Need at least four axes (for now).
|
---|
222 | logMsg("ERROR: DATA array contains fewer than four axes.");
|
---|
223 | close();
|
---|
224 | return 1;
|
---|
225 | } else if (cNAxes > 5) {
|
---|
226 | // We support up to five axes.
|
---|
227 | logMsg("ERROR: DATA array contains more than five axes.");
|
---|
228 | close();
|
---|
229 | return 1;
|
---|
230 | }
|
---|
231 |
|
---|
232 | findData(FLAGGED, "FLAGGED", TBYTE);
|
---|
233 |
|
---|
234 | } else {
|
---|
235 | // DATA column not present, check for a DATAXED keyword.
|
---|
236 | findData(DATAXED, "DATAXED", TSTRING);
|
---|
237 | if (cData[DATAXED].colnum < 0) {
|
---|
238 | logMsg("ERROR: DATA array column absent from binary table.");
|
---|
239 | close();
|
---|
240 | return 1;
|
---|
241 | }
|
---|
242 |
|
---|
243 | // Determine the number of axes and their length.
|
---|
244 | char dataxed[32];
|
---|
245 | readParm("DATAXED", TSTRING, dataxed);
|
---|
246 |
|
---|
247 | for (int iaxis = 0; iaxis < 5; iaxis++) cNAxis[iaxis] = 0;
|
---|
248 | sscanf(dataxed, "(%ld,%ld,%ld,%ld,%ld)", cNAxis, cNAxis+1, cNAxis+2,
|
---|
249 | cNAxis+3, cNAxis+4);
|
---|
250 | for (int iaxis = 4; iaxis > -1; iaxis--) {
|
---|
251 | if (cNAxis[iaxis] == 0) cNAxes = iaxis;
|
---|
252 | }
|
---|
253 | }
|
---|
254 |
|
---|
255 | char *CTYPE[5] = {"CTYPE1", "CTYPE2", "CTYPE3", "CTYPE4", "CTYPE5"};
|
---|
256 | char *CRPIX[5] = {"CRPIX1", "CRPIX2", "CRPIX3", "CRPIX4", "CRPIX5"};
|
---|
257 | char *CRVAL[5] = {"CRVAL1", "CRVAL2", "CRVAL3", "CRVAL4", "CRVAL5"};
|
---|
258 | char *CDELT[5] = {"CDELT1", "CDELT2", "CDELT3", "CDELT4", "CDELT5"};
|
---|
259 |
|
---|
260 | // Find required DATA array axes.
|
---|
261 | char ctype[5][72];
|
---|
262 | for (int iaxis = 0; iaxis < cNAxes; iaxis++) {
|
---|
263 | strcpy(ctype[iaxis], "");
|
---|
264 | readParm(CTYPE[iaxis], TSTRING, ctype[iaxis]); // Core.
|
---|
265 | }
|
---|
266 |
|
---|
267 | if (cStatus) {
|
---|
268 | logMsg();
|
---|
269 | close();
|
---|
270 | return 1;
|
---|
271 | }
|
---|
272 |
|
---|
273 | char *fqCRVAL = 0;
|
---|
274 | char *fqCDELT = 0;
|
---|
275 | char *fqCRPIX = 0;
|
---|
276 | char *raCRVAL = 0;
|
---|
277 | char *decCRVAL = 0;
|
---|
278 | char *timeCRVAL = 0;
|
---|
279 | char *timeCDELT = 0;
|
---|
280 | char *timeCRPIX = 0;
|
---|
281 | char *beamCRVAL = 0;
|
---|
282 |
|
---|
283 | cFreqAxis = -1;
|
---|
284 | cStokesAxis = -1;
|
---|
285 | cRaAxis = -1;
|
---|
286 | cDecAxis = -1;
|
---|
287 | cTimeAxis = -1;
|
---|
288 | cBeamAxis = -1;
|
---|
289 |
|
---|
290 | for (int iaxis = 0; iaxis < cNAxes; iaxis++) {
|
---|
291 | if (strncmp(ctype[iaxis], "FREQ", 4) == 0) {
|
---|
292 | cFreqAxis = iaxis;
|
---|
293 | fqCRVAL = CRVAL[iaxis];
|
---|
294 | fqCDELT = CDELT[iaxis];
|
---|
295 | fqCRPIX = CRPIX[iaxis];
|
---|
296 |
|
---|
297 | } else if (strncmp(ctype[iaxis], "STOKES", 6) == 0) {
|
---|
298 | cStokesAxis = iaxis;
|
---|
299 |
|
---|
300 | } else if (strncmp(ctype[iaxis], "RA", 2) == 0) {
|
---|
301 | cRaAxis = iaxis;
|
---|
302 | raCRVAL = CRVAL[iaxis];
|
---|
303 |
|
---|
304 | } else if (strncmp(ctype[iaxis], "DEC", 3) == 0) {
|
---|
305 | cDecAxis = iaxis;
|
---|
306 | decCRVAL = CRVAL[iaxis];
|
---|
307 |
|
---|
308 | } else if (strcmp(ctype[iaxis], "TIME") == 0) {
|
---|
309 | // TIME (UTC seconds since midnight); axis type, if present, takes
|
---|
310 | // precedence over keyword.
|
---|
311 | cTimeAxis = iaxis;
|
---|
312 | timeCRVAL = CRVAL[iaxis];
|
---|
313 |
|
---|
314 | // Check for non-degeneracy.
|
---|
315 | if ((cNAxisTime = cNAxis[iaxis]) > 1) {
|
---|
316 | timeCDELT = CDELT[iaxis];
|
---|
317 | timeCRPIX = CRPIX[iaxis];
|
---|
318 | sprintf(cMsg, "DATA array contains a TIME axis of length %ld.",
|
---|
319 | cNAxisTime);
|
---|
320 | logMsg(cMsg);
|
---|
321 | }
|
---|
322 |
|
---|
323 | } else if (strcmp(ctype[iaxis], "BEAM") == 0) {
|
---|
324 | // BEAM can be a keyword or axis type.
|
---|
325 | cBeamAxis = iaxis;
|
---|
326 | beamCRVAL = CRVAL[iaxis];
|
---|
327 | }
|
---|
328 | }
|
---|
329 |
|
---|
330 | if (cALFA_BD) {
|
---|
331 | // Fixed in ALFA CIMAFITS.
|
---|
332 | cRaAxis = 2;
|
---|
333 | raCRVAL = "CRVAL2A";
|
---|
334 |
|
---|
335 | cDecAxis = 3;
|
---|
336 | decCRVAL = "CRVAL3A";
|
---|
337 | }
|
---|
338 |
|
---|
339 | // Check that required axes are present.
|
---|
340 | if (cFreqAxis < 0 || cStokesAxis < 0 || cRaAxis < 0 || cDecAxis < 0) {
|
---|
341 | logMsg("ERROR: Could not find required DATA array axes.");
|
---|
342 | close();
|
---|
343 | return 1;
|
---|
344 | }
|
---|
345 |
|
---|
346 | // Set up machinery for data retrieval.
|
---|
347 | findData(SCAN, "SCAN", TINT); // Shared.
|
---|
348 | findData(CYCLE, "CYCLE", TINT); // Additional.
|
---|
349 | findData(DATE_OBS, "DATE-OBS", TSTRING); // Core.
|
---|
350 |
|
---|
351 | if (cTimeAxis >= 0) {
|
---|
352 | // The DATA array has a TIME axis.
|
---|
353 | if (cNAxisTime > 1) {
|
---|
354 | // Non-degenerate.
|
---|
355 | findData(TimeRefVal, timeCRVAL, TDOUBLE); // Time reference value.
|
---|
356 | findData(TimeDelt, timeCDELT, TDOUBLE); // Time increment.
|
---|
357 | findData(TimeRefPix, timeCRPIX, TFLOAT); // Time reference pixel.
|
---|
358 | } else {
|
---|
359 | // Degenerate, treat its like a simple TIME keyword.
|
---|
360 | findData(TIME, timeCRVAL, TDOUBLE);
|
---|
361 | }
|
---|
362 |
|
---|
363 | } else {
|
---|
364 | findData(TIME, "TIME", TDOUBLE); // Core.
|
---|
365 | }
|
---|
366 |
|
---|
367 | findData(EXPOSURE, "EXPOSURE", TFLOAT); // Core.
|
---|
368 | findData(OBJECT, "OBJECT", TSTRING); // Core.
|
---|
369 | findData(OBJ_RA, "OBJ-RA", TDOUBLE); // Additional.
|
---|
370 | findData(OBJ_DEC, "OBJ-DEC", TDOUBLE); // Additional.
|
---|
371 | findData(RESTFRQ, "RESTFRQ", TDOUBLE); // Additional.
|
---|
372 | findData(OBSMODE, "OBSMODE", TSTRING); // Shared.
|
---|
373 |
|
---|
374 | findData(BEAM, "BEAM", TSHORT); // Additional.
|
---|
375 | findData(IF, "IF", TSHORT); // Additional.
|
---|
376 | findData(FqRefVal, fqCRVAL, TDOUBLE); // Frequency reference value.
|
---|
377 | findData(FqDelt, fqCDELT, TDOUBLE); // Frequency increment.
|
---|
378 | findData(FqRefPix, fqCRPIX, TFLOAT); // Frequency reference pixel.
|
---|
379 | findData(RA, raCRVAL, TDOUBLE); // Right ascension.
|
---|
380 | findData(DEC, decCRVAL, TDOUBLE); // Declination.
|
---|
381 | findData(SCANRATE, "SCANRATE", TFLOAT); // Additional.
|
---|
382 |
|
---|
383 | findData(TSYS, "TSYS", TFLOAT); // Core.
|
---|
384 | findData(CALFCTR, "CALFCTR", TFLOAT); // Additional.
|
---|
385 | findData(XCALFCTR, "XCALFCTR", TFLOAT); // Additional.
|
---|
386 | findData(BASELIN, "BASELIN", TFLOAT); // Additional.
|
---|
387 | findData(BASESUB, "BASESUB", TFLOAT); // Additional.
|
---|
388 | findData(XPOLDATA, "XPOLDATA", TFLOAT); // Additional.
|
---|
389 |
|
---|
390 | findData(REFBEAM, "REFBEAM", TSHORT); // Additional.
|
---|
391 | findData(TCAL, "TCAL", TFLOAT); // Shared.
|
---|
392 | findData(TCALTIME, "TCALTIME", TSTRING); // Additional.
|
---|
393 | findData(AZIMUTH, "AZIMUTH", TFLOAT); // Shared.
|
---|
394 | findData(ELEVATIO, "ELEVATIO", TFLOAT); // Shared.
|
---|
395 | findData(PARANGLE, "PARANGLE", TFLOAT); // Additional.
|
---|
396 | findData(FOCUSAXI, "FOCUSAXI", TFLOAT); // Additional.
|
---|
397 | findData(FOCUSTAN, "FOCUSTAN", TFLOAT); // Additional.
|
---|
398 | findData(FOCUSROT, "FOCUSROT", TFLOAT); // Additional.
|
---|
399 | findData(TAMBIENT, "TAMBIENT", TFLOAT); // Shared.
|
---|
400 | findData(PRESSURE, "PRESSURE", TFLOAT); // Shared.
|
---|
401 | findData(HUMIDITY, "HUMIDITY", TFLOAT); // Shared.
|
---|
402 | findData(WINDSPEE, "WINDSPEE", TFLOAT); // Shared.
|
---|
403 | findData(WINDDIRE, "WINDDIRE", TFLOAT); // Shared.
|
---|
404 |
|
---|
405 | if (cStatus) {
|
---|
406 | logMsg();
|
---|
407 | close();
|
---|
408 | return 1;
|
---|
409 | }
|
---|
410 |
|
---|
411 |
|
---|
412 | // Check for alternative column names.
|
---|
413 | if (cALFA) {
|
---|
414 | // ALFA data.
|
---|
415 | cALFAscan = 0;
|
---|
416 | cScanNo = 0;
|
---|
417 | if (cALFA_CIMA) {
|
---|
418 | findData(SCAN, "SCAN_ID", TINT);
|
---|
419 | if (cALFA_CIMA > 1) {
|
---|
420 | // Note that RECNUM increases by cNAxisTime per row.
|
---|
421 | findData(CYCLE, "RECNUM", TINT);
|
---|
422 | } else {
|
---|
423 | findData(CYCLE, "SUBSCAN", TINT);
|
---|
424 | }
|
---|
425 | } else if (cALFA_BD) {
|
---|
426 | findData(SCAN, "SCAN_NUMBER", TINT);
|
---|
427 | findData(CYCLE, "PATTERN_NUMBER", TINT);
|
---|
428 | }
|
---|
429 | } else {
|
---|
430 | readData(SCAN, 1, &cFirstScanNo);
|
---|
431 | }
|
---|
432 |
|
---|
433 | cCycleNo = 0;
|
---|
434 | cLastUTC = 0.0;
|
---|
435 |
|
---|
436 | // Beam number, 1-relative by default.
|
---|
437 | cBeam_1rel = 1;
|
---|
438 | if (cALFA) {
|
---|
439 | // ALFA INPUT_ID, 0-relative (overrides BEAM column if present).
|
---|
440 | findData(BEAM, "INPUT_ID", TSHORT);
|
---|
441 | cBeam_1rel = 0;
|
---|
442 |
|
---|
443 | } else if (cData[BEAM].colnum < 0) {
|
---|
444 | if (beamCRVAL) {
|
---|
445 | // There is a BEAM axis.
|
---|
446 | findData(BEAM, beamCRVAL, TDOUBLE);
|
---|
447 | } else {
|
---|
448 | // ms2sdfits output, 0-relative "feed" number.
|
---|
449 | findData(BEAM, "MAIN_FEED1", TSHORT);
|
---|
450 | cBeam_1rel = 0;
|
---|
451 | }
|
---|
452 | }
|
---|
453 |
|
---|
454 | // IF number, 1-relative by default.
|
---|
455 | cIF_1rel = 1;
|
---|
456 | if (cALFA && cData[IF].colnum < 0) {
|
---|
457 | // ALFA data, 0-relative.
|
---|
458 | if (cALFA_CIMA > 1) {
|
---|
459 | findData(IF, "IFN", TSHORT);
|
---|
460 | } else {
|
---|
461 | findData(IF, "IFVAL", TSHORT);
|
---|
462 | }
|
---|
463 | cIF_1rel = 0;
|
---|
464 | }
|
---|
465 |
|
---|
466 | // ms2sdfits writes a scalar "TSYS" column that averages the polarizations.
|
---|
467 | int colnum;
|
---|
468 | findCol("SYSCAL_TSYS", &colnum);
|
---|
469 | if (colnum > 0) {
|
---|
470 | // This contains the vector Tsys.
|
---|
471 | findData(TSYS, "SYSCAL_TSYS", TFLOAT);
|
---|
472 | }
|
---|
473 |
|
---|
474 | // XPOLDATA?
|
---|
475 |
|
---|
476 | if (cData[SCANRATE].colnum < 0) {
|
---|
477 | findData(SCANRATE, "FIELD_POINTING_DIR_RATE", TFLOAT);
|
---|
478 | }
|
---|
479 |
|
---|
480 | if (cData[RESTFRQ].colnum < 0) {
|
---|
481 | findData(RESTFRQ, "RESTFREQ", TDOUBLE);
|
---|
482 | if (cData[RESTFRQ].colnum < 0) {
|
---|
483 | findData(RESTFRQ, "SPECTRAL_WINDOW_REST_FREQUENCY", TDOUBLE);
|
---|
484 | }
|
---|
485 | }
|
---|
486 |
|
---|
487 | if (cData[OBJ_RA].colnum < 0) {
|
---|
488 | findData(OBJ_RA, "SOURCE_DIRECTION", TDOUBLE);
|
---|
489 | }
|
---|
490 | if (cData[OBJ_DEC].colnum < 0) {
|
---|
491 | findData(OBJ_DEC, "SOURCE_DIRECTION", TDOUBLE);
|
---|
492 | }
|
---|
493 |
|
---|
494 | // REFBEAM?
|
---|
495 |
|
---|
496 | if (cData[TCAL].colnum < 0) {
|
---|
497 | findData(TCAL, "SYSCAL_TCAL", TFLOAT);
|
---|
498 | } else if (cALFA_BD) {
|
---|
499 | // ALFA BDFITS has a different TCAL with 64 elements - kill it!
|
---|
500 | findData(TCAL, "NO NO NO", TFLOAT);
|
---|
501 | }
|
---|
502 |
|
---|
503 | if (cALFA_BD) {
|
---|
504 | // ALFA BDFITS.
|
---|
505 | findData(AZIMUTH, "CRVAL2B", TFLOAT);
|
---|
506 | findData(ELEVATIO, "CRVAL3B", TFLOAT);
|
---|
507 | }
|
---|
508 |
|
---|
509 | if (cALFA) {
|
---|
510 | // ALFA data.
|
---|
511 | findData(PARANGLE, "PARA_ANG", TFLOAT);
|
---|
512 | }
|
---|
513 |
|
---|
514 | if (cData[TAMBIENT].colnum < 0) {
|
---|
515 | findData(TAMBIENT, "WEATHER_TEMPERATURE", TFLOAT);
|
---|
516 | }
|
---|
517 |
|
---|
518 | if (cData[PRESSURE].colnum < 0) {
|
---|
519 | findData(PRESSURE, "WEATHER_PRESSURE", TFLOAT);
|
---|
520 | }
|
---|
521 |
|
---|
522 | if (cData[HUMIDITY].colnum < 0) {
|
---|
523 | findData(HUMIDITY, "WEATHER_REL_HUMIDITY", TFLOAT);
|
---|
524 | }
|
---|
525 |
|
---|
526 | if (cData[WINDSPEE].colnum < 0) {
|
---|
527 | findData(WINDSPEE, "WEATHER_WIND_SPEED", TFLOAT);
|
---|
528 | }
|
---|
529 |
|
---|
530 | if (cData[WINDDIRE].colnum < 0) {
|
---|
531 | findData(WINDDIRE, "WEATHER_WIND_DIRECTION", TFLOAT);
|
---|
532 | }
|
---|
533 |
|
---|
534 |
|
---|
535 | // Find the number of rows.
|
---|
536 | fits_get_num_rows(cSDptr, &cNRow, &cStatus);
|
---|
537 | if (!cNRow) {
|
---|
538 | logMsg("ERROR: Table contains no entries.");
|
---|
539 | close();
|
---|
540 | return 1;
|
---|
541 | }
|
---|
542 |
|
---|
543 |
|
---|
544 | // Determine which beams are present in the data.
|
---|
545 | if (cData[BEAM].colnum > 0) {
|
---|
546 | short *beamCol = new short[cNRow];
|
---|
547 | short beamNul = 1;
|
---|
548 | int anynul;
|
---|
549 | if (fits_read_col(cSDptr, TSHORT, cData[BEAM].colnum, 1, 1, cNRow,
|
---|
550 | &beamNul, beamCol, &anynul, &cStatus)) {
|
---|
551 | delete [] beamCol;
|
---|
552 | logMsg();
|
---|
553 | close();
|
---|
554 | return 1;
|
---|
555 | }
|
---|
556 |
|
---|
557 | // Find the maximum beam number.
|
---|
558 | cNBeam = cBeam_1rel - 1;
|
---|
559 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
560 | if (beamCol[irow] > cNBeam) {
|
---|
561 | cNBeam = beamCol[irow];
|
---|
562 | }
|
---|
563 |
|
---|
564 | // Check validity.
|
---|
565 | if (beamCol[irow] < cBeam_1rel) {
|
---|
566 | delete [] beamCol;
|
---|
567 | logMsg("ERROR: SDFITS file contains invalid beam number.");
|
---|
568 | close();
|
---|
569 | return 1;
|
---|
570 | }
|
---|
571 | }
|
---|
572 |
|
---|
573 | if (!cBeam_1rel) cNBeam++;
|
---|
574 |
|
---|
575 | // Find all beams present in the data.
|
---|
576 | cBeams = new int[cNBeam];
|
---|
577 | for (int ibeam = 0; ibeam < cNBeam; ibeam++) {
|
---|
578 | cBeams[ibeam] = 0;
|
---|
579 | }
|
---|
580 |
|
---|
581 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
582 | cBeams[beamCol[irow] - cBeam_1rel] = 1;
|
---|
583 | }
|
---|
584 |
|
---|
585 | delete [] beamCol;
|
---|
586 |
|
---|
587 | } else {
|
---|
588 | // No BEAM column.
|
---|
589 | cNBeam = 1;
|
---|
590 | cBeams = new int[1];
|
---|
591 | cBeams[0] = 1;
|
---|
592 | }
|
---|
593 |
|
---|
594 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
595 | // modify its elements directly.
|
---|
596 | nBeam = cNBeam;
|
---|
597 | beams = cBeams;
|
---|
598 |
|
---|
599 |
|
---|
600 | // Determine which IFs are present in the data.
|
---|
601 | if (cData[IF].colnum > 0) {
|
---|
602 | short *IFCol = new short[cNRow];
|
---|
603 | short IFNul = 1;
|
---|
604 | int anynul;
|
---|
605 | if (fits_read_col(cSDptr, TSHORT, cData[IF].colnum, 1, 1, cNRow,
|
---|
606 | &IFNul, IFCol, &anynul, &cStatus)) {
|
---|
607 | delete [] IFCol;
|
---|
608 | logMsg();
|
---|
609 | close();
|
---|
610 | return 1;
|
---|
611 | }
|
---|
612 |
|
---|
613 | // Find the maximum IF number.
|
---|
614 | cNIF = cIF_1rel - 1;
|
---|
615 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
616 | if (IFCol[irow] > cNIF) {
|
---|
617 | cNIF = IFCol[irow];
|
---|
618 | }
|
---|
619 |
|
---|
620 | // Check validity.
|
---|
621 | if (IFCol[irow] < cIF_1rel) {
|
---|
622 | delete [] IFCol;
|
---|
623 | logMsg("ERROR: SDFITS file contains invalid IF number.");
|
---|
624 | close();
|
---|
625 | return 1;
|
---|
626 | }
|
---|
627 | }
|
---|
628 |
|
---|
629 | if (!cIF_1rel) cNIF++;
|
---|
630 |
|
---|
631 | // Find all IFs present in the data.
|
---|
632 | cIFs = new int[cNIF];
|
---|
633 | cNChan = new int[cNIF];
|
---|
634 | cNPol = new int[cNIF];
|
---|
635 | cHaveXPol = new int[cNIF];
|
---|
636 | cGetXPol = 0;
|
---|
637 |
|
---|
638 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
639 | cIFs[iIF] = 0;
|
---|
640 | cNChan[iIF] = 0;
|
---|
641 | cNPol[iIF] = 0;
|
---|
642 | cHaveXPol[iIF] = 0;
|
---|
643 | }
|
---|
644 |
|
---|
645 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
646 | int iIF = IFCol[irow] - cIF_1rel;
|
---|
647 | if (cIFs[iIF] == 0) {
|
---|
648 | cIFs[iIF] = 1;
|
---|
649 |
|
---|
650 | // Find the axis lengths.
|
---|
651 | if (cHaveSpectra) {
|
---|
652 | if (cData[DATA].nelem < 0) {
|
---|
653 | // Variable dimension array.
|
---|
654 | if (readDim(DATA, irow+1, &cNAxes, cNAxis)) {
|
---|
655 | logMsg();
|
---|
656 | close();
|
---|
657 | return 1;
|
---|
658 | }
|
---|
659 | }
|
---|
660 |
|
---|
661 | } else {
|
---|
662 | if (cData[DATAXED].colnum > 0) {
|
---|
663 | char dataxed[32];
|
---|
664 | readParm("DATAXED", TSTRING, dataxed);
|
---|
665 |
|
---|
666 | sscanf(dataxed, "(%ld,%ld,%ld,%ld,%ld)", cNAxis, cNAxis+1,
|
---|
667 | cNAxis+2, cNAxis+3, cNAxis+4);
|
---|
668 | }
|
---|
669 | }
|
---|
670 |
|
---|
671 | // Number of channels and polarizations.
|
---|
672 | cNChan[iIF] = cNAxis[cFreqAxis];
|
---|
673 | cNPol[iIF] = cNAxis[cStokesAxis];
|
---|
674 | cHaveXPol[iIF] = 0;
|
---|
675 |
|
---|
676 | // Is cross-polarization data present?
|
---|
677 | if (cData[XPOLDATA].colnum > 0) {
|
---|
678 | // Check that it conforms.
|
---|
679 | int nAxis;
|
---|
680 | long nAxes[2];
|
---|
681 |
|
---|
682 | if (readDim(XPOLDATA, irow+1, &nAxis, nAxes)) {
|
---|
683 | logMsg();
|
---|
684 | close();
|
---|
685 | return 1;
|
---|
686 | }
|
---|
687 |
|
---|
688 | // Default is to get it if we have it.
|
---|
689 | if (nAxis == 2 &&
|
---|
690 | nAxes[0] == 2 &&
|
---|
691 | nAxes[1] == cNChan[iIF]) {
|
---|
692 | cGetXPol = cHaveXPol[iIF] = 1;
|
---|
693 | }
|
---|
694 | }
|
---|
695 | }
|
---|
696 | }
|
---|
697 |
|
---|
698 | delete [] IFCol;
|
---|
699 |
|
---|
700 | } else {
|
---|
701 | // No IF column.
|
---|
702 | cNIF = 1;
|
---|
703 | cIFs = new int[1];
|
---|
704 | cIFs[0] = 1;
|
---|
705 |
|
---|
706 | cNChan = new int[1];
|
---|
707 | cNPol = new int[1];
|
---|
708 | cHaveXPol = new int[1];
|
---|
709 | cGetXPol = 0;
|
---|
710 |
|
---|
711 | // Number of channels and polarizations.
|
---|
712 | cNChan[0] = cNAxis[cFreqAxis];
|
---|
713 | cNPol[0] = cNAxis[cStokesAxis];
|
---|
714 | cHaveXPol[0] = 0;
|
---|
715 | }
|
---|
716 |
|
---|
717 | if (cALFA && cALFA_CIMA < 2) {
|
---|
718 | // Older ALFA data labels each polarization as a separate IF.
|
---|
719 | cNPol[0] = cNIF;
|
---|
720 | cNIF = 1;
|
---|
721 | }
|
---|
722 |
|
---|
723 | // Passing back the address of the array allows PKSFITSreader::select() to
|
---|
724 | // modify its elements directly.
|
---|
725 | nIF = cNIF;
|
---|
726 | IFs = cIFs;
|
---|
727 |
|
---|
728 | nChan = cNChan;
|
---|
729 | nPol = cNPol;
|
---|
730 | haveXPol = cHaveXPol;
|
---|
731 |
|
---|
732 |
|
---|
733 | // Default channel range selection.
|
---|
734 | cStartChan = new int[cNIF];
|
---|
735 | cEndChan = new int[cNIF];
|
---|
736 | cRefChan = new int[cNIF];
|
---|
737 |
|
---|
738 | for (int iIF = 0; iIF < cNIF; iIF++) {
|
---|
739 | cStartChan[iIF] = 1;
|
---|
740 | cEndChan[iIF] = cNChan[iIF];
|
---|
741 | cRefChan[iIF] = cNChan[iIF]/2 + 1;
|
---|
742 | }
|
---|
743 |
|
---|
744 | // Default is to get it if we have it.
|
---|
745 | cGetSpectra = cHaveSpectra;
|
---|
746 |
|
---|
747 |
|
---|
748 | // Are baseline parameters present?
|
---|
749 | cHaveBase = 0;
|
---|
750 | if (cData[BASELIN].colnum) {
|
---|
751 | // Check that it conforms.
|
---|
752 | int nAxis, status = 0;
|
---|
753 | long nAxes[2];
|
---|
754 |
|
---|
755 | if (fits_read_tdim(cSDptr, cData[BASELIN].colnum, 2, &nAxis, nAxes,
|
---|
756 | &status) == 0) {
|
---|
757 | cHaveBase = (nAxis == 2);
|
---|
758 | }
|
---|
759 | }
|
---|
760 | haveBase = cHaveBase;
|
---|
761 |
|
---|
762 |
|
---|
763 | // Is extra system calibration data available?
|
---|
764 | cExtraSysCal = 0;
|
---|
765 | for (int iparm = REFBEAM; iparm < NDATA; iparm++) {
|
---|
766 | if (cData[iparm].colnum >= 0) {
|
---|
767 | cExtraSysCal = 1;
|
---|
768 | break;
|
---|
769 | }
|
---|
770 | }
|
---|
771 |
|
---|
772 | extraSysCal = cExtraSysCal;
|
---|
773 |
|
---|
774 |
|
---|
775 | // Extras for ALFA data.
|
---|
776 | cALFAacc = 0.0f;
|
---|
777 | if (cALFA_CIMA > 1) {
|
---|
778 | // FFTs per second when the Mock correlator operates in RFI blanking mode.
|
---|
779 | readData("PHFFTACC", TFLOAT, 0, &cALFAacc);
|
---|
780 | }
|
---|
781 |
|
---|
782 |
|
---|
783 | cRow = 0;
|
---|
784 | cTimeIdx = cNAxisTime;
|
---|
785 |
|
---|
786 | return 0;
|
---|
787 | }
|
---|
788 |
|
---|
789 | //---------------------------------------------------- SDFITSreader::getHeader
|
---|
790 |
|
---|
791 | // Get parameters describing the data.
|
---|
792 |
|
---|
793 | int SDFITSreader::getHeader(
|
---|
794 | char observer[32],
|
---|
795 | char project[32],
|
---|
796 | char telescope[32],
|
---|
797 | double antPos[3],
|
---|
798 | char obsMode[32],
|
---|
799 | char bunit[32],
|
---|
800 | float &equinox,
|
---|
801 | char radecsys[32],
|
---|
802 | char dopplerFrame[32],
|
---|
803 | char datobs[32],
|
---|
804 | double &utc,
|
---|
805 | double &refFreq,
|
---|
806 | double &bandwidth)
|
---|
807 | {
|
---|
808 | // Has the file been opened?
|
---|
809 | if (!cSDptr) {
|
---|
810 | return 1;
|
---|
811 | }
|
---|
812 |
|
---|
813 | // Read parameter values.
|
---|
814 | readParm("OBSERVER", TSTRING, observer); // Shared.
|
---|
815 | readParm("PROJID", TSTRING, project); // Shared.
|
---|
816 | readParm("TELESCOP", TSTRING, telescope); // Core.
|
---|
817 |
|
---|
818 | antPos[0] = 0.0;
|
---|
819 | antPos[1] = 0.0;
|
---|
820 | antPos[2] = 0.0;
|
---|
821 | if (readParm("ANTENNA_POSITION", TDOUBLE, antPos)) {
|
---|
822 | readParm("OBSGEO-X", TDOUBLE, antPos); // Additional.
|
---|
823 | readParm("OBSGEO-Y", TDOUBLE, antPos + 1); // Additional.
|
---|
824 | readParm("OBSGEO-Z", TDOUBLE, antPos + 2); // Additional.
|
---|
825 | }
|
---|
826 |
|
---|
827 | if (antPos[0] == 0.0) {
|
---|
828 | if (strncmp(telescope, "ATPKS", 5) == 0) {
|
---|
829 | // Parkes coordinates.
|
---|
830 | antPos[0] = -4554232.087;
|
---|
831 | antPos[1] = 2816759.046;
|
---|
832 | antPos[2] = -3454035.950;
|
---|
833 | } else if (strncmp(telescope, "ATMOPRA", 7) == 0) {
|
---|
834 | // Mopra coordinates.
|
---|
835 | antPos[0] = -4682768.630;
|
---|
836 | antPos[1] = 2802619.060;
|
---|
837 | antPos[2] = -3291759.900;
|
---|
838 | } else if (strncmp(telescope, "ARECIBO", 7) == 0) {
|
---|
839 | // Arecibo coordinates.
|
---|
840 | antPos[0] = 2390486.900;
|
---|
841 | antPos[1] = -5564731.440;
|
---|
842 | antPos[2] = 1994720.450;
|
---|
843 | }
|
---|
844 | }
|
---|
845 |
|
---|
846 | readData(OBSMODE, 1, obsMode); // Shared.
|
---|
847 |
|
---|
848 | // Brightness unit.
|
---|
849 | if (cData[DATAXED].colnum >= 0) {
|
---|
850 | strcpy(bunit, "Jy");
|
---|
851 | } else {
|
---|
852 | strcpy(bunit, cData[DATA].units);
|
---|
853 | }
|
---|
854 |
|
---|
855 | if (strcmp(bunit, "JY") == 0) {
|
---|
856 | bunit[1] = 'y';
|
---|
857 | } else if (strcmp(bunit, "JY/BEAM") == 0) {
|
---|
858 | strcpy(bunit, "Jy/beam");
|
---|
859 | }
|
---|
860 |
|
---|
861 | readParm("EQUINOX", TFLOAT, &equinox); // Shared.
|
---|
862 | if (cStatus == 405) {
|
---|
863 | // EQUINOX was written as string value in early versions.
|
---|
864 | cStatus = 0;
|
---|
865 | char strtmp[32];
|
---|
866 | readParm("EQUINOX", TSTRING, strtmp);
|
---|
867 | sscanf(strtmp, "%f", &equinox);
|
---|
868 | }
|
---|
869 |
|
---|
870 | if (readParm("RADESYS", TSTRING, radecsys)) { // Additional.
|
---|
871 | if (readParm("RADECSYS", TSTRING, radecsys)) { // Additional.
|
---|
872 | strcpy(radecsys, "");
|
---|
873 | }
|
---|
874 | }
|
---|
875 |
|
---|
876 | if (readParm("SPECSYS", TSTRING, dopplerFrame)) { // Additional.
|
---|
877 | // Fallback value.
|
---|
878 | strcpy(dopplerFrame, "TOPOCENT");
|
---|
879 |
|
---|
880 | // Look for VELFRAME, written by earlier versions of Livedata.
|
---|
881 | if (readParm("VELFRAME", TSTRING, dopplerFrame)) { // Additional.
|
---|
882 | // No, try digging it out of the CTYPE card (AIPS convention).
|
---|
883 | char keyw[9], ctype[9];
|
---|
884 | sprintf(keyw, "CTYPE%ld", cFreqAxis+1);
|
---|
885 | readParm(keyw, TSTRING, ctype);
|
---|
886 |
|
---|
887 | if (strncmp(ctype, "FREQ-", 5) == 0) {
|
---|
888 | strcpy(dopplerFrame, ctype+5);
|
---|
889 | if (strcmp(dopplerFrame, "LSR") == 0) {
|
---|
890 | // LSR unqualified usually means LSR (kinematic).
|
---|
891 | strcpy(dopplerFrame, "LSRK");
|
---|
892 | } else if (strcmp(dopplerFrame, "HEL") == 0) {
|
---|
893 | // Almost certainly barycentric.
|
---|
894 | strcpy(dopplerFrame, "BARYCENT");
|
---|
895 | }
|
---|
896 | } else {
|
---|
897 | strcpy(dopplerFrame, "");
|
---|
898 | }
|
---|
899 | }
|
---|
900 |
|
---|
901 | // Translate to FITS standard names.
|
---|
902 | if (strncmp(dopplerFrame, "TOP", 3) == 0) {
|
---|
903 | strcpy(dopplerFrame, "TOPOCENT");
|
---|
904 | } else if (strncmp(dopplerFrame, "GEO", 3) == 0) {
|
---|
905 | strcpy(dopplerFrame, "GEOCENTR");
|
---|
906 | } else if (strncmp(dopplerFrame, "HEL", 3) == 0) {
|
---|
907 | strcpy(dopplerFrame, "HELIOCEN");
|
---|
908 | } else if (strncmp(dopplerFrame, "BARY", 4) == 0) {
|
---|
909 | strcpy(dopplerFrame, "BARYCENT");
|
---|
910 | }
|
---|
911 | }
|
---|
912 |
|
---|
913 | if (cStatus) {
|
---|
914 | logMsg();
|
---|
915 | return 1;
|
---|
916 | }
|
---|
917 |
|
---|
918 | // Get parameters from first row of table.
|
---|
919 | readTime(1, 1, datobs, utc);
|
---|
920 | readData(FqRefVal, 1, &refFreq);
|
---|
921 | readParm("BANDWID", TDOUBLE, &bandwidth); // Core.
|
---|
922 |
|
---|
923 | if (cStatus) {
|
---|
924 | logMsg();
|
---|
925 | return 1;
|
---|
926 | }
|
---|
927 |
|
---|
928 | return 0;
|
---|
929 | }
|
---|
930 |
|
---|
931 | //-------------------------------------------------- SDFITSreader::getFreqInfo
|
---|
932 |
|
---|
933 | // Get frequency parameters for each IF.
|
---|
934 |
|
---|
935 | int SDFITSreader::getFreqInfo(
|
---|
936 | int &nIF,
|
---|
937 | double* &startFreq,
|
---|
938 | double* &endFreq)
|
---|
939 | {
|
---|
940 | float fqRefPix;
|
---|
941 | double fqDelt, fqRefVal;
|
---|
942 |
|
---|
943 | nIF = cNIF;
|
---|
944 | startFreq = new double[nIF];
|
---|
945 | endFreq = new double[nIF];
|
---|
946 |
|
---|
947 | if (cData[IF].colnum > 0) {
|
---|
948 | short *IFCol = new short[cNRow];
|
---|
949 | short IFNul = 1;
|
---|
950 | int anynul;
|
---|
951 | if (fits_read_col(cSDptr, TSHORT, cData[IF].colnum, 1, 1, cNRow,
|
---|
952 | &IFNul, IFCol, &anynul, &cStatus)) {
|
---|
953 | delete [] IFCol;
|
---|
954 | logMsg();
|
---|
955 | close();
|
---|
956 | return 1;
|
---|
957 | }
|
---|
958 |
|
---|
959 | for (int iIF = 0; iIF < nIF; iIF++) {
|
---|
960 | if (cIFs[iIF]) {
|
---|
961 | // Find the first occurrence of this IF in the table.
|
---|
962 | int IFno = iIF + cIF_1rel;
|
---|
963 | for (int irow = 0; irow < cNRow;) {
|
---|
964 | if (IFCol[irow++] == IFno) {
|
---|
965 | readData(FqRefPix, irow, &fqRefPix);
|
---|
966 | readData(FqRefVal, irow, &fqRefVal);
|
---|
967 | readData(FqDelt, irow, &fqDelt);
|
---|
968 |
|
---|
969 | if (cALFA_BD) {
|
---|
970 | unsigned char invert;
|
---|
971 | readData("UPPERSB", TBYTE, irow, &invert);
|
---|
972 |
|
---|
973 | if (invert) {
|
---|
974 | fqDelt = -fqDelt;
|
---|
975 | }
|
---|
976 | }
|
---|
977 |
|
---|
978 | startFreq[iIF] = fqRefVal + ( 1 - fqRefPix) * fqDelt;
|
---|
979 | endFreq[iIF] = fqRefVal + (cNChan[iIF] - fqRefPix) * fqDelt;
|
---|
980 |
|
---|
981 | break;
|
---|
982 | }
|
---|
983 | }
|
---|
984 |
|
---|
985 | } else {
|
---|
986 | startFreq[iIF] = 0.0;
|
---|
987 | endFreq[iIF] = 0.0;
|
---|
988 | }
|
---|
989 | }
|
---|
990 |
|
---|
991 | delete [] IFCol;
|
---|
992 |
|
---|
993 | } else {
|
---|
994 | // No IF column, read the first table entry.
|
---|
995 | readData(FqRefPix, 1, &fqRefPix);
|
---|
996 | readData(FqRefVal, 1, &fqRefVal);
|
---|
997 | readData(FqDelt, 1, &fqDelt);
|
---|
998 |
|
---|
999 | startFreq[0] = fqRefVal + ( 1 - fqRefPix) * fqDelt;
|
---|
1000 | endFreq[0] = fqRefVal + (cNChan[0] - fqRefPix) * fqDelt;
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 | return cStatus;
|
---|
1004 | }
|
---|
1005 |
|
---|
1006 | //---------------------------------------------------- SDFITSreader::findRange
|
---|
1007 |
|
---|
1008 | // Find the range of the data in time and position.
|
---|
1009 |
|
---|
1010 | int SDFITSreader::findRange(
|
---|
1011 | int &nRow,
|
---|
1012 | int &nSel,
|
---|
1013 | char dateSpan[2][32],
|
---|
1014 | double utcSpan[2],
|
---|
1015 | double* &positions)
|
---|
1016 | {
|
---|
1017 | // Has the file been opened?
|
---|
1018 | if (!cSDptr) {
|
---|
1019 | return 1;
|
---|
1020 | }
|
---|
1021 |
|
---|
1022 | nRow = cNRow;
|
---|
1023 |
|
---|
1024 | // Find the number of rows selected.
|
---|
1025 | short *sel = new short[cNRow];
|
---|
1026 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
1027 | sel[irow] = 1;
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 | int anynul;
|
---|
1031 | if (cData[BEAM].colnum > 0) {
|
---|
1032 | short *beamCol = new short[cNRow];
|
---|
1033 | short beamNul = 1;
|
---|
1034 | if (fits_read_col(cSDptr, TSHORT, cData[BEAM].colnum, 1, 1, cNRow,
|
---|
1035 | &beamNul, beamCol, &anynul, &cStatus)) {
|
---|
1036 | delete [] beamCol;
|
---|
1037 | delete [] sel;
|
---|
1038 | logMsg();
|
---|
1039 | return 1;
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
1043 | if (!cBeams[beamCol[irow]-cBeam_1rel]) {
|
---|
1044 | sel[irow] = 0;
|
---|
1045 | }
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 | delete [] beamCol;
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | if (cData[IF].colnum > 0) {
|
---|
1052 | short *IFCol = new short[cNRow];
|
---|
1053 | short IFNul = 1;
|
---|
1054 | if (fits_read_col(cSDptr, TSHORT, cData[IF].colnum, 1, 1, cNRow,
|
---|
1055 | &IFNul, IFCol, &anynul, &cStatus)) {
|
---|
1056 | delete [] IFCol;
|
---|
1057 | delete [] sel;
|
---|
1058 | logMsg();
|
---|
1059 | return 1;
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
1063 | if (!cIFs[IFCol[irow]-cIF_1rel]) {
|
---|
1064 | sel[irow] = 0;
|
---|
1065 | }
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | delete [] IFCol;
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | nSel = 0;
|
---|
1072 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
1073 | nSel += sel[irow];
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 |
|
---|
1077 | // Find the time range assuming the data is in chronological order.
|
---|
1078 | readTime(1, 1, dateSpan[0], utcSpan[0]);
|
---|
1079 | readTime(cNRow, cNAxisTime, dateSpan[1], utcSpan[1]);
|
---|
1080 |
|
---|
1081 |
|
---|
1082 | // Retrieve positions for selected data.
|
---|
1083 | int isel = 0;
|
---|
1084 | positions = new double[2*nSel];
|
---|
1085 |
|
---|
1086 | if (cCoordSys == 1) {
|
---|
1087 | // Horizontal (Az,El).
|
---|
1088 | if (cData[AZIMUTH].colnum < 0 ||
|
---|
1089 | cData[ELEVATIO].colnum < 0) {
|
---|
1090 | logMsg("WARNING: Azimuth/elevation information absent.");
|
---|
1091 | cStatus = -1;
|
---|
1092 |
|
---|
1093 | } else {
|
---|
1094 | float *az = new float[cNRow];
|
---|
1095 | float *el = new float[cNRow];
|
---|
1096 | readCol(AZIMUTH, az);
|
---|
1097 | readCol(ELEVATIO, el);
|
---|
1098 |
|
---|
1099 | if (!cStatus) {
|
---|
1100 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
1101 | if (sel[irow]) {
|
---|
1102 | positions[isel++] = az[irow] * D2R;
|
---|
1103 | positions[isel++] = el[irow] * D2R;
|
---|
1104 | }
|
---|
1105 | }
|
---|
1106 | }
|
---|
1107 |
|
---|
1108 | delete [] az;
|
---|
1109 | delete [] el;
|
---|
1110 | }
|
---|
1111 |
|
---|
1112 | } else if (cCoordSys == 3) {
|
---|
1113 | // ZPA-EL.
|
---|
1114 | if (cData[BEAM].colnum < 0 ||
|
---|
1115 | cData[FOCUSROT].colnum < 0 ||
|
---|
1116 | cData[ELEVATIO].colnum < 0) {
|
---|
1117 | logMsg("WARNING: ZPA/elevation information absent.");
|
---|
1118 | cStatus = -1;
|
---|
1119 |
|
---|
1120 | } else {
|
---|
1121 | short *beam = new short[cNRow];
|
---|
1122 | float *rot = new float[cNRow];
|
---|
1123 | float *el = new float[cNRow];
|
---|
1124 | readCol(BEAM, beam);
|
---|
1125 | readCol(FOCUSROT, rot);
|
---|
1126 | readCol(ELEVATIO, el);
|
---|
1127 |
|
---|
1128 | if (!cStatus) {
|
---|
1129 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
1130 | if (sel[irow]) {
|
---|
1131 | Int beamNo = beam[irow];
|
---|
1132 | Double zpa = rot[irow];
|
---|
1133 | if (beamNo > 1) {
|
---|
1134 | // Beam geometry for the Parkes multibeam.
|
---|
1135 | if (beamNo < 8) {
|
---|
1136 | zpa += -60.0 + 60.0*(beamNo-2);
|
---|
1137 | } else {
|
---|
1138 | zpa += -90.0 + 60.0*(beamNo-8);
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 | if (zpa < -180.0) {
|
---|
1142 | zpa += 360.0;
|
---|
1143 | } else if (zpa > 180.0) {
|
---|
1144 | zpa -= 360.0;
|
---|
1145 | }
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | positions[isel++] = zpa * D2R;
|
---|
1149 | positions[isel++] = el[irow] * D2R;
|
---|
1150 | }
|
---|
1151 | }
|
---|
1152 | }
|
---|
1153 |
|
---|
1154 | delete [] beam;
|
---|
1155 | delete [] rot;
|
---|
1156 | delete [] el;
|
---|
1157 | }
|
---|
1158 |
|
---|
1159 | } else {
|
---|
1160 | double *ra = new double[cNRow];
|
---|
1161 | double *dec = new double[cNRow];
|
---|
1162 | readCol(RA, ra);
|
---|
1163 | readCol(DEC, dec);
|
---|
1164 |
|
---|
1165 | if (cStatus) {
|
---|
1166 | delete [] ra;
|
---|
1167 | delete [] dec;
|
---|
1168 | goto cleanup;
|
---|
1169 | }
|
---|
1170 |
|
---|
1171 | if (cALFA_BD) {
|
---|
1172 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
1173 | // Convert hours to degrees.
|
---|
1174 | ra[irow] *= 15.0;
|
---|
1175 | }
|
---|
1176 | }
|
---|
1177 |
|
---|
1178 | if (cCoordSys == 0) {
|
---|
1179 | // Equatorial (RA,Dec).
|
---|
1180 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
1181 | if (sel[irow]) {
|
---|
1182 | positions[isel++] = ra[irow] * D2R;
|
---|
1183 | positions[isel++] = dec[irow] * D2R;
|
---|
1184 | }
|
---|
1185 | }
|
---|
1186 |
|
---|
1187 | } else if (cCoordSys == 2) {
|
---|
1188 | // Feed-plane.
|
---|
1189 | if (cData[OBJ_RA].colnum < 0 ||
|
---|
1190 | cData[OBJ_DEC].colnum < 0 ||
|
---|
1191 | cData[PARANGLE].colnum < 0 ||
|
---|
1192 | cData[FOCUSROT].colnum < 0) {
|
---|
1193 | logMsg("WARNING: Insufficient information to compute feed-plane\n"
|
---|
1194 | " coordinates.");
|
---|
1195 | cStatus = -1;
|
---|
1196 |
|
---|
1197 | } else {
|
---|
1198 | double *srcRA = new double[cNRow];
|
---|
1199 | double *srcDec = new double[cNRow];
|
---|
1200 | float *par = new float[cNRow];
|
---|
1201 | float *rot = new float[cNRow];
|
---|
1202 |
|
---|
1203 | readCol(OBJ_RA, srcRA);
|
---|
1204 | readCol(OBJ_DEC, srcDec);
|
---|
1205 | readCol(PARANGLE, par);
|
---|
1206 | readCol(FOCUSROT, rot);
|
---|
1207 |
|
---|
1208 | if (!cStatus) {
|
---|
1209 | for (int irow = 0; irow < cNRow; irow++) {
|
---|
1210 | if (sel[irow]) {
|
---|
1211 | // Convert to feed-plane coordinates.
|
---|
1212 | Double dist, pa;
|
---|
1213 | distPA(ra[irow]*D2R, dec[irow]*D2R, srcRA[irow]*D2R,
|
---|
1214 | srcDec[irow]*D2R, dist, pa);
|
---|
1215 |
|
---|
1216 | Double spin = (par[irow] + rot[irow])*D2R - pa;
|
---|
1217 | if (spin > 2.0*PI) spin -= 2.0*PI;
|
---|
1218 | Double squint = PI/2.0 - dist;
|
---|
1219 |
|
---|
1220 | positions[isel++] = spin;
|
---|
1221 | positions[isel++] = squint;
|
---|
1222 | }
|
---|
1223 | }
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 | delete [] srcRA;
|
---|
1227 | delete [] srcDec;
|
---|
1228 | delete [] par;
|
---|
1229 | delete [] rot;
|
---|
1230 | }
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | delete [] ra;
|
---|
1234 | delete [] dec;
|
---|
1235 | }
|
---|
1236 |
|
---|
1237 | cleanup:
|
---|
1238 | delete [] sel;
|
---|
1239 |
|
---|
1240 | if (cStatus) {
|
---|
1241 | nSel = 0;
|
---|
1242 | delete [] positions;
|
---|
1243 | logMsg();
|
---|
1244 | cStatus = 0;
|
---|
1245 | return 1;
|
---|
1246 | }
|
---|
1247 |
|
---|
1248 | return 0;
|
---|
1249 | }
|
---|
1250 |
|
---|
1251 |
|
---|
1252 | //--------------------------------------------------------- SDFITSreader::read
|
---|
1253 |
|
---|
1254 | // Read the next data record.
|
---|
1255 |
|
---|
1256 | int SDFITSreader::read(
|
---|
1257 | MBrecord &mbrec)
|
---|
1258 | {
|
---|
1259 | // Has the file been opened?
|
---|
1260 | if (!cSDptr) {
|
---|
1261 | return 1;
|
---|
1262 | }
|
---|
1263 |
|
---|
1264 | // Find the next selected beam and IF.
|
---|
1265 | short iBeam = 0, iIF = 0;
|
---|
1266 | while (1) {
|
---|
1267 | if (++cTimeIdx > cNAxisTime) {
|
---|
1268 | if (++cRow > cNRow) break;
|
---|
1269 | cTimeIdx = 1;
|
---|
1270 | }
|
---|
1271 |
|
---|
1272 | if (cData[BEAM].colnum > 0) {
|
---|
1273 | readData(BEAM, cRow, &iBeam);
|
---|
1274 |
|
---|
1275 | // Convert to 0-relative.
|
---|
1276 | if (cBeam_1rel) iBeam--;
|
---|
1277 | }
|
---|
1278 |
|
---|
1279 |
|
---|
1280 | if (cBeams[iBeam]) {
|
---|
1281 | if (cData[IF].colnum > 0) {
|
---|
1282 | readData(IF, cRow, &iIF);
|
---|
1283 |
|
---|
1284 | // Convert to 0-relative.
|
---|
1285 | if (cIF_1rel) iIF--;
|
---|
1286 | }
|
---|
1287 |
|
---|
1288 | if (cIFs[iIF]) {
|
---|
1289 | if (cALFA) {
|
---|
1290 | // ALFA data, check for calibration data.
|
---|
1291 | char chars[32];
|
---|
1292 | readData(OBSMODE, cRow, chars);
|
---|
1293 | if (strcmp(chars, "DROP") == 0) {
|
---|
1294 | // Completely flagged integration.
|
---|
1295 | continue;
|
---|
1296 |
|
---|
1297 | } else if (strcmp(chars, "CAL") == 0) {
|
---|
1298 | sReset = 1;
|
---|
1299 | if (cALFA_CIMA > 1) {
|
---|
1300 | for (short iPol = 0; iPol < cNPol[iIF]; iPol++) {
|
---|
1301 | alfaCal(iBeam, iIF, iPol);
|
---|
1302 | }
|
---|
1303 | continue;
|
---|
1304 | } else {
|
---|
1305 | // iIF is really the polarization in older ALFA data.
|
---|
1306 | alfaCal(iBeam, 0, iIF);
|
---|
1307 | continue;
|
---|
1308 | }
|
---|
1309 |
|
---|
1310 | } else {
|
---|
1311 | // Reset for the next CAL record.
|
---|
1312 | if (sReset) {
|
---|
1313 | for (short iPol = 0; iPol < cNPol[iIF]; iPol++) {
|
---|
1314 | sALFAcalNon[iBeam][iPol] = 0;
|
---|
1315 | sALFAcalNoff[iBeam][iPol] = 0;
|
---|
1316 | sALFAcalOn[iBeam][iPol] = 0.0f;
|
---|
1317 | sALFAcalOff[iBeam][iPol] = 0.0f;
|
---|
1318 | }
|
---|
1319 | sReset = 0;
|
---|
1320 |
|
---|
1321 | sprintf(cMsg, "ALFA cal factors for beam %d: %.3e, %.3e",
|
---|
1322 | iBeam+1, sALFAcal[iBeam][0], sALFAcal[iBeam][1]);
|
---|
1323 | logMsg(cMsg);
|
---|
1324 | }
|
---|
1325 | }
|
---|
1326 | }
|
---|
1327 |
|
---|
1328 | break;
|
---|
1329 | }
|
---|
1330 | }
|
---|
1331 | }
|
---|
1332 |
|
---|
1333 | // EOF?
|
---|
1334 | if (cRow > cNRow) {
|
---|
1335 | return -1;
|
---|
1336 | }
|
---|
1337 |
|
---|
1338 |
|
---|
1339 | if (cALFA) {
|
---|
1340 | int scanNo;
|
---|
1341 | readData(SCAN, cRow, &scanNo);
|
---|
1342 | if (scanNo != cALFAscan) {
|
---|
1343 | cScanNo++;
|
---|
1344 | cALFAscan = scanNo;
|
---|
1345 | }
|
---|
1346 | mbrec.scanNo = cScanNo;
|
---|
1347 |
|
---|
1348 | } else {
|
---|
1349 | readData(SCAN, cRow, &mbrec.scanNo);
|
---|
1350 |
|
---|
1351 | // Ensure that scan number is 1-relative.
|
---|
1352 | mbrec.scanNo -= (cFirstScanNo - 1);
|
---|
1353 | }
|
---|
1354 |
|
---|
1355 | // Times.
|
---|
1356 | char datobs[32];
|
---|
1357 | readTime(cRow, cTimeIdx, datobs, mbrec.utc);
|
---|
1358 | strcpy(mbrec.datobs, datobs);
|
---|
1359 |
|
---|
1360 | if (cData[CYCLE].colnum > 0) {
|
---|
1361 | readData(CYCLE, cRow, &mbrec.cycleNo);
|
---|
1362 | mbrec.cycleNo += cTimeIdx - 1;
|
---|
1363 | if (cALFA_BD) mbrec.cycleNo++;
|
---|
1364 | } else {
|
---|
1365 | // Cycle number not recorded, must do our own bookkeeping.
|
---|
1366 | if (mbrec.utc != cLastUTC) {
|
---|
1367 | mbrec.cycleNo = ++cCycleNo;
|
---|
1368 | cLastUTC = mbrec.utc;
|
---|
1369 | }
|
---|
1370 | }
|
---|
1371 |
|
---|
1372 | readData(EXPOSURE, cRow, &mbrec.exposure);
|
---|
1373 |
|
---|
1374 | // Source identification.
|
---|
1375 | readData(OBJECT, cRow, mbrec.srcName);
|
---|
1376 |
|
---|
1377 | readData(OBJ_RA, cRow, &mbrec.srcRA);
|
---|
1378 | if (strcmp(cData[OBJ_RA].name, "OBJ-RA") == 0) {
|
---|
1379 | mbrec.srcRA *= D2R;
|
---|
1380 | }
|
---|
1381 |
|
---|
1382 | if (strcmp(cData[OBJ_DEC].name, "OBJ-DEC") == 0) {
|
---|
1383 | readData(OBJ_DEC, cRow, &mbrec.srcDec);
|
---|
1384 | mbrec.srcDec *= D2R;
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | // Line rest frequency (Hz).
|
---|
1388 | readData(RESTFRQ, cRow, &mbrec.restFreq);
|
---|
1389 | if (mbrec.restFreq == 0.0 && cALFA_BD) {
|
---|
1390 | mbrec.restFreq = 1420.40575e6;
|
---|
1391 | }
|
---|
1392 |
|
---|
1393 | // Observation mode.
|
---|
1394 | readData(OBSMODE, cRow, mbrec.obsType);
|
---|
1395 |
|
---|
1396 | // Beam-dependent parameters.
|
---|
1397 | mbrec.beamNo = iBeam + 1;
|
---|
1398 |
|
---|
1399 | readData(RA, cRow, &mbrec.ra);
|
---|
1400 | readData(DEC, cRow, &mbrec.dec);
|
---|
1401 | mbrec.ra *= D2R;
|
---|
1402 | mbrec.dec *= D2R;
|
---|
1403 |
|
---|
1404 | if (cALFA_BD) mbrec.ra *= 15.0;
|
---|
1405 |
|
---|
1406 | float scanrate[2];
|
---|
1407 | readData(SCANRATE, cRow, &scanrate);
|
---|
1408 | if (strcmp(cData[SCANRATE].name, "SCANRATE") == 0) {
|
---|
1409 | mbrec.raRate = scanrate[0] * D2R;
|
---|
1410 | mbrec.decRate = scanrate[1] * D2R;
|
---|
1411 | }
|
---|
1412 | mbrec.paRate = 0.0f;
|
---|
1413 |
|
---|
1414 | // IF-dependent parameters.
|
---|
1415 | int startChan = cStartChan[iIF];
|
---|
1416 | int endChan = cEndChan[iIF];
|
---|
1417 | int refChan = cRefChan[iIF];
|
---|
1418 |
|
---|
1419 | // Allocate data storage.
|
---|
1420 | int nChan = abs(endChan - startChan) + 1;
|
---|
1421 | int nPol = cNPol[iIF];
|
---|
1422 |
|
---|
1423 | if (cGetSpectra || cGetXPol) {
|
---|
1424 | int nxpol = cGetXPol ? 2*nChan : 0;
|
---|
1425 | mbrec.allocate(0, nChan*nPol, nxpol);
|
---|
1426 | }
|
---|
1427 |
|
---|
1428 | mbrec.nIF = 1;
|
---|
1429 | mbrec.IFno[0] = iIF + 1;
|
---|
1430 | mbrec.nChan[0] = nChan;
|
---|
1431 | mbrec.nPol[0] = nPol;
|
---|
1432 |
|
---|
1433 | readData(FqRefPix, cRow, mbrec.fqRefPix);
|
---|
1434 | readData(FqRefVal, cRow, mbrec.fqRefVal);
|
---|
1435 | readData(FqDelt, cRow, mbrec.fqDelt);
|
---|
1436 |
|
---|
1437 | if (cALFA_BD) {
|
---|
1438 | unsigned char invert;
|
---|
1439 | int anynul, colnum;
|
---|
1440 | findCol("UPPERSB", &colnum);
|
---|
1441 | fits_read_col(cSDptr, TBYTE, colnum, cRow, 1, 1, 0, &invert, &anynul,
|
---|
1442 | &cStatus);
|
---|
1443 |
|
---|
1444 | if (invert) {
|
---|
1445 | mbrec.fqDelt[0] = -mbrec.fqDelt[0];
|
---|
1446 | }
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | if (cStatus) {
|
---|
1450 | logMsg();
|
---|
1451 | return 1;
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | // Adjust for channel selection.
|
---|
1455 | if (mbrec.fqRefPix[0] != refChan) {
|
---|
1456 | mbrec.fqRefVal[0] += (refChan - mbrec.fqRefPix[0]) * mbrec.fqDelt[0];
|
---|
1457 | mbrec.fqRefPix[0] = refChan;
|
---|
1458 | }
|
---|
1459 |
|
---|
1460 | if (endChan < startChan) {
|
---|
1461 | mbrec.fqDelt[0] = -mbrec.fqDelt[0];
|
---|
1462 | }
|
---|
1463 |
|
---|
1464 | // The data may only have a scalar Tsys value.
|
---|
1465 | mbrec.tsys[0][0] = 0.0f;
|
---|
1466 | mbrec.tsys[0][1] = 0.0f;
|
---|
1467 | if (cData[TSYS].nelem >= nPol) {
|
---|
1468 | readData(TSYS, cRow, mbrec.tsys[0]);
|
---|
1469 | }
|
---|
1470 |
|
---|
1471 | for (int j = 0; j < 2; j++) {
|
---|
1472 | mbrec.calfctr[0][j] = 0.0f;
|
---|
1473 | }
|
---|
1474 | if (cData[CALFCTR].colnum > 0) {
|
---|
1475 | readData(CALFCTR, cRow, mbrec.calfctr);
|
---|
1476 | }
|
---|
1477 |
|
---|
1478 | if (cHaveBase) {
|
---|
1479 | mbrec.haveBase = 1;
|
---|
1480 | readData(BASELIN, cRow, mbrec.baseLin);
|
---|
1481 | readData(BASESUB, cRow, mbrec.baseSub);
|
---|
1482 | } else {
|
---|
1483 | mbrec.haveBase = 0;
|
---|
1484 | }
|
---|
1485 |
|
---|
1486 | if (cStatus) {
|
---|
1487 | logMsg();
|
---|
1488 | return 1;
|
---|
1489 | }
|
---|
1490 |
|
---|
1491 | // Read data, sectioning and transposing it in the process.
|
---|
1492 | long *blc = new long[cNAxes+1];
|
---|
1493 | long *trc = new long[cNAxes+1];
|
---|
1494 | long *inc = new long[cNAxes+1];
|
---|
1495 | for (int iaxis = 0; iaxis <= cNAxes; iaxis++) {
|
---|
1496 | blc[iaxis] = 1;
|
---|
1497 | trc[iaxis] = 1;
|
---|
1498 | inc[iaxis] = 1;
|
---|
1499 | }
|
---|
1500 |
|
---|
1501 | blc[cFreqAxis] = std::min(startChan, endChan);
|
---|
1502 | trc[cFreqAxis] = std::max(startChan, endChan);
|
---|
1503 | if (cTimeAxis >= 0) {
|
---|
1504 | blc[cTimeAxis] = cTimeIdx;
|
---|
1505 | trc[cTimeAxis] = cTimeIdx;
|
---|
1506 | }
|
---|
1507 | blc[cNAxes] = cRow;
|
---|
1508 | trc[cNAxes] = cRow;
|
---|
1509 |
|
---|
1510 | mbrec.haveSpectra = cGetSpectra;
|
---|
1511 | if (cGetSpectra) {
|
---|
1512 | int anynul;
|
---|
1513 |
|
---|
1514 | for (int iPol = 0; iPol < nPol; iPol++) {
|
---|
1515 | blc[cStokesAxis] = iPol+1;
|
---|
1516 | trc[cStokesAxis] = iPol+1;
|
---|
1517 |
|
---|
1518 | if (cALFA && cALFA_CIMA < 2) {
|
---|
1519 | // ALFA data: polarizations are stored in successive rows.
|
---|
1520 | blc[cStokesAxis] = 1;
|
---|
1521 | trc[cStokesAxis] = 1;
|
---|
1522 |
|
---|
1523 | if (iPol) {
|
---|
1524 | if (++cRow > cNRow) {
|
---|
1525 | return -1;
|
---|
1526 | }
|
---|
1527 |
|
---|
1528 | blc[cNAxes] = cRow;
|
---|
1529 | trc[cNAxes] = cRow;
|
---|
1530 | }
|
---|
1531 |
|
---|
1532 | } else if (cData[DATA].nelem < 0) {
|
---|
1533 | // Variable dimension array; get axis lengths.
|
---|
1534 | int naxes = 5, status;
|
---|
1535 |
|
---|
1536 | if ((status = readDim(DATA, cRow, &naxes, cNAxis))) {
|
---|
1537 | logMsg();
|
---|
1538 |
|
---|
1539 | } else if ((status = (naxes != cNAxes))) {
|
---|
1540 | logMsg("ERROR: DATA array dimensions changed.");
|
---|
1541 | }
|
---|
1542 |
|
---|
1543 | if (status) {
|
---|
1544 | delete [] blc;
|
---|
1545 | delete [] trc;
|
---|
1546 | delete [] inc;
|
---|
1547 | return 1;
|
---|
1548 | }
|
---|
1549 | }
|
---|
1550 |
|
---|
1551 | if (fits_read_subset_flt(cSDptr, cData[DATA].colnum, cNAxes, cNAxis,
|
---|
1552 | blc, trc, inc, 0, mbrec.spectra[0] + iPol*nChan, &anynul,
|
---|
1553 | &cStatus)) {
|
---|
1554 | logMsg();
|
---|
1555 | delete [] blc;
|
---|
1556 | delete [] trc;
|
---|
1557 | delete [] inc;
|
---|
1558 | return 1;
|
---|
1559 | }
|
---|
1560 |
|
---|
1561 | if (endChan < startChan) {
|
---|
1562 | // Reverse the spectrum.
|
---|
1563 | float *iptr = mbrec.spectra[0] + iPol*nChan;
|
---|
1564 | float *jptr = iptr + nChan - 1;
|
---|
1565 | float *mid = iptr + nChan/2;
|
---|
1566 | while (iptr < mid) {
|
---|
1567 | float tmp = *iptr;
|
---|
1568 | *(iptr++) = *jptr;
|
---|
1569 | *(jptr--) = tmp;
|
---|
1570 | }
|
---|
1571 | }
|
---|
1572 |
|
---|
1573 | if (cALFA) {
|
---|
1574 | // ALFA data, rescale the spectrum.
|
---|
1575 | float el, zd;
|
---|
1576 | readData(ELEVATIO, cRow, &el);
|
---|
1577 | zd = 90.0f - el;
|
---|
1578 |
|
---|
1579 | float factor = sALFAcal[iBeam][iPol] / alfaGain(zd);
|
---|
1580 |
|
---|
1581 | if (cALFA_CIMA > 1) {
|
---|
1582 | // Rescale according to the number of unblanked accumulations.
|
---|
1583 | int colnum, naccum;
|
---|
1584 | findCol("STAT", &colnum);
|
---|
1585 | fits_read_col(cSDptr, TINT, colnum, cRow, 10*(cTimeIdx-1)+2, 1, 0,
|
---|
1586 | &naccum, &anynul, &cStatus);
|
---|
1587 | factor *= cALFAacc / naccum;
|
---|
1588 | }
|
---|
1589 |
|
---|
1590 | float *chan = mbrec.spectra[0] + iPol*nChan;
|
---|
1591 | float *chanN = chan + nChan;
|
---|
1592 | while (chan < chanN) {
|
---|
1593 | // Approximate conversion to Jy.
|
---|
1594 | *(chan++) *= factor;
|
---|
1595 | }
|
---|
1596 | }
|
---|
1597 |
|
---|
1598 | if (mbrec.tsys[0][iPol] == 0.0) {
|
---|
1599 | // Compute Tsys as the average across the spectrum.
|
---|
1600 | float *chan = mbrec.spectra[0] + iPol*nChan;
|
---|
1601 | float *chanN = chan + nChan;
|
---|
1602 | float *tsys = mbrec.tsys[0] + iPol;
|
---|
1603 | while (chan < chanN) {
|
---|
1604 | *tsys += *(chan++);
|
---|
1605 | }
|
---|
1606 |
|
---|
1607 | *tsys /= nChan;
|
---|
1608 | }
|
---|
1609 |
|
---|
1610 | // Read data flags.
|
---|
1611 | if (cData[FLAGGED].colnum > 0) {
|
---|
1612 | if (fits_read_subset_byt(cSDptr, cData[FLAGGED].colnum, cNAxes,
|
---|
1613 | cNAxis, blc, trc, inc, 0, mbrec.flagged[0] + iPol*nChan, &anynul,
|
---|
1614 | &cStatus)) {
|
---|
1615 | logMsg();
|
---|
1616 | delete [] blc;
|
---|
1617 | delete [] trc;
|
---|
1618 | delete [] inc;
|
---|
1619 | return 1;
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | if (endChan < startChan) {
|
---|
1623 | // Reverse the flag vector.
|
---|
1624 | unsigned char *iptr = mbrec.flagged[0] + iPol*nChan;
|
---|
1625 | unsigned char *jptr = iptr + nChan - 1;
|
---|
1626 | for (int ichan = 0; ichan < nChan/2; ichan++) {
|
---|
1627 | unsigned char tmp = *iptr;
|
---|
1628 | *(iptr++) = *jptr;
|
---|
1629 | *(jptr--) = tmp;
|
---|
1630 | }
|
---|
1631 | }
|
---|
1632 |
|
---|
1633 | } else {
|
---|
1634 | // All channels are unflagged by default.
|
---|
1635 | unsigned char *iptr = mbrec.flagged[0] + iPol*nChan;
|
---|
1636 | for (int ichan = 0; ichan < nChan; ichan++) {
|
---|
1637 | *(iptr++) = 0;
|
---|
1638 | }
|
---|
1639 | }
|
---|
1640 | }
|
---|
1641 | }
|
---|
1642 |
|
---|
1643 |
|
---|
1644 | // Read cross-polarization data.
|
---|
1645 | if (cGetXPol) {
|
---|
1646 | int anynul;
|
---|
1647 | for (int j = 0; j < 2; j++) {
|
---|
1648 | mbrec.xcalfctr[0][j] = 0.0f;
|
---|
1649 | }
|
---|
1650 | if (cData[XCALFCTR].colnum > 0) {
|
---|
1651 | readData(XCALFCTR, cRow, mbrec.xcalfctr);
|
---|
1652 | }
|
---|
1653 |
|
---|
1654 | blc[0] = 1;
|
---|
1655 | trc[0] = 2;
|
---|
1656 | blc[1] = std::min(startChan, endChan);
|
---|
1657 | trc[1] = std::max(startChan, endChan);
|
---|
1658 | blc[2] = cRow;
|
---|
1659 | trc[2] = cRow;
|
---|
1660 |
|
---|
1661 | int nAxis = 2;
|
---|
1662 | long nAxes[] = {2, nChan};
|
---|
1663 |
|
---|
1664 | if (fits_read_subset_flt(cSDptr, cData[XPOLDATA].colnum, nAxis, nAxes,
|
---|
1665 | blc, trc, inc, 0, mbrec.xpol[0], &anynul, &cStatus)) {
|
---|
1666 | logMsg();
|
---|
1667 | delete [] blc;
|
---|
1668 | delete [] trc;
|
---|
1669 | delete [] inc;
|
---|
1670 | return 1;
|
---|
1671 | }
|
---|
1672 |
|
---|
1673 | if (endChan < startChan) {
|
---|
1674 | // Invert the cross-polarization spectrum.
|
---|
1675 | float *iptr = mbrec.xpol[0];
|
---|
1676 | float *jptr = iptr + nChan - 2;
|
---|
1677 | for (int ichan = 0; ichan < nChan/2; ichan++) {
|
---|
1678 | float tmp = *iptr;
|
---|
1679 | *iptr = *jptr;
|
---|
1680 | *jptr = tmp;
|
---|
1681 |
|
---|
1682 | tmp = *(iptr+1);
|
---|
1683 | *(iptr+1) = *(jptr+1);
|
---|
1684 | *(jptr+1) = tmp;
|
---|
1685 |
|
---|
1686 | iptr += 2;
|
---|
1687 | jptr -= 2;
|
---|
1688 | }
|
---|
1689 | }
|
---|
1690 | }
|
---|
1691 |
|
---|
1692 | delete [] blc;
|
---|
1693 | delete [] trc;
|
---|
1694 | delete [] inc;
|
---|
1695 |
|
---|
1696 | if (cStatus) {
|
---|
1697 | logMsg();
|
---|
1698 | return 1;
|
---|
1699 | }
|
---|
1700 |
|
---|
1701 | mbrec.extraSysCal = cExtraSysCal;
|
---|
1702 | readData(REFBEAM, cRow, &mbrec.refBeam);
|
---|
1703 | readData(TCAL, cRow, &mbrec.tcal[0]);
|
---|
1704 | readData(TCALTIME, cRow, mbrec.tcalTime);
|
---|
1705 |
|
---|
1706 | readData(AZIMUTH, cRow, &mbrec.azimuth);
|
---|
1707 | readData(ELEVATIO, cRow, &mbrec.elevation);
|
---|
1708 | readData(PARANGLE, cRow, &mbrec.parAngle);
|
---|
1709 |
|
---|
1710 | readData(FOCUSAXI, cRow, &mbrec.focusAxi);
|
---|
1711 | readData(FOCUSTAN, cRow, &mbrec.focusTan);
|
---|
1712 | readData(FOCUSROT, cRow, &mbrec.focusRot);
|
---|
1713 |
|
---|
1714 | readData(TAMBIENT, cRow, &mbrec.temp);
|
---|
1715 | readData(PRESSURE, cRow, &mbrec.pressure);
|
---|
1716 | readData(HUMIDITY, cRow, &mbrec.humidity);
|
---|
1717 | readData(WINDSPEE, cRow, &mbrec.windSpeed);
|
---|
1718 | readData(WINDDIRE, cRow, &mbrec.windAz);
|
---|
1719 |
|
---|
1720 | if (cALFA_BD) {
|
---|
1721 | // ALFA BDFITS stores zenith angle rather than elevation.
|
---|
1722 | mbrec.elevation = 90.0 - mbrec.elevation;
|
---|
1723 | }
|
---|
1724 |
|
---|
1725 | mbrec.azimuth *= D2R;
|
---|
1726 | mbrec.elevation *= D2R;
|
---|
1727 | mbrec.parAngle *= D2R;
|
---|
1728 | mbrec.focusRot *= D2R;
|
---|
1729 | mbrec.windAz *= D2R;
|
---|
1730 |
|
---|
1731 | if (cStatus) {
|
---|
1732 | logMsg();
|
---|
1733 | return 1;
|
---|
1734 | }
|
---|
1735 |
|
---|
1736 | return 0;
|
---|
1737 | }
|
---|
1738 |
|
---|
1739 | //-------------------------------------------------------- SDFITSreader::close
|
---|
1740 |
|
---|
1741 | // Close the SDFITS file.
|
---|
1742 |
|
---|
1743 | void SDFITSreader::close()
|
---|
1744 | {
|
---|
1745 | if (cSDptr) {
|
---|
1746 | int status = 0;
|
---|
1747 | fits_close_file(cSDptr, &status);
|
---|
1748 | cSDptr = 0x0;
|
---|
1749 |
|
---|
1750 | if (cBeams) delete [] cBeams;
|
---|
1751 | if (cIFs) delete [] cIFs;
|
---|
1752 | if (cStartChan) delete [] cStartChan;
|
---|
1753 | if (cEndChan) delete [] cEndChan;
|
---|
1754 | if (cRefChan) delete [] cRefChan;
|
---|
1755 | }
|
---|
1756 | }
|
---|
1757 |
|
---|
1758 | //------------------------------------------------------- SDFITSreader::logMsg
|
---|
1759 |
|
---|
1760 | // Log a message. If the current CFITSIO status value is non-zero, also log
|
---|
1761 | // the corresponding error message and the CFITSIO message stack.
|
---|
1762 |
|
---|
1763 | void SDFITSreader::logMsg(const char *msg)
|
---|
1764 | {
|
---|
1765 | FITSreader::logMsg(msg);
|
---|
1766 |
|
---|
1767 | if (cStatus > 0) {
|
---|
1768 | fits_get_errstatus(cStatus, cMsg);
|
---|
1769 | FITSreader::logMsg(cMsg);
|
---|
1770 |
|
---|
1771 | while (fits_read_errmsg(cMsg)) {
|
---|
1772 | FITSreader::logMsg(cMsg);
|
---|
1773 | }
|
---|
1774 | }
|
---|
1775 | }
|
---|
1776 |
|
---|
1777 | //----------------------------------------------------- SDFITSreader::findData
|
---|
1778 |
|
---|
1779 | // Locate a data item in the SDFITS file.
|
---|
1780 |
|
---|
1781 | void SDFITSreader::findData(
|
---|
1782 | int iData,
|
---|
1783 | char *name,
|
---|
1784 | int type)
|
---|
1785 | {
|
---|
1786 | cData[iData].name = name;
|
---|
1787 | cData[iData].type = type;
|
---|
1788 |
|
---|
1789 | int colnum;
|
---|
1790 | findCol(name, &colnum);
|
---|
1791 | cData[iData].colnum = colnum;
|
---|
1792 |
|
---|
1793 | // Determine the number of data elements.
|
---|
1794 | if (colnum > 0) {
|
---|
1795 | int coltype;
|
---|
1796 | long nelem, width;
|
---|
1797 | fits_get_coltype(cSDptr, colnum, &coltype, &nelem, &width, &cStatus);
|
---|
1798 | fits_get_bcolparms(cSDptr, colnum, 0x0, cData[iData].units, 0x0, 0x0, 0x0,
|
---|
1799 | 0x0, 0x0, 0x0, &cStatus);
|
---|
1800 |
|
---|
1801 | // Look for a TDIMnnn keyword or column.
|
---|
1802 | char tdim[8];
|
---|
1803 | sprintf(tdim, "TDIM%d", colnum);
|
---|
1804 | findCol(tdim, &cData[iData].tdimcol);
|
---|
1805 |
|
---|
1806 | if (coltype < 0) {
|
---|
1807 | // CFITSIO returns coltype < 0 for variable length arrays.
|
---|
1808 | cData[iData].coltype = -coltype;
|
---|
1809 | cData[iData].nelem = -nelem;
|
---|
1810 |
|
---|
1811 | } else {
|
---|
1812 | cData[iData].coltype = coltype;
|
---|
1813 |
|
---|
1814 | // Is there a TDIMnnn column?
|
---|
1815 | if (cData[iData].tdimcol > 0) {
|
---|
1816 | // Yes, dimensions of the fixed-length array could still vary.
|
---|
1817 | cData[iData].nelem = -nelem;
|
---|
1818 | } else {
|
---|
1819 | cData[iData].nelem = nelem;
|
---|
1820 | }
|
---|
1821 | }
|
---|
1822 |
|
---|
1823 | } else if (colnum == 0) {
|
---|
1824 | // Keyword.
|
---|
1825 | cData[iData].coltype = 0;
|
---|
1826 | cData[iData].nelem = 1;
|
---|
1827 | cData[iData].tdimcol = -1;
|
---|
1828 | }
|
---|
1829 | }
|
---|
1830 |
|
---|
1831 | //------------------------------------------------------ SDFITSreader::findCol
|
---|
1832 |
|
---|
1833 | // Locate a parameter in the SDFITS file.
|
---|
1834 |
|
---|
1835 | void SDFITSreader::findCol(
|
---|
1836 | char *name,
|
---|
1837 | int *colnum)
|
---|
1838 | {
|
---|
1839 | *colnum = 0;
|
---|
1840 | int status = 0;
|
---|
1841 | fits_get_colnum(cSDptr, CASESEN, name, colnum, &status);
|
---|
1842 |
|
---|
1843 | if (status) {
|
---|
1844 | // Not a real column - maybe it's virtual.
|
---|
1845 | char card[81];
|
---|
1846 |
|
---|
1847 | status = 0;
|
---|
1848 | fits_read_card(cSDptr, name, card, &status);
|
---|
1849 | if (status) {
|
---|
1850 | // Not virtual either.
|
---|
1851 | *colnum = -1;
|
---|
1852 | }
|
---|
1853 |
|
---|
1854 | // Clear error messages.
|
---|
1855 | fits_clear_errmsg();
|
---|
1856 | }
|
---|
1857 | }
|
---|
1858 |
|
---|
1859 | //------------------------------------------------------ SDFITSreader::readDim
|
---|
1860 |
|
---|
1861 | // Determine the dimensions of an array in the SDFITS file.
|
---|
1862 |
|
---|
1863 | int SDFITSreader::readDim(
|
---|
1864 | int iData,
|
---|
1865 | long iRow,
|
---|
1866 | int *naxes,
|
---|
1867 | long naxis[])
|
---|
1868 | {
|
---|
1869 | int colnum = cData[iData].colnum;
|
---|
1870 | if (colnum <= 0) {
|
---|
1871 | return 1;
|
---|
1872 | }
|
---|
1873 |
|
---|
1874 | int maxdim = *naxes;
|
---|
1875 | if (cData[iData].tdimcol < 0) {
|
---|
1876 | // No TDIMnnn column for this array.
|
---|
1877 | if (cData[iData].nelem < 0) {
|
---|
1878 | // Variable length array; read the array descriptor.
|
---|
1879 | *naxes = 1;
|
---|
1880 | long dummy;
|
---|
1881 | if (fits_read_descript(cSDptr, colnum, iRow, naxis, &dummy, &cStatus)) {
|
---|
1882 | return 1;
|
---|
1883 | }
|
---|
1884 |
|
---|
1885 | } else {
|
---|
1886 | // Read the repeat count from TFORMnnn.
|
---|
1887 | if (fits_read_tdim(cSDptr, colnum, maxdim, naxes, naxis, &cStatus)) {
|
---|
1888 | return 1;
|
---|
1889 | }
|
---|
1890 | }
|
---|
1891 |
|
---|
1892 | } else {
|
---|
1893 | // Read the TDIMnnn value from the header or table.
|
---|
1894 | char tdim[8], tdimval[64];
|
---|
1895 | sprintf(tdim, "TDIM%d", colnum);
|
---|
1896 | readData(tdim, TSTRING, iRow, tdimval);
|
---|
1897 |
|
---|
1898 | // fits_decode_tdim() checks that the TDIMnnn value is within the length
|
---|
1899 | // of the array in the specified column number but unfortunately doesn't
|
---|
1900 | // recognize variable-length arrays. Hence we must decode it here.
|
---|
1901 | char *tp = tdimval;
|
---|
1902 | if (*tp != '(') return 1;
|
---|
1903 |
|
---|
1904 | tp++;
|
---|
1905 | *naxes = 0;
|
---|
1906 | for (size_t j = 1; j < strlen(tdimval); j++) {
|
---|
1907 | if (tdimval[j] == ',' || tdimval[j] == ')') {
|
---|
1908 | sscanf(tp, "%ld", naxis + (*naxes)++);
|
---|
1909 | if (tdimval[j] == ')') break;
|
---|
1910 | tp = tdimval + j + 1;
|
---|
1911 | }
|
---|
1912 | }
|
---|
1913 | }
|
---|
1914 |
|
---|
1915 | return 0;
|
---|
1916 | }
|
---|
1917 |
|
---|
1918 | //----------------------------------------------------- SDFITSreader::readParm
|
---|
1919 |
|
---|
1920 | // Read a parameter value from the SDFITS file.
|
---|
1921 |
|
---|
1922 | int SDFITSreader::readParm(
|
---|
1923 | char *name,
|
---|
1924 | int type,
|
---|
1925 | void *value)
|
---|
1926 | {
|
---|
1927 | return readData(name, type, 1, value);
|
---|
1928 | }
|
---|
1929 |
|
---|
1930 | //----------------------------------------------------- SDFITSreader::readData
|
---|
1931 |
|
---|
1932 | // Read a data value from the SDFITS file.
|
---|
1933 |
|
---|
1934 | int SDFITSreader::readData(
|
---|
1935 | char *name,
|
---|
1936 | int type,
|
---|
1937 | long iRow,
|
---|
1938 | void *value)
|
---|
1939 | {
|
---|
1940 | int colnum;
|
---|
1941 | findCol(name, &colnum);
|
---|
1942 |
|
---|
1943 | if (colnum > 0 && iRow > 0) {
|
---|
1944 | // Read the first value from the specified row of the table.
|
---|
1945 | int coltype;
|
---|
1946 | long nelem, width;
|
---|
1947 | fits_get_coltype(cSDptr, colnum, &coltype, &nelem, &width, &cStatus);
|
---|
1948 |
|
---|
1949 | int anynul;
|
---|
1950 | if (type == TSTRING) {
|
---|
1951 | if (nelem) {
|
---|
1952 | fits_read_col(cSDptr, type, colnum, iRow, 1, 1, 0, &value, &anynul,
|
---|
1953 | &cStatus);
|
---|
1954 | } else {
|
---|
1955 | strcpy((char *)value, "");
|
---|
1956 | }
|
---|
1957 |
|
---|
1958 | } else {
|
---|
1959 | if (nelem) {
|
---|
1960 | fits_read_col(cSDptr, type, colnum, iRow, 1, 1, 0, value, &anynul,
|
---|
1961 | &cStatus);
|
---|
1962 | } else {
|
---|
1963 | if (type == TSHORT) {
|
---|
1964 | *((short *)value) = 0;
|
---|
1965 | } else if (type == TINT) {
|
---|
1966 | *((int *)value) = 0;
|
---|
1967 | } else if (type == TFLOAT) {
|
---|
1968 | *((float *)value) = 0.0f;
|
---|
1969 | } else if (type == TDOUBLE) {
|
---|
1970 | *((double *)value) = 0.0;
|
---|
1971 | }
|
---|
1972 | }
|
---|
1973 | }
|
---|
1974 |
|
---|
1975 | } else if (colnum == 0) {
|
---|
1976 | // Read keyword value.
|
---|
1977 | fits_read_key(cSDptr, type, name, value, 0, &cStatus);
|
---|
1978 |
|
---|
1979 | } else {
|
---|
1980 | // Not present.
|
---|
1981 | if (type == TSTRING) {
|
---|
1982 | strcpy((char *)value, "");
|
---|
1983 | } else if (type == TSHORT) {
|
---|
1984 | *((short *)value) = 0;
|
---|
1985 | } else if (type == TINT) {
|
---|
1986 | *((int *)value) = 0;
|
---|
1987 | } else if (type == TFLOAT) {
|
---|
1988 | *((float *)value) = 0.0f;
|
---|
1989 | } else if (type == TDOUBLE) {
|
---|
1990 | *((double *)value) = 0.0;
|
---|
1991 | }
|
---|
1992 | }
|
---|
1993 |
|
---|
1994 | return colnum < 0;
|
---|
1995 | }
|
---|
1996 |
|
---|
1997 | //----------------------------------------------------- SDFITSreader::readData
|
---|
1998 |
|
---|
1999 | // Read data from the SDFITS file.
|
---|
2000 |
|
---|
2001 | int SDFITSreader::readData(
|
---|
2002 | int iData,
|
---|
2003 | long iRow,
|
---|
2004 | void *value)
|
---|
2005 | {
|
---|
2006 | int type = cData[iData].type;
|
---|
2007 | int colnum = cData[iData].colnum;
|
---|
2008 |
|
---|
2009 | if (colnum > 0 && iRow > 0) {
|
---|
2010 | // Read the required number of values from the specified row of the table.
|
---|
2011 | long nelem = cData[iData].nelem;
|
---|
2012 | int anynul;
|
---|
2013 | if (type == TSTRING) {
|
---|
2014 | if (nelem) {
|
---|
2015 | fits_read_col(cSDptr, type, colnum, iRow, 1, 1, 0, &value, &anynul,
|
---|
2016 | &cStatus);
|
---|
2017 | } else {
|
---|
2018 | strcpy((char *)value, "");
|
---|
2019 | }
|
---|
2020 |
|
---|
2021 | } else {
|
---|
2022 | if (nelem) {
|
---|
2023 | fits_read_col(cSDptr, type, colnum, iRow, 1, abs(nelem), 0, value,
|
---|
2024 | &anynul, &cStatus);
|
---|
2025 | } else {
|
---|
2026 | if (type == TSHORT) {
|
---|
2027 | *((short *)value) = 0;
|
---|
2028 | } else if (type == TINT) {
|
---|
2029 | *((int *)value) = 0;
|
---|
2030 | } else if (type == TFLOAT) {
|
---|
2031 | *((float *)value) = 0.0f;
|
---|
2032 | } else if (type == TDOUBLE) {
|
---|
2033 | *((double *)value) = 0.0;
|
---|
2034 | }
|
---|
2035 | }
|
---|
2036 | }
|
---|
2037 |
|
---|
2038 | } else if (colnum == 0) {
|
---|
2039 | // Read keyword value.
|
---|
2040 | char *name = cData[iData].name;
|
---|
2041 | fits_read_key(cSDptr, type, name, value, 0, &cStatus);
|
---|
2042 |
|
---|
2043 | } else {
|
---|
2044 | // Not present.
|
---|
2045 | if (type == TSTRING) {
|
---|
2046 | strcpy((char *)value, "");
|
---|
2047 | } else if (type == TSHORT) {
|
---|
2048 | *((short *)value) = 0;
|
---|
2049 | } else if (type == TINT) {
|
---|
2050 | *((int *)value) = 0;
|
---|
2051 | } else if (type == TFLOAT) {
|
---|
2052 | *((float *)value) = 0.0f;
|
---|
2053 | } else if (type == TDOUBLE) {
|
---|
2054 | *((double *)value) = 0.0;
|
---|
2055 | }
|
---|
2056 | }
|
---|
2057 |
|
---|
2058 | return colnum < 0;
|
---|
2059 | }
|
---|
2060 |
|
---|
2061 | //------------------------------------------------------ SDFITSreader::readCol
|
---|
2062 |
|
---|
2063 | // Read a scalar column from the SDFITS file.
|
---|
2064 |
|
---|
2065 | int SDFITSreader::readCol(
|
---|
2066 | int iData,
|
---|
2067 | void *value)
|
---|
2068 | {
|
---|
2069 | int type = cData[iData].type;
|
---|
2070 |
|
---|
2071 | if (cData[iData].colnum > 0) {
|
---|
2072 | // Table column.
|
---|
2073 | int anynul;
|
---|
2074 | fits_read_col(cSDptr, type, cData[iData].colnum, 1, 1, cNRow, 0,
|
---|
2075 | value, &anynul, &cStatus);
|
---|
2076 |
|
---|
2077 | } else {
|
---|
2078 | // Header keyword.
|
---|
2079 | readData(iData, 0, value);
|
---|
2080 | for (int irow = 1; irow < cNRow; irow++) {
|
---|
2081 | if (type == TSHORT) {
|
---|
2082 | ((short *)value)[irow] = *((short *)value);
|
---|
2083 | } else if (type == TINT) {
|
---|
2084 | ((int *)value)[irow] = *((int *)value);
|
---|
2085 | } else if (type == TFLOAT) {
|
---|
2086 | ((float *)value)[irow] = *((float *)value);
|
---|
2087 | } else if (type == TDOUBLE) {
|
---|
2088 | ((double *)value)[irow] = *((double *)value);
|
---|
2089 | }
|
---|
2090 | }
|
---|
2091 | }
|
---|
2092 |
|
---|
2093 | return cData[iData].colnum < 0;
|
---|
2094 | }
|
---|
2095 |
|
---|
2096 | //----------------------------------------------------- SDFITSreader::readTime
|
---|
2097 |
|
---|
2098 | // Read the time from the SDFITS file.
|
---|
2099 |
|
---|
2100 | int SDFITSreader::readTime(
|
---|
2101 | long iRow,
|
---|
2102 | int iPix,
|
---|
2103 | char *datobs,
|
---|
2104 | double &utc)
|
---|
2105 | {
|
---|
2106 | readData(DATE_OBS, iRow, datobs);
|
---|
2107 | if (cData[TIME].colnum >= 0) {
|
---|
2108 | readData(TIME, iRow, &utc);
|
---|
2109 | } else if (cNAxisTime > 1) {
|
---|
2110 | double timeDelt, timeRefPix, timeRefVal;
|
---|
2111 | readData(TimeRefVal, iRow, &timeRefVal);
|
---|
2112 | readData(TimeDelt, iRow, &timeDelt);
|
---|
2113 | readData(TimeRefPix, iRow, &timeRefPix);
|
---|
2114 | utc = timeRefVal + (iPix - timeRefPix) * timeDelt;
|
---|
2115 | }
|
---|
2116 |
|
---|
2117 | if (cALFA_BD) utc *= 3600.0;
|
---|
2118 |
|
---|
2119 | // Check DATE-OBS format.
|
---|
2120 | if (datobs[2] == '/') {
|
---|
2121 | // Translate an old-format DATE-OBS.
|
---|
2122 | datobs[9] = datobs[1];
|
---|
2123 | datobs[8] = datobs[0];
|
---|
2124 | datobs[2] = datobs[6];
|
---|
2125 | datobs[5] = datobs[3];
|
---|
2126 | datobs[3] = datobs[7];
|
---|
2127 | datobs[6] = datobs[4];
|
---|
2128 | datobs[7] = '-';
|
---|
2129 | datobs[4] = '-';
|
---|
2130 | datobs[1] = '9';
|
---|
2131 | datobs[0] = '1';
|
---|
2132 |
|
---|
2133 | } else if (datobs[10] == 'T' && cData[TIME].colnum < 0) {
|
---|
2134 | // Dig UTC out of a new-format DATE-OBS.
|
---|
2135 | int hh, mm;
|
---|
2136 | float ss;
|
---|
2137 | sscanf(datobs+11, "%d:%d:%f", &hh, &mm, &ss);
|
---|
2138 | utc = (hh*60 + mm)*60 + ss;
|
---|
2139 | }
|
---|
2140 |
|
---|
2141 | datobs[10] = '\0';
|
---|
2142 |
|
---|
2143 | return 0;
|
---|
2144 | }
|
---|
2145 |
|
---|
2146 | //------------------------------------------------------ SDFITSreader::alfaCal
|
---|
2147 |
|
---|
2148 | // Process ALFA calibration data.
|
---|
2149 |
|
---|
2150 | int SDFITSreader::alfaCal(
|
---|
2151 | short iBeam,
|
---|
2152 | short iIF,
|
---|
2153 | short iPol)
|
---|
2154 | {
|
---|
2155 | int calOn;
|
---|
2156 | char chars[32];
|
---|
2157 | if (cALFA_BD) {
|
---|
2158 | readData("OBS_NAME", TSTRING, cRow, chars);
|
---|
2159 | } else {
|
---|
2160 | readData("SCANTYPE", TSTRING, cRow, chars);
|
---|
2161 | }
|
---|
2162 |
|
---|
2163 | if (strcmp(chars, "ON") == 0) {
|
---|
2164 | calOn = 1;
|
---|
2165 | } else if (strcmp(chars, "OFF") == 0) {
|
---|
2166 | calOn = 0;
|
---|
2167 | } else {
|
---|
2168 | return 1;
|
---|
2169 | }
|
---|
2170 |
|
---|
2171 | // Read cal data.
|
---|
2172 | long *blc = new long[cNAxes+1];
|
---|
2173 | long *trc = new long[cNAxes+1];
|
---|
2174 | long *inc = new long[cNAxes+1];
|
---|
2175 | for (int iaxis = 0; iaxis <= cNAxes; iaxis++) {
|
---|
2176 | blc[iaxis] = 1;
|
---|
2177 | trc[iaxis] = 1;
|
---|
2178 | inc[iaxis] = 1;
|
---|
2179 | }
|
---|
2180 |
|
---|
2181 | // User channel selection.
|
---|
2182 | int startChan = cStartChan[iIF];
|
---|
2183 | int endChan = cEndChan[iIF];
|
---|
2184 |
|
---|
2185 | blc[cFreqAxis] = std::min(startChan, endChan);
|
---|
2186 | trc[cFreqAxis] = std::max(startChan, endChan);
|
---|
2187 | if (cALFA_CIMA > 1) {
|
---|
2188 | // CIMAFITS 2.x has a legitimate STOKES axis...
|
---|
2189 | blc[cStokesAxis] = iPol+1;
|
---|
2190 | trc[cStokesAxis] = iPol+1;
|
---|
2191 | } else {
|
---|
2192 | // ...older ALFA data does not.
|
---|
2193 | blc[cStokesAxis] = 1;
|
---|
2194 | trc[cStokesAxis] = 1;
|
---|
2195 | }
|
---|
2196 | if (cTimeAxis >= 0) {
|
---|
2197 | blc[cTimeAxis] = cTimeIdx;
|
---|
2198 | trc[cTimeAxis] = cTimeIdx;
|
---|
2199 | }
|
---|
2200 | blc[cNAxes] = cRow;
|
---|
2201 | trc[cNAxes] = cRow;
|
---|
2202 |
|
---|
2203 | float spectrum[endChan];
|
---|
2204 | int anynul;
|
---|
2205 | if (fits_read_subset_flt(cSDptr, cData[DATA].colnum, cNAxes, cNAxis,
|
---|
2206 | blc, trc, inc, 0, spectrum, &anynul, &cStatus)) {
|
---|
2207 | logMsg();
|
---|
2208 | delete [] blc;
|
---|
2209 | delete [] trc;
|
---|
2210 | delete [] inc;
|
---|
2211 | return 1;
|
---|
2212 | }
|
---|
2213 |
|
---|
2214 | // Factor to rescale according to the number of unblanked accumulations.
|
---|
2215 | float factor = 1.0f;
|
---|
2216 | if (cALFA_CIMA > 1) {
|
---|
2217 | int colnum, naccum;
|
---|
2218 | findCol("STAT", &colnum);
|
---|
2219 | fits_read_col(cSDptr, TINT, colnum, cRow, 2, 1, 0, &naccum, &anynul,
|
---|
2220 | &cStatus);
|
---|
2221 | factor = cALFAacc / naccum;
|
---|
2222 | }
|
---|
2223 |
|
---|
2224 | // Average the spectrum.
|
---|
2225 | float mean = 1e9f;
|
---|
2226 | for (int k = 0; k < 2; k++) {
|
---|
2227 | float discrim = 2.0f * mean;
|
---|
2228 |
|
---|
2229 | int nChan = 0;
|
---|
2230 | float sum = 0.0f;
|
---|
2231 |
|
---|
2232 | float *chanN = spectrum + abs(endChan - startChan) + 1;
|
---|
2233 | for (float *chan = spectrum; chan < chanN; chan++) {
|
---|
2234 | // Simple discriminant that eliminates strong radar interference.
|
---|
2235 | if (*chan < discrim) {
|
---|
2236 | nChan++;
|
---|
2237 | sum += *chan * factor;
|
---|
2238 | }
|
---|
2239 | }
|
---|
2240 |
|
---|
2241 | mean = sum / nChan;
|
---|
2242 | }
|
---|
2243 |
|
---|
2244 | if (calOn) {
|
---|
2245 | sALFAcalOn[iBeam][iPol] *= sALFAcalNon[iBeam][iPol];
|
---|
2246 | sALFAcalOn[iBeam][iPol] += mean;
|
---|
2247 | sALFAcalOn[iBeam][iPol] /= ++sALFAcalNon[iBeam][iPol];
|
---|
2248 | } else {
|
---|
2249 | sALFAcalOff[iBeam][iPol] *= sALFAcalNoff[iBeam][iPol];
|
---|
2250 | sALFAcalOff[iBeam][iPol] += mean;
|
---|
2251 | sALFAcalOff[iBeam][iPol] /= ++sALFAcalNoff[iBeam][iPol];
|
---|
2252 | }
|
---|
2253 |
|
---|
2254 | if (sALFAcalNon[iBeam][iPol] && sALFAcalNoff[iBeam][iPol]) {
|
---|
2255 | // Tcal should come from the TCAL table, it varies weakly with beam,
|
---|
2256 | // polarization, and frequency. However, TCAL is not written properly.
|
---|
2257 | float Tcal = 12.0f;
|
---|
2258 | sALFAcal[iBeam][iPol] = Tcal / (sALFAcalOn[iBeam][iPol] -
|
---|
2259 | sALFAcalOff[iBeam][iPol]);
|
---|
2260 |
|
---|
2261 | // Scale from K to Jy; the gain also varies weakly with beam,
|
---|
2262 | // polarization, frequency, and zenith angle.
|
---|
2263 | float fluxCal = 10.0f;
|
---|
2264 | sALFAcal[iBeam][iPol] /= fluxCal;
|
---|
2265 | }
|
---|
2266 |
|
---|
2267 | return 0;
|
---|
2268 | }
|
---|
2269 |
|
---|
2270 | //----------------------------------------------------- SDFITSreader::alfaGain
|
---|
2271 |
|
---|
2272 | // ALFA gain factor.
|
---|
2273 |
|
---|
2274 | float SDFITSreader::alfaGain(
|
---|
2275 | float zd)
|
---|
2276 | {
|
---|
2277 | // Gain vs zenith distance table from Robert Minchin, 2008/12/08.
|
---|
2278 | const int nZD = 37;
|
---|
2279 | const float zdLim[] = {1.5f, 19.5f};
|
---|
2280 | const float zdInc = (nZD - 1) / (zdLim[1] - zdLim[0]);
|
---|
2281 | float zdGain[] = { 1.00723708,
|
---|
2282 | 1.16644573, 1.15003645, 1.07117307, 1.02532673,
|
---|
2283 | 1.01788402, 1.01369524, 1.00000000, 0.989855111,
|
---|
2284 | 0.990888834, 0.993996620, 0.989964068, 0.982213855,
|
---|
2285 | 0.978662670, 0.979349494, 0.978478372, 0.974631131,
|
---|
2286 | 0.972126007, 0.972835243, 0.972742677, 0.968671739,
|
---|
2287 | 0.963891327, 0.963452935, 0.966831207, 0.969585896,
|
---|
2288 | 0.970700860, 0.972644389, 0.973754644, 0.967344403,
|
---|
2289 | 0.952168941, 0.937160134, 0.927843094, 0.914048433,
|
---|
2290 | 0.886700928, 0.864701211, 0.869126320, 0.854309499};
|
---|
2291 |
|
---|
2292 | float gain;
|
---|
2293 | // Do table lookup by linear interpolation.
|
---|
2294 | float lambda = zdInc * (zd - zdLim[0]);
|
---|
2295 | int j = int(lambda);
|
---|
2296 | if (j < 0) {
|
---|
2297 | gain = zdGain[0];
|
---|
2298 | } else if (j >= nZD-1) {
|
---|
2299 | gain = zdGain[nZD-1];
|
---|
2300 | } else {
|
---|
2301 | gain = zdGain[j] + (lambda - j) * (zdGain[j+1] - zdGain[j]);
|
---|
2302 | }
|
---|
2303 |
|
---|
2304 | return gain;
|
---|
2305 | }
|
---|
2306 |
|
---|