source: branches/hpc33/src/STMath.cpp @ 2559

Last change on this file since 2559 was 2559, checked in by Takeshi Nakazato, 12 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No?

Module(s): Module Names change impacts.

Description: Describe your changes here...

Minor speed-up of STMath::almacal


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 191.3 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "RowAccumulator.h"
52#include "STAttr.h"
53#include "STMath.h"
54#include "STSelector.h"
55#include "Accelerator.h"
56#include "STIdxIter.h"
57
58using namespace casa;
59using namespace asap;
60
61
62// 2012/02/17 TN
63// Since STGrid is implemented, average doesn't consider direction
64// when accumulating
65// tolerance for direction comparison (rad)
66// #define TOL_OTF    1.0e-15
67// #define TOL_POINT  2.9088821e-4  // 1 arcmin
68
69STMath::STMath(bool insitu) :
70  insitu_(insitu)
71{
72}
73
74
75STMath::~STMath()
76{
77}
78
79CountedPtr<Scantable>
80STMath::average( const std::vector<CountedPtr<Scantable> >& in,
81                 const std::vector<bool>& mask,
82                 const std::string& weight,
83                 const std::string& avmode)
84{
85//    double t0, t1 ;
86//    t0 = mathutil::gettimeofday_sec() ;
87
88  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
89  if ( avmode == "SCAN" && in.size() != 1 )
90    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
91                    "Use merge first."));
92  WeightType wtype = stringToWeight(weight);
93
94  // 2012/02/17 TN
95  // Since STGrid is implemented, average doesn't consider direction
96  // when accumulating
97  // check if OTF observation
98//   String obstype = in[0]->getHeader().obstype ;
99//   Double tol = 0.0 ;
100//   if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
101//     tol = TOL_OTF ;
102//   }
103//   else {
104//     tol = TOL_POINT ;
105//   }
106
107  // output
108  // clone as this is non insitu
109  bool insitu = insitu_;
110  setInsitu(false);
111  CountedPtr< Scantable > out = getScantable(in[0], true);
112  setInsitu(insitu);
113  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
114  ++stit;
115  while ( stit != in.end() ) {
116    out->appendToHistoryTable((*stit)->history());
117    ++stit;
118  }
119
120  Table& tout = out->table();
121
122  /// @todo check if all scantables are conformant
123
124  ArrayColumn<Float> specColOut(tout,"SPECTRA");
125  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
126  ArrayColumn<Float> tsysColOut(tout,"TSYS");
127  ScalarColumn<Double> mjdColOut(tout,"TIME");
128  ScalarColumn<Double> intColOut(tout,"INTERVAL");
129  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
130  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
131
132  // set up the output table rows. These are based on the structure of the
133  // FIRST scantable in the vector
134  const Table& baset = in[0]->table();
135
136  RowAccumulator acc(wtype);
137  Vector<Bool> cmask(mask);
138  acc.setUserMask(cmask);
139//   ROTableRow row(tout);
140  ROArrayColumn<Float> specCol, tsysCol;
141  ROArrayColumn<uChar> flagCol;
142  ROScalarColumn<Double> mjdCol, intCol;
143  ROScalarColumn<Int> scanIDCol;
144
145  //Vector<uInt> rowstodelete;
146  Block<uInt> rowstodelB( in[0]->nrow() ) ;
147  uInt nrowdel = 0 ;
148
149//   Block<String> cols(3);
150  vector<string> cols(3) ;
151  cols[0] = String("BEAMNO");
152  cols[1] = String("IFNO");
153  cols[2] = String("POLNO");
154  if ( avmode == "SOURCE" ) {
155    cols.resize(4);
156    cols[3] = String("SRCNAME");
157  }
158  if ( avmode == "SCAN"  && in.size() == 1) {
159    //cols.resize(4);
160    //cols[3] = String("SCANNO");
161    cols.resize(5);
162    cols[3] = String("SRCNAME");
163    cols[4] = String("SCANNO");
164  }
165  uInt outrowCount = 0;
166  // use STIdxIterExAcc instead of TableIterator
167  STIdxIterExAcc iter( in[0], cols ) ;
168//   double t2 = 0 ;
169//   double t3 = 0 ;
170//   double t4 = 0 ;
171//   double t5 = 0 ;
172//   TableIterator iter(baset, cols);
173//   int count = 0 ;
174  while (!iter.pastEnd()) {
175    Vector<uInt> rows = iter.getRows( SHARE ) ;
176    if ( rows.nelements() == 0 ) {
177      iter.next() ;
178      continue ;
179    }
180    Vector<uInt> current = iter.current() ;
181    String srcname = iter.getSrcName() ;
182    //Table subt = iter.table();
183    // copy the first row of this selection into the new table
184    tout.addRow();
185//     t4 = mathutil::gettimeofday_sec() ;
186    // skip to copy SPECTRA, FLAGTRA, and TSYS since those heavy columns are
187    // overwritten in the following process
188    copyRows( tout, baset, outrowCount, rows[0], 1, False, False, False ) ;
189//     t5 += mathutil::gettimeofday_sec() - t4 ;
190    // re-index to 0
191    if ( avmode != "SCAN" && avmode != "SOURCE" ) {
192      scanColOut.put(outrowCount, uInt(0));
193    }
194
195    // 2012/02/17 TN
196    // Since STGrid is implemented, average doesn't consider direction
197    // when accumulating
198//     MDirection::ScalarColumn dircol ;
199//     dircol.attach( subt, "DIRECTION" ) ;
200//     Int length = subt.nrow() ;
201//     vector< Vector<Double> > dirs ;
202//     vector<int> indexes ;
203//     for ( Int i = 0 ; i < length ; i++ ) {
204//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
205//       //os << << count++ << ": " ;
206//       //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
207//       bool adddir = true ;
208//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
209//         //if ( allTrue( t == dirs[j] ) ) {
210//         Double dx = t[0] - dirs[j][0] ;
211//         Double dy = t[1] - dirs[j][1] ;
212//         Double dd = sqrt( dx * dx + dy * dy ) ;
213//         //if ( allNearAbs( t, dirs[j], tol ) ) {
214//         if ( dd <= tol ) {
215//           adddir = false ;
216//           break ;
217//         }
218//       }
219//       if ( adddir ) {
220//         dirs.push_back( t ) ;
221//         indexes.push_back( i ) ;
222//       }
223//     }
224//     uInt rowNum = dirs.size() ;
225//     tout.addRow( rowNum ) ;
226//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
227//       TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
228//       // re-index to 0
229//       if ( avmode != "SCAN" && avmode != "SOURCE" ) {
230//         scanColOut.put(outrowCount+i, uInt(0));
231//       }       
232//     }
233//     outrowCount += rowNum ;
234
235    // merge loop
236    uInt i = outrowCount ;
237    // in[0] is already selected by iterator
238    specCol.attach(baset,"SPECTRA");
239    flagCol.attach(baset,"FLAGTRA");
240    tsysCol.attach(baset,"TSYS");
241    intCol.attach(baset,"INTERVAL");
242    mjdCol.attach(baset,"TIME");
243    Vector<Float> spec,tsys;
244    Vector<uChar> flag;
245    Double inter,time;
246
247    for (uInt l = 0; l < rows.nelements(); ++l ) {
248      uInt k = rows[l] ;
249      flagCol.get(k, flag);
250      Vector<Bool> bflag(flag.shape());
251      convertArray(bflag, flag);
252      /*                                                                                                   
253        if ( allEQ(bflag, True) ) {                                                                         
254        continue;//don't accumulate                                                                         
255        }                                                                                                   
256      */
257      specCol.get(k, spec);
258      tsysCol.get(k, tsys);
259      intCol.get(k, inter);
260      mjdCol.get(k, time);
261      // spectrum has to be added last to enable weighting by the other values                             
262//       t2 = mathutil::gettimeofday_sec() ;
263      acc.add(spec, !bflag, tsys, inter, time);
264//       t3 += mathutil::gettimeofday_sec() - t2 ;
265     
266    }
267
268
269    // in[0] is already selected by TableIterator so that index is
270    // started from 1
271    for ( int j=1; j < int(in.size()); ++j ) {
272      const Table& tin = in[j]->table();
273      //const TableRecord& rec = row.get(i);
274      ROScalarColumn<Double> tmp(tin, "TIME");
275      Double td;tmp.get(0,td);
276
277#if 1
278      static char const*const colNames1[] = { "IFNO", "BEAMNO", "POLNO" };
279      //uInt const values1[] = { rec.asuInt("IFNO"), rec.asuInt("BEAMNO"), rec.asuInt("POLNO") };
280      uInt const values1[] = { current[1], current[0], current[2] };
281      SingleTypeEqPredicate<uInt, 3> myPred(tin, colNames1, values1);
282      CustomTableExprNodeRep myNodeRep(tin, myPred);
283      myNodeRep.link(); // to avoid automatic delete when myExpr is destructed.
284      CustomTableExprNode myExpr(myNodeRep);
285      Table basesubt = tin(myExpr);
286#else
287//       Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
288//                          && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
289//                          && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
290      Table basesubt = tin( tin.col("BEAMNO") == current[0]
291                         && tin.col("IFNO") == current[1]
292                         && tin.col("POLNO") == current[2] );
293#endif
294      Table subt;
295      if ( avmode == "SOURCE") {
296//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
297        subt = basesubt( basesubt.col("SRCNAME") == srcname );
298
299      } else if (avmode == "SCAN") {
300//         subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
301//                    && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
302        subt = basesubt( basesubt.col("SRCNAME") == srcname
303                      && basesubt.col("SCANNO") == current[4] );
304      } else {
305        subt = basesubt;
306      }
307
308      // 2012/02/17 TN
309      // Since STGrid is implemented, average doesn't consider direction
310      // when accumulating
311//       vector<uInt> removeRows ;
312//       uInt nrsubt = subt.nrow() ;
313//       for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
314//         //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
315//         Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
316//         Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
317//         double dx = x0[0] - x1[0];
318//         double dy = x0[1] - x1[1];
319//         Double dd = sqrt( dx * dx + dy * dy ) ;
320//         //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
321//         if ( dd > tol ) {
322//           removeRows.push_back( irow ) ;
323//         }
324//       }
325//       if ( removeRows.size() != 0 ) {
326//         subt.removeRow( removeRows ) ;
327//       }
328     
329//       if ( nrsubt == removeRows.size() )
330//         throw(AipsError("Averaging data is empty.")) ;
331
332      specCol.attach(subt,"SPECTRA");
333      flagCol.attach(subt,"FLAGTRA");
334      tsysCol.attach(subt,"TSYS");
335      intCol.attach(subt,"INTERVAL");
336      mjdCol.attach(subt,"TIME");
337      for (uInt k = 0; k < subt.nrow(); ++k ) {
338        flagCol.get(k, flag);
339        Vector<Bool> bflag(flag.shape());
340        convertArray(bflag, flag);
341        /*
342        if ( allEQ(bflag, True) ) {
343        continue;//don't accumulate
344        }
345        */
346        specCol.get(k, spec);
347        tsysCol.get(k, tsys);
348        intCol.get(k, inter);
349        mjdCol.get(k, time);
350        // spectrum has to be added last to enable weighting by the other values
351//         t2 = mathutil::gettimeofday_sec() ;
352        acc.add(spec, !bflag, tsys, inter, time);
353//         t3 += mathutil::gettimeofday_sec() - t2 ;
354      }
355
356    }
357    const Vector<Bool>& msk = acc.getMask();
358    if ( allEQ(msk, False) ) {
359      rowstodelB[nrowdel] = i ;
360      nrowdel++ ;
361      continue;
362    }
363    //write out
364    if (acc.state()) {
365      // If there exists a channel at which all the input spectra are masked,
366      // spec has 'nan' values for that channel and it may affect the following
367      // processes. To avoid this, replacing 'nan' values in spec with
368      // weighted-mean of all spectra in the following line.
369      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
370      acc.replaceNaN();
371
372      Vector<uChar> flg(msk.shape());
373      convertArray(flg, !msk);
374      for (uInt k = 0; k < flg.nelements(); ++k) {
375        uChar userFlag = 1 << 7;
376        if (msk[k]==True) userFlag = 0 << 7;
377        flg(k) = userFlag;
378      }
379
380      flagColOut.put(i, flg);
381      specColOut.put(i, acc.getSpectrum());
382      tsysColOut.put(i, acc.getTsys());
383      intColOut.put(i, acc.getInterval());
384      mjdColOut.put(i, acc.getTime());
385      // we should only have one cycle now -> reset it to be 0
386      // frequency switched data has different CYCLENO for different IFNO
387      // which requires resetting this value
388      cycColOut.put(i, uInt(0));
389    } else {
390      ostringstream oss;
391      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
392      pushLog(String(oss));
393    }
394    acc.reset();
395
396    // merge with while loop for preparing out table
397    ++outrowCount;
398//     ++iter ;
399    iter.next() ;
400  }
401
402  if ( nrowdel > 0 ) {
403    Vector<uInt> rowstodelete( IPosition(1,nrowdel), rowstodelB.storage(), SHARE ) ;
404    os << rowstodelete << LogIO::POST ;
405    tout.removeRow(rowstodelete);
406    if (tout.nrow() == 0) {
407      throw(AipsError("Can't average fully flagged data."));
408    }
409  }
410
411//    t1 = mathutil::gettimeofday_sec() ;
412//    cout << "elapsed time for average(): " << t1-t0 << " sec" << endl ;
413//    cout << "   elapsed time for acc.add(): " << t3 << " sec" << endl ;
414//    cout << "   elapsed time for copyRows(): " << t5 << " sec" << endl ;
415
416  return out;
417}
418
419CountedPtr< Scantable >
420STMath::averageChannel( const CountedPtr < Scantable > & in,
421                          const std::string & mode,
422                          const std::string& avmode )
423{
424  (void) mode; // currently unused
425  // 2012/02/17 TN
426  // Since STGrid is implemented, average doesn't consider direction
427  // when accumulating
428  // check if OTF observation
429//   String obstype = in->getHeader().obstype ;
430//   Double tol = 0.0 ;
431//   if ( obstype.find( "OTF" ) != String::npos ) {
432//     tol = TOL_OTF ;
433//   }
434//   else {
435//     tol = TOL_POINT ;
436//   }
437
438  // clone as this is non insitu
439  bool insitu = insitu_;
440  setInsitu(false);
441  CountedPtr< Scantable > out = getScantable(in, true);
442  setInsitu(insitu);
443  Table& tout = out->table();
444  ArrayColumn<Float> specColOut(tout,"SPECTRA");
445  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
446  ArrayColumn<Float> tsysColOut(tout,"TSYS");
447  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
448  ScalarColumn<Double> intColOut(tout, "INTERVAL");
449  Table tmp = in->table().sort("BEAMNO");
450  Block<String> cols(3);
451  cols[0] = String("BEAMNO");
452  cols[1] = String("IFNO");
453  cols[2] = String("POLNO");
454  if ( avmode == "SCAN") {
455    cols.resize(4);
456    cols[3] = String("SCANNO");
457  }
458  uInt outrowCount = 0;
459  uChar userflag = 1 << 7;
460  TableIterator iter(tmp, cols);
461  while (!iter.pastEnd()) {
462    Table subt = iter.table();
463    ROArrayColumn<Float> specCol, tsysCol;
464    ROArrayColumn<uChar> flagCol;
465    ROScalarColumn<Double> intCol(subt, "INTERVAL");
466    specCol.attach(subt,"SPECTRA");
467    flagCol.attach(subt,"FLAGTRA");
468    tsysCol.attach(subt,"TSYS");
469
470    tout.addRow();
471    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
472    if ( avmode != "SCAN") {
473      scanColOut.put(outrowCount, uInt(0));
474    }
475    Vector<Float> tmp;
476    specCol.get(0, tmp);
477    uInt nchan = tmp.nelements();
478    // have to do channel by channel here as MaskedArrMath
479    // doesn't have partialMedians
480    Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
481    Vector<Float> outspec(nchan);
482    Vector<uChar> outflag(nchan,0);
483    Vector<Float> outtsys(1);/// @fixme when tsys is channel based
484    for (uInt i=0; i<nchan; ++i) {
485      Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
486      MaskedArray<Float> ma = maskedArray(specs,flags);
487      outspec[i] = median(ma);
488      if ( allEQ(ma.getMask(), False) )
489        outflag[i] = userflag;// flag data
490    }
491    outtsys[0] = median(tsysCol.getColumn());
492    specColOut.put(outrowCount, outspec);
493    flagColOut.put(outrowCount, outflag);
494    tsysColOut.put(outrowCount, outtsys);
495    Double intsum = sum(intCol.getColumn());
496    intColOut.put(outrowCount, intsum);
497    ++outrowCount;
498    ++iter;
499
500    // 2012/02/17 TN
501    // Since STGrid is implemented, average doesn't consider direction
502    // when accumulating
503//     MDirection::ScalarColumn dircol ;
504//     dircol.attach( subt, "DIRECTION" ) ;
505//     Int length = subt.nrow() ;
506//     vector< Vector<Double> > dirs ;
507//     vector<int> indexes ;
508//     // Handle MX mode averaging
509//     if (in->nbeam() > 1 ) {     
510//       length = 1;
511//     }
512//     for ( Int i = 0 ; i < length ; i++ ) {
513//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
514//       bool adddir = true ;
515//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
516//         //if ( allTrue( t == dirs[j] ) ) {
517//         Double dx = t[0] - dirs[j][0] ;
518//         Double dy = t[1] - dirs[j][1] ;
519//         Double dd = sqrt( dx * dx + dy * dy ) ;
520//         //if ( allNearAbs( t, dirs[j], tol ) ) {
521//         if ( dd <= tol ) {
522//           adddir = false ;
523//           break ;
524//         }
525//       }
526//       if ( adddir ) {
527//         dirs.push_back( t ) ;
528//         indexes.push_back( i ) ;
529//       }
530//     }
531//     uInt rowNum = dirs.size() ;
532//     tout.addRow( rowNum );
533//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
534//       TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
535//       // Handle MX mode averaging
536//       if ( avmode != "SCAN") {
537//         scanColOut.put(outrowCount+i, uInt(0));
538//       }
539//     }
540//     MDirection::ScalarColumn dircolOut ;
541//     dircolOut.attach( tout, "DIRECTION" ) ;
542//     for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
543//       Vector<Double> t = \
544//      dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
545//       Vector<Float> tmp;
546//       specCol.get(0, tmp);
547//       uInt nchan = tmp.nelements();
548//       // have to do channel by channel here as MaskedArrMath
549//       // doesn't have partialMedians
550//       Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
551//       // mask spectra for different DIRECTION
552//       for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
553//         Vector<Double> direction = \
554//        dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
555//         //if ( t[0] != direction[0] || t[1] != direction[1] ) {
556//         Double dx = t[0] - direction[0];
557//         Double dy = t[1] - direction[1];
558//         Double dd = sqrt(dx*dx + dy*dy);
559//         //if ( !allNearAbs( t, direction, tol ) ) {
560//         if ( dd > tol &&  in->nbeam() < 2 ) {
561//           flags[jrow] = userflag ;
562//         }
563//       }
564//       Vector<Float> outspec(nchan);
565//       Vector<uChar> outflag(nchan,0);
566//       Vector<Float> outtsys(1);/// @fixme when tsys is channel based
567//       for (uInt i=0; i<nchan; ++i) {
568//         Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
569//         MaskedArray<Float> ma = maskedArray(specs,flags);
570//         outspec[i] = median(ma);
571//         if ( allEQ(ma.getMask(), False) )
572//           outflag[i] = userflag;// flag data
573//       }
574//       outtsys[0] = median(tsysCol.getColumn());
575//       specColOut.put(outrowCount+irow, outspec);
576//       flagColOut.put(outrowCount+irow, outflag);
577//       tsysColOut.put(outrowCount+irow, outtsys);
578//       Vector<Double> integ = intCol.getColumn() ;
579//       MaskedArray<Double> mi = maskedArray( integ, flags ) ;
580//       Double intsum = sum(mi);
581//       intColOut.put(outrowCount+irow, intsum);
582//     }
583//     outrowCount += rowNum ;
584//     ++iter;
585  }
586  return out;
587}
588
589CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
590                                             bool droprows)
591{
592  if (insitu_) {
593    return in;
594  }
595  else {
596    // clone
597    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
598  }
599}
600
601CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
602                                              float val,
603                                              const std::string& mode,
604                                              bool tsys )
605{
606  CountedPtr< Scantable > out = getScantable(in, false);
607  Table& tab = out->table();
608  ArrayColumn<Float> specCol(tab,"SPECTRA");
609  ArrayColumn<Float> tsysCol(tab,"TSYS");
610  if (mode=="DIV") val = 1.0/val ;
611  else if (mode=="SUB") val *= -1.0 ;
612  for (uInt i=0; i<tab.nrow(); ++i) {
613    Vector<Float> spec;
614    Vector<Float> ts;
615    specCol.get(i, spec);
616    tsysCol.get(i, ts);
617    if (mode == "MUL" || mode == "DIV") {
618      //if (mode == "DIV") val = 1.0/val;
619      spec *= val;
620      specCol.put(i, spec);
621      if ( tsys ) {
622        ts *= val;
623        tsysCol.put(i, ts);
624      }
625    } else if ( mode == "ADD"  || mode == "SUB") {
626      //if (mode == "SUB") val *= -1.0;
627      spec += val;
628      specCol.put(i, spec);
629      if ( tsys ) {
630        ts += val;
631        tsysCol.put(i, ts);
632      }
633    }
634  }
635  return out;
636}
637
638CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
639                                              const std::vector<float> val,
640                                              const std::string& mode,
641                                              const std::string& opmode,
642                                              bool tsys )
643{
644  CountedPtr< Scantable > out ;
645  if ( opmode == "channel" ) {
646    out = arrayOperateChannel( in, val, mode, tsys ) ;
647  }
648  else if ( opmode == "row" ) {
649    out = arrayOperateRow( in, val, mode, tsys ) ;
650  }
651  else {
652    throw( AipsError( "Unknown array operation mode." ) ) ;
653  }
654  return out ;
655}
656
657CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
658                                                     const std::vector<float> val,
659                                                     const std::string& mode,
660                                                     bool tsys )
661{
662  if ( val.size() == 1 ){
663    return unaryOperate( in, val[0], mode, tsys ) ;
664  }
665
666  // conformity of SPECTRA and TSYS
667  if ( tsys ) {
668    TableIterator titer(in->table(), "IFNO");
669    while ( !titer.pastEnd() ) {
670      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
671      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
672      Array<Float> spec = specCol.getColumn() ;
673      Array<Float> ts = tsysCol.getColumn() ;
674      if ( !spec.conform( ts ) ) {
675        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
676      }
677      titer.next() ;
678    }
679  }
680
681  // check if all spectra in the scantable have the same number of channel
682  vector<uInt> nchans;
683  vector<uInt> ifnos = in->getIFNos() ;
684  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
685    nchans.push_back( in->nchan( ifnos[i] ) ) ;
686  }
687  Vector<uInt> mchans( nchans ) ;
688  if ( anyNE( mchans, mchans[0] ) ) {
689    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
690  }
691
692  // check if vector size is equal to nchan
693  Vector<Float> fact( val ) ;
694  if ( fact.nelements() != mchans[0] ) {
695    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
696  }
697
698  // check divided by zero
699  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
700    throw( AipsError("Divided by zero is not recommended." ) ) ;
701  }
702
703  CountedPtr< Scantable > out = getScantable(in, false);
704  Table& tab = out->table();
705  ArrayColumn<Float> specCol(tab,"SPECTRA");
706  ArrayColumn<Float> tsysCol(tab,"TSYS");
707  if (mode == "DIV") fact = (float)1.0 / fact;
708  else if (mode == "SUB") fact *= (float)-1.0 ;
709  for (uInt i=0; i<tab.nrow(); ++i) {
710    Vector<Float> spec;
711    Vector<Float> ts;
712    specCol.get(i, spec);
713    tsysCol.get(i, ts);
714    if (mode == "MUL" || mode == "DIV") {
715      //if (mode == "DIV") fact = (float)1.0 / fact;
716      spec *= fact;
717      specCol.put(i, spec);
718      if ( tsys ) {
719        ts *= fact;
720        tsysCol.put(i, ts);
721      }
722    } else if ( mode == "ADD"  || mode == "SUB") {
723      //if (mode == "SUB") fact *= (float)-1.0 ;
724      spec += fact;
725      specCol.put(i, spec);
726      if ( tsys ) {
727        ts += fact;
728        tsysCol.put(i, ts);
729      }
730    }
731  }
732  return out;
733}
734
735CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
736                                                 const std::vector<float> val,
737                                                 const std::string& mode,
738                                                 bool tsys )
739{
740  if ( val.size() == 1 ) {
741    return unaryOperate( in, val[0], mode, tsys ) ;
742  }
743
744  // conformity of SPECTRA and TSYS
745  if ( tsys ) {
746    TableIterator titer(in->table(), "IFNO");
747    while ( !titer.pastEnd() ) {
748      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
749      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
750      Array<Float> spec = specCol.getColumn() ;
751      Array<Float> ts = tsysCol.getColumn() ;
752      if ( !spec.conform( ts ) ) {
753        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
754      }
755      titer.next() ;
756    }
757  }
758
759  // check if vector size is equal to nrow
760  Vector<Float> fact( val ) ;
761  if (fact.nelements() != uInt(in->nrow())) {
762    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
763  }
764
765  // check divided by zero
766  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
767    throw( AipsError("Divided by zero is not recommended." ) ) ;
768  }
769
770  CountedPtr< Scantable > out = getScantable(in, false);
771  Table& tab = out->table();
772  ArrayColumn<Float> specCol(tab,"SPECTRA");
773  ArrayColumn<Float> tsysCol(tab,"TSYS");
774  if (mode == "DIV") fact = (float)1.0 / fact;
775  if (mode == "SUB") fact *= (float)-1.0 ;
776  for (uInt i=0; i<tab.nrow(); ++i) {
777    Vector<Float> spec;
778    Vector<Float> ts;
779    specCol.get(i, spec);
780    tsysCol.get(i, ts);
781    if (mode == "MUL" || mode == "DIV") {
782      spec *= fact[i];
783      specCol.put(i, spec);
784      if ( tsys ) {
785        ts *= fact[i];
786        tsysCol.put(i, ts);
787      }
788    } else if ( mode == "ADD"  || mode == "SUB") {
789      spec += fact[i];
790      specCol.put(i, spec);
791      if ( tsys ) {
792        ts += fact[i];
793        tsysCol.put(i, ts);
794      }
795    }
796  }
797  return out;
798}
799
800CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
801                                                const std::vector< std::vector<float> > val,
802                                                const std::string& mode,
803                                                bool tsys )
804{
805  // conformity of SPECTRA and TSYS
806  if ( tsys ) {
807    TableIterator titer(in->table(), "IFNO");
808    while ( !titer.pastEnd() ) {
809      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
810      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
811      Array<Float> spec = specCol.getColumn() ;
812      Array<Float> ts = tsysCol.getColumn() ;
813      if ( !spec.conform( ts ) ) {
814        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
815      }
816      titer.next() ;
817    }
818  }
819
820  // some checks
821  vector<uInt> nchans;
822  for (Int i = 0 ; i < in->nrow() ; i++) {
823    nchans.push_back((in->getSpectrum(i)).size());
824  }
825  //Vector<uInt> mchans( nchans ) ;
826  vector< Vector<Float> > facts ;
827  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
828    Vector<Float> tmp( val[i] ) ;
829    // check divided by zero
830    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
831      throw( AipsError("Divided by zero is not recommended." ) ) ;
832    }
833    // conformity check
834    if ( tmp.nelements() != nchans[i] ) {
835      stringstream ss ;
836      ss << "Row " << i << ": Vector size must be same as number of channel." ;
837      throw( AipsError( ss.str() ) ) ;
838    }
839    facts.push_back( tmp ) ;
840  }
841
842
843  CountedPtr< Scantable > out = getScantable(in, false);
844  Table& tab = out->table();
845  ArrayColumn<Float> specCol(tab,"SPECTRA");
846  ArrayColumn<Float> tsysCol(tab,"TSYS");
847  for (uInt i=0; i<tab.nrow(); ++i) {
848    Vector<Float> fact = facts[i] ;
849    Vector<Float> spec;
850    Vector<Float> ts;
851    specCol.get(i, spec);
852    tsysCol.get(i, ts);
853    if (mode == "MUL" || mode == "DIV") {
854      if (mode == "DIV") fact = (float)1.0 / fact;
855      spec *= fact;
856      specCol.put(i, spec);
857      if ( tsys ) {
858        ts *= fact;
859        tsysCol.put(i, ts);
860      }
861    } else if ( mode == "ADD"  || mode == "SUB") {
862      if (mode == "SUB") fact *= (float)-1.0 ;
863      spec += fact;
864      specCol.put(i, spec);
865      if ( tsys ) {
866        ts += fact;
867        tsysCol.put(i, ts);
868      }
869    }
870  }
871  return out;
872}
873
874CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
875                                            const CountedPtr<Scantable>& right,
876                                            const std::string& mode)
877{
878  bool insitu = insitu_;
879  if ( ! left->conformant(*right) ) {
880    throw(AipsError("'left' and 'right' scantables are not conformant."));
881  }
882  setInsitu(false);
883  CountedPtr< Scantable > out = getScantable(left, false);
884  setInsitu(insitu);
885  Table& tout = out->table();
886  Block<String> coln(5);
887  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
888  coln[3] = "IFNO";  coln[4] = "POLNO";
889  Table tmpl = tout.sort(coln);
890  Table tmpr = right->table().sort(coln);
891  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
892  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
893  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
894  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
895
896  for (uInt i=0; i<tout.nrow(); ++i) {
897    Vector<Float> lspecvec, rspecvec;
898    Vector<uChar> lflagvec, rflagvec;
899    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
900    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
901    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
902    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
903    if (mode == "ADD") {
904      mleft += mright;
905    } else if ( mode == "SUB") {
906      mleft -= mright;
907    } else if ( mode == "MUL") {
908      mleft *= mright;
909    } else if ( mode == "DIV") {
910      mleft /= mright;
911    } else {
912      throw(AipsError("Illegal binary operator"));
913    }
914    lspecCol.put(i, mleft.getArray());
915  }
916  return out;
917}
918
919
920
921MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
922                                        const Vector<uChar>& f)
923{
924  Vector<Bool> mask;
925  mask.resize(f.shape());
926  convertArray(mask, f);
927  return MaskedArray<Float>(s,!mask);
928}
929
930MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
931                                         const Vector<uChar>& f)
932{
933  Vector<Bool> mask;
934  mask.resize(f.shape());
935  convertArray(mask, f);
936  return MaskedArray<Double>(s,!mask);
937}
938
939Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
940{
941  const Vector<Bool>& m = ma.getMask();
942  Vector<uChar> flags(m.shape());
943  convertArray(flags, !m);
944  return flags;
945}
946
947CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
948                                              const std::string & mode,
949                                              bool preserve )
950{
951  /// @todo make other modes available
952  /// modes should be "nearest", "pair"
953  // make this operation non insitu
954  (void) mode; //currently unused
955  const Table& tin = in->table();
956  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
957  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
958  if ( offs.nrow() == 0 )
959    throw(AipsError("No 'off' scans present."));
960  // put all "on" scans into output table
961
962  bool insitu = insitu_;
963  setInsitu(false);
964  CountedPtr< Scantable > out = getScantable(in, true);
965  setInsitu(insitu);
966  Table& tout = out->table();
967
968  TableCopy::copyRows(tout, ons);
969  TableRow row(tout);
970  ROScalarColumn<Double> offtimeCol(offs, "TIME");
971  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
972  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
973  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
974  for (uInt i=0; i < tout.nrow(); ++i) {
975    const TableRecord& rec = row.get(i);
976    Double ontime = rec.asDouble("TIME");
977    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
978                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
979                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
980    ROScalarColumn<Double> offtimeCol(presel, "TIME");
981
982    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
983    // Timestamp may vary within a cycle ???!!!
984    // increase this by 0.01 sec in case of rounding errors...
985    // There might be a better way to do this.
986    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
987    mindeltat += 0.01/24./60./60.;
988    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
989
990    if ( sel.nrow() < 1 )  {
991      throw(AipsError("No closest in time found... This could be a rounding "
992                      "issue. Try quotient instead."));
993    }
994    TableRow offrow(sel);
995    const TableRecord& offrec = offrow.get(0);//should only be one row
996    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
997    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
998    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
999    /// @fixme this assumes tsys is a scalar not vector
1000    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1001    Vector<Float> specon, tsyson;
1002    outtsysCol.get(i, tsyson);
1003    outspecCol.get(i, specon);
1004    Vector<uChar> flagon;
1005    outflagCol.get(i, flagon);
1006    MaskedArray<Float> mon = maskedArray(specon, flagon);
1007    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1008    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1009    if (preserve) {
1010      quot -= tsysoffscalar;
1011    } else {
1012      quot -= tsyson[0];
1013    }
1014    outspecCol.put(i, quot.getArray());
1015    outflagCol.put(i, flagsFromMA(quot));
1016  }
1017  // renumber scanno
1018  TableIterator it(tout, "SCANNO");
1019  uInt i = 0;
1020  while ( !it.pastEnd() ) {
1021    Table t = it.table();
1022    TableVector<uInt> vec(t, "SCANNO");
1023    vec = i;
1024    ++i;
1025    ++it;
1026  }
1027  return out;
1028}
1029
1030
1031CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
1032                                          const CountedPtr< Scantable > & off,
1033                                          bool preserve )
1034{
1035  bool insitu = insitu_;
1036  if ( ! on->conformant(*off) ) {
1037    throw(AipsError("'on' and 'off' scantables are not conformant."));
1038  }
1039  setInsitu(false);
1040  CountedPtr< Scantable > out = getScantable(on, false);
1041  setInsitu(insitu);
1042  Table& tout = out->table();
1043  const Table& toff = off->table();
1044  TableIterator sit(tout, "SCANNO");
1045  TableIterator s2it(toff, "SCANNO");
1046  while ( !sit.pastEnd() ) {
1047    Table ton = sit.table();
1048    TableRow row(ton);
1049    Table t = s2it.table();
1050    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1051    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
1052    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1053    for (uInt i=0; i < ton.nrow(); ++i) {
1054      const TableRecord& rec = row.get(i);
1055      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1056                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
1057                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
1058      if ( offsel.nrow() == 0 )
1059        throw AipsError("STMath::quotient: no matching off");
1060      TableRow offrow(offsel);
1061      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
1062      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1063      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1064      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1065      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1066      Vector<Float> specon, tsyson;
1067      outtsysCol.get(i, tsyson);
1068      outspecCol.get(i, specon);
1069      Vector<uChar> flagon;
1070      outflagCol.get(i, flagon);
1071      MaskedArray<Float> mon = maskedArray(specon, flagon);
1072      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1073      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1074      if (preserve) {
1075        quot -= tsysoffscalar;
1076      } else {
1077        quot -= tsyson[0];
1078      }
1079      outspecCol.put(i, quot.getArray());
1080      outflagCol.put(i, flagsFromMA(quot));
1081    }
1082    ++sit;
1083    ++s2it;
1084    // take the first off for each on scan which doesn't have a
1085    // matching off scan
1086    // non <= noff:  matching pairs, non > noff matching pairs then first off
1087    if ( s2it.pastEnd() ) s2it.reset();
1088  }
1089  return out;
1090}
1091
1092// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1093// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1094// do it for each cycles in a specific scan.
1095CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1096                                              const CountedPtr< Scantable >& caloff, Float tcal )
1097{
1098  if ( ! calon->conformant(*caloff) ) {
1099    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1100  }
1101  setInsitu(false);
1102  CountedPtr< Scantable > out = getScantable(caloff, false);
1103  Table& tout = out->table();
1104  const Table& tcon = calon->table();
1105  Vector<Float> tcalout;
1106
1107  std::map<uInt,uInt> tcalIdToRecNoMap;
1108  const Table& calOffTcalTable = caloff->tcal().table();
1109  {
1110    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1111    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1112    size_t tcalIdsEnd = tcalIds.nelements();
1113    for (uInt i = 0; i < tcalIdsEnd; i++) {
1114      tcalIdToRecNoMap[tcalIds[i]] = i;
1115    }
1116  }
1117  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1118
1119  if ( tout.nrow() != tcon.nrow() ) {
1120    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1121  }
1122  // iteration by scanno or cycle no.
1123  TableIterator sit(tout, "SCANNO");
1124  TableIterator s2it(tcon, "SCANNO");
1125  while ( !sit.pastEnd() ) {
1126    Table toff = sit.table();
1127    TableRow row(toff);
1128    Table t = s2it.table();
1129    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1130    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1131    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1132    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1133    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1134    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1135    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1136    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1137    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1138    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1139    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1140
1141    for (uInt i=0; i < toff.nrow(); ++i) {
1142      //skip these checks -> assumes the data order are the same between the cal on off pairs
1143      //
1144      Vector<Float> specCalon, specCaloff;
1145      // to store scalar (mean) tsys
1146      Vector<Float> tsysout(1);
1147      uInt tcalId, polno;
1148      Double offint, onint;
1149      outpolCol.get(i, polno);
1150      outspecCol.get(i, specCaloff);
1151      onspecCol.get(i, specCalon);
1152      Vector<uChar> flagCaloff, flagCalon;
1153      outflagCol.get(i, flagCaloff);
1154      onflagCol.get(i, flagCalon);
1155      outtcalIdCol.get(i, tcalId);
1156      outintCol.get(i, offint);
1157      onintCol.get(i, onint);
1158      // caluculate mean Tsys
1159      uInt nchan = specCaloff.nelements();
1160      // percentage of edge cut off
1161      uInt pc = 10;
1162      uInt bchan = nchan/pc;
1163      uInt echan = nchan-bchan;
1164
1165      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1166      Vector<Float> testsubsp = specCaloff(chansl);
1167      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1168      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1169      MaskedArray<Float> spdiff = spon-spoff;
1170      uInt noff = spoff.nelementsValid();
1171      //uInt non = spon.nelementsValid();
1172      uInt ndiff = spdiff.nelementsValid();
1173      Float meantsys;
1174
1175/**
1176      Double subspec, subdiff;
1177      uInt usednchan;
1178      subspec = 0;
1179      subdiff = 0;
1180      usednchan = 0;
1181      for(uInt k=(bchan-1); k<echan; k++) {
1182        subspec += specCaloff[k];
1183        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1184        ++usednchan;
1185      }
1186**/
1187      // get tcal if input tcal <= 0
1188      Float tcalUsed;
1189      tcalUsed = tcal;
1190      if ( tcal <= 0.0 ) {
1191        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1192        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1193//         if (polno<=3) {
1194//           tcalUsed = tcalout[polno];
1195//         }
1196//         else {
1197//           tcalUsed = tcalout[0];
1198//         }
1199        if ( tcalout.size() == 1 )
1200          tcalUsed = tcalout[0] ;
1201        else if ( tcalout.size() == nchan )
1202          tcalUsed = mean(tcalout) ;
1203        else {
1204          uInt ipol = polno ;
1205          if ( ipol > 3 ) ipol = 0 ;
1206          tcalUsed = tcalout[ipol] ;
1207        }
1208      }
1209
1210      Float meanoff;
1211      Float meandiff;
1212      if (noff && ndiff) {
1213         //Debug
1214         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1215         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1216         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1217         meanoff = sum(spoff)/noff;
1218         meandiff = sum(spdiff)/ndiff;
1219         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1220      }
1221      else {
1222         meantsys=1;
1223      }
1224
1225      tsysout[0] = Float(meantsys);
1226      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1227      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1228      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1229      //uInt ncaloff = mcaloff.nelementsValid();
1230      //uInt ncalon = mcalon.nelementsValid();
1231
1232      outintCol.put(i, offint+onint);
1233      outspecCol.put(i, sig.getArray());
1234      outflagCol.put(i, flagsFromMA(sig));
1235      outtsysCol.put(i, tsysout);
1236    }
1237    ++sit;
1238    ++s2it;
1239  }
1240  return out;
1241}
1242
1243//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1244// observatiions.
1245// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1246//        no smoothing).
1247// output: resultant scantable [= (sig-ref/ref)*tsys]
1248CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1249                                          const CountedPtr < Scantable >& ref,
1250                                          int smoothref,
1251                                          casa::Float tsysv,
1252                                          casa::Float tau )
1253{
1254if ( ! ref->conformant(*sig) ) {
1255    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1256  }
1257  setInsitu(false);
1258  CountedPtr< Scantable > out = getScantable(sig, false);
1259  CountedPtr< Scantable > smref;
1260  if ( smoothref > 1 ) {
1261    float fsmoothref = static_cast<float>(smoothref);
1262    std::string inkernel = "boxcar";
1263    smref = smooth(ref, inkernel, fsmoothref );
1264    ostringstream oss;
1265    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1266    pushLog(String(oss));
1267  }
1268  else {
1269    smref = ref;
1270  }
1271  Table& tout = out->table();
1272  const Table& tref = smref->table();
1273  if ( tout.nrow() != tref.nrow() ) {
1274    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1275  }
1276  // iteration by scanno? or cycle no.
1277  TableIterator sit(tout, "SCANNO");
1278  TableIterator s2it(tref, "SCANNO");
1279  while ( !sit.pastEnd() ) {
1280    Table ton = sit.table();
1281    Table t = s2it.table();
1282    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1283    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1284    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1285    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1286    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1287    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1288    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1289    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1290    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1291    for (uInt i=0; i < ton.nrow(); ++i) {
1292
1293      Double onint, refint;
1294      Vector<Float> specon, specref;
1295      // to store scalar (mean) tsys
1296      Vector<Float> tsysref;
1297      outintCol.get(i, onint);
1298      refintCol.get(i, refint);
1299      outspecCol.get(i, specon);
1300      refspecCol.get(i, specref);
1301      Vector<uChar> flagref, flagon;
1302      outflagCol.get(i, flagon);
1303      refflagCol.get(i, flagref);
1304      reftsysCol.get(i, tsysref);
1305
1306      Float tsysrefscalar;
1307      if ( tsysv > 0.0 ) {
1308        ostringstream oss;
1309        Float elev;
1310        refelevCol.get(i, elev);
1311        oss << "user specified Tsys = " << tsysv;
1312        // do recalc elevation if EL = 0
1313        if ( elev == 0 ) {
1314          throw(AipsError("EL=0, elevation data is missing."));
1315        } else {
1316          if ( tau <= 0.0 ) {
1317            throw(AipsError("Valid tau is not supplied."));
1318          } else {
1319            tsysrefscalar = tsysv * exp(tau/elev);
1320          }
1321        }
1322        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1323        pushLog(String(oss));
1324      }
1325      else {
1326        tsysrefscalar = tsysref[0];
1327      }
1328      //get quotient spectrum
1329      MaskedArray<Float> mref = maskedArray(specref, flagref);
1330      MaskedArray<Float> mon = maskedArray(specon, flagon);
1331      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1332      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1333
1334      //Debug
1335      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1336      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1337      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1338      // fill the result, replay signal tsys by reference tsys
1339      outintCol.put(i, resint);
1340      outspecCol.put(i, specres.getArray());
1341      outflagCol.put(i, flagsFromMA(specres));
1342      outtsysCol.put(i, tsysref);
1343    }
1344    ++sit;
1345    ++s2it;
1346  }
1347  return out;
1348}
1349
1350CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1351                                     const std::vector<int>& scans,
1352                                     int smoothref,
1353                                     casa::Float tsysv,
1354                                     casa::Float tau,
1355                                     casa::Float tcal )
1356
1357{
1358  setInsitu(false);
1359  STSelector sel;
1360  std::vector<int> scan1, scan2, beams, types;
1361  std::vector< vector<int> > scanpair;
1362  //std::vector<string> calstate;
1363  std::vector<int> calstate;
1364  String msg;
1365
1366  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1367  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1368
1369  std::vector< CountedPtr< Scantable > > sctables;
1370  sctables.push_back(s1b1on);
1371  sctables.push_back(s1b1off);
1372  sctables.push_back(s1b2on);
1373  sctables.push_back(s1b2off);
1374  sctables.push_back(s2b1on);
1375  sctables.push_back(s2b1off);
1376  sctables.push_back(s2b2on);
1377  sctables.push_back(s2b2off);
1378
1379  //check scanlist
1380  int n=s->checkScanInfo(scans);
1381  if (n==1) {
1382     throw(AipsError("Incorrect scan pairs. "));
1383  }
1384
1385  // Assume scans contain only a pair of consecutive scan numbers.
1386  // It is assumed that first beam, b1,  is on target.
1387  // There is no check if the first beam is on or not.
1388  if ( scans.size()==1 ) {
1389    scan1.push_back(scans[0]);
1390    scan2.push_back(scans[0]+1);
1391  } else if ( scans.size()==2 ) {
1392   scan1.push_back(scans[0]);
1393   scan2.push_back(scans[1]);
1394  } else {
1395    if ( scans.size()%2 == 0 ) {
1396      for (uInt i=0; i<scans.size(); i++) {
1397        if (i%2 == 0) {
1398          scan1.push_back(scans[i]);
1399        }
1400        else {
1401          scan2.push_back(scans[i]);
1402        }
1403      }
1404    } else {
1405      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1406    }
1407  }
1408  scanpair.push_back(scan1);
1409  scanpair.push_back(scan2);
1410  //calstate.push_back("*calon");
1411  //calstate.push_back("*[^calon]");
1412  calstate.push_back(SrcType::NODCAL);
1413  calstate.push_back(SrcType::NOD);
1414  CountedPtr< Scantable > ws = getScantable(s, false);
1415  uInt l=0;
1416  while ( l < sctables.size() ) {
1417    for (uInt i=0; i < 2; i++) {
1418      for (uInt j=0; j < 2; j++) {
1419        for (uInt k=0; k < 2; k++) {
1420          sel.reset();
1421          sel.setScans(scanpair[i]);
1422          //sel.setName(calstate[k]);
1423          types.clear();
1424          types.push_back(calstate[k]);
1425          sel.setTypes(types);
1426          beams.clear();
1427          beams.push_back(j);
1428          sel.setBeams(beams);
1429          ws->setSelection(sel);
1430          sctables[l]= getScantable(ws, false);
1431          l++;
1432        }
1433      }
1434    }
1435  }
1436
1437  // replace here by splitData or getData functionality
1438  CountedPtr< Scantable > sig1;
1439  CountedPtr< Scantable > ref1;
1440  CountedPtr< Scantable > sig2;
1441  CountedPtr< Scantable > ref2;
1442  CountedPtr< Scantable > calb1;
1443  CountedPtr< Scantable > calb2;
1444
1445  msg=String("Processing dototalpower for subset of the data");
1446  ostringstream oss1;
1447  oss1 << msg  << endl;
1448  pushLog(String(oss1));
1449  // Debug for IRC CS data
1450  //float tcal1=7.0;
1451  //float tcal2=4.0;
1452  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1453  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1454  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1455  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1456
1457  // correction of user-specified tsys for elevation here
1458
1459  // dosigref calibration
1460  msg=String("Processing dosigref for subset of the data");
1461  ostringstream oss2;
1462  oss2 << msg  << endl;
1463  pushLog(String(oss2));
1464  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1465  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1466
1467  // iteration by scanno or cycle no.
1468  Table& tcalb1 = calb1->table();
1469  Table& tcalb2 = calb2->table();
1470  TableIterator sit(tcalb1, "SCANNO");
1471  TableIterator s2it(tcalb2, "SCANNO");
1472  while ( !sit.pastEnd() ) {
1473    Table t1 = sit.table();
1474    Table t2= s2it.table();
1475    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1476    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1477    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1478    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1479    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1480    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1481    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1482    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1483    for (uInt i=0; i < t1.nrow(); ++i) {
1484      Vector<Float> spec1, spec2;
1485      // to store scalar (mean) tsys
1486      Vector<Float> tsys1, tsys2;
1487      Vector<uChar> flag1, flag2;
1488      Double tint1, tint2;
1489      outspecCol.get(i, spec1);
1490      t2specCol.get(i, spec2);
1491      outflagCol.get(i, flag1);
1492      t2flagCol.get(i, flag2);
1493      outtsysCol.get(i, tsys1);
1494      t2tsysCol.get(i, tsys2);
1495      outintCol.get(i, tint1);
1496      t2intCol.get(i, tint2);
1497      // average
1498      // assume scalar tsys for weights
1499      Float wt1, wt2, tsyssq1, tsyssq2;
1500      tsyssq1 = tsys1[0]*tsys1[0];
1501      tsyssq2 = tsys2[0]*tsys2[0];
1502      wt1 = Float(tint1)/tsyssq1;
1503      wt2 = Float(tint2)/tsyssq2;
1504      Float invsumwt=1/(wt1+wt2);
1505      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1506      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1507      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1508      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1509      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1510      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1511      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1512      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1513      Array<Float> avtsys =  tsys1;
1514
1515      outspecCol.put(i, avspec.getArray());
1516      outflagCol.put(i, flagsFromMA(avspec));
1517      outtsysCol.put(i, avtsys);
1518    }
1519    ++sit;
1520    ++s2it;
1521  }
1522  return calb1;
1523}
1524
1525//GBTIDL version of frequency switched data calibration
1526CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1527                                      const std::vector<int>& scans,
1528                                      int smoothref,
1529                                      casa::Float tsysv,
1530                                      casa::Float tau,
1531                                      casa::Float tcal )
1532{
1533
1534
1535  (void) scans; //currently unused
1536  STSelector sel;
1537  CountedPtr< Scantable > ws = getScantable(s, false);
1538  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1539  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1540  Bool nofold=False;
1541  vector<int> types ;
1542
1543  //split the data
1544  //sel.setName("*_fs");
1545  types.push_back( SrcType::FSON ) ;
1546  sel.setTypes( types ) ;
1547  ws->setSelection(sel);
1548  sig = getScantable(ws,false);
1549  sel.reset();
1550  types.clear() ;
1551  //sel.setName("*_fs_calon");
1552  types.push_back( SrcType::FONCAL ) ;
1553  sel.setTypes( types ) ;
1554  ws->setSelection(sel);
1555  sigwcal = getScantable(ws,false);
1556  sel.reset();
1557  types.clear() ;
1558  //sel.setName("*_fsr");
1559  types.push_back( SrcType::FSOFF ) ;
1560  sel.setTypes( types ) ;
1561  ws->setSelection(sel);
1562  ref = getScantable(ws,false);
1563  sel.reset();
1564  types.clear() ;
1565  //sel.setName("*_fsr_calon");
1566  types.push_back( SrcType::FOFFCAL ) ;
1567  sel.setTypes( types ) ;
1568  ws->setSelection(sel);
1569  refwcal = getScantable(ws,false);
1570  sel.reset() ;
1571  types.clear() ;
1572
1573  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1574  calref = dototalpower(refwcal, ref, tcal=tcal);
1575
1576  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1577  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1578
1579  Table& tabout1=out1->table();
1580  Table& tabout2=out2->table();
1581  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1582  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1583  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1584  Vector<Float> spec; specCol.get(0, spec);
1585  uInt nchan = spec.nelements();
1586  uInt freqid1; freqidCol1.get(0,freqid1);
1587  uInt freqid2; freqidCol2.get(0,freqid2);
1588  Double rp1, rp2, rv1, rv2, inc1, inc2;
1589  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1590  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1591  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1592  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1593  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1594  if (rp1==rp2) {
1595    Double foffset = rv1 - rv2;
1596    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1597    if (choffset >= nchan) {
1598      //cerr<<"out-band frequency switching, no folding"<<endl;
1599      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1600      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1601      nofold = True;
1602    }
1603  }
1604
1605  if (nofold) {
1606    std::vector< CountedPtr< Scantable > > tabs;
1607    tabs.push_back(out1);
1608    tabs.push_back(out2);
1609    out = merge(tabs);
1610  }
1611  else {
1612    //out = out1;
1613    Double choffset = ( rv1 - rv2 ) / inc2 ;
1614    out = dofold( out1, out2, choffset ) ;
1615  }
1616   
1617  return out;
1618}
1619
1620CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1621                                      const CountedPtr<Scantable> &ref,
1622                                      Double choffset,
1623                                      Double choffset2 )
1624{
1625  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1626  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1627
1628  // output scantable
1629  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1630
1631  // separate choffset to integer part and decimal part
1632  Int ioffset = (Int)choffset ;
1633  Double doffset = choffset - ioffset ;
1634  Int ioffset2 = (Int)choffset2 ;
1635  Double doffset2 = choffset2 - ioffset2 ;
1636  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1637  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1638
1639  // get column
1640  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1641  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1642  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1643  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1644  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1645  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1646  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1647  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1648  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1649  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1650
1651  // check
1652  if ( ioffset == 0 ) {
1653    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1654    os << "channel offset is zero, no folding" << LogIO::POST ;
1655    return out ;
1656  }
1657  int nchan = ref->nchan() ;
1658  if ( abs(ioffset) >= nchan ) {
1659    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1660    os << "out-band frequency switching, no folding" << LogIO::POST ;
1661    return out ;
1662  }
1663
1664  // attach column for output scantable
1665  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1666  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1667  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1668  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1669  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1670  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1671
1672  // for each row
1673  // assume that the data order are same between sig and ref
1674  RowAccumulator acc( asap::W_TINTSYS ) ;
1675  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1676    // get values
1677    Vector<Float> spsig ;
1678    specCol1.get( i, spsig ) ;
1679    Vector<Float> spref ;
1680    specCol2.get( i, spref ) ;
1681    Vector<Float> tsyssig ;
1682    tsysCol1.get( i, tsyssig ) ;
1683    Vector<Float> tsysref ;
1684    tsysCol2.get( i, tsysref ) ;
1685    Vector<uChar> flagsig ;
1686    flagCol1.get( i, flagsig ) ;
1687    Vector<uChar> flagref ;
1688    flagCol2.get( i, flagref ) ;
1689    Double timesig ;
1690    mjdCol1.get( i, timesig ) ;
1691    Double timeref ;
1692    mjdCol2.get( i, timeref ) ;
1693    Double intsig ;
1694    intervalCol1.get( i, intsig ) ;
1695    Double intref ;
1696    intervalCol2.get( i, intref ) ;
1697
1698    // shift reference spectra
1699    int refchan = spref.nelements() ;
1700    Vector<Float> sspref( spref.nelements() ) ;
1701    Vector<Float> stsysref( tsysref.nelements() ) ;
1702    Vector<uChar> sflagref( flagref.nelements() ) ;
1703    if ( ioffset > 0 ) {
1704      // SPECTRA and FLAGTRA
1705      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1706        sspref[j] = spref[j+ioffset] ;
1707        sflagref[j] = flagref[j+ioffset] ;
1708      }
1709      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1710        sspref[j] = spref[j-refchan+ioffset] ;
1711        sflagref[j] = flagref[j-refchan+ioffset] ;
1712      }
1713      spref = sspref.copy() ;
1714      flagref = sflagref.copy() ;
1715      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1716        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1717        sflagref[j] = flagref[j+1] + flagref[j] ;
1718      }
1719      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1720      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1721
1722      // TSYS
1723      if ( spref.nelements() == tsysref.nelements() ) {
1724        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1725          stsysref[j] = tsysref[j+ioffset] ;
1726        }
1727        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1728          stsysref[j] = tsysref[j-refchan+ioffset] ;
1729        }
1730        tsysref = stsysref.copy() ;
1731        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1732          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1733        }
1734        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1735      }
1736    }
1737    else {
1738      // SPECTRA and FLAGTRA
1739      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1740        sspref[j] = spref[refchan+ioffset+j] ;
1741        sflagref[j] = flagref[refchan+ioffset+j] ;
1742      }
1743      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1744        sspref[j] = spref[j+ioffset] ;
1745        sflagref[j] = flagref[j+ioffset] ;
1746      }
1747      spref = sspref.copy() ;
1748      flagref = sflagref.copy() ;
1749      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1750      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1751      for ( int j = 1 ; j < refchan ; j++ ) {
1752        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1753        sflagref[j] = flagref[j-1] + flagref[j] ;
1754      }
1755      // TSYS
1756      if ( spref.nelements() == tsysref.nelements() ) {
1757        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1758          stsysref[j] = tsysref[refchan+ioffset+j] ;
1759        }
1760        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1761          stsysref[j] = tsysref[j+ioffset] ;
1762        }
1763        tsysref = stsysref.copy() ;
1764        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1765        for ( int j = 1 ; j < refchan ; j++ ) {
1766          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1767        }
1768      }
1769    }
1770
1771    // shift signal spectra if necessary (only for APEX?)
1772    if ( choffset2 != 0.0 ) {
1773      int sigchan = spsig.nelements() ;
1774      Vector<Float> sspsig( spsig.nelements() ) ;
1775      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1776      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1777      if ( ioffset2 > 0 ) {
1778        // SPECTRA and FLAGTRA
1779        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1780          sspsig[j] = spsig[j+ioffset2] ;
1781          sflagsig[j] = flagsig[j+ioffset2] ;
1782        }
1783        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1784          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1785          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1786        }
1787        spsig = sspsig.copy() ;
1788        flagsig = sflagsig.copy() ;
1789        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1790          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1791          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1792        }
1793        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1794        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1795        // TSTS
1796        if ( spsig.nelements() == tsyssig.nelements() ) {
1797          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1798            stsyssig[j] = tsyssig[j+ioffset2] ;
1799          }
1800          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1801            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1802          }
1803          tsyssig = stsyssig.copy() ;
1804          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1805            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1806          }
1807          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1808        }
1809      }
1810      else {
1811        // SPECTRA and FLAGTRA
1812        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1813          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1814          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1815        }
1816        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1817          sspsig[j] = spsig[j+ioffset2] ;
1818          sflagsig[j] = flagsig[j+ioffset2] ;
1819        }
1820        spsig = sspsig.copy() ;
1821        flagsig = sflagsig.copy() ;
1822        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1823        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1824        for ( int j = 1 ; j < sigchan ; j++ ) {
1825          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1826          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1827        }
1828        // TSYS
1829        if ( spsig.nelements() == tsyssig.nelements() ) {
1830          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1831            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1832          }
1833          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1834            stsyssig[j] = tsyssig[j+ioffset2] ;
1835          }
1836          tsyssig = stsyssig.copy() ;
1837          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1838          for ( int j = 1 ; j < sigchan ; j++ ) {
1839            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1840          }
1841        }
1842      }
1843    }
1844
1845    // folding
1846    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1847    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1848   
1849    // put result
1850    specColOut.put( i, acc.getSpectrum() ) ;
1851    const Vector<Bool> &msk = acc.getMask() ;
1852    Vector<uChar> flg( msk.shape() ) ;
1853    convertArray( flg, !msk ) ;
1854    flagColOut.put( i, flg ) ;
1855    tsysColOut.put( i, acc.getTsys() ) ;
1856    intervalColOut.put( i, acc.getInterval() ) ;
1857    mjdColOut.put( i, acc.getTime() ) ;
1858    // change FREQ_ID to unshifted IF setting (only for APEX?)
1859    if ( choffset2 != 0.0 ) {
1860      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1861      double refpix, refval, increment ;
1862      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1863      refval -= choffset * increment ;
1864      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1865      Vector<uInt> freqids = fidColOut.getColumn() ;
1866      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1867        if ( freqids[j] == freqid )
1868          freqids[j] = newfreqid ;
1869      }
1870      fidColOut.putColumn( freqids ) ;
1871    }
1872
1873    acc.reset() ;
1874  }
1875
1876  return out ;
1877}
1878
1879
1880CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1881{
1882  // make copy or reference
1883  CountedPtr< Scantable > out = getScantable(in, false);
1884  Table& tout = out->table();
1885  Block<String> cols(4);
1886  cols[0] = String("SCANNO");
1887  cols[1] = String("CYCLENO");
1888  cols[2] = String("BEAMNO");
1889  cols[3] = String("POLNO");
1890  TableIterator iter(tout, cols);
1891  while (!iter.pastEnd()) {
1892    Table subt = iter.table();
1893    // this should leave us with two rows for the two IFs....if not ignore
1894    if (subt.nrow() != 2 ) {
1895      continue;
1896    }
1897    ArrayColumn<Float> specCol(subt, "SPECTRA");
1898    ArrayColumn<Float> tsysCol(subt, "TSYS");
1899    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1900    Vector<Float> onspec,offspec, ontsys, offtsys;
1901    Vector<uChar> onflag, offflag;
1902    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1903    specCol.get(0, onspec);   specCol.get(1, offspec);
1904    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1905    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1906    MaskedArray<Float> off = maskedArray(offspec, offflag);
1907    MaskedArray<Float> oncopy = on.copy();
1908
1909    on /= off; on -= 1.0f;
1910    on *= ontsys[0];
1911    off /= oncopy; off -= 1.0f;
1912    off *= offtsys[0];
1913    specCol.put(0, on.getArray());
1914    const Vector<Bool>& m0 = on.getMask();
1915    Vector<uChar> flags0(m0.shape());
1916    convertArray(flags0, !m0);
1917    flagCol.put(0, flags0);
1918
1919    specCol.put(1, off.getArray());
1920    const Vector<Bool>& m1 = off.getMask();
1921    Vector<uChar> flags1(m1.shape());
1922    convertArray(flags1, !m1);
1923    flagCol.put(1, flags1);
1924    ++iter;
1925  }
1926
1927  return out;
1928}
1929
1930std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1931                                        const std::vector< bool > & mask,
1932                                        const std::string& which )
1933{
1934
1935  Vector<Bool> m(mask);
1936  const Table& tab = in->table();
1937  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1938  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1939  std::vector<float> out;
1940  for (uInt i=0; i < tab.nrow(); ++i ) {
1941    Vector<Float> spec; specCol.get(i, spec);
1942    Vector<uChar> flag; flagCol.get(i, flag);
1943    MaskedArray<Float> ma  = maskedArray(spec, flag);
1944    float outstat = 0.0;
1945    if ( spec.nelements() == m.nelements() ) {
1946      outstat = mathutil::statistics(which, ma(m));
1947    } else {
1948      outstat = mathutil::statistics(which, ma);
1949    }
1950    out.push_back(outstat);
1951  }
1952  return out;
1953}
1954
1955std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1956                                        const std::vector< bool > & mask,
1957                                        const std::string& which,
1958                                        int row )
1959{
1960
1961  Vector<Bool> m(mask);
1962  const Table& tab = in->table();
1963  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1964  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1965  std::vector<float> out;
1966
1967  Vector<Float> spec; specCol.get(row, spec);
1968  Vector<uChar> flag; flagCol.get(row, flag);
1969  MaskedArray<Float> ma  = maskedArray(spec, flag);
1970  float outstat = 0.0;
1971  if ( spec.nelements() == m.nelements() ) {
1972    outstat = mathutil::statistics(which, ma(m));
1973  } else {
1974    outstat = mathutil::statistics(which, ma);
1975  }
1976  out.push_back(outstat);
1977
1978  return out;
1979}
1980
1981std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1982                                        const std::vector< bool > & mask,
1983                                        const std::string& which )
1984{
1985
1986  Vector<Bool> m(mask);
1987  const Table& tab = in->table();
1988  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1989  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1990  std::vector<int> out;
1991  for (uInt i=0; i < tab.nrow(); ++i ) {
1992    Vector<Float> spec; specCol.get(i, spec);
1993    Vector<uChar> flag; flagCol.get(i, flag);
1994    MaskedArray<Float> ma  = maskedArray(spec, flag);
1995    if (ma.ndim() != 1) {
1996      throw (ArrayError(
1997          "std::vector<int> STMath::minMaxChan("
1998          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1999          " std::string &which)"
2000          " - MaskedArray is not 1D"));
2001    }
2002    IPosition outpos(1,0);
2003    if ( spec.nelements() == m.nelements() ) {
2004      outpos = mathutil::minMaxPos(which, ma(m));
2005    } else {
2006      outpos = mathutil::minMaxPos(which, ma);
2007    }
2008    out.push_back(outpos[0]);
2009  }
2010  return out;
2011}
2012
2013CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
2014                                     int width )
2015{
2016  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
2017  CountedPtr< Scantable > out = getScantable(in, false);
2018  Table& tout = out->table();
2019  out->frequencies().rescale(width, "BIN");
2020  ArrayColumn<Float> specCol(tout, "SPECTRA");
2021  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
2022  for (uInt i=0; i < tout.nrow(); ++i ) {
2023    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
2024    MaskedArray<Float> maout;
2025    LatticeUtilities::bin(maout, main, 0, Int(width));
2026    /// @todo implement channel based tsys binning
2027    specCol.put(i, maout.getArray());
2028    flagCol.put(i, flagsFromMA(maout));
2029    // take only the first binned spectrum's length for the deprecated
2030    // global header item nChan
2031    if (i==0) tout.rwKeywordSet().define(String("nChan"),
2032                                       Int(maout.getArray().nelements()));
2033  }
2034  return out;
2035}
2036
2037CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
2038                                          const std::string& method,
2039                                          float width )
2040//
2041// Should add the possibility of width being specified in km/s. This means
2042// that for each freqID (SpectralCoordinate) we will need to convert to an
2043// average channel width (say at the reference pixel).  Then we would need
2044// to be careful to make sure each spectrum (of different freqID)
2045// is the same length.
2046//
2047{
2048  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
2049  Int interpMethod(stringToIMethod(method));
2050
2051  CountedPtr< Scantable > out = getScantable(in, false);
2052  Table& tout = out->table();
2053
2054// Resample SpectralCoordinates (one per freqID)
2055  out->frequencies().rescale(width, "RESAMPLE");
2056  TableIterator iter(tout, "IFNO");
2057  TableRow row(tout);
2058  while ( !iter.pastEnd() ) {
2059    Table tab = iter.table();
2060    ArrayColumn<Float> specCol(tab, "SPECTRA");
2061    //ArrayColumn<Float> tsysCol(tout, "TSYS");
2062    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2063    Vector<Float> spec;
2064    Vector<uChar> flag;
2065    specCol.get(0,spec); // the number of channels should be constant per IF
2066    uInt nChanIn = spec.nelements();
2067    Vector<Float> xIn(nChanIn); indgen(xIn);
2068    Int fac =  Int(nChanIn/width);
2069    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
2070    uInt k = 0;
2071    Float x = 0.0;
2072    while (x < Float(nChanIn) ) {
2073      xOut(k) = x;
2074      k++;
2075      x += width;
2076    }
2077    uInt nChanOut = k;
2078    xOut.resize(nChanOut, True);
2079    // process all rows for this IFNO
2080    Vector<Float> specOut;
2081    Vector<Bool> maskOut;
2082    Vector<uChar> flagOut;
2083    for (uInt i=0; i < tab.nrow(); ++i) {
2084      specCol.get(i, spec);
2085      flagCol.get(i, flag);
2086      Vector<Bool> mask(flag.nelements());
2087      convertArray(mask, flag);
2088
2089      IPosition shapeIn(spec.shape());
2090      //sh.nchan = nChanOut;
2091      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2092                                                   xIn, spec, mask,
2093                                                   interpMethod, True, True);
2094      /// @todo do the same for channel based Tsys
2095      flagOut.resize(maskOut.nelements());
2096      convertArray(flagOut, maskOut);
2097      specCol.put(i, specOut);
2098      flagCol.put(i, flagOut);
2099    }
2100    ++iter;
2101  }
2102
2103  return out;
2104}
2105
2106STMath::imethod STMath::stringToIMethod(const std::string& in)
2107{
2108  static STMath::imap lookup;
2109
2110  // initialize the lookup table if necessary
2111  if ( lookup.empty() ) {
2112    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2113    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2114    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2115    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2116  }
2117
2118  STMath::imap::const_iterator iter = lookup.find(in);
2119
2120  if ( lookup.end() == iter ) {
2121    std::string message = in;
2122    message += " is not a valid interpolation mode";
2123    throw(AipsError(message));
2124  }
2125  return iter->second;
2126}
2127
2128WeightType STMath::stringToWeight(const std::string& in)
2129{
2130  static std::map<std::string, WeightType> lookup;
2131
2132  // initialize the lookup table if necessary
2133  if ( lookup.empty() ) {
2134    lookup["NONE"]   = asap::W_NONE;
2135    lookup["TINT"] = asap::W_TINT;
2136    lookup["TINTSYS"]  = asap::W_TINTSYS;
2137    lookup["TSYS"]  = asap::W_TSYS;
2138    lookup["VAR"]  = asap::W_VAR;
2139  }
2140
2141  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2142
2143  if ( lookup.end() == iter ) {
2144    std::string message = in;
2145    message += " is not a valid weighting mode";
2146    throw(AipsError(message));
2147  }
2148  return iter->second;
2149}
2150
2151CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2152                                               const vector< float > & coeff,
2153                                               const std::string & filename,
2154                                               const std::string& method)
2155{
2156  // Get elevation data from Scantable and convert to degrees
2157  CountedPtr< Scantable > out = getScantable(in, false);
2158  Table& tab = out->table();
2159  ROScalarColumn<Float> elev(tab, "ELEVATION");
2160  Vector<Float> x = elev.getColumn();
2161  x *= Float(180 / C::pi);                        // Degrees
2162
2163  Vector<Float> coeffs(coeff);
2164  const uInt nc = coeffs.nelements();
2165  if ( filename.length() > 0 && nc > 0 ) {
2166    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2167  }
2168
2169  // Correct
2170  if ( nc > 0 || filename.length() == 0 ) {
2171    // Find instrument
2172    Bool throwit = True;
2173    Instrument inst =
2174      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2175                                throwit);
2176
2177    // Set polynomial
2178    Polynomial<Float>* ppoly = 0;
2179    Vector<Float> coeff;
2180    String msg;
2181    if ( nc > 0 ) {
2182      ppoly = new Polynomial<Float>(nc-1);
2183      coeff = coeffs;
2184      msg = String("user");
2185    } else {
2186      STAttr sdAttr;
2187      coeff = sdAttr.gainElevationPoly(inst);
2188      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2189      msg = String("built in");
2190    }
2191
2192    if ( coeff.nelements() > 0 ) {
2193      ppoly->setCoefficients(coeff);
2194    } else {
2195      delete ppoly;
2196      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2197    }
2198    ostringstream oss;
2199    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2200    oss << "   " <<  coeff;
2201    pushLog(String(oss));
2202    const uInt nrow = tab.nrow();
2203    Vector<Float> factor(nrow);
2204    for ( uInt i=0; i < nrow; ++i ) {
2205      factor[i] = 1.0 / (*ppoly)(x[i]);
2206    }
2207    delete ppoly;
2208    scaleByVector(tab, factor, true);
2209
2210  } else {
2211    // Read and correct
2212    pushLog("Making correction from ascii Table");
2213    scaleFromAsciiTable(tab, filename, method, x, true);
2214  }
2215  return out;
2216}
2217
2218void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2219                                 const std::string& method,
2220                                 const Vector<Float>& xout, bool dotsys)
2221{
2222
2223// Read gain-elevation ascii file data into a Table.
2224
2225  String formatString;
2226  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2227  scaleFromTable(in, tbl, method, xout, dotsys);
2228}
2229
2230void STMath::scaleFromTable(Table& in,
2231                            const Table& table,
2232                            const std::string& method,
2233                            const Vector<Float>& xout, bool dotsys)
2234{
2235
2236  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2237  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2238  Vector<Float> xin = geElCol.getColumn();
2239  Vector<Float> yin = geFacCol.getColumn();
2240  Vector<Bool> maskin(xin.nelements(),True);
2241
2242  // Interpolate (and extrapolate) with desired method
2243
2244  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2245
2246   Vector<Float> yout;
2247   Vector<Bool> maskout;
2248   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2249                                                xin, yin, maskin, interp,
2250                                                True, True);
2251
2252   scaleByVector(in, Float(1.0)/yout, dotsys);
2253}
2254
2255void STMath::scaleByVector( Table& in,
2256                            const Vector< Float >& factor,
2257                            bool dotsys )
2258{
2259  uInt nrow = in.nrow();
2260  if ( factor.nelements() != nrow ) {
2261    throw(AipsError("factors.nelements() != table.nelements()"));
2262  }
2263  ArrayColumn<Float> specCol(in, "SPECTRA");
2264  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2265  ArrayColumn<Float> tsysCol(in, "TSYS");
2266  for (uInt i=0; i < nrow; ++i) {
2267    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2268    ma *= factor[i];
2269    specCol.put(i, ma.getArray());
2270    flagCol.put(i, flagsFromMA(ma));
2271    if ( dotsys ) {
2272      Vector<Float> tsys = tsysCol(i);
2273      tsys *= factor[i];
2274      tsysCol.put(i,tsys);
2275    }
2276  }
2277}
2278
2279CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2280                                             float d, float etaap,
2281                                             float jyperk )
2282{
2283  CountedPtr< Scantable > out = getScantable(in, false);
2284  Table& tab = in->table();
2285  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2286  Unit K(String("K"));
2287  Unit JY(String("Jy"));
2288
2289  bool tokelvin = true;
2290  Double cfac = 1.0;
2291
2292  if ( fluxUnit == JY ) {
2293    pushLog("Converting to K");
2294    Quantum<Double> t(1.0,fluxUnit);
2295    Quantum<Double> t2 = t.get(JY);
2296    cfac = (t2 / t).getValue();               // value to Jy
2297
2298    tokelvin = true;
2299    out->setFluxUnit("K");
2300  } else if ( fluxUnit == K ) {
2301    pushLog("Converting to Jy");
2302    Quantum<Double> t(1.0,fluxUnit);
2303    Quantum<Double> t2 = t.get(K);
2304    cfac = (t2 / t).getValue();              // value to K
2305
2306    tokelvin = false;
2307    out->setFluxUnit("Jy");
2308  } else {
2309    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2310  }
2311  // Make sure input values are converted to either Jy or K first...
2312  Float factor = cfac;
2313
2314  // Select method
2315  if (jyperk > 0.0) {
2316    factor *= jyperk;
2317    if ( tokelvin ) factor = 1.0 / jyperk;
2318    ostringstream oss;
2319    oss << "Jy/K = " << jyperk;
2320    pushLog(String(oss));
2321    Vector<Float> factors(tab.nrow(), factor);
2322    scaleByVector(tab,factors, false);
2323  } else if ( etaap > 0.0) {
2324    if (d < 0) {
2325      Instrument inst =
2326        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2327                                  True);
2328      STAttr sda;
2329      d = sda.diameter(inst);
2330    }
2331    jyperk = STAttr::findJyPerK(etaap, d);
2332    ostringstream oss;
2333    oss << "Jy/K = " << jyperk;
2334    pushLog(String(oss));
2335    factor *= jyperk;
2336    if ( tokelvin ) {
2337      factor = 1.0 / factor;
2338    }
2339    Vector<Float> factors(tab.nrow(), factor);
2340    scaleByVector(tab, factors, False);
2341  } else {
2342
2343    // OK now we must deal with automatic look up of values.
2344    // We must also deal with the fact that the factors need
2345    // to be computed per IF and may be different and may
2346    // change per integration.
2347
2348    pushLog("Looking up conversion factors");
2349    convertBrightnessUnits(out, tokelvin, cfac);
2350  }
2351
2352  return out;
2353}
2354
2355void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2356                                     bool tokelvin, float cfac )
2357{
2358  Table& table = in->table();
2359  Instrument inst =
2360    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2361  TableIterator iter(table, "FREQ_ID");
2362  STFrequencies stfreqs = in->frequencies();
2363  STAttr sdAtt;
2364  while (!iter.pastEnd()) {
2365    Table tab = iter.table();
2366    ArrayColumn<Float> specCol(tab, "SPECTRA");
2367    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2368    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2369    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2370
2371    uInt freqid; freqidCol.get(0, freqid);
2372    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2373    // STAttr.JyPerK has a Vector interface... change sometime.
2374    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2375    for ( uInt i=0; i<tab.nrow(); ++i) {
2376      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2377      Float factor = cfac * jyperk;
2378      if ( tokelvin ) factor = Float(1.0) / factor;
2379      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2380      ma *= factor;
2381      specCol.put(i, ma.getArray());
2382      flagCol.put(i, flagsFromMA(ma));
2383    }
2384  ++iter;
2385  }
2386}
2387
2388CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2389                                         const std::vector<float>& tau )
2390{
2391  CountedPtr< Scantable > out = getScantable(in, false);
2392
2393  Table outtab = out->table();
2394
2395  const Int ntau = uInt(tau.size());
2396  std::vector<float>::const_iterator tauit = tau.begin();
2397  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2398               AipsError);
2399  TableIterator iiter(outtab, "IFNO");
2400  while ( !iiter.pastEnd() ) {
2401    Table itab = iiter.table();
2402    TableIterator piter(itab, "POLNO");
2403    while ( !piter.pastEnd() ) {
2404      Table tab = piter.table();
2405      ROScalarColumn<Float> elev(tab, "ELEVATION");
2406      ArrayColumn<Float> specCol(tab, "SPECTRA");
2407      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2408      ArrayColumn<Float> tsysCol(tab, "TSYS");
2409      for ( uInt i=0; i<tab.nrow(); ++i) {
2410        Float zdist = Float(C::pi_2) - elev(i);
2411        Float factor = exp(*tauit/cos(zdist));
2412        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2413        ma *= factor;
2414        specCol.put(i, ma.getArray());
2415        flagCol.put(i, flagsFromMA(ma));
2416        Vector<Float> tsys;
2417        tsysCol.get(i, tsys);
2418        tsys *= factor;
2419        tsysCol.put(i, tsys);
2420      }
2421      if (ntau == in->nif()*in->npol() ) {
2422        tauit++;
2423      }
2424      piter++;
2425    }
2426    if (ntau >= in->nif() ) {
2427      tauit++;
2428    }
2429    iiter++;
2430  }
2431  return out;
2432}
2433
2434CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2435                                             const std::string& kernel,
2436                                             float width, int order)
2437{
2438  CountedPtr< Scantable > out = getScantable(in, false);
2439  Table table = out->table();
2440
2441  TableIterator iter(table, "IFNO");
2442  while (!iter.pastEnd()) {
2443    Table tab = iter.table();
2444    ArrayColumn<Float> specCol(tab, "SPECTRA");
2445    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2446    Vector<Float> spec;
2447    Vector<uChar> flag;
2448    for (uInt i = 0; i < tab.nrow(); ++i) {
2449      specCol.get(i, spec);
2450      flagCol.get(i, flag);
2451      Vector<Bool> mask(flag.nelements());
2452      convertArray(mask, flag);
2453      Vector<Float> specout;
2454      Vector<Bool> maskout;
2455      if (kernel == "hanning") {
2456        mathutil::hanning(specout, maskout, spec, !mask);
2457        convertArray(flag, !maskout);
2458      } else if (kernel == "rmedian") {
2459        mathutil::runningMedian(specout, maskout, spec , mask, width);
2460        convertArray(flag, maskout);
2461      } else if (kernel == "poly") {
2462        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2463        convertArray(flag, !maskout);
2464      }
2465
2466      for (uInt j = 0; j < flag.nelements(); ++j) {
2467        uChar userFlag = 1 << 7;
2468        if (maskout[j]==True) userFlag = 0 << 7;
2469        flag(j) = userFlag;
2470      }
2471
2472      flagCol.put(i, flag);
2473      specCol.put(i, specout);
2474    }
2475  ++iter;
2476  }
2477  return out;
2478}
2479
2480CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2481                                        const std::string& kernel, float width,
2482                                        int order)
2483{
2484  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2485    return smoothOther(in, kernel, width, order);
2486  }
2487  CountedPtr< Scantable > out = getScantable(in, false);
2488  Table& table = out->table();
2489  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2490  // same IFNO should have same no of channels
2491  // this saves overhead
2492  TableIterator iter(table, "IFNO");
2493  while (!iter.pastEnd()) {
2494    Table tab = iter.table();
2495    ArrayColumn<Float> specCol(tab, "SPECTRA");
2496    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2497    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2498    uInt nchan = tmpspec.nelements();
2499    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2500    Convolver<Float> conv(kvec, IPosition(1,nchan));
2501    Vector<Float> spec;
2502    Vector<uChar> flag;
2503    for ( uInt i=0; i<tab.nrow(); ++i) {
2504      specCol.get(i, spec);
2505      flagCol.get(i, flag);
2506      Vector<Bool> mask(flag.nelements());
2507      convertArray(mask, flag);
2508      Vector<Float> specout;
2509      mathutil::replaceMaskByZero(specout, mask);
2510      conv.linearConv(specout, spec);
2511      specCol.put(i, specout);
2512    }
2513    ++iter;
2514  }
2515  return out;
2516}
2517
2518CountedPtr< Scantable >
2519  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2520{
2521  if ( in.size() < 2 ) {
2522    throw(AipsError("Need at least two scantables to perform a merge."));
2523  }
2524  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2525  bool insitu = insitu_;
2526  setInsitu(false);
2527  CountedPtr< Scantable > out = getScantable(*it, false);
2528  setInsitu(insitu);
2529  Table& tout = out->table();
2530  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2531  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2532  // Renumber SCANNO to be 0-based
2533  Vector<uInt> scannos = scannocol.getColumn();
2534  uInt offset = min(scannos);
2535  scannos -= offset;
2536  scannocol.putColumn(scannos);
2537  uInt newscanno = max(scannos)+1;
2538  ++it;
2539  while ( it != in.end() ){
2540    if ( ! (*it)->conformant(*out) ) {
2541      // non conformant.
2542      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2543      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2544      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2545    }
2546    out->appendToHistoryTable((*it)->history());
2547    const Table& tab = (*it)->table();
2548
2549    Block<String> cols(3);
2550    cols[0] = String("FREQ_ID");
2551    cols[1] = String("MOLECULE_ID");
2552    cols[2] = String("FOCUS_ID");
2553
2554    TableIterator scanit(tab, "SCANNO");
2555    while (!scanit.pastEnd()) {
2556      ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2557      Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2558      thescannocol.putColumn(thescannos);
2559      TableIterator subit(scanit.table(), cols);
2560      while ( !subit.pastEnd() ) {
2561        uInt nrow = tout.nrow();
2562        Table thetab = subit.table();
2563        ROTableRow row(thetab);
2564        Vector<uInt> thecolvals(thetab.nrow());
2565        ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2566        ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2567        ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2568        // The selected subset of table should have
2569        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2570        const TableRecord& rec = row.get(0);
2571        // Set the proper FREQ_ID
2572        Double rv,rp,inc;
2573        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2574        uInt id;
2575        id = out->frequencies().addEntry(rp, rv, inc);
2576        thecolvals = id;
2577        thefreqidcol.putColumn(thecolvals);
2578        // Set the proper MOLECULE_ID
2579        Vector<String> name,fname;Vector<Double> rf;
2580        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2581        id = out->molecules().addEntry(rf, name, fname);
2582        thecolvals = id;
2583        themolidcol.putColumn(thecolvals);
2584        // Set the proper FOCUS_ID
2585        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2586        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2587                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2588        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2589                                   fxy, fxyp);
2590        thecolvals = id;
2591        thefocusidcol.putColumn(thecolvals);
2592
2593        tout.addRow(thetab.nrow());
2594        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2595
2596        ++subit;
2597      }
2598      ++newscanno;
2599      ++scanit;
2600    }
2601    ++it;
2602  }
2603  return out;
2604}
2605
2606CountedPtr< Scantable >
2607  STMath::invertPhase( const CountedPtr < Scantable >& in )
2608{
2609  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2610}
2611
2612CountedPtr< Scantable >
2613  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2614{
2615   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2616}
2617
2618CountedPtr< Scantable >
2619  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2620{
2621  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2622}
2623
2624CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2625                                             STPol::polOperation fptr,
2626                                             Float phase )
2627{
2628  CountedPtr< Scantable > out = getScantable(in, false);
2629  Table& tout = out->table();
2630  Block<String> cols(4);
2631  cols[0] = String("SCANNO");
2632  cols[1] = String("BEAMNO");
2633  cols[2] = String("IFNO");
2634  cols[3] = String("CYCLENO");
2635  TableIterator iter(tout, cols);
2636  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2637                                               out->getPolType() );
2638  while (!iter.pastEnd()) {
2639    Table t = iter.table();
2640    ArrayColumn<Float> speccol(t, "SPECTRA");
2641    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2642    Matrix<Float> pols(speccol.getColumn());
2643    try {
2644      stpol->setSpectra(pols);
2645      Float fang,fhand;
2646      fang = in->focusTable_.getTotalAngle(focidcol(0));
2647      fhand = in->focusTable_.getFeedHand(focidcol(0));
2648      stpol->setPhaseCorrections(fang, fhand);
2649      // use a member function pointer in STPol.  This only works on
2650      // the STPol pointer itself, not the Counted Pointer so
2651      // derefernce it.
2652      (&(*(stpol))->*fptr)(phase);
2653      speccol.putColumn(stpol->getSpectra());
2654    } catch (AipsError& e) {
2655      //delete stpol;stpol=0;
2656      throw(e);
2657    }
2658    ++iter;
2659  }
2660  //delete stpol;stpol=0;
2661  return out;
2662}
2663
2664CountedPtr< Scantable >
2665  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2666{
2667  CountedPtr< Scantable > out = getScantable(in, false);
2668  Table& tout = out->table();
2669  Table t0 = tout(tout.col("POLNO") == 0);
2670  Table t1 = tout(tout.col("POLNO") == 1);
2671  if ( t0.nrow() != t1.nrow() )
2672    throw(AipsError("Inconsistent number of polarisations"));
2673  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2674  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2675  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2676  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2677  Matrix<Float> s0 = speccol0.getColumn();
2678  Matrix<uChar> f0 = flagcol0.getColumn();
2679  speccol0.putColumn(speccol1.getColumn());
2680  flagcol0.putColumn(flagcol1.getColumn());
2681  speccol1.putColumn(s0);
2682  flagcol1.putColumn(f0);
2683  return out;
2684}
2685
2686CountedPtr< Scantable >
2687  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2688                                const std::vector<bool>& mask,
2689                                const std::string& weight )
2690{
2691  if (in->npol() < 2 )
2692    throw(AipsError("averagePolarisations can only be applied to two or more"
2693                    "polarisations"));
2694  bool insitu = insitu_;
2695  setInsitu(false);
2696  CountedPtr< Scantable > pols = getScantable(in, true);
2697  setInsitu(insitu);
2698  Table& tout = pols->table();
2699  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2700  Table tab = tableCommand(taql, in->table());
2701  if (tab.nrow() == 0 )
2702    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2703  TableCopy::copyRows(tout, tab);
2704  TableVector<uInt> vec(tout, "POLNO");
2705  vec = 0;
2706  pols->table_.rwKeywordSet().define("nPol", Int(1));
2707  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2708  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2709  std::vector<CountedPtr<Scantable> > vpols;
2710  vpols.push_back(pols);
2711  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2712  return out;
2713}
2714
2715CountedPtr< Scantable >
2716  STMath::averageBeams( const CountedPtr< Scantable > & in,
2717                        const std::vector<bool>& mask,
2718                        const std::string& weight )
2719{
2720  bool insitu = insitu_;
2721  setInsitu(false);
2722  CountedPtr< Scantable > beams = getScantable(in, false);
2723  setInsitu(insitu);
2724  Table& tout = beams->table();
2725  // give all rows the same BEAMNO
2726  TableVector<uInt> vec(tout, "BEAMNO");
2727  vec = 0;
2728  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2729  std::vector<CountedPtr<Scantable> > vbeams;
2730  vbeams.push_back(beams);
2731  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2732  return out;
2733}
2734
2735
2736CountedPtr< Scantable >
2737  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2738                                const std::string & refTime,
2739                                const std::string & method)
2740{
2741  // clone as this is not working insitu
2742  bool insitu = insitu_;
2743  setInsitu(false);
2744  CountedPtr< Scantable > out = getScantable(in, false);
2745  setInsitu(insitu);
2746  Table& tout = out->table();
2747  // Get reference Epoch to time of first row or given String
2748  Unit DAY(String("d"));
2749  MEpoch::Ref epochRef(in->getTimeReference());
2750  MEpoch refEpoch;
2751  if (refTime.length()>0) {
2752    Quantum<Double> qt;
2753    if (MVTime::read(qt,refTime)) {
2754      MVEpoch mv(qt);
2755      refEpoch = MEpoch(mv, epochRef);
2756   } else {
2757      throw(AipsError("Invalid format for Epoch string"));
2758   }
2759  } else {
2760    refEpoch = in->timeCol_(0);
2761  }
2762  MPosition refPos = in->getAntennaPosition();
2763
2764  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2765  /*
2766  // Comment from MV.
2767  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2768  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2769  // test if user frame is different to base frame
2770  if ( in->frequencies().getFrameString(true)
2771       == in->frequencies().getFrameString(false) ) {
2772    throw(AipsError("Can't convert as no output frame has been set"
2773                    " (use set_freqframe) or it is aligned already."));
2774  }
2775  */
2776  MFrequency::Types system = in->frequencies().getFrame();
2777  MVTime mvt(refEpoch.getValue());
2778  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2779  ostringstream oss;
2780  oss << "Aligned at reference Epoch " << epochout
2781      << " in frame " << MFrequency::showType(system);
2782  pushLog(String(oss));
2783  // set up the iterator
2784  Block<String> cols(4);
2785  // select by constant direction
2786  cols[0] = String("SRCNAME");
2787  cols[1] = String("BEAMNO");
2788  // select by IF ( no of channels varies over this )
2789  cols[2] = String("IFNO");
2790  // select by restfrequency
2791  cols[3] = String("MOLECULE_ID");
2792  TableIterator iter(tout, cols);
2793  while ( !iter.pastEnd() ) {
2794    Table t = iter.table();
2795    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2796    TableIterator fiter(t, "FREQ_ID");
2797    // determine nchan from the first row. This should work as
2798    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2799
2800    ROArrayColumn<Float> sCol(t, "SPECTRA");
2801    const MDirection direction = dirCol(0);
2802    const uInt nchan = sCol(0).nelements();
2803
2804    // skip operations if there is nothing to align
2805    if (fiter.pastEnd()) {
2806        continue;
2807    }
2808
2809    Table ftab = fiter.table();
2810    // align all frequency ids with respect to the first encountered id
2811    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2812    // get the SpectralCoordinate for the freqid, which we are iterating over
2813    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2814    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2815                                direction, refPos, system );
2816    // realign the SpectralCoordinate and put into the output Scantable
2817    Vector<String> units(1);
2818    units = String("Hz");
2819    Bool linear=True;
2820    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2821    sc2.setWorldAxisUnits(units);
2822    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2823                                                sc2.referenceValue()[0],
2824                                                sc2.increment()[0]);
2825    while ( !fiter.pastEnd() ) {
2826      ftab = fiter.table();
2827      // spectral coordinate for the current FREQ_ID
2828      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2829      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2830      // create the "global" abcissa for alignment with same FREQ_ID
2831      Vector<Double> abc(nchan);
2832      for (uInt i=0; i<nchan; i++) {
2833           Double w;
2834           sC.toWorld(w,Double(i));
2835           abc[i] = w;
2836      }
2837      TableVector<uInt> tvec(ftab, "FREQ_ID");
2838      // assign new frequency id to all rows
2839      tvec = id;
2840      // cache abcissa for same time stamps, so iterate over those
2841      TableIterator timeiter(ftab, "TIME");
2842      while ( !timeiter.pastEnd() ) {
2843        Table tab = timeiter.table();
2844        ArrayColumn<Float> specCol(tab, "SPECTRA");
2845        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2846        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2847        // use align abcissa cache after the first row
2848        // these rows should be just be POLNO
2849        bool first = true;
2850        for (int i=0; i<int(tab.nrow()); ++i) {
2851          // input values
2852          Vector<uChar> flag = flagCol(i);
2853          Vector<Bool> mask(flag.shape());
2854          Vector<Float> specOut, spec;
2855          spec  = specCol(i);
2856          Vector<Bool> maskOut;Vector<uChar> flagOut;
2857          convertArray(mask, flag);
2858          // alignment
2859          Bool ok = fa.align(specOut, maskOut, abc, spec,
2860                             mask, timeCol(i), !first,
2861                             interp, False);
2862          (void) ok; // unused stop compiler nagging     
2863          // back into scantable
2864          flagOut.resize(maskOut.nelements());
2865          convertArray(flagOut, maskOut);
2866          flagCol.put(i, flagOut);
2867          specCol.put(i, specOut);
2868          // start abcissa caching
2869          first = false;
2870        }
2871        // next timestamp
2872        ++timeiter;
2873      }
2874      // next FREQ_ID
2875      ++fiter;
2876    }
2877    // next aligner
2878    ++iter;
2879  }
2880  // set this afterwards to ensure we are doing insitu correctly.
2881  out->frequencies().setFrame(system, true);
2882  return out;
2883}
2884
2885CountedPtr<Scantable>
2886  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2887                                     const std::string & newtype )
2888{
2889  if (in->npol() != 2 && in->npol() != 4)
2890    throw(AipsError("Can only convert two or four polarisations."));
2891  if ( in->getPolType() == newtype )
2892    throw(AipsError("No need to convert."));
2893  if ( ! in->selector_.empty() )
2894    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2895  bool insitu = insitu_;
2896  setInsitu(false);
2897  CountedPtr< Scantable > out = getScantable(in, true);
2898  setInsitu(insitu);
2899  Table& tout = out->table();
2900  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2901
2902  Block<String> cols(4);
2903  cols[0] = "SCANNO";
2904  cols[1] = "CYCLENO";
2905  cols[2] = "BEAMNO";
2906  cols[3] = "IFNO";
2907  TableIterator it(in->originalTable_, cols);
2908  String basetype = in->getPolType();
2909  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2910  try {
2911    while ( !it.pastEnd() ) {
2912      Table tab = it.table();
2913      uInt row = tab.rowNumbers()[0];
2914      stpol->setSpectra(in->getPolMatrix(row));
2915      Float fang,fhand;
2916      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2917      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2918      stpol->setPhaseCorrections(fang, fhand);
2919      Int npolout = 0;
2920      for (uInt i=0; i<tab.nrow(); ++i) {
2921        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2922        if ( outvec.nelements() > 0 ) {
2923          tout.addRow();
2924          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2925          ArrayColumn<Float> sCol(tout,"SPECTRA");
2926          ScalarColumn<uInt> pCol(tout,"POLNO");
2927          sCol.put(tout.nrow()-1 ,outvec);
2928          pCol.put(tout.nrow()-1 ,uInt(npolout));
2929          npolout++;
2930       }
2931      }
2932      tout.rwKeywordSet().define("nPol", npolout);
2933      ++it;
2934    }
2935  } catch (AipsError& e) {
2936    delete stpol;
2937    throw(e);
2938  }
2939  delete stpol;
2940  return out;
2941}
2942
2943CountedPtr< Scantable >
2944  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2945                           const std::string & scantype )
2946{
2947  bool insitu = insitu_;
2948  setInsitu(false);
2949  CountedPtr< Scantable > out = getScantable(in, true);
2950  setInsitu(insitu);
2951  Table& tout = out->table();
2952  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2953  if (scantype == "on") {
2954    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2955  }
2956  Table tab = tableCommand(taql, in->table());
2957  TableCopy::copyRows(tout, tab);
2958  if (scantype == "on") {
2959    // re-index SCANNO to 0
2960    TableVector<uInt> vec(tout, "SCANNO");
2961    vec = 0;
2962  }
2963  return out;
2964}
2965
2966std::vector<float>
2967  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2968                     const std::vector<int>& whichrow,
2969                     bool getRealImag )
2970{
2971  std::vector<float> res;
2972  Table tab = in->table();
2973  std::vector<bool> mask;
2974
2975  if (whichrow.size() < 1) {          // for all rows (by default)
2976    int nrow = int(tab.nrow());
2977    for (int i = 0; i < nrow; ++i) {
2978      res = in->execFFT(i, mask, getRealImag);
2979    }
2980  } else {                           // for specified rows
2981    for (uInt i = 0; i < whichrow.size(); ++i) {
2982      res = in->execFFT(i, mask, getRealImag);
2983    }
2984  }
2985
2986  return res;
2987}
2988
2989
2990CountedPtr<Scantable>
2991  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2992                         double start, double end,
2993                         const std::string& mode )
2994{
2995  CountedPtr<Scantable> out = getScantable(in, false);
2996  Table& tout = out->table();
2997  TableIterator iter(tout, "FREQ_ID");
2998  FFTServer<Float,Complex> ffts;
2999
3000  while ( !iter.pastEnd() ) {
3001    Table tab = iter.table();
3002    Double rp,rv,inc;
3003    ROTableRow row(tab);
3004    const TableRecord& rec = row.get(0);
3005    uInt freqid = rec.asuInt("FREQ_ID");
3006    out->frequencies().getEntry(rp, rv, inc, freqid);
3007    ArrayColumn<Float> specCol(tab, "SPECTRA");
3008    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
3009
3010    for (int i=0; i<int(tab.nrow()); ++i) {
3011      Vector<Float> spec = specCol(i);
3012      Vector<uChar> flag = flagCol(i);
3013      std::vector<bool> mask;
3014      for (uInt j = 0; j < flag.nelements(); ++j) {
3015        mask.push_back(!(flag[j]>0));
3016      }
3017      mathutil::doZeroOrderInterpolation(spec, mask);
3018
3019      Vector<Complex> lags;
3020      ffts.fft0(lags, spec);
3021
3022      Int lag0(start+0.5);
3023      Int lag1(end+0.5);
3024      if (mode == "frequency") {
3025        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
3026        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
3027      }
3028      Int lstart =  max(0, lag0);
3029      Int lend   =  min(Int(lags.nelements()-1), lag1);
3030      if (lstart == lend) {
3031        lags[lstart] = Complex(0.0);
3032      } else {
3033        if (lstart > lend) {
3034          Int tmp = lend;
3035          lend = lstart;
3036          lstart = tmp;
3037        }
3038        for (int j=lstart; j <=lend ;++j) {
3039          lags[j] = Complex(0.0);
3040        }
3041      }
3042
3043      ffts.fft0(spec, lags);
3044
3045      specCol.put(i, spec);
3046    }
3047    ++iter;
3048  }
3049  return out;
3050}
3051
3052// Averaging spectra with different channel/resolution
3053CountedPtr<Scantable>
3054STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
3055                     const bool& compel,
3056                     const std::vector<bool>& mask,
3057                     const std::string& weight,
3058                     const std::string& avmode )
3059  throw ( casa::AipsError )
3060{
3061  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
3062  if ( avmode == "SCAN" && in.size() != 1 )
3063    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
3064                    "Use merge first."));
3065 
3066  // 2012/02/17 TN
3067  // Since STGrid is implemented, average doesn't consider direction
3068  // when accumulating
3069  // check if OTF observation
3070//   String obstype = in[0]->getHeader().obstype ;
3071//   Double tol = 0.0 ;
3072//   if ( obstype.find( "OTF" ) != String::npos ) {
3073//     tol = TOL_OTF ;
3074//   }
3075//   else {
3076//     tol = TOL_POINT ;
3077//   }
3078
3079  CountedPtr<Scantable> out ;     // processed result
3080  if ( compel ) {
3081    std::vector< CountedPtr<Scantable> > newin ; // input for average process
3082    uInt insize = in.size() ;    // number of input scantables
3083
3084    // TEST: do normal average in each table before IF grouping
3085    os << "Do preliminary averaging" << LogIO::POST ;
3086    vector< CountedPtr<Scantable> > tmpin( insize ) ;
3087    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3088      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
3089      tmpin[itable] = average( v, mask, weight, avmode ) ;
3090    }
3091
3092    // warning
3093    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3094
3095    // temporarily set coordinfo
3096    vector<string> oldinfo( insize ) ;
3097    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3098      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3099      oldinfo[itable] = coordinfo[0] ;
3100      coordinfo[0] = "Hz" ;
3101      tmpin[itable]->setCoordInfo( coordinfo ) ;
3102    }
3103
3104    // columns
3105    ScalarColumn<uInt> freqIDCol ;
3106    ScalarColumn<uInt> ifnoCol ;
3107    ScalarColumn<uInt> scannoCol ;
3108
3109
3110    // check IF frequency coverage
3111    // freqid: list of FREQ_ID, which is used, in each table 
3112    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3113    //         each table
3114    // freqid[insize][numIF]
3115    // freqid: [[id00, id01, ...],
3116    //          [id10, id11, ...],
3117    //          ...
3118    //          [idn0, idn1, ...]]
3119    // iffreq[insize][numIF*2]
3120    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3121    //          [min_id10, max_id10, min_id11, max_id11, ...],
3122    //          ...
3123    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3124    //os << "Check IF settings in each table" << LogIO::POST ;
3125    vector< vector<uInt> > freqid( insize );
3126    vector< vector<double> > iffreq( insize ) ;
3127    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3128      uInt rows = tmpin[itable]->nrow() ;
3129      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3130      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3131        if ( freqid[itable].size() == freqnrows ) {
3132          break ;
3133        }
3134        else {
3135          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3136          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3137          uInt id = freqIDCol( irow ) ;
3138          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3139            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3140            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3141            freqid[itable].push_back( id ) ;
3142            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3143            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3144          }
3145        }
3146      }
3147    }
3148
3149    // debug
3150    //os << "IF settings summary:" << endl ;
3151    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3152    //os << "   Table" << i << endl ;
3153    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3154    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3155    //}
3156    //}
3157    //os << endl ;
3158    //os.post() ;
3159
3160    // IF grouping based on their frequency coverage
3161    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3162    // ifgfreq: list of minimum and maximum frequency in each IF group
3163    // ifgrp[numgrp][nummember*2]
3164    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3165    //         [table10, freqrow10, table11, freqrow11, ...],
3166    //         ...
3167    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3168    // ifgfreq[numgrp*2]
3169    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3170    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3171    vector< vector<uInt> > ifgrp ;
3172    vector<double> ifgfreq ;
3173
3174    // parameter for IF grouping
3175    // groupmode = OR    retrieve all region
3176    //             AND   only retrieve overlaped region
3177    //string groupmode = "AND" ;
3178    string groupmode = "OR" ;
3179    uInt sizecr = 0 ;
3180    if ( groupmode == "AND" )
3181      sizecr = 2 ;
3182    else if ( groupmode == "OR" )
3183      sizecr = 0 ;
3184
3185    vector<double> sortedfreq ;
3186    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3187      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3188        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3189          sortedfreq.push_back( iffreq[i][j] ) ;
3190      }
3191    }
3192    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3193    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3194      ifgfreq.push_back( *i ) ;
3195      ifgfreq.push_back( *(i+1) ) ;
3196    }
3197    ifgrp.resize( ifgfreq.size()/2 ) ;
3198    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3199      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3200        double range0 = iffreq[itable][2*iif] ;
3201        double range1 = iffreq[itable][2*iif+1] ;
3202        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3203          double fmin = max( range0, ifgfreq[2*j] ) ;
3204          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3205          if ( fmin < fmax ) {
3206            ifgrp[j].push_back( itable ) ;
3207            ifgrp[j].push_back( freqid[itable][iif] ) ;
3208          }
3209        }
3210      }
3211    }
3212    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3213    vector<double>::iterator giter = ifgfreq.begin() ;
3214    while( fiter != ifgrp.end() ) {
3215      if ( fiter->size() <= sizecr ) {
3216        fiter = ifgrp.erase( fiter ) ;
3217        giter = ifgfreq.erase( giter ) ;
3218        giter = ifgfreq.erase( giter ) ;
3219      }
3220      else {
3221        fiter++ ;
3222        advance( giter, 2 ) ;
3223      }
3224    }
3225
3226    // Grouping continuous IF groups (without frequency gap)
3227    // freqgrp: list of IF group indexes in each frequency group
3228    // freqrange: list of minimum and maximum frequency in each frequency group
3229    // freqgrp[numgrp][nummember]
3230    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3231    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3232    //           ...
3233    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3234    // freqrange[numgrp*2]
3235    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3236    vector< vector<uInt> > freqgrp ;
3237    double freqrange = 0.0 ;
3238    uInt grpnum = 0 ;
3239    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3240      // Assumed that ifgfreq was sorted
3241      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3242        freqgrp[grpnum-1].push_back( i ) ;
3243      }
3244      else {
3245        vector<uInt> grp0( 1, i ) ;
3246        freqgrp.push_back( grp0 ) ;
3247        grpnum++ ;
3248      }
3249      freqrange = ifgfreq[2*i+1] ;
3250    }
3251       
3252
3253    // print IF groups
3254    ostringstream oss ;
3255    oss << "IF Group summary: " << endl ;
3256    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3257    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3258      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3259      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3260        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3261      }
3262      oss << endl ;
3263    }
3264    oss << endl ;
3265    os << oss.str() << LogIO::POST ;
3266   
3267    // print frequency group
3268    oss.str("") ;
3269    oss << "Frequency Group summary: " << endl ;
3270    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3271    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3272      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3273      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3274        oss << freqgrp[i][j] << " " ;
3275      }
3276      oss << endl ;
3277    }
3278    oss << endl ;
3279    os << oss.str() << LogIO::POST ;
3280
3281    // membership check
3282    // groups: list of IF group indexes whose frequency range overlaps with
3283    //         that of each table and IF
3284    // groups[numtable][numIF][nummembership]
3285    // groups: [[[grp, grp,...], [grp, grp,...],...],
3286    //          [[grp, grp,...], [grp, grp,...],...],
3287    //          ...
3288    //          [[grp, grp,...], [grp, grp,...],...]]
3289    vector< vector< vector<uInt> > > groups( insize ) ;
3290    for ( uInt i = 0 ; i < insize ; i++ ) {
3291      groups[i].resize( freqid[i].size() ) ;
3292    }
3293    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3294      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3295        uInt tableid = ifgrp[igrp][2*imem] ;
3296        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3297        if ( iter != freqid[tableid].end() ) {
3298          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3299          groups[tableid][rowid].push_back( igrp ) ;
3300        }
3301      }
3302    }
3303
3304    // print membership
3305    //oss.str("") ;
3306    //for ( uInt i = 0 ; i < insize ; i++ ) {
3307    //oss << "Table " << i << endl ;
3308    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3309    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3310    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3311    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3312    //}
3313    //oss << endl ;
3314    //}
3315    //}
3316    //os << oss.str() << LogIO::POST ;
3317
3318    // set back coordinfo
3319    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3320      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3321      coordinfo[0] = oldinfo[itable] ;
3322      tmpin[itable]->setCoordInfo( coordinfo ) ;
3323    }
3324
3325    // Create additional table if needed
3326    bool oldInsitu = insitu_ ;
3327    setInsitu( false ) ;
3328    vector< vector<uInt> > addrow( insize ) ;
3329    vector<uInt> addtable( insize, 0 ) ;
3330    vector<uInt> newtableids( insize ) ;
3331    vector<uInt> newifids( insize, 0 ) ;
3332    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3333      //os << "Table " << itable << ": " ;
3334      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3335        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3336        //os << addrow[itable][ifrow] << " " ;
3337      }
3338      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3339      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3340    }
3341    newin.resize( insize ) ;
3342    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3343    for ( uInt i = 0 ; i < insize ; i++ ) {
3344      newtableids[i] = i ;
3345    }
3346    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3347      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3348        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3349        vector<int> freqidlist ;
3350        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3351          if ( groups[itable][i].size() > iadd + 1 ) {
3352            freqidlist.push_back( freqid[itable][i] ) ;
3353          }
3354        }
3355        stringstream taqlstream ;
3356        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3357        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3358          taqlstream << freqidlist[i] ;
3359          if ( i < freqidlist.size() - 1 )
3360            taqlstream << "," ;
3361          else
3362            taqlstream << "]" ;
3363        }
3364        string taql = taqlstream.str() ;
3365        //os << "taql = " << taql << LogIO::POST ;
3366        STSelector selector = STSelector() ;
3367        selector.setTaQL( taql ) ;
3368        add->setSelection( selector ) ;
3369        newin.push_back( add ) ;
3370        newtableids.push_back( itable ) ;
3371        newifids.push_back( iadd + 1 ) ;
3372      }
3373    }
3374
3375    // udpate ifgrp
3376    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3377      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3378        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3379          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3380            uInt igrp = groups[itable][ifrow][iadd+1] ;
3381            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3382              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3383                ifgrp[igrp][2*imem] = insize + iadd ;
3384              }
3385            }
3386          }
3387        }
3388      }
3389    }
3390
3391    // print IF groups again for debug
3392    //oss.str( "" ) ;
3393    //oss << "IF Group summary: " << endl ;
3394    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3395    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3396    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3397    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3398    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3399    //}
3400    //oss << endl ;
3401    //}
3402    //oss << endl ;
3403    //os << oss.str() << LogIO::POST ;
3404
3405    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3406    os << "All scan number is set to 0" << LogIO::POST ;
3407    //os << "All IF number is set to IF group index" << LogIO::POST ;
3408    insize = newin.size() ;
3409    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3410      uInt rows = newin[itable]->nrow() ;
3411      Table &tmpt = newin[itable]->table() ;
3412      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3413      scannoCol.attach( tmpt, "SCANNO" ) ;
3414      ifnoCol.attach( tmpt, "IFNO" ) ;
3415      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3416        scannoCol.put( irow, 0 ) ;
3417        uInt freqID = freqIDCol( irow ) ;
3418        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3419        if ( iter != freqid[newtableids[itable]].end() ) {
3420          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3421          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3422        }
3423        else {
3424          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3425        }
3426      }
3427    }
3428    oldinfo.resize( insize ) ;
3429    setInsitu( oldInsitu ) ;
3430
3431    // temporarily set coordinfo
3432    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3433      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3434      oldinfo[itable] = coordinfo[0] ;
3435      coordinfo[0] = "Hz" ;
3436      newin[itable]->setCoordInfo( coordinfo ) ;
3437    }
3438
3439    // save column values in the vector
3440    vector< vector<uInt> > freqTableIdVec( insize ) ;
3441    vector< vector<uInt> > freqIdVec( insize ) ;
3442    vector< vector<uInt> > ifNoVec( insize ) ;
3443    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3444      ScalarColumn<uInt> freqIDs ;
3445      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3446      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3447      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3448      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3449        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3450      }
3451      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3452        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3453        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3454      }
3455    }
3456
3457    // reset spectra and flagtra: pick up common part of frequency coverage
3458    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3459    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3460      uInt rows = newin[itable]->nrow() ;
3461      int nminchan = -1 ;
3462      int nmaxchan = -1 ;
3463      vector<uInt> freqIdUpdate ;
3464      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3465        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3466        double minfreq = ifgfreq[2*ifno] ;
3467        double maxfreq = ifgfreq[2*ifno+1] ;
3468        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3469        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3470        int nchan = abcissa.size() ;
3471        double resol = abcissa[1] - abcissa[0] ;
3472        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3473        if ( minfreq <= abcissa[0] )
3474          nminchan = 0 ;
3475        else {
3476          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3477          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3478          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3479        }
3480        if ( maxfreq >= abcissa[abcissa.size()-1] )
3481          nmaxchan = abcissa.size() - 1 ;
3482        else {
3483          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3484          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3485          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3486        }
3487        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3488        if ( nmaxchan > nminchan ) {
3489          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3490          int newchan = nmaxchan - nminchan + 1 ;
3491          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3492            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3493        }
3494        else {
3495          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3496        }
3497      }
3498      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3499        uInt freqId = freqIdUpdate[i] ;
3500        Double refpix ;
3501        Double refval ;
3502        Double increment ;
3503       
3504        // update row
3505        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3506        refval = refval - ( refpix - nminchan ) * increment ;
3507        refpix = 0 ;
3508        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3509      }   
3510    }
3511
3512   
3513    // reset spectra and flagtra: align spectral resolution
3514    //os << "Align spectral resolution" << LogIO::POST ;
3515    // gmaxdnu: the coarsest frequency resolution in the frequency group
3516    // gmemid: member index that have a resolution equal to gmaxdnu
3517    // gmaxdnu[numfreqgrp]
3518    // gmaxdnu: [dnu0, dnu1, ...]
3519    // gmemid[numfreqgrp]
3520    // gmemid: [id0, id1, ...]
3521    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3522    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3523    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3524      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3525      int minchan = INT_MAX ;     // minimum channel number
3526      Double refpixref = -1 ;     // reference of 'reference pixel'
3527      Double refvalref = -1 ;     // reference of 'reference frequency'
3528      Double refinc = -1 ;        // reference frequency resolution
3529      uInt refreqid ;
3530      uInt reftable = INT_MAX;
3531      // process only if group member > 1
3532      if ( ifgrp[igrp].size() > 2 ) {
3533        // find minchan and maxdnu in each group
3534        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3535          uInt tableid = ifgrp[igrp][2*imem] ;
3536          uInt rowid = ifgrp[igrp][2*imem+1] ;
3537          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3538          if ( iter != freqIdVec[tableid].end() ) {
3539            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3540            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3541            int nchan = abcissa.size() ;
3542            double dnu = abcissa[1] - abcissa[0] ;
3543            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3544            if ( nchan < minchan ) {
3545              minchan = nchan ;
3546              maxdnu = dnu ;
3547              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3548              refreqid = rowid ;
3549              reftable = tableid ;
3550            }
3551          }
3552        }
3553        // regrid spectra in each group
3554        os << "GROUP " << igrp << endl ;
3555        os << "   Channel number is adjusted to " << minchan << endl ;
3556        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3557        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3558          uInt tableid = ifgrp[igrp][2*imem] ;
3559          uInt rowid = ifgrp[igrp][2*imem+1] ;
3560          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3561          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3562          //os << "   regridChannel applied to " ;
3563          //if ( tableid != reftable )
3564          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3565          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3566            uInt tfreqid = freqIdVec[tableid][irow] ;
3567            if ( tfreqid == rowid ) {     
3568              //os << irow << " " ;
3569              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3570              freqIDCol.put( irow, refreqid ) ;
3571              freqIdVec[tableid][irow] = refreqid ;
3572            }
3573          }
3574          //os << LogIO::POST ;
3575        }
3576      }
3577      else {
3578        uInt tableid = ifgrp[igrp][0] ;
3579        uInt rowid = ifgrp[igrp][1] ;
3580        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3581        if ( iter != freqIdVec[tableid].end() ) {
3582          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3583          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3584          minchan = abcissa.size() ;
3585          maxdnu = abcissa[1] - abcissa[0] ;
3586        }
3587      }
3588      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3589        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3590          if ( maxdnu > gmaxdnu[i] ) {
3591            gmaxdnu[i] = maxdnu ;
3592            gmemid[i] = igrp ;
3593          }
3594          break ;
3595        }
3596      }
3597    }
3598
3599    // set back coordinfo
3600    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3601      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3602      coordinfo[0] = oldinfo[itable] ;
3603      newin[itable]->setCoordInfo( coordinfo ) ;
3604    }     
3605
3606    // accumulate all rows into the first table
3607    // NOTE: assumed in.size() = 1
3608    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3609    if ( newin.size() == 1 )
3610      tmp[0] = newin[0] ;
3611    else
3612      tmp[0] = merge( newin ) ;
3613
3614    //return tmp[0] ;
3615
3616    // average
3617    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3618
3619    //return tmpout ;
3620
3621    // combine frequency group
3622    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3623    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3624    vector<string> coordinfo = tmpout->getCoordInfo() ;
3625    oldinfo[0] = coordinfo[0] ;
3626    coordinfo[0] = "Hz" ;
3627    tmpout->setCoordInfo( coordinfo ) ;
3628    // create proformas of output table
3629    stringstream taqlstream ;
3630    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3631    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3632      taqlstream << gmemid[i] ;
3633      if ( i < gmemid.size() - 1 )
3634        taqlstream << "," ;
3635      else
3636        taqlstream << "]" ;
3637    }
3638    string taql = taqlstream.str() ;
3639    //os << "taql = " << taql << LogIO::POST ;
3640    STSelector selector = STSelector() ;
3641    selector.setTaQL( taql ) ;
3642    oldInsitu = insitu_ ;
3643    setInsitu( false ) ;
3644    out = getScantable( tmpout, false ) ;
3645    setInsitu( oldInsitu ) ;
3646    out->setSelection( selector ) ;
3647    // regrid rows
3648    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3649    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3650      uInt ifno = ifnoCol( irow ) ;
3651      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3652        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3653          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3654          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3655          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3656          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3657          break ;
3658        }
3659      }
3660    }
3661    // combine spectra
3662    ArrayColumn<Float> specColOut ;
3663    specColOut.attach( out->table(), "SPECTRA" ) ;
3664    ArrayColumn<uChar> flagColOut ;
3665    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3666    ScalarColumn<uInt> ifnoColOut ;
3667    ifnoColOut.attach( out->table(), "IFNO" ) ;
3668    ScalarColumn<uInt> polnoColOut ;
3669    polnoColOut.attach( out->table(), "POLNO" ) ;
3670    ScalarColumn<uInt> freqidColOut ;
3671    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3672//     MDirection::ScalarColumn dirColOut ;
3673//     dirColOut.attach( out->table(), "DIRECTION" ) ;
3674    Table &tab = tmpout->table() ;
3675    Block<String> cols(1);
3676    cols[0] = String("POLNO") ;
3677    TableIterator iter( tab, cols ) ;
3678    bool done = false ;
3679    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3680    while( !iter.pastEnd() ) {
3681      vector< vector<Float> > specout( freqgrp.size() ) ;
3682      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3683      ArrayColumn<Float> specCols ;
3684      specCols.attach( iter.table(), "SPECTRA" ) ;
3685      ArrayColumn<uChar> flagCols ;
3686      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3687      ifnoCol.attach( iter.table(), "IFNO" ) ;
3688      ScalarColumn<uInt> polnos ;
3689      polnos.attach( iter.table(), "POLNO" ) ;
3690//       MDirection::ScalarColumn dircol ;
3691//       dircol.attach( iter.table(), "DIRECTION" ) ;
3692      uInt polno = polnos( 0 ) ;
3693      //os << "POLNO iteration: " << polno << LogIO::POST ;
3694//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3695//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3696//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3697//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3698//          uInt ifno = ifnoCol( irow ) ;
3699//          if ( ifno == freqgrp[igrp][imem] ) {
3700//            Vector<Float> spec = specCols( irow ) ;
3701//            Vector<uChar> flag = flagCols( irow ) ;
3702//            vector<Float> svec ;
3703//            spec.tovector( svec ) ;
3704//            vector<uChar> fvec ;
3705//            flag.tovector( fvec ) ;
3706//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3707//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3708//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3709//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3710//            sizes[igrp][imem] = spec.nelements() ;
3711//          }
3712//        }
3713//      }
3714//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3715//        uInt ifout = ifnoColOut( irow ) ;
3716//        uInt polout = polnoColOut( irow ) ;
3717//        if ( ifout == gmemid[igrp] && polout == polno ) {
3718//          // set SPECTRA and FRAGTRA
3719//          Vector<Float> newspec( specout[igrp] ) ;
3720//          Vector<uChar> newflag( flagout[igrp] ) ;
3721//          specColOut.put( irow, newspec ) ;
3722//          flagColOut.put( irow, newflag ) ;
3723//          // IFNO renumbering
3724//          ifnoColOut.put( irow, igrp ) ;
3725//        }
3726//      }
3727//       }
3728      // get a list of number of channels for each frequency group member
3729      if ( !done ) {
3730        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3731          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3732          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3733            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3734              uInt ifno = ifnoCol( irow ) ;
3735              if ( ifno == freqgrp[igrp][imem] ) {
3736                Vector<Float> spec = specCols( irow ) ;
3737                sizes[igrp][imem] = spec.nelements() ;
3738                break ;
3739              }               
3740            }
3741          }
3742        }
3743        done = true ;
3744      }
3745      // combine spectra
3746      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3747        uInt polout = polnoColOut( irow ) ;
3748        if ( polout == polno ) {
3749          uInt ifout = ifnoColOut( irow ) ;
3750//           Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3751          uInt igrp ;
3752          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3753            if ( ifout == gmemid[jgrp] ) {
3754              igrp = jgrp ;
3755              break ;
3756            }
3757          }
3758          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3759            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3760              uInt ifno = ifnoCol( jrow ) ;
3761              // 2012/02/17 TN
3762              // Since STGrid is implemented, average doesn't consider direction
3763              // when accumulating
3764//               Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3765//               //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3766//               Double dx = tdir[0] - direction[0] ;
3767//               Double dy = tdir[1] - direction[1] ;
3768//               Double dd = sqrt( dx * dx + dy * dy ) ;
3769              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3770//               if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3771              if ( ifno == freqgrp[igrp][imem] ) {
3772                Vector<Float> spec = specCols( jrow ) ;
3773                Vector<uChar> flag = flagCols( jrow ) ;
3774                vector<Float> svec ;
3775                spec.tovector( svec ) ;
3776                vector<uChar> fvec ;
3777                flag.tovector( fvec ) ;
3778                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3779                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3780                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3781                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3782              }
3783            }
3784          }
3785          // set SPECTRA and FRAGTRA
3786          Vector<Float> newspec( specout[igrp] ) ;
3787          Vector<uChar> newflag( flagout[igrp] ) ;
3788          specColOut.put( irow, newspec ) ;
3789          flagColOut.put( irow, newflag ) ;
3790          // IFNO renumbering
3791          ifnoColOut.put( irow, igrp ) ;
3792        }
3793      }
3794      iter++ ;
3795    }
3796    // update FREQUENCIES subtable
3797    vector<bool> updated( freqgrp.size(), false ) ;
3798    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3799      uInt index = 0 ;
3800      uInt pixShift = 0 ;
3801      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3802        pixShift += sizes[igrp][index++] ;
3803      }
3804      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3805        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3806          uInt freqidOut = freqidColOut( irow ) ;
3807          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3808          double refpix ;
3809          double refval ;
3810          double increm ;
3811          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3812          refpix += pixShift ;
3813          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3814          updated[igrp] = true ;
3815        }
3816      }
3817    }
3818
3819    //out = tmpout ;
3820
3821    coordinfo = tmpout->getCoordInfo() ;
3822    coordinfo[0] = oldinfo[0] ;
3823    tmpout->setCoordInfo( coordinfo ) ;
3824  }
3825  else {
3826    // simple average
3827    out =  average( in, mask, weight, avmode ) ;
3828  }
3829 
3830  return out;
3831}
3832
3833CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3834                                     const String calmode,
3835                                     const String antname )
3836{
3837  // frequency switch
3838  if ( calmode == "fs" ) {
3839    return cwcalfs( s, antname ) ;
3840  }
3841  else {
3842    vector<bool> masks = s->getMask( 0 ) ;
3843    vector<int> types ;
3844
3845    // sky scan
3846    STSelector sel = STSelector() ;
3847    types.push_back( SrcType::SKY ) ;
3848    sel.setTypes( types ) ;
3849    s->setSelection( sel ) ;
3850    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3851    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3852    s->unsetSelection() ;
3853    sel.reset() ;
3854    types.clear() ;
3855
3856    // hot scan
3857    types.push_back( SrcType::HOT ) ;
3858    sel.setTypes( types ) ;
3859    s->setSelection( sel ) ;
3860    tmp.clear() ;
3861    tmp.push_back( getScantable( s, false ) ) ;
3862    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3863    s->unsetSelection() ;
3864    sel.reset() ;
3865    types.clear() ;
3866   
3867    // cold scan
3868    CountedPtr<Scantable> acold ;
3869//     types.push_back( SrcType::COLD ) ;
3870//     sel.setTypes( types ) ;
3871//     s->setSelection( sel ) ;
3872//     tmp.clear() ;
3873//     tmp.push_back( getScantable( s, false ) ) ;
3874//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3875//     s->unsetSelection() ;
3876//     sel.reset() ;
3877//     types.clear() ;
3878
3879    // off scan
3880    types.push_back( SrcType::PSOFF ) ;
3881    sel.setTypes( types ) ;
3882    s->setSelection( sel ) ;
3883    tmp.clear() ;
3884    tmp.push_back( getScantable( s, false ) ) ;
3885    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3886    s->unsetSelection() ;
3887    sel.reset() ;
3888    types.clear() ;
3889   
3890    // on scan
3891    bool insitu = insitu_ ;
3892    insitu_ = false ;
3893    CountedPtr<Scantable> out = getScantable( s, true ) ;
3894    insitu_ = insitu ;
3895    types.push_back( SrcType::PSON ) ;
3896    sel.setTypes( types ) ;
3897    s->setSelection( sel ) ;
3898    TableCopy::copyRows( out->table(), s->table() ) ;
3899    s->unsetSelection() ;
3900    sel.reset() ;
3901    types.clear() ;
3902   
3903    // process each on scan
3904    ArrayColumn<Float> tsysCol ;
3905    tsysCol.attach( out->table(), "TSYS" ) ;
3906    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3907      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3908      out->setSpectrum( sp, i ) ;
3909      string reftime = out->getTime( i ) ;
3910      vector<int> ii( 1, out->getIF( i ) ) ;
3911      vector<int> ib( 1, out->getBeam( i ) ) ;
3912      vector<int> ip( 1, out->getPol( i ) ) ;
3913      sel.setIFs( ii ) ;
3914      sel.setBeams( ib ) ;
3915      sel.setPolarizations( ip ) ;
3916      asky->setSelection( sel ) ;   
3917      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3918      const Vector<Float> Vtsys( sptsys ) ;
3919      tsysCol.put( i, Vtsys ) ;
3920      asky->unsetSelection() ;
3921      sel.reset() ;
3922    }
3923
3924    // flux unit
3925    out->setFluxUnit( "K" ) ;
3926
3927    return out ;
3928  }
3929}
3930 
3931CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3932                                       const String calmode )
3933{
3934  // frequency switch
3935  if ( calmode == "fs" ) {
3936    return almacalfs( s ) ;
3937  }
3938  else {
3939//     double t0, t1 ;
3940//     t0 = mathutil::gettimeofday_sec() ;
3941    vector<bool> masks = s->getMask( 0 ) ;
3942
3943    // off scan
3944    STSelector orig = s->getSelection() ;
3945    // TODO 2010/01/08 TN
3946    // Grouping by time should be needed before averaging.
3947    // Each group must have own unique SCANNO (should be renumbered).
3948    // See PIPELINE/SDCalibration.py
3949    bool insitu = insitu_ ;
3950    insitu_ = false ;
3951    // share off scan before average with out
3952    CountedPtr<Scantable> out = getScantable( s, true ) ;
3953    Table t = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSOFF ) ;
3954    TableCopy::copyRows( out->table(), t ) ;
3955    insitu_ = insitu ;
3956    Table ttab = out->table() ;
3957    ROScalarColumn<Double> *timeCol = new ROScalarColumn<Double>( ttab, "TIME" ) ;
3958    uInt nrow = timeCol->nrow() ;
3959    Vector<Double> timeSep = timeCol->getColumn() ;
3960    delete timeCol ;
3961    for ( uInt i = nrow-2 ; i > 0 ; i-- ) {
3962      timeSep[i] -= timeSep[i-1] ;
3963    }
3964    Vector<Double> interval = out->integrCol_.getColumn() ;
3965    interval /= 86400.0 ;
3966    uInt *newscan = new uInt[nrow] ;
3967    Vector<uInt> newscanno( IPosition(1,nrow), newscan, TAKE_OVER ) ;
3968    uInt *p = newscan ;
3969    uInt newid = 0 ;
3970    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3971      *p = newid ;
3972      double gap = 2.0 * timeSep[i+1] / ( interval[i] + interval[i+1] ) ;
3973      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3974      if ( gap > 1.1 ) {
3975//         cout << "detected gap between " << i << " and " << i+1 << endl ;
3976        newid++ ;
3977      }
3978      p++ ;
3979    }
3980    *p = newid ;
3981    out->scanCol_.putColumn( newscanno ) ;
3982//     double t2 = mathutil::gettimeofday_sec() ;
3983    vector< CountedPtr<Scantable> > tmp( 1, out ) ;
3984    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3985//     double t3 = mathutil::gettimeofday_sec() ;
3986//     cout << "aoff.nrow = " << aoff->nrow() << endl ;
3987//     t1 = mathutil::gettimeofday_sec() ;
3988//     cout << "elapsed time for off averaging: " << t1-t0 << " sec" << endl ;
3989//     cout << "   elapsed time for average(): " << t3-t2 << " sec" << endl ;
3990   
3991    // on scan
3992//     t0 = mathutil::gettimeofday_sec() ;
3993    s->table_ = s->table_( s->table_.col("SRCTYPE") == (Int)SrcType::PSON ) ;
3994    s->attach() ;
3995    out->table().addRow( s->nrow()-out->nrow() ) ;
3996    copyRows( out->table(), s->table(), 0, 0, s->nrow(), False ) ;
3997//     t1 = mathutil::gettimeofday_sec() ;
3998//     cout << "elapsed time for preparing output table: " << t1-t0 << " sec" << endl ;
3999
4000    // process each on scan
4001//     t0 = mathutil::gettimeofday_sec() ;
4002
4003    // using STIdxIterAcc
4004    vector<string> cols( 3 ) ;
4005    cols[0] = "BEAMNO" ;
4006    cols[1] = "POLNO" ;
4007    cols[2] = "IFNO" ;
4008    STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
4009    STSelector sel ;
4010    while ( !iter->pastEnd() ) {
4011      Vector<uInt> ids = iter->current() ;
4012      stringstream ss ;
4013      ss << "SELECT FROM $1 WHERE "
4014         << "BEAMNO==" << ids[0] << "&&"
4015         << "POLNO==" << ids[1] << "&&"
4016         << "IFNO==" << ids[2] ;
4017      //cout << "TaQL string: " << ss.str() << endl ;
4018      sel.setTaQL( ss.str() ) ;
4019      aoff->setSelection( sel ) ;
4020      Vector<uInt> rows = iter->getRows( SHARE ) ;
4021      // out should be an exact copy of s except that SPECTRA column is empty
4022      calibrateALMA( out, s, aoff, rows ) ;
4023      aoff->unsetSelection() ;
4024      sel.reset() ;
4025      iter->next() ;
4026    }
4027    delete iter ;
4028    s->setSelection( orig ) ;
4029
4030//     t1 = mathutil::gettimeofday_sec() ;
4031//     cout << "elapsed time for calibration: " << t1-t0 << " sec" << endl ;
4032
4033    // flux unit
4034    out->setFluxUnit( "K" ) ;
4035
4036    return out ;
4037  }
4038}
4039
4040CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
4041                                       const String antname )
4042{
4043  vector<int> types ;
4044
4045  // APEX calibration mode
4046  int apexcalmode = 1 ;
4047 
4048  if ( antname.find( "APEX" ) != string::npos ) {
4049    // check if off scan exists or not
4050    STSelector sel = STSelector() ;
4051    //sel.setName( offstr1 ) ;
4052    types.push_back( SrcType::FLOOFF ) ;
4053    sel.setTypes( types ) ;
4054    try {
4055      s->setSelection( sel ) ;
4056    }
4057    catch ( AipsError &e ) {
4058      apexcalmode = 0 ;
4059    }
4060    sel.reset() ;
4061  }
4062  s->unsetSelection() ;
4063  types.clear() ;
4064
4065  vector<bool> masks = s->getMask( 0 ) ;
4066  CountedPtr<Scantable> ssig, sref ;
4067  CountedPtr<Scantable> out ;
4068
4069  if ( antname.find( "APEX" ) != string::npos ) {
4070    // APEX calibration
4071    // sky scan
4072    STSelector sel = STSelector() ;
4073    types.push_back( SrcType::FLOSKY ) ;
4074    sel.setTypes( types ) ;
4075    s->setSelection( sel ) ;
4076    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4077    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
4078    s->unsetSelection() ;
4079    sel.reset() ;
4080    types.clear() ;
4081    types.push_back( SrcType::FHISKY ) ;
4082    sel.setTypes( types ) ;
4083    s->setSelection( sel ) ;
4084    tmp.clear() ;
4085    tmp.push_back( getScantable( s, false ) ) ;
4086    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
4087    s->unsetSelection() ;
4088    sel.reset() ;
4089    types.clear() ;
4090   
4091    // hot scan
4092    types.push_back( SrcType::FLOHOT ) ;
4093    sel.setTypes( types ) ;
4094    s->setSelection( sel ) ;
4095    tmp.clear() ;
4096    tmp.push_back( getScantable( s, false ) ) ;
4097    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
4098    s->unsetSelection() ;
4099    sel.reset() ;
4100    types.clear() ;
4101    types.push_back( SrcType::FHIHOT ) ;
4102    sel.setTypes( types ) ;
4103    s->setSelection( sel ) ;
4104    tmp.clear() ;
4105    tmp.push_back( getScantable( s, false ) ) ;
4106    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
4107    s->unsetSelection() ;
4108    sel.reset() ;
4109    types.clear() ;
4110   
4111    // cold scan
4112    CountedPtr<Scantable> acoldlo, acoldhi ;
4113//     types.push_back( SrcType::FLOCOLD ) ;
4114//     sel.setTypes( types ) ;
4115//     s->setSelection( sel ) ;
4116//     tmp.clear() ;
4117//     tmp.push_back( getScantable( s, false ) ) ;
4118//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
4119//     s->unsetSelection() ;
4120//     sel.reset() ;
4121//     types.clear() ;
4122//     types.push_back( SrcType::FHICOLD ) ;
4123//     sel.setTypes( types ) ;
4124//     s->setSelection( sel ) ;
4125//     tmp.clear() ;
4126//     tmp.push_back( getScantable( s, false ) ) ;
4127//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
4128//     s->unsetSelection() ;
4129//     sel.reset() ;
4130//     types.clear() ;
4131
4132    // ref scan
4133    bool insitu = insitu_ ;
4134    insitu_ = false ;
4135    sref = getScantable( s, true ) ;
4136    insitu_ = insitu ;
4137    types.push_back( SrcType::FSLO ) ;
4138    sel.setTypes( types ) ;
4139    s->setSelection( sel ) ;
4140    TableCopy::copyRows( sref->table(), s->table() ) ;
4141    s->unsetSelection() ;
4142    sel.reset() ;
4143    types.clear() ;
4144   
4145    // sig scan
4146    insitu_ = false ;
4147    ssig = getScantable( s, true ) ;
4148    insitu_ = insitu ;
4149    types.push_back( SrcType::FSHI ) ;
4150    sel.setTypes( types ) ;
4151    s->setSelection( sel ) ;
4152    TableCopy::copyRows( ssig->table(), s->table() ) ;
4153    s->unsetSelection() ;
4154    sel.reset() ; 
4155    types.clear() ;
4156         
4157    if ( apexcalmode == 0 ) {
4158      // APEX fs data without off scan
4159      // process each sig and ref scan
4160      ArrayColumn<Float> tsysCollo ;
4161      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4162      ArrayColumn<Float> tsysColhi ;
4163      tsysColhi.attach( sref->table(), "TSYS" ) ;
4164      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4165        vector< CountedPtr<Scantable> > sky( 2 ) ;
4166        sky[0] = askylo ;
4167        sky[1] = askyhi ;
4168        vector< CountedPtr<Scantable> > hot( 2 ) ;
4169        hot[0] = ahotlo ;
4170        hot[1] = ahothi ;
4171        vector< CountedPtr<Scantable> > cold( 2 ) ;
4172        //cold[0] = acoldlo ;
4173        //cold[1] = acoldhi ;
4174        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4175        ssig->setSpectrum( sp, i ) ;
4176        string reftime = ssig->getTime( i ) ;
4177        vector<int> ii( 1, ssig->getIF( i ) ) ;
4178        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4179        vector<int> ip( 1, ssig->getPol( i ) ) ;
4180        sel.setIFs( ii ) ;
4181        sel.setBeams( ib ) ;
4182        sel.setPolarizations( ip ) ;
4183        askylo->setSelection( sel ) ;
4184        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4185        const Vector<Float> Vtsyslo( sptsys ) ;
4186        tsysCollo.put( i, Vtsyslo ) ;
4187        askylo->unsetSelection() ;
4188        sel.reset() ;
4189        sky[0] = askyhi ;
4190        sky[1] = askylo ;
4191        hot[0] = ahothi ;
4192        hot[1] = ahotlo ;
4193        cold[0] = acoldhi ;
4194        cold[1] = acoldlo ;
4195        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4196        sref->setSpectrum( sp, i ) ;
4197        reftime = sref->getTime( i ) ;
4198        ii[0] = sref->getIF( i )  ;
4199        ib[0] = sref->getBeam( i ) ;
4200        ip[0] = sref->getPol( i ) ;
4201        sel.setIFs( ii ) ;
4202        sel.setBeams( ib ) ;
4203        sel.setPolarizations( ip ) ;
4204        askyhi->setSelection( sel ) ;   
4205        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4206        const Vector<Float> Vtsyshi( sptsys ) ;
4207        tsysColhi.put( i, Vtsyshi ) ;
4208        askyhi->unsetSelection() ;
4209        sel.reset() ;
4210      }
4211    }
4212    else if ( apexcalmode == 1 ) {
4213      // APEX fs data with off scan
4214      // off scan
4215      types.push_back( SrcType::FLOOFF ) ;
4216      sel.setTypes( types ) ;
4217      s->setSelection( sel ) ;
4218      tmp.clear() ;
4219      tmp.push_back( getScantable( s, false ) ) ;
4220      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4221      s->unsetSelection() ;
4222      sel.reset() ;
4223      types.clear() ;
4224      types.push_back( SrcType::FHIOFF ) ;
4225      sel.setTypes( types ) ;
4226      s->setSelection( sel ) ;
4227      tmp.clear() ;
4228      tmp.push_back( getScantable( s, false ) ) ;
4229      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4230      s->unsetSelection() ;
4231      sel.reset() ;
4232      types.clear() ;
4233     
4234      // process each sig and ref scan
4235      ArrayColumn<Float> tsysCollo ;
4236      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4237      ArrayColumn<Float> tsysColhi ;
4238      tsysColhi.attach( sref->table(), "TSYS" ) ;
4239      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4240        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4241        ssig->setSpectrum( sp, i ) ;
4242        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4243        string reftime = ssig->getTime( i ) ;
4244        vector<int> ii( 1, ssig->getIF( i ) ) ;
4245        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4246        vector<int> ip( 1, ssig->getPol( i ) ) ;
4247        sel.setIFs( ii ) ;
4248        sel.setBeams( ib ) ;
4249        sel.setPolarizations( ip ) ;
4250        askylo->setSelection( sel ) ;
4251        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4252        const Vector<Float> Vtsyslo( sptsys ) ;
4253        tsysCollo.put( i, Vtsyslo ) ;
4254        askylo->unsetSelection() ;
4255        sel.reset() ;
4256        sref->setSpectrum( sp, i ) ;
4257        reftime = sref->getTime( i ) ;
4258        ii[0] = sref->getIF( i )  ;
4259        ib[0] = sref->getBeam( i ) ;
4260        ip[0] = sref->getPol( i ) ;
4261        sel.setIFs( ii ) ;
4262        sel.setBeams( ib ) ;
4263        sel.setPolarizations( ip ) ;
4264        askyhi->setSelection( sel ) ;   
4265        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4266        const Vector<Float> Vtsyshi( sptsys ) ;
4267        tsysColhi.put( i, Vtsyshi ) ;
4268        askyhi->unsetSelection() ;
4269        sel.reset() ;
4270      }
4271    }
4272  }
4273  else {
4274    // non-APEX fs data
4275    // sky scan
4276    STSelector sel = STSelector() ;
4277    types.push_back( SrcType::SKY ) ;
4278    sel.setTypes( types ) ;
4279    s->setSelection( sel ) ;
4280    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4281    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4282    s->unsetSelection() ;
4283    sel.reset() ;
4284    types.clear() ;
4285   
4286    // hot scan
4287    types.push_back( SrcType::HOT ) ;
4288    sel.setTypes( types ) ;
4289    s->setSelection( sel ) ;
4290    tmp.clear() ;
4291    tmp.push_back( getScantable( s, false ) ) ;
4292    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4293    s->unsetSelection() ;
4294    sel.reset() ;
4295    types.clear() ;
4296
4297    // cold scan
4298    CountedPtr<Scantable> acold ;
4299//     types.push_back( SrcType::COLD ) ;
4300//     sel.setTypes( types ) ;
4301//     s->setSelection( sel ) ;
4302//     tmp.clear() ;
4303//     tmp.push_back( getScantable( s, false ) ) ;
4304//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4305//     s->unsetSelection() ;
4306//     sel.reset() ;
4307//     types.clear() ;
4308   
4309    // ref scan
4310    bool insitu = insitu_ ;
4311    insitu_ = false ;
4312    sref = getScantable( s, true ) ;
4313    insitu_ = insitu ;
4314    types.push_back( SrcType::FSOFF ) ;
4315    sel.setTypes( types ) ;
4316    s->setSelection( sel ) ;
4317    TableCopy::copyRows( sref->table(), s->table() ) ;
4318    s->unsetSelection() ;
4319    sel.reset() ;
4320    types.clear() ;
4321   
4322    // sig scan
4323    insitu_ = false ;
4324    ssig = getScantable( s, true ) ;
4325    insitu_ = insitu ;
4326    types.push_back( SrcType::FSON ) ;
4327    sel.setTypes( types ) ;
4328    s->setSelection( sel ) ;
4329    TableCopy::copyRows( ssig->table(), s->table() ) ;
4330    s->unsetSelection() ;
4331    sel.reset() ;
4332    types.clear() ;
4333
4334    // process each sig and ref scan
4335    ArrayColumn<Float> tsysColsig ;
4336    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4337    ArrayColumn<Float> tsysColref ;
4338    tsysColref.attach( ssig->table(), "TSYS" ) ;
4339    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4340      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4341      ssig->setSpectrum( sp, i ) ;
4342      string reftime = ssig->getTime( i ) ;
4343      vector<int> ii( 1, ssig->getIF( i ) ) ;
4344      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4345      vector<int> ip( 1, ssig->getPol( i ) ) ;
4346      sel.setIFs( ii ) ;
4347      sel.setBeams( ib ) ;
4348      sel.setPolarizations( ip ) ;
4349      asky->setSelection( sel ) ;
4350      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4351      const Vector<Float> Vtsys( sptsys ) ;
4352      tsysColsig.put( i, Vtsys ) ;
4353      asky->unsetSelection() ;
4354      sel.reset() ;
4355      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4356      sref->setSpectrum( sp, i ) ;
4357      tsysColref.put( i, Vtsys ) ;
4358    }
4359  }
4360
4361  // do folding if necessary
4362  Table sigtab = ssig->table() ;
4363  Table reftab = sref->table() ;
4364  ScalarColumn<uInt> sigifnoCol ;
4365  ScalarColumn<uInt> refifnoCol ;
4366  ScalarColumn<uInt> sigfidCol ;
4367  ScalarColumn<uInt> reffidCol ;
4368  Int nchan = (Int)ssig->nchan() ;
4369  sigifnoCol.attach( sigtab, "IFNO" ) ;
4370  refifnoCol.attach( reftab, "IFNO" ) ;
4371  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4372  reffidCol.attach( reftab, "FREQ_ID" ) ;
4373  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4374  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4375  vector<uInt> sfids_unique ;
4376  vector<uInt> rfids_unique ;
4377  vector<uInt> sifno_unique ;
4378  vector<uInt> rifno_unique ;
4379  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4380    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4381      sfids_unique.push_back( sfids[i] ) ;
4382      sifno_unique.push_back( ssig->getIF( i ) ) ;
4383    }
4384    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4385      rfids_unique.push_back( rfids[i] ) ;
4386      rifno_unique.push_back( sref->getIF( i ) ) ;
4387    }
4388  }
4389  double refpix_sig, refval_sig, increment_sig ;
4390  double refpix_ref, refval_ref, increment_ref ;
4391  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4392  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4393    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4394    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4395    if ( refpix_sig == refpix_ref ) {
4396      double foffset = refval_ref - refval_sig ;
4397      int choffset = static_cast<int>(foffset/increment_sig) ;
4398      double doffset = foffset / increment_sig ;
4399      if ( abs(choffset) >= nchan ) {
4400        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4401        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4402        os << "Just return signal data" << LogIO::POST ;
4403        //std::vector< CountedPtr<Scantable> > tabs ;
4404        //tabs.push_back( ssig ) ;
4405        //tabs.push_back( sref ) ;
4406        //out = merge( tabs ) ;
4407        tmp[i] = ssig ;
4408      }
4409      else {
4410        STSelector sel = STSelector() ;
4411        vector<int> v( 1, sifno_unique[i] ) ;
4412        sel.setIFs( v ) ;
4413        ssig->setSelection( sel ) ;
4414        sel.reset() ;
4415        v[0] = rifno_unique[i] ;
4416        sel.setIFs( v ) ;
4417        sref->setSelection( sel ) ;
4418        sel.reset() ;
4419        if ( antname.find( "APEX" ) != string::npos ) {
4420          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4421          //tmp[i] = dofold( ssig, sref, doffset ) ;
4422        }
4423        else {
4424          tmp[i] = dofold( ssig, sref, doffset ) ;
4425        }
4426        ssig->unsetSelection() ;
4427        sref->unsetSelection() ;
4428      }
4429    }
4430  }
4431
4432  if ( tmp.size() > 1 ) {
4433    out = merge( tmp ) ;
4434  }
4435  else {
4436    out = tmp[0] ;
4437  }
4438
4439  // flux unit
4440  out->setFluxUnit( "K" ) ;
4441
4442  return out ;
4443}
4444
4445CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4446{
4447  (void) s; //currently unused
4448  CountedPtr<Scantable> out ;
4449
4450  return out ;
4451}
4452
4453vector<float> STMath::getSpectrumFromTime( string reftime,
4454                                           CountedPtr<Scantable>& s,
4455                                           string mode )
4456{
4457  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4458  vector<float> sp ;
4459
4460  if ( s->nrow() == 0 ) {
4461    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4462    return sp ;
4463  }
4464  else if ( s->nrow() == 1 ) {
4465    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4466    return s->getSpectrum( 0 ) ;
4467  }
4468  else {
4469    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4470    if ( mode == "before" ) {
4471      int id = -1 ;
4472      if ( idx[0] != -1 ) {
4473        id = idx[0] ;
4474      }
4475      else if ( idx[1] != -1 ) {
4476        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4477        id = idx[1] ;
4478      }
4479      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4480      sp = s->getSpectrum( id ) ;
4481    }
4482    else if ( mode == "after" ) {
4483      int id = -1 ;
4484      if ( idx[1] != -1 ) {
4485        id = idx[1] ;
4486      }
4487      else if ( idx[0] != -1 ) {
4488        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4489        id = idx[1] ;
4490      }
4491      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4492      sp = s->getSpectrum( id ) ;
4493    }
4494    else if ( mode == "nearest" ) {
4495      int id = -1 ;
4496      if ( idx[0] == -1 ) {
4497        id = idx[1] ;
4498      }
4499      else if ( idx[1] == -1 ) {
4500        id = idx[0] ;
4501      }
4502      else if ( idx[0] == idx[1] ) {
4503        id = idx[0] ;
4504      }
4505      else {
4506        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4507        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4508        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4509        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4510        double tref = getMJD( reftime ) ;
4511        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4512          id = idx[1] ;
4513        }
4514        else {
4515          id = idx[0] ;
4516        }
4517      }
4518      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4519      sp = s->getSpectrum( id ) ;     
4520    }
4521    else if ( mode == "linear" ) {
4522      if ( idx[0] == -1 ) {
4523        // use after
4524        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4525        int id = idx[1] ;
4526        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4527        sp = s->getSpectrum( id ) ;
4528      }
4529      else if ( idx[1] == -1 ) {
4530        // use before
4531        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4532        int id = idx[0] ;
4533        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4534        sp = s->getSpectrum( id ) ;
4535      }
4536      else if ( idx[0] == idx[1] ) {
4537        // use before
4538        //os << "No need to interporate." << LogIO::POST ;
4539        int id = idx[0] ;
4540        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4541        sp = s->getSpectrum( id ) ;
4542      }
4543      else {
4544        // do interpolation
4545        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4546        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4547        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4548        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4549        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4550        double tref = getMJD( reftime ) ;
4551        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4552        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4553        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4554          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4555          sp.push_back( v ) ;
4556        }
4557      }
4558    }
4559    else {
4560      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4561    }
4562    return sp ;
4563  }
4564}
4565
4566Vector<Float> STMath::getSpectrumFromTime( double reftime,
4567                                           Vector<Double> &timeVec,
4568                                           const CountedPtr<Scantable>& s,
4569                                           string mode )
4570{
4571  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4572  Vector<Float> sp ;
4573
4574  if ( s->nrow() == 0 ) {
4575    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4576    return sp ;
4577  }
4578  else if ( s->nrow() == 1 ) {
4579    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4580    s->specCol_.get( 0, sp ) ;
4581    return sp ;
4582  }
4583  else {
4584    vector<int> idx = getRowIdFromTime( reftime, timeVec ) ;
4585    if ( mode == "before" ) {
4586      int id = -1 ;
4587      if ( idx[0] != -1 ) {
4588        id = idx[0] ;
4589      }
4590      else if ( idx[1] != -1 ) {
4591        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4592        id = idx[1] ;
4593      }
4594      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4595      s->specCol_.get( id, sp ) ;
4596      //sp = s->getSpectrum( id ) ;
4597    }
4598    else if ( mode == "after" ) {
4599      int id = -1 ;
4600      if ( idx[1] != -1 ) {
4601        id = idx[1] ;
4602      }
4603      else if ( idx[0] != -1 ) {
4604        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4605        id = idx[1] ;
4606      }
4607      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4608      s->specCol_.get( id, sp ) ;
4609      //sp = s->getSpectrum( id ) ;
4610    }
4611    else if ( mode == "nearest" ) {
4612      int id = -1 ;
4613      if ( idx[0] == -1 ) {
4614        id = idx[1] ;
4615      }
4616      else if ( idx[1] == -1 ) {
4617        id = idx[0] ;
4618      }
4619      else if ( idx[0] == idx[1] ) {
4620        id = idx[0] ;
4621      }
4622      else {
4623        double t0 = timeVec[idx[0]] ;
4624        double t1 = timeVec[idx[1]] ;
4625        double tref = reftime ;
4626        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4627          id = idx[1] ;
4628        }
4629        else {
4630          id = idx[0] ;
4631        }
4632      }
4633      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4634      s->specCol_.get( id, sp ) ;
4635      //sp = s->getSpectrum( id ) ;     
4636    }
4637    else if ( mode == "linear" ) {
4638      if ( idx[0] == -1 ) {
4639        // use after
4640        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4641        int id = idx[1] ;
4642        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4643        s->specCol_.get( id, sp ) ;
4644        //sp = s->getSpectrum( id ) ;
4645      }
4646      else if ( idx[1] == -1 ) {
4647        // use before
4648        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4649        int id = idx[0] ;
4650        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4651        s->specCol_.get( id, sp ) ;
4652        //sp = s->getSpectrum( id ) ;
4653      }
4654      else if ( idx[0] == idx[1] ) {
4655        // use before
4656        //os << "No need to interporate." << LogIO::POST ;
4657        int id = idx[0] ;
4658        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4659        s->specCol_.get( id, sp ) ;
4660        //sp = s->getSpectrum( id ) ;
4661      }
4662      else {
4663        // do interpolation
4664        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4665        double t0 = timeVec[idx[0]] ;
4666        double t1 = timeVec[idx[1]] ;
4667        double tref = reftime ;
4668        s->specCol_.get( idx[0], sp ) ;
4669        //sp = s->getSpectrum( idx[0] ) ;
4670        //vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4671        Vector<Float> sp1 = s->specCol_( idx[1] ) ;
4672        double tfactor = ( tref - t0 ) / ( t1 - t0 ) ;
4673        for ( unsigned int i = 0 ; i < sp.size() ; i++ ) {
4674          sp[i] = ( sp1[i] - sp[i] ) * tfactor + sp[i] ;
4675        }
4676      }
4677    }
4678    else {
4679      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4680    }
4681    return sp ;
4682  }
4683}
4684
4685Vector<Float> STMath::getSpectrumFromTime( double reftime,
4686                                           const Vector<Double> &timeVec,
4687                                           const Matrix<Float>& spectra,
4688                                           string mode )
4689{
4690  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4691  Vector<Float> sp ;
4692  uInt ncol = spectra.ncolumn() ;
4693
4694  if ( ncol == 0 ) {
4695    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4696    return sp ;
4697  }
4698  else if ( ncol == 1 ) {
4699    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4700    //s->specCol_.get( 0, sp ) ;
4701    sp.reference( spectra.column( 0 ) ) ;
4702    return sp ;
4703  }
4704  else {
4705    vector<int> idx = getRowIdFromTime( reftime, timeVec ) ;
4706    if ( mode == "before" ) {
4707      int id = -1 ;
4708      if ( idx[0] != -1 ) {
4709        id = idx[0] ;
4710      }
4711      else if ( idx[1] != -1 ) {
4712        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4713        id = idx[1] ;
4714      }
4715      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4716      //s->specCol_.get( id, sp ) ;
4717      //sp = s->getSpectrum( id ) ;
4718      sp.reference( spectra.column( id ) ) ;
4719    }
4720    else if ( mode == "after" ) {
4721      int id = -1 ;
4722      if ( idx[1] != -1 ) {
4723        id = idx[1] ;
4724      }
4725      else if ( idx[0] != -1 ) {
4726        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4727        id = idx[1] ;
4728      }
4729      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4730      //s->specCol_.get( id, sp ) ;
4731      //sp = s->getSpectrum( id ) ;
4732      sp.reference( spectra.column( id ) ) ;
4733    }
4734    else if ( mode == "nearest" ) {
4735      int id = -1 ;
4736      if ( idx[0] == -1 ) {
4737        id = idx[1] ;
4738      }
4739      else if ( idx[1] == -1 ) {
4740        id = idx[0] ;
4741      }
4742      else if ( idx[0] == idx[1] ) {
4743        id = idx[0] ;
4744      }
4745      else {
4746        double t0 = timeVec[idx[0]] ;
4747        double t1 = timeVec[idx[1]] ;
4748        double tref = reftime ;
4749        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4750          id = idx[1] ;
4751        }
4752        else {
4753          id = idx[0] ;
4754        }
4755      }
4756      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4757      //s->specCol_.get( id, sp ) ;
4758      //sp = s->getSpectrum( id ) ;     
4759      sp.reference( spectra.column( id ) ) ;
4760    }
4761    else if ( mode == "linear" ) {
4762      if ( idx[0] == -1 ) {
4763        // use after
4764        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4765        int id = idx[1] ;
4766        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4767        //s->specCol_.get( id, sp ) ;
4768        //sp = s->getSpectrum( id ) ;
4769        sp.reference( spectra.column( id ) ) ;
4770      }
4771      else if ( idx[1] == -1 ) {
4772        // use before
4773        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4774        int id = idx[0] ;
4775        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4776        //s->specCol_.get( id, sp ) ;
4777        //sp = s->getSpectrum( id ) ;
4778        sp.reference( spectra.column( id ) ) ;
4779      }
4780      else if ( idx[0] == idx[1] ) {
4781        // use before
4782        //os << "No need to interporate." << LogIO::POST ;
4783        int id = idx[0] ;
4784        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4785        //s->specCol_.get( id, sp ) ;
4786        //sp = s->getSpectrum( id ) ;
4787        sp.reference( spectra.column( id ) ) ;
4788      }
4789      else {
4790        // do interpolation
4791        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4792        double t0 = timeVec[idx[0]] ;
4793        double t1 = timeVec[idx[1]] ;
4794        double tref = reftime ;
4795        //s->specCol_.get( idx[0], sp ) ;
4796        //sp = s->getSpectrum( idx[0] ) ;
4797        //vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4798        sp = spectra.column( idx[0] ).copy() ;
4799        //Vector<Float> sp1 = s->specCol_( idx[1] ) ;
4800        Vector<Float> sp1( spectra.column( idx[1] ) ) ;
4801        double tfactor = ( tref - t0 ) / ( t1 - t0 ) ;
4802        for ( unsigned int i = 0 ; i < sp.size() ; i++ ) {
4803          sp[i] = ( sp1[i] - sp[i] ) * tfactor + sp[i] ;
4804        }
4805      }
4806    }
4807    else {
4808      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4809    }
4810    return sp ;
4811  }
4812}
4813
4814void STMath::getSpectrumFromTime2( Vector<Float> &sp,
4815                                   double reftime,
4816                                   Vector<Double> &timeVec,
4817                                   const CountedPtr<Scantable>& s,
4818                                   string mode )
4819{
4820  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4821  //Vector<Float> sp ;
4822
4823  if ( s->nrow() == 0 ) {
4824    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4825    //return sp ;
4826  }
4827  else if ( s->nrow() == 1 ) {
4828    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4829    //return s->getSpectrum( 0 ) ;
4830    s->specCol_.get( 0, sp ) ;
4831    //return sp ;
4832  }
4833  else {
4834    vector<int> idx = getRowIdFromTime( reftime, timeVec ) ;
4835    if ( mode == "before" ) {
4836      int id = -1 ;
4837      if ( idx[0] != -1 ) {
4838        id = idx[0] ;
4839      }
4840      else if ( idx[1] != -1 ) {
4841        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4842        id = idx[1] ;
4843      }
4844      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4845      //sp = s->getSpectrum( id ) ;
4846      s->specCol_.get( id, sp ) ;
4847    }
4848    else if ( mode == "after" ) {
4849      int id = -1 ;
4850      if ( idx[1] != -1 ) {
4851        id = idx[1] ;
4852      }
4853      else if ( idx[0] != -1 ) {
4854        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4855        id = idx[1] ;
4856      }
4857      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4858      //sp = s->getSpectrum( id ) ;
4859      s->specCol_.get( id, sp ) ;
4860    }
4861    else if ( mode == "nearest" ) {
4862      int id = -1 ;
4863      if ( idx[0] == -1 ) {
4864        id = idx[1] ;
4865      }
4866      else if ( idx[1] == -1 ) {
4867        id = idx[0] ;
4868      }
4869      else if ( idx[0] == idx[1] ) {
4870        id = idx[0] ;
4871      }
4872      else {
4873        double t0 = timeVec[idx[0]] ;
4874        double t1 = timeVec[idx[1]] ;
4875        double tref = reftime ;
4876        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4877          id = idx[1] ;
4878        }
4879        else {
4880          id = idx[0] ;
4881        }
4882      }
4883      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4884      //sp = s->getSpectrum( id ) ;     
4885      s->specCol_.get( id, sp ) ;
4886    }
4887    else if ( mode == "linear" ) {
4888      if ( idx[0] == -1 ) {
4889        // use after
4890        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4891        int id = idx[1] ;
4892        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4893        //sp = s->getSpectrum( id ) ;
4894        s->specCol_.get( id, sp ) ;
4895      }
4896      else if ( idx[1] == -1 ) {
4897        // use before
4898        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4899        int id = idx[0] ;
4900        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4901        //sp = s->getSpectrum( id ) ;
4902        s->specCol_.get( id, sp ) ;
4903      }
4904      else if ( idx[0] == idx[1] ) {
4905        // use before
4906        //os << "No need to interporate." << LogIO::POST ;
4907        int id = idx[0] ;
4908        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4909        //sp = s->getSpectrum( id ) ;
4910        s->specCol_.get( id, sp ) ;
4911      }
4912      else {
4913        // do interpolation
4914        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4915        //double t0 = timeVec[idx[0]] ;
4916        //double t1 = timeVec[idx[1]] ;
4917        //double tref = reftime ;
4918        //sp = s->getSpectrum( idx[0] ) ;
4919        s->specCol_.get( idx[0], sp ) ;
4920        //vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4921        Vector<Float> sp1 = s->specCol_( idx[1] ) ;
4922        //double tfactor = ( tref - t0 ) / ( t1 - t0 ) ;
4923        double tfactor = ( reftime - timeVec[idx[0]] ) / ( timeVec[idx[1]] - timeVec[idx[0]] ) ;
4924        for ( unsigned int i = 0 ; i < sp.size() ; i++ ) {
4925          sp[i] = ( sp1[i] - sp[i] ) * tfactor + sp[i] ;
4926        }
4927      }
4928    }
4929    else {
4930      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4931    }
4932    //return sp ;
4933  }
4934}
4935
4936double STMath::getMJD( string strtime )
4937{
4938  if ( strtime.find("/") == string::npos ) {
4939    // MJD time string
4940    return atof( strtime.c_str() ) ;
4941  }
4942  else {
4943    // string in YYYY/MM/DD/HH:MM:SS format
4944    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4945    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4946    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4947    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4948    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4949    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4950    Time t( year, month, day, hour, minute, sec ) ;
4951    return t.modifiedJulianDay() ;
4952  }
4953}
4954
4955vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4956{
4957  double reft = getMJD( reftime ) ;
4958  double dtmin = 1.0e100 ;
4959  double dtmax = -1.0e100 ;
4960  vector<double> dt ;
4961  int just_before = -1 ;
4962  int just_after = -1 ;
4963  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4964    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4965  }
4966  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4967    if ( dt[i] > 0.0 ) {
4968      // after reftime
4969      if ( dt[i] < dtmin ) {
4970        just_after = i ;
4971        dtmin = dt[i] ;
4972      }
4973    }
4974    else if ( dt[i] < 0.0 ) {
4975      // before reftime
4976      if ( dt[i] > dtmax ) {
4977        just_before = i ;
4978        dtmax = dt[i] ;
4979      }
4980    }
4981    else {
4982      // just a reftime
4983      just_before = i ;
4984      just_after = i ;
4985      dtmax = 0 ;
4986      dtmin = 0 ;
4987      break ;
4988    }
4989  }
4990
4991  vector<int> v ;
4992  v.push_back( just_before ) ;
4993  v.push_back( just_after ) ;
4994
4995  return v ;
4996}
4997
4998vector<int> STMath::getRowIdFromTime( double reftime, const Vector<Double> &t )
4999{
5000//   double reft = reftime ;
5001  double dtmin = 1.0e100 ;
5002  double dtmax = -1.0e100 ;
5003//   vector<double> dt ;
5004  int just_before = -1 ;
5005  int just_after = -1 ;
5006  //cout << setprecision(24) << reft << endl ;
5007//   ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
5008//   for ( int i = 0 ; i < s->nrow() ; i++ ) {
5009//     cout << setprecision(24) << timeCol(i) << endl ;
5010//     //dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
5011//     dt.push_back( timeCol(i) - reft ) ;
5012//   }
5013  Vector<Double> dt = t - reftime ;
5014  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
5015    if ( dt[i] > 0.0 ) {
5016      // after reftime
5017      if ( dt[i] < dtmin ) {
5018        just_after = i ;
5019        dtmin = dt[i] ;
5020      }
5021    }
5022    else if ( dt[i] < 0.0 ) {
5023      // before reftime
5024      if ( dt[i] > dtmax ) {
5025        just_before = i ;
5026        dtmax = dt[i] ;
5027      }
5028    }
5029    else {
5030      // just a reftime
5031      just_before = i ;
5032      just_after = i ;
5033      dtmax = 0 ;
5034      dtmin = 0 ;
5035      break ;
5036    }
5037  }
5038
5039  vector<int> v(2) ;
5040  v[0] = just_before ;
5041  v[1] = just_after ;
5042
5043  return v ;
5044}
5045
5046vector<float> STMath::getTcalFromTime( string reftime,
5047                                       CountedPtr<Scantable>& s,
5048                                       string mode )
5049{
5050  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
5051  vector<float> tcal ;
5052  STTcal tcalTable = s->tcal() ;
5053  String time ;
5054  Vector<Float> tcalval ;
5055  if ( s->nrow() == 0 ) {
5056    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
5057    return tcal ;
5058  }
5059  else if ( s->nrow() == 1 ) {
5060    uInt tcalid = s->getTcalId( 0 ) ;
5061    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
5062    tcalTable.getEntry( time, tcalval, tcalid ) ;
5063    tcalval.tovector( tcal ) ;
5064    return tcal ;
5065  }
5066  else {
5067    vector<int> idx = getRowIdFromTime( reftime, s ) ;
5068    if ( mode == "before" ) {
5069      int id = -1 ;
5070      if ( idx[0] != -1 ) {
5071        id = idx[0] ;
5072      }
5073      else if ( idx[1] != -1 ) {
5074        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
5075        id = idx[1] ;
5076      }
5077      uInt tcalid = s->getTcalId( id ) ;
5078      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
5079      tcalTable.getEntry( time, tcalval, tcalid ) ;
5080      tcalval.tovector( tcal ) ;
5081    }
5082    else if ( mode == "after" ) {
5083      int id = -1 ;
5084      if ( idx[1] != -1 ) {
5085        id = idx[1] ;
5086      }
5087      else if ( idx[0] != -1 ) {
5088        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
5089        id = idx[1] ;
5090      }
5091      uInt tcalid = s->getTcalId( id ) ;
5092      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
5093      tcalTable.getEntry( time, tcalval, tcalid ) ;
5094      tcalval.tovector( tcal ) ;
5095    }
5096    else if ( mode == "nearest" ) {
5097      int id = -1 ;
5098      if ( idx[0] == -1 ) {
5099        id = idx[1] ;
5100      }
5101      else if ( idx[1] == -1 ) {
5102        id = idx[0] ;
5103      }
5104      else if ( idx[0] == idx[1] ) {
5105        id = idx[0] ;
5106      }
5107      else {
5108        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
5109        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5110        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5111        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
5112        double tref = getMJD( reftime ) ;
5113        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
5114          id = idx[1] ;
5115        }
5116        else {
5117          id = idx[0] ;
5118        }
5119      }
5120      uInt tcalid = s->getTcalId( id ) ;
5121      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
5122      tcalTable.getEntry( time, tcalval, tcalid ) ;
5123      tcalval.tovector( tcal ) ;
5124    }
5125    else if ( mode == "linear" ) {
5126      if ( idx[0] == -1 ) {
5127        // use after
5128        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
5129        int id = idx[1] ;
5130        uInt tcalid = s->getTcalId( id ) ;
5131        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
5132        tcalTable.getEntry( time, tcalval, tcalid ) ;
5133        tcalval.tovector( tcal ) ;
5134      }
5135      else if ( idx[1] == -1 ) {
5136        // use before
5137        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
5138        int id = idx[0] ;
5139        uInt tcalid = s->getTcalId( id ) ;
5140        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
5141        tcalTable.getEntry( time, tcalval, tcalid ) ;
5142        tcalval.tovector( tcal ) ;
5143      }
5144      else if ( idx[0] == idx[1] ) {
5145        // use before
5146        //os << "No need to interporate." << LogIO::POST ;
5147        int id = idx[0] ;
5148        uInt tcalid = s->getTcalId( id ) ;
5149        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
5150        tcalTable.getEntry( time, tcalval, tcalid ) ;
5151        tcalval.tovector( tcal ) ;
5152      }
5153      else {
5154        // do interpolation
5155        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
5156        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
5157        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5158        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5159        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
5160        double tref = getMJD( reftime ) ;
5161        vector<float> tcal0 ;
5162        vector<float> tcal1 ;
5163        uInt tcalid0 = s->getTcalId( idx[0] ) ;
5164        uInt tcalid1 = s->getTcalId( idx[1] ) ;
5165        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
5166        tcalval.tovector( tcal0 ) ;
5167        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
5168        tcalval.tovector( tcal1 ) ;       
5169        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
5170          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
5171          tcal.push_back( v ) ;
5172        }
5173      }
5174    }
5175    else {
5176      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
5177    }
5178    return tcal ;
5179  }
5180}
5181
5182vector<float> STMath::getTsysFromTime( string reftime,
5183                                       CountedPtr<Scantable>& s,
5184                                       string mode )
5185{
5186  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
5187  ArrayColumn<Float> tsysCol ;
5188  tsysCol.attach( s->table(), "TSYS" ) ;
5189  vector<float> tsys ;
5190  String time ;
5191  Vector<Float> tsysval ;
5192  if ( s->nrow() == 0 ) {
5193    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
5194    return tsys ;
5195  }
5196  else if ( s->nrow() == 1 ) {
5197    //os << "use row " << 0 << LogIO::POST ;
5198    tsysval = tsysCol( 0 ) ;
5199    tsysval.tovector( tsys ) ;
5200    return tsys ;
5201  }
5202  else {
5203    vector<int> idx = getRowIdFromTime( reftime, s ) ;
5204    if ( mode == "before" ) {
5205      int id = -1 ;
5206      if ( idx[0] != -1 ) {
5207        id = idx[0] ;
5208      }
5209      else if ( idx[1] != -1 ) {
5210        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
5211        id = idx[1] ;
5212      }
5213      //os << "use row " << id << LogIO::POST ;
5214      tsysval = tsysCol( id ) ;
5215      tsysval.tovector( tsys ) ;
5216    }
5217    else if ( mode == "after" ) {
5218      int id = -1 ;
5219      if ( idx[1] != -1 ) {
5220        id = idx[1] ;
5221      }
5222      else if ( idx[0] != -1 ) {
5223        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
5224        id = idx[1] ;
5225      }
5226      //os << "use row " << id << LogIO::POST ;
5227      tsysval = tsysCol( id ) ;
5228      tsysval.tovector( tsys ) ;
5229    }
5230    else if ( mode == "nearest" ) {
5231      int id = -1 ;
5232      if ( idx[0] == -1 ) {
5233        id = idx[1] ;
5234      }
5235      else if ( idx[1] == -1 ) {
5236        id = idx[0] ;
5237      }
5238      else if ( idx[0] == idx[1] ) {
5239        id = idx[0] ;
5240      }
5241      else {
5242        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
5243        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5244        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5245        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
5246        double tref = getMJD( reftime ) ;
5247        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
5248          id = idx[1] ;
5249        }
5250        else {
5251          id = idx[0] ;
5252        }
5253      }
5254      //os << "use row " << id << LogIO::POST ;
5255      tsysval = tsysCol( id ) ;
5256      tsysval.tovector( tsys ) ;
5257    }
5258    else if ( mode == "linear" ) {
5259      if ( idx[0] == -1 ) {
5260        // use after
5261        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
5262        int id = idx[1] ;
5263        //os << "use row " << id << LogIO::POST ;
5264        tsysval = tsysCol( id ) ;
5265        tsysval.tovector( tsys ) ;
5266      }
5267      else if ( idx[1] == -1 ) {
5268        // use before
5269        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
5270        int id = idx[0] ;
5271        //os << "use row " << id << LogIO::POST ;
5272        tsysval = tsysCol( id ) ;
5273        tsysval.tovector( tsys ) ;
5274      }
5275      else if ( idx[0] == idx[1] ) {
5276        // use before
5277        //os << "No need to interporate." << LogIO::POST ;
5278        int id = idx[0] ;
5279        //os << "use row " << id << LogIO::POST ;
5280        tsysval = tsysCol( id ) ;
5281        tsysval.tovector( tsys ) ;
5282      }
5283      else {
5284        // do interpolation
5285        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
5286        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
5287        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5288        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5289        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
5290        double tref = getMJD( reftime ) ;
5291        vector<float> tsys0 ;
5292        vector<float> tsys1 ;
5293        tsysval = tsysCol( idx[0] ) ;
5294        tsysval.tovector( tsys0 ) ;
5295        tsysval = tsysCol( idx[1] ) ;
5296        tsysval.tovector( tsys1 ) ;       
5297        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
5298          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
5299          tsys.push_back( v ) ;
5300        }
5301      }
5302    }
5303    else {
5304      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
5305    }
5306    return tsys ;
5307  }
5308}
5309
5310vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5311                                            CountedPtr<Scantable>& off,
5312                                            CountedPtr<Scantable>& sky,
5313                                            CountedPtr<Scantable>& hot,
5314                                            CountedPtr<Scantable>& cold,
5315                                            int index,
5316                                            string antname )
5317{
5318  (void) cold; //currently unused
5319  string reftime = on->getTime( index ) ;
5320  vector<int> ii( 1, on->getIF( index ) ) ;
5321  vector<int> ib( 1, on->getBeam( index ) ) ;
5322  vector<int> ip( 1, on->getPol( index ) ) ;
5323  STSelector sel = STSelector() ;
5324  sel.setIFs( ii ) ;
5325  sel.setBeams( ib ) ;
5326  sel.setPolarizations( ip ) ;
5327  sky->setSelection( sel ) ;
5328  hot->setSelection( sel ) ;
5329  //cold->setSelection( sel ) ;
5330  off->setSelection( sel ) ;
5331  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5332  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5333  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5334  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
5335  vector<float> spec = on->getSpectrum( index ) ;
5336  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5337  vector<float> sp( tcal.size() ) ;
5338  if ( antname.find( "APEX" ) != string::npos ) {
5339    // using gain array
5340    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5341      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
5342        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
5343      sp[j] = v ;
5344    }
5345  }
5346  else {
5347    // Chopper-Wheel calibration (Ulich & Haas 1976)
5348    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5349      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
5350      sp[j] = v ;
5351    }
5352  }
5353  sel.reset() ;
5354  sky->unsetSelection() ;
5355  hot->unsetSelection() ;
5356  //cold->unsetSelection() ;
5357  off->unsetSelection() ;
5358
5359  return sp ;
5360}
5361
5362vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5363                                            CountedPtr<Scantable>& off,
5364                                            int index )
5365{
5366//   string reftime = on->getTime( index ) ;
5367  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5368  Vector<Double> timeVec = timeCol.getColumn() ;
5369  //ROTableColumn timeCol( on->table(), "TIME" ) ;
5370  timeCol.attach( on->table(), "TIME" ) ;
5371  double reftime = timeCol.asdouble(index) ;
5372  vector<int> ii( 1, on->getIF( index ) ) ;
5373  vector<int> ib( 1, on->getBeam( index ) ) ;
5374  vector<int> ip( 1, on->getPol( index ) ) ;
5375  STSelector sel = STSelector() ;
5376  sel.setIFs( ii ) ;
5377  sel.setBeams( ib ) ;
5378  sel.setPolarizations( ip ) ;
5379  off->setSelection( sel ) ;
5380  Vector<Float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
5381  vector<float> spec = on->getSpectrum( index ) ;
5382  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5383  //vector<float> tsys = on->getTsysVec( index ) ;
5384  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5385  Vector<Float> tsys = tsysCol( index ) ;
5386  vector<float> sp( spec.size() ) ;
5387  // ALMA Calibration
5388  //
5389  // Ta* = Tsys * ( ON - OFF ) / OFF
5390  //
5391  // 2010/01/07 Takeshi Nakazato
5392  unsigned int tsyssize = tsys.nelements() ;
5393  unsigned int spsize = sp.size() ;
5394  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5395    float tscale = 0.0 ;
5396    if ( tsyssize == spsize )
5397      tscale = tsys[j] ;
5398    else
5399      tscale = tsys[0] ;
5400    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5401    sp[j] = v ;
5402  }
5403  sel.reset() ;
5404  off->unsetSelection() ;
5405
5406  return sp ;
5407}
5408
5409void STMath::calibrateALMA( CountedPtr<Scantable>& out,
5410                            const CountedPtr<Scantable>& on,
5411                            const CountedPtr<Scantable>& off,
5412                            Vector<uInt>& rows )
5413{
5414  // 2012/05/22 TN
5415  // Assume that out has empty SPECTRA column
5416
5417  // if rows is empty, just return
5418  if ( rows.nelements() == 0 )
5419    return ;
5420  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5421  Vector<Double> timeVec = timeCol.getColumn() ;
5422  timeCol.attach( on->table(), "TIME" ) ;
5423  ROArrayColumn<Float> tsysCol( off->table(), "SPECTRA" ) ;
5424  Matrix<Float> offspectra = tsysCol.getColumn() ;
5425  tsysCol.attach( on->table(), "TSYS" ) ;
5426  //ROArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5427  unsigned int spsize = on->nchan( on->getIF(rows[0]) ) ;
5428  // I know that the data is contiguous
5429  const uInt *p = rows.data() ;
5430  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
5431    double reftime = timeCol.asdouble(*p) ;
5432    Vector<Float> spoff = getSpectrumFromTime( reftime, timeVec, offspectra, "linear" ) ;
5433    //Vector<Float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
5434    Vector<Float> spec = on->specCol_( *p ) ;
5435    Vector<Float> tsys = tsysCol( *p ) ;
5436    // ALMA Calibration
5437    //
5438    // Ta* = Tsys * ( ON - OFF ) / OFF
5439    //
5440    // 2010/01/07 Takeshi Nakazato
5441    unsigned int tsyssize = tsys.nelements() ;
5442    for ( unsigned int j = 0 ; j < spsize ; j++ ) {
5443      spec[j] = ( spec[j] - spoff[j] ) / spoff[j] ;
5444      if ( tsyssize == spsize )
5445        spec[j] *= tsys[j] ;
5446      else
5447        spec[j] *= tsys[0] ;
5448    }
5449    out->specCol_.put( *p, spec ) ;
5450    p++ ;
5451  }
5452}
5453
5454vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5455                                              CountedPtr<Scantable>& ref,
5456                                              CountedPtr<Scantable>& sky,
5457                                              CountedPtr<Scantable>& hot,
5458                                              CountedPtr<Scantable>& cold,
5459                                              int index )
5460{
5461  (void) cold; //currently unused
5462  string reftime = sig->getTime( index ) ;
5463  vector<int> ii( 1, sig->getIF( index ) ) ;
5464  vector<int> ib( 1, sig->getBeam( index ) ) ;
5465  vector<int> ip( 1, sig->getPol( index ) ) ;
5466  vector<int> ic( 1, sig->getScan( index ) ) ;
5467  STSelector sel = STSelector() ;
5468  sel.setIFs( ii ) ;
5469  sel.setBeams( ib ) ;
5470  sel.setPolarizations( ip ) ;
5471  sky->setSelection( sel ) ;
5472  hot->setSelection( sel ) ;
5473  //cold->setSelection( sel ) ;
5474  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5475  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5476  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5477  vector<float> spref = ref->getSpectrum( index ) ;
5478  vector<float> spsig = sig->getSpectrum( index ) ;
5479  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5480  vector<float> sp( tcal.size() ) ;
5481  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5482    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
5483    sp[j] = v ;
5484  }
5485  sel.reset() ;
5486  sky->unsetSelection() ;
5487  hot->unsetSelection() ;
5488  //cold->unsetSelection() ;
5489
5490  return sp ;
5491}
5492
5493vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5494                                              CountedPtr<Scantable>& ref,
5495                                              vector< CountedPtr<Scantable> >& sky,
5496                                              vector< CountedPtr<Scantable> >& hot,
5497                                              vector< CountedPtr<Scantable> >& cold,
5498                                              int index )
5499{
5500  (void) cold; //currently unused
5501  string reftime = sig->getTime( index ) ;
5502  vector<int> ii( 1, sig->getIF( index ) ) ;
5503  vector<int> ib( 1, sig->getBeam( index ) ) ;
5504  vector<int> ip( 1, sig->getPol( index ) ) ;
5505  vector<int> ic( 1, sig->getScan( index ) ) ;
5506  STSelector sel = STSelector() ;
5507  sel.setIFs( ii ) ;
5508  sel.setBeams( ib ) ;
5509  sel.setPolarizations( ip ) ;
5510  sky[0]->setSelection( sel ) ;
5511  hot[0]->setSelection( sel ) ;
5512  //cold[0]->setSelection( sel ) ;
5513  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
5514  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
5515  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
5516  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
5517  sel.reset() ;
5518  ii[0] = ref->getIF( index ) ;
5519  sel.setIFs( ii ) ;
5520  sel.setBeams( ib ) ;
5521  sel.setPolarizations( ip ) ;
5522  sky[1]->setSelection( sel ) ;
5523  hot[1]->setSelection( sel ) ;
5524  //cold[1]->setSelection( sel ) ;
5525  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
5526  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
5527  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
5528  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
5529  vector<float> spref = ref->getSpectrum( index ) ;
5530  vector<float> spsig = sig->getSpectrum( index ) ;
5531  vector<float> sp( tcals.size() ) ;
5532  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
5533    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
5534    sp[j] = v ;
5535  }
5536  sel.reset() ;
5537  sky[0]->unsetSelection() ;
5538  hot[0]->unsetSelection() ;
5539  //cold[0]->unsetSelection() ;
5540  sky[1]->unsetSelection() ;
5541  hot[1]->unsetSelection() ;
5542  //cold[1]->unsetSelection() ;
5543
5544  return sp ;
5545}
5546
5547void STMath::copyRows( Table &out,
5548                       const Table &in,
5549                       uInt startout,
5550                       uInt startin,
5551                       uInt nrow,
5552                       Bool copySpectra,
5553                       Bool copyFlagtra,
5554                       Bool copyTsys )
5555{
5556  uInt nexclude = 0 ;
5557  Block<String> excludeColsBlock( 3 ) ;
5558  if ( !copySpectra ) {
5559    excludeColsBlock[nexclude] = "SPECTRA" ;
5560    nexclude++ ;
5561  }
5562  if ( !copyFlagtra ) {
5563    excludeColsBlock[nexclude] = "FLAGTRA" ;
5564    nexclude++ ;
5565  }
5566  if ( !copyTsys ) {
5567    excludeColsBlock[nexclude] = "TSYS" ;
5568    nexclude++ ;
5569  }
5570  //  if ( nexclude < 3 ) {
5571  //    excludeCols.resize( nexclude, True ) ;
5572  //  }
5573  Vector<String> excludeCols( IPosition(1,nexclude),
5574                              excludeColsBlock.storage(),
5575                              SHARE ) ;
5576//   cout << "excludeCols=" << excludeCols << endl ;
5577  TableRow rowout( out, excludeCols, True ) ;
5578  ROTableRow rowin( in, excludeCols, True ) ;
5579  uInt rin = startin ;
5580  uInt rout = startout ;
5581  for ( uInt i = 0 ; i < nrow ; i++ ) {
5582    rowin.get( rin ) ;
5583    rowout.putMatchingFields( rout, rowin.record() ) ;
5584    rin++ ;
5585    rout++ ;
5586  }
5587}
Note: See TracBrowser for help on using the repository browser.