source: branches/hpc33/src/STMath.cpp @ 2532

Last change on this file since 2532 was 2532, checked in by Takeshi Nakazato, 12 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: Yes/No?

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No?

Module(s): Module Names change impacts.

Description: Describe your changes here...

More speedup of STMath::almacal.
Reduced a number of call of ScalarColumn?<T>::getColumn().


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 180.7 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "RowAccumulator.h"
52#include "STAttr.h"
53#include "STMath.h"
54#include "STSelector.h"
55#include "Accelerator.h"
56#include "STIdxIter.h"
57
58using namespace casa;
59using namespace asap;
60
61
62// 2012/02/17 TN
63// Since STGrid is implemented, average doesn't consider direction
64// when accumulating
65// tolerance for direction comparison (rad)
66// #define TOL_OTF    1.0e-15
67// #define TOL_POINT  2.9088821e-4  // 1 arcmin
68
69STMath::STMath(bool insitu) :
70  insitu_(insitu)
71{
72}
73
74
75STMath::~STMath()
76{
77}
78
79CountedPtr<Scantable>
80STMath::average( const std::vector<CountedPtr<Scantable> >& in,
81                 const std::vector<bool>& mask,
82                 const std::string& weight,
83                 const std::string& avmode)
84{
85  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
86  if ( avmode == "SCAN" && in.size() != 1 )
87    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
88                    "Use merge first."));
89  WeightType wtype = stringToWeight(weight);
90
91  // 2012/02/17 TN
92  // Since STGrid is implemented, average doesn't consider direction
93  // when accumulating
94  // check if OTF observation
95//   String obstype = in[0]->getHeader().obstype ;
96//   Double tol = 0.0 ;
97//   if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
98//     tol = TOL_OTF ;
99//   }
100//   else {
101//     tol = TOL_POINT ;
102//   }
103
104  // output
105  // clone as this is non insitu
106  bool insitu = insitu_;
107  setInsitu(false);
108  CountedPtr< Scantable > out = getScantable(in[0], true);
109  setInsitu(insitu);
110  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
111  ++stit;
112  while ( stit != in.end() ) {
113    out->appendToHistoryTable((*stit)->history());
114    ++stit;
115  }
116
117  Table& tout = out->table();
118
119  /// @todo check if all scantables are conformant
120
121  ArrayColumn<Float> specColOut(tout,"SPECTRA");
122  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
123  ArrayColumn<Float> tsysColOut(tout,"TSYS");
124  ScalarColumn<Double> mjdColOut(tout,"TIME");
125  ScalarColumn<Double> intColOut(tout,"INTERVAL");
126  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
127  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
128
129  // set up the output table rows. These are based on the structure of the
130  // FIRST scantable in the vector
131  const Table& baset = in[0]->table();
132
133  Block<String> cols(3);
134  cols[0] = String("BEAMNO");
135  cols[1] = String("IFNO");
136  cols[2] = String("POLNO");
137  if ( avmode == "SOURCE" ) {
138    cols.resize(4);
139    cols[3] = String("SRCNAME");
140  }
141  if ( avmode == "SCAN"  && in.size() == 1) {
142    //cols.resize(4);
143    //cols[3] = String("SCANNO");
144    cols.resize(5);
145    cols[3] = String("SRCNAME");
146    cols[4] = String("SCANNO");
147  }
148  uInt outrowCount = 0;
149  TableIterator iter(baset, cols);
150//   int count = 0 ;
151  while (!iter.pastEnd()) {
152    Table subt = iter.table();
153    // copy the first row of this selection into the new table
154    tout.addRow();
155    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
156    // re-index to 0
157    if ( avmode != "SCAN" && avmode != "SOURCE" ) {
158      scanColOut.put(outrowCount, uInt(0));
159    }
160    ++outrowCount;
161    // 2012/02/17 TN
162    // Since STGrid is implemented, average doesn't consider direction
163    // when accumulating
164//     MDirection::ScalarColumn dircol ;
165//     dircol.attach( subt, "DIRECTION" ) ;
166//     Int length = subt.nrow() ;
167//     vector< Vector<Double> > dirs ;
168//     vector<int> indexes ;
169//     for ( Int i = 0 ; i < length ; i++ ) {
170//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
171//       //os << << count++ << ": " ;
172//       //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
173//       bool adddir = true ;
174//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
175//         //if ( allTrue( t == dirs[j] ) ) {
176//         Double dx = t[0] - dirs[j][0] ;
177//         Double dy = t[1] - dirs[j][1] ;
178//         Double dd = sqrt( dx * dx + dy * dy ) ;
179//         //if ( allNearAbs( t, dirs[j], tol ) ) {
180//         if ( dd <= tol ) {
181//           adddir = false ;
182//           break ;
183//         }
184//       }
185//       if ( adddir ) {
186//         dirs.push_back( t ) ;
187//         indexes.push_back( i ) ;
188//       }
189//     }
190//     uInt rowNum = dirs.size() ;
191//     tout.addRow( rowNum ) ;
192//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
193//       TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
194//       // re-index to 0
195//       if ( avmode != "SCAN" && avmode != "SOURCE" ) {
196//         scanColOut.put(outrowCount+i, uInt(0));
197//       }       
198//     }
199//     outrowCount += rowNum ;
200    ++iter;
201  }
202  RowAccumulator acc(wtype);
203  Vector<Bool> cmask(mask);
204  acc.setUserMask(cmask);
205  ROTableRow row(tout);
206  ROArrayColumn<Float> specCol, tsysCol;
207  ROArrayColumn<uChar> flagCol;
208  ROScalarColumn<Double> mjdCol, intCol;
209  ROScalarColumn<Int> scanIDCol;
210
211  Vector<uInt> rowstodelete;
212
213  for (uInt i=0; i < tout.nrow(); ++i) {
214    for ( int j=0; j < int(in.size()); ++j ) {
215      const Table& tin = in[j]->table();
216      const TableRecord& rec = row.get(i);
217      ROScalarColumn<Double> tmp(tin, "TIME");
218      Double td;tmp.get(0,td);
219
220#if 1
221      static char const*const colNames1[] = { "IFNO", "BEAMNO", "POLNO" };
222      uInt const values1[] = { rec.asuInt("IFNO"), rec.asuInt("BEAMNO"), rec.asuInt("POLNO") };
223      SingleTypeEqPredicate<uInt, 3> myPred(tin, colNames1, values1);
224      CustomTableExprNodeRep myNodeRep(tin, myPred);
225      myNodeRep.link(); // to avoid automatic delete when myExpr is destructed.
226      CustomTableExprNode myExpr(myNodeRep);
227      Table basesubt = tin(myExpr);
228#else
229      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
230                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
231                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
232#endif
233      Table subt;
234      if ( avmode == "SOURCE") {
235        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
236      } else if (avmode == "SCAN") {
237        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
238                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
239      } else {
240        subt = basesubt;
241      }
242
243      // 2012/02/17 TN
244      // Since STGrid is implemented, average doesn't consider direction
245      // when accumulating
246//       vector<uInt> removeRows ;
247//       uInt nrsubt = subt.nrow() ;
248//       for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
249//         //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
250//         Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
251//         Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
252//         double dx = x0[0] - x1[0];
253//         double dy = x0[1] - x1[1];
254//         Double dd = sqrt( dx * dx + dy * dy ) ;
255//         //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
256//         if ( dd > tol ) {
257//           removeRows.push_back( irow ) ;
258//         }
259//       }
260//       if ( removeRows.size() != 0 ) {
261//         subt.removeRow( removeRows ) ;
262//       }
263     
264//       if ( nrsubt == removeRows.size() )
265//         throw(AipsError("Averaging data is empty.")) ;
266
267      specCol.attach(subt,"SPECTRA");
268      flagCol.attach(subt,"FLAGTRA");
269      tsysCol.attach(subt,"TSYS");
270      intCol.attach(subt,"INTERVAL");
271      mjdCol.attach(subt,"TIME");
272      Vector<Float> spec,tsys;
273      Vector<uChar> flag;
274      Double inter,time;
275      for (uInt k = 0; k < subt.nrow(); ++k ) {
276        flagCol.get(k, flag);
277        Vector<Bool> bflag(flag.shape());
278        convertArray(bflag, flag);
279        /*
280        if ( allEQ(bflag, True) ) {
281        continue;//don't accumulate
282        }
283        */
284        specCol.get(k, spec);
285        tsysCol.get(k, tsys);
286        intCol.get(k, inter);
287        mjdCol.get(k, time);
288        // spectrum has to be added last to enable weighting by the other values
289        acc.add(spec, !bflag, tsys, inter, time);
290      }
291
292      // If there exists a channel at which all the input spectra are masked,
293      // spec has 'nan' values for that channel and it may affect the following
294      // processes. To avoid this, replacing 'nan' values in spec with
295      // weighted-mean of all spectra in the following line.
296      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
297      acc.replaceNaN();
298    }
299    const Vector<Bool>& msk = acc.getMask();
300    if ( allEQ(msk, False) ) {
301      uint n = rowstodelete.nelements();
302      rowstodelete.resize(n+1, True);
303      rowstodelete[n] = i;
304      continue;
305    }
306    //write out
307    if (acc.state()) {
308      Vector<uChar> flg(msk.shape());
309      convertArray(flg, !msk);
310      for (uInt k = 0; k < flg.nelements(); ++k) {
311        uChar userFlag = 1 << 7;
312        if (msk[k]==True) userFlag = 0 << 7;
313        flg(k) = userFlag;
314      }
315
316      flagColOut.put(i, flg);
317      specColOut.put(i, acc.getSpectrum());
318      tsysColOut.put(i, acc.getTsys());
319      intColOut.put(i, acc.getInterval());
320      mjdColOut.put(i, acc.getTime());
321      // we should only have one cycle now -> reset it to be 0
322      // frequency switched data has different CYCLENO for different IFNO
323      // which requires resetting this value
324      cycColOut.put(i, uInt(0));
325    } else {
326      ostringstream oss;
327      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
328      pushLog(String(oss));
329    }
330    acc.reset();
331  }
332
333  if (rowstodelete.nelements() > 0) {
334    os << rowstodelete << LogIO::POST ;
335    tout.removeRow(rowstodelete);
336    if (tout.nrow() == 0) {
337      throw(AipsError("Can't average fully flagged data."));
338    }
339  }
340  return out;
341}
342
343CountedPtr< Scantable >
344STMath::averageChannel( const CountedPtr < Scantable > & in,
345                          const std::string & mode,
346                          const std::string& avmode )
347{
348  (void) mode; // currently unused
349  // 2012/02/17 TN
350  // Since STGrid is implemented, average doesn't consider direction
351  // when accumulating
352  // check if OTF observation
353//   String obstype = in->getHeader().obstype ;
354//   Double tol = 0.0 ;
355//   if ( obstype.find( "OTF" ) != String::npos ) {
356//     tol = TOL_OTF ;
357//   }
358//   else {
359//     tol = TOL_POINT ;
360//   }
361
362  // clone as this is non insitu
363  bool insitu = insitu_;
364  setInsitu(false);
365  CountedPtr< Scantable > out = getScantable(in, true);
366  setInsitu(insitu);
367  Table& tout = out->table();
368  ArrayColumn<Float> specColOut(tout,"SPECTRA");
369  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
370  ArrayColumn<Float> tsysColOut(tout,"TSYS");
371  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
372  ScalarColumn<Double> intColOut(tout, "INTERVAL");
373  Table tmp = in->table().sort("BEAMNO");
374  Block<String> cols(3);
375  cols[0] = String("BEAMNO");
376  cols[1] = String("IFNO");
377  cols[2] = String("POLNO");
378  if ( avmode == "SCAN") {
379    cols.resize(4);
380    cols[3] = String("SCANNO");
381  }
382  uInt outrowCount = 0;
383  uChar userflag = 1 << 7;
384  TableIterator iter(tmp, cols);
385  while (!iter.pastEnd()) {
386    Table subt = iter.table();
387    ROArrayColumn<Float> specCol, tsysCol;
388    ROArrayColumn<uChar> flagCol;
389    ROScalarColumn<Double> intCol(subt, "INTERVAL");
390    specCol.attach(subt,"SPECTRA");
391    flagCol.attach(subt,"FLAGTRA");
392    tsysCol.attach(subt,"TSYS");
393
394    tout.addRow();
395    TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
396    if ( avmode != "SCAN") {
397      scanColOut.put(outrowCount, uInt(0));
398    }
399    Vector<Float> tmp;
400    specCol.get(0, tmp);
401    uInt nchan = tmp.nelements();
402    // have to do channel by channel here as MaskedArrMath
403    // doesn't have partialMedians
404    Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
405    Vector<Float> outspec(nchan);
406    Vector<uChar> outflag(nchan,0);
407    Vector<Float> outtsys(1);/// @fixme when tsys is channel based
408    for (uInt i=0; i<nchan; ++i) {
409      Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
410      MaskedArray<Float> ma = maskedArray(specs,flags);
411      outspec[i] = median(ma);
412      if ( allEQ(ma.getMask(), False) )
413        outflag[i] = userflag;// flag data
414    }
415    outtsys[0] = median(tsysCol.getColumn());
416    specColOut.put(outrowCount, outspec);
417    flagColOut.put(outrowCount, outflag);
418    tsysColOut.put(outrowCount, outtsys);
419    Double intsum = sum(intCol.getColumn());
420    intColOut.put(outrowCount, intsum);
421    ++outrowCount;
422    ++iter;
423
424    // 2012/02/17 TN
425    // Since STGrid is implemented, average doesn't consider direction
426    // when accumulating
427//     MDirection::ScalarColumn dircol ;
428//     dircol.attach( subt, "DIRECTION" ) ;
429//     Int length = subt.nrow() ;
430//     vector< Vector<Double> > dirs ;
431//     vector<int> indexes ;
432//     // Handle MX mode averaging
433//     if (in->nbeam() > 1 ) {     
434//       length = 1;
435//     }
436//     for ( Int i = 0 ; i < length ; i++ ) {
437//       Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
438//       bool adddir = true ;
439//       for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
440//         //if ( allTrue( t == dirs[j] ) ) {
441//         Double dx = t[0] - dirs[j][0] ;
442//         Double dy = t[1] - dirs[j][1] ;
443//         Double dd = sqrt( dx * dx + dy * dy ) ;
444//         //if ( allNearAbs( t, dirs[j], tol ) ) {
445//         if ( dd <= tol ) {
446//           adddir = false ;
447//           break ;
448//         }
449//       }
450//       if ( adddir ) {
451//         dirs.push_back( t ) ;
452//         indexes.push_back( i ) ;
453//       }
454//     }
455//     uInt rowNum = dirs.size() ;
456//     tout.addRow( rowNum );
457//     for ( uInt i = 0 ; i < rowNum ; i++ ) {
458//       TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
459//       // Handle MX mode averaging
460//       if ( avmode != "SCAN") {
461//         scanColOut.put(outrowCount+i, uInt(0));
462//       }
463//     }
464//     MDirection::ScalarColumn dircolOut ;
465//     dircolOut.attach( tout, "DIRECTION" ) ;
466//     for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
467//       Vector<Double> t = \
468//      dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
469//       Vector<Float> tmp;
470//       specCol.get(0, tmp);
471//       uInt nchan = tmp.nelements();
472//       // have to do channel by channel here as MaskedArrMath
473//       // doesn't have partialMedians
474//       Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
475//       // mask spectra for different DIRECTION
476//       for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
477//         Vector<Double> direction = \
478//        dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
479//         //if ( t[0] != direction[0] || t[1] != direction[1] ) {
480//         Double dx = t[0] - direction[0];
481//         Double dy = t[1] - direction[1];
482//         Double dd = sqrt(dx*dx + dy*dy);
483//         //if ( !allNearAbs( t, direction, tol ) ) {
484//         if ( dd > tol &&  in->nbeam() < 2 ) {
485//           flags[jrow] = userflag ;
486//         }
487//       }
488//       Vector<Float> outspec(nchan);
489//       Vector<uChar> outflag(nchan,0);
490//       Vector<Float> outtsys(1);/// @fixme when tsys is channel based
491//       for (uInt i=0; i<nchan; ++i) {
492//         Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
493//         MaskedArray<Float> ma = maskedArray(specs,flags);
494//         outspec[i] = median(ma);
495//         if ( allEQ(ma.getMask(), False) )
496//           outflag[i] = userflag;// flag data
497//       }
498//       outtsys[0] = median(tsysCol.getColumn());
499//       specColOut.put(outrowCount+irow, outspec);
500//       flagColOut.put(outrowCount+irow, outflag);
501//       tsysColOut.put(outrowCount+irow, outtsys);
502//       Vector<Double> integ = intCol.getColumn() ;
503//       MaskedArray<Double> mi = maskedArray( integ, flags ) ;
504//       Double intsum = sum(mi);
505//       intColOut.put(outrowCount+irow, intsum);
506//     }
507//     outrowCount += rowNum ;
508//     ++iter;
509  }
510  return out;
511}
512
513CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
514                                             bool droprows)
515{
516  if (insitu_) {
517    return in;
518  }
519  else {
520    // clone
521    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
522  }
523}
524
525CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
526                                              float val,
527                                              const std::string& mode,
528                                              bool tsys )
529{
530  CountedPtr< Scantable > out = getScantable(in, false);
531  Table& tab = out->table();
532  ArrayColumn<Float> specCol(tab,"SPECTRA");
533  ArrayColumn<Float> tsysCol(tab,"TSYS");
534  if (mode=="DIV") val = 1.0/val ;
535  else if (mode=="SUB") val *= -1.0 ;
536  for (uInt i=0; i<tab.nrow(); ++i) {
537    Vector<Float> spec;
538    Vector<Float> ts;
539    specCol.get(i, spec);
540    tsysCol.get(i, ts);
541    if (mode == "MUL" || mode == "DIV") {
542      //if (mode == "DIV") val = 1.0/val;
543      spec *= val;
544      specCol.put(i, spec);
545      if ( tsys ) {
546        ts *= val;
547        tsysCol.put(i, ts);
548      }
549    } else if ( mode == "ADD"  || mode == "SUB") {
550      //if (mode == "SUB") val *= -1.0;
551      spec += val;
552      specCol.put(i, spec);
553      if ( tsys ) {
554        ts += val;
555        tsysCol.put(i, ts);
556      }
557    }
558  }
559  return out;
560}
561
562CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
563                                              const std::vector<float> val,
564                                              const std::string& mode,
565                                              const std::string& opmode,
566                                              bool tsys )
567{
568  CountedPtr< Scantable > out ;
569  if ( opmode == "channel" ) {
570    out = arrayOperateChannel( in, val, mode, tsys ) ;
571  }
572  else if ( opmode == "row" ) {
573    out = arrayOperateRow( in, val, mode, tsys ) ;
574  }
575  else {
576    throw( AipsError( "Unknown array operation mode." ) ) ;
577  }
578  return out ;
579}
580
581CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
582                                                     const std::vector<float> val,
583                                                     const std::string& mode,
584                                                     bool tsys )
585{
586  if ( val.size() == 1 ){
587    return unaryOperate( in, val[0], mode, tsys ) ;
588  }
589
590  // conformity of SPECTRA and TSYS
591  if ( tsys ) {
592    TableIterator titer(in->table(), "IFNO");
593    while ( !titer.pastEnd() ) {
594      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
595      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
596      Array<Float> spec = specCol.getColumn() ;
597      Array<Float> ts = tsysCol.getColumn() ;
598      if ( !spec.conform( ts ) ) {
599        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
600      }
601      titer.next() ;
602    }
603  }
604
605  // check if all spectra in the scantable have the same number of channel
606  vector<uInt> nchans;
607  vector<uInt> ifnos = in->getIFNos() ;
608  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
609    nchans.push_back( in->nchan( ifnos[i] ) ) ;
610  }
611  Vector<uInt> mchans( nchans ) ;
612  if ( anyNE( mchans, mchans[0] ) ) {
613    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
614  }
615
616  // check if vector size is equal to nchan
617  Vector<Float> fact( val ) ;
618  if ( fact.nelements() != mchans[0] ) {
619    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
620  }
621
622  // check divided by zero
623  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
624    throw( AipsError("Divided by zero is not recommended." ) ) ;
625  }
626
627  CountedPtr< Scantable > out = getScantable(in, false);
628  Table& tab = out->table();
629  ArrayColumn<Float> specCol(tab,"SPECTRA");
630  ArrayColumn<Float> tsysCol(tab,"TSYS");
631  if (mode == "DIV") fact = (float)1.0 / fact;
632  else if (mode == "SUB") fact *= (float)-1.0 ;
633  for (uInt i=0; i<tab.nrow(); ++i) {
634    Vector<Float> spec;
635    Vector<Float> ts;
636    specCol.get(i, spec);
637    tsysCol.get(i, ts);
638    if (mode == "MUL" || mode == "DIV") {
639      //if (mode == "DIV") fact = (float)1.0 / fact;
640      spec *= fact;
641      specCol.put(i, spec);
642      if ( tsys ) {
643        ts *= fact;
644        tsysCol.put(i, ts);
645      }
646    } else if ( mode == "ADD"  || mode == "SUB") {
647      //if (mode == "SUB") fact *= (float)-1.0 ;
648      spec += fact;
649      specCol.put(i, spec);
650      if ( tsys ) {
651        ts += fact;
652        tsysCol.put(i, ts);
653      }
654    }
655  }
656  return out;
657}
658
659CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
660                                                 const std::vector<float> val,
661                                                 const std::string& mode,
662                                                 bool tsys )
663{
664  if ( val.size() == 1 ) {
665    return unaryOperate( in, val[0], mode, tsys ) ;
666  }
667
668  // conformity of SPECTRA and TSYS
669  if ( tsys ) {
670    TableIterator titer(in->table(), "IFNO");
671    while ( !titer.pastEnd() ) {
672      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
673      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
674      Array<Float> spec = specCol.getColumn() ;
675      Array<Float> ts = tsysCol.getColumn() ;
676      if ( !spec.conform( ts ) ) {
677        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
678      }
679      titer.next() ;
680    }
681  }
682
683  // check if vector size is equal to nrow
684  Vector<Float> fact( val ) ;
685  if (fact.nelements() != uInt(in->nrow())) {
686    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
687  }
688
689  // check divided by zero
690  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
691    throw( AipsError("Divided by zero is not recommended." ) ) ;
692  }
693
694  CountedPtr< Scantable > out = getScantable(in, false);
695  Table& tab = out->table();
696  ArrayColumn<Float> specCol(tab,"SPECTRA");
697  ArrayColumn<Float> tsysCol(tab,"TSYS");
698  if (mode == "DIV") fact = (float)1.0 / fact;
699  if (mode == "SUB") fact *= (float)-1.0 ;
700  for (uInt i=0; i<tab.nrow(); ++i) {
701    Vector<Float> spec;
702    Vector<Float> ts;
703    specCol.get(i, spec);
704    tsysCol.get(i, ts);
705    if (mode == "MUL" || mode == "DIV") {
706      spec *= fact[i];
707      specCol.put(i, spec);
708      if ( tsys ) {
709        ts *= fact[i];
710        tsysCol.put(i, ts);
711      }
712    } else if ( mode == "ADD"  || mode == "SUB") {
713      spec += fact[i];
714      specCol.put(i, spec);
715      if ( tsys ) {
716        ts += fact[i];
717        tsysCol.put(i, ts);
718      }
719    }
720  }
721  return out;
722}
723
724CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
725                                                const std::vector< std::vector<float> > val,
726                                                const std::string& mode,
727                                                bool tsys )
728{
729  // conformity of SPECTRA and TSYS
730  if ( tsys ) {
731    TableIterator titer(in->table(), "IFNO");
732    while ( !titer.pastEnd() ) {
733      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
734      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
735      Array<Float> spec = specCol.getColumn() ;
736      Array<Float> ts = tsysCol.getColumn() ;
737      if ( !spec.conform( ts ) ) {
738        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
739      }
740      titer.next() ;
741    }
742  }
743
744  // some checks
745  vector<uInt> nchans;
746  for (Int i = 0 ; i < in->nrow() ; i++) {
747    nchans.push_back((in->getSpectrum(i)).size());
748  }
749  //Vector<uInt> mchans( nchans ) ;
750  vector< Vector<Float> > facts ;
751  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
752    Vector<Float> tmp( val[i] ) ;
753    // check divided by zero
754    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
755      throw( AipsError("Divided by zero is not recommended." ) ) ;
756    }
757    // conformity check
758    if ( tmp.nelements() != nchans[i] ) {
759      stringstream ss ;
760      ss << "Row " << i << ": Vector size must be same as number of channel." ;
761      throw( AipsError( ss.str() ) ) ;
762    }
763    facts.push_back( tmp ) ;
764  }
765
766
767  CountedPtr< Scantable > out = getScantable(in, false);
768  Table& tab = out->table();
769  ArrayColumn<Float> specCol(tab,"SPECTRA");
770  ArrayColumn<Float> tsysCol(tab,"TSYS");
771  for (uInt i=0; i<tab.nrow(); ++i) {
772    Vector<Float> fact = facts[i] ;
773    Vector<Float> spec;
774    Vector<Float> ts;
775    specCol.get(i, spec);
776    tsysCol.get(i, ts);
777    if (mode == "MUL" || mode == "DIV") {
778      if (mode == "DIV") fact = (float)1.0 / fact;
779      spec *= fact;
780      specCol.put(i, spec);
781      if ( tsys ) {
782        ts *= fact;
783        tsysCol.put(i, ts);
784      }
785    } else if ( mode == "ADD"  || mode == "SUB") {
786      if (mode == "SUB") fact *= (float)-1.0 ;
787      spec += fact;
788      specCol.put(i, spec);
789      if ( tsys ) {
790        ts += fact;
791        tsysCol.put(i, ts);
792      }
793    }
794  }
795  return out;
796}
797
798CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
799                                            const CountedPtr<Scantable>& right,
800                                            const std::string& mode)
801{
802  bool insitu = insitu_;
803  if ( ! left->conformant(*right) ) {
804    throw(AipsError("'left' and 'right' scantables are not conformant."));
805  }
806  setInsitu(false);
807  CountedPtr< Scantable > out = getScantable(left, false);
808  setInsitu(insitu);
809  Table& tout = out->table();
810  Block<String> coln(5);
811  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
812  coln[3] = "IFNO";  coln[4] = "POLNO";
813  Table tmpl = tout.sort(coln);
814  Table tmpr = right->table().sort(coln);
815  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
816  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
817  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
818  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
819
820  for (uInt i=0; i<tout.nrow(); ++i) {
821    Vector<Float> lspecvec, rspecvec;
822    Vector<uChar> lflagvec, rflagvec;
823    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
824    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
825    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
826    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
827    if (mode == "ADD") {
828      mleft += mright;
829    } else if ( mode == "SUB") {
830      mleft -= mright;
831    } else if ( mode == "MUL") {
832      mleft *= mright;
833    } else if ( mode == "DIV") {
834      mleft /= mright;
835    } else {
836      throw(AipsError("Illegal binary operator"));
837    }
838    lspecCol.put(i, mleft.getArray());
839  }
840  return out;
841}
842
843
844
845MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
846                                        const Vector<uChar>& f)
847{
848  Vector<Bool> mask;
849  mask.resize(f.shape());
850  convertArray(mask, f);
851  return MaskedArray<Float>(s,!mask);
852}
853
854MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
855                                         const Vector<uChar>& f)
856{
857  Vector<Bool> mask;
858  mask.resize(f.shape());
859  convertArray(mask, f);
860  return MaskedArray<Double>(s,!mask);
861}
862
863Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
864{
865  const Vector<Bool>& m = ma.getMask();
866  Vector<uChar> flags(m.shape());
867  convertArray(flags, !m);
868  return flags;
869}
870
871CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
872                                              const std::string & mode,
873                                              bool preserve )
874{
875  /// @todo make other modes available
876  /// modes should be "nearest", "pair"
877  // make this operation non insitu
878  (void) mode; //currently unused
879  const Table& tin = in->table();
880  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
881  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
882  if ( offs.nrow() == 0 )
883    throw(AipsError("No 'off' scans present."));
884  // put all "on" scans into output table
885
886  bool insitu = insitu_;
887  setInsitu(false);
888  CountedPtr< Scantable > out = getScantable(in, true);
889  setInsitu(insitu);
890  Table& tout = out->table();
891
892  TableCopy::copyRows(tout, ons);
893  TableRow row(tout);
894  ROScalarColumn<Double> offtimeCol(offs, "TIME");
895  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
896  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
897  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
898  for (uInt i=0; i < tout.nrow(); ++i) {
899    const TableRecord& rec = row.get(i);
900    Double ontime = rec.asDouble("TIME");
901    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
902                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
903                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
904    ROScalarColumn<Double> offtimeCol(presel, "TIME");
905
906    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
907    // Timestamp may vary within a cycle ???!!!
908    // increase this by 0.01 sec in case of rounding errors...
909    // There might be a better way to do this.
910    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
911    mindeltat += 0.01/24./60./60.;
912    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
913
914    if ( sel.nrow() < 1 )  {
915      throw(AipsError("No closest in time found... This could be a rounding "
916                      "issue. Try quotient instead."));
917    }
918    TableRow offrow(sel);
919    const TableRecord& offrec = offrow.get(0);//should only be one row
920    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
921    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
922    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
923    /// @fixme this assumes tsys is a scalar not vector
924    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
925    Vector<Float> specon, tsyson;
926    outtsysCol.get(i, tsyson);
927    outspecCol.get(i, specon);
928    Vector<uChar> flagon;
929    outflagCol.get(i, flagon);
930    MaskedArray<Float> mon = maskedArray(specon, flagon);
931    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
932    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
933    if (preserve) {
934      quot -= tsysoffscalar;
935    } else {
936      quot -= tsyson[0];
937    }
938    outspecCol.put(i, quot.getArray());
939    outflagCol.put(i, flagsFromMA(quot));
940  }
941  // renumber scanno
942  TableIterator it(tout, "SCANNO");
943  uInt i = 0;
944  while ( !it.pastEnd() ) {
945    Table t = it.table();
946    TableVector<uInt> vec(t, "SCANNO");
947    vec = i;
948    ++i;
949    ++it;
950  }
951  return out;
952}
953
954
955CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
956                                          const CountedPtr< Scantable > & off,
957                                          bool preserve )
958{
959  bool insitu = insitu_;
960  if ( ! on->conformant(*off) ) {
961    throw(AipsError("'on' and 'off' scantables are not conformant."));
962  }
963  setInsitu(false);
964  CountedPtr< Scantable > out = getScantable(on, false);
965  setInsitu(insitu);
966  Table& tout = out->table();
967  const Table& toff = off->table();
968  TableIterator sit(tout, "SCANNO");
969  TableIterator s2it(toff, "SCANNO");
970  while ( !sit.pastEnd() ) {
971    Table ton = sit.table();
972    TableRow row(ton);
973    Table t = s2it.table();
974    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
975    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
976    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
977    for (uInt i=0; i < ton.nrow(); ++i) {
978      const TableRecord& rec = row.get(i);
979      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
980                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
981                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
982      if ( offsel.nrow() == 0 )
983        throw AipsError("STMath::quotient: no matching off");
984      TableRow offrow(offsel);
985      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
986      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
987      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
988      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
989      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
990      Vector<Float> specon, tsyson;
991      outtsysCol.get(i, tsyson);
992      outspecCol.get(i, specon);
993      Vector<uChar> flagon;
994      outflagCol.get(i, flagon);
995      MaskedArray<Float> mon = maskedArray(specon, flagon);
996      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
997      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
998      if (preserve) {
999        quot -= tsysoffscalar;
1000      } else {
1001        quot -= tsyson[0];
1002      }
1003      outspecCol.put(i, quot.getArray());
1004      outflagCol.put(i, flagsFromMA(quot));
1005    }
1006    ++sit;
1007    ++s2it;
1008    // take the first off for each on scan which doesn't have a
1009    // matching off scan
1010    // non <= noff:  matching pairs, non > noff matching pairs then first off
1011    if ( s2it.pastEnd() ) s2it.reset();
1012  }
1013  return out;
1014}
1015
1016// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1017// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1018// do it for each cycles in a specific scan.
1019CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1020                                              const CountedPtr< Scantable >& caloff, Float tcal )
1021{
1022  if ( ! calon->conformant(*caloff) ) {
1023    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1024  }
1025  setInsitu(false);
1026  CountedPtr< Scantable > out = getScantable(caloff, false);
1027  Table& tout = out->table();
1028  const Table& tcon = calon->table();
1029  Vector<Float> tcalout;
1030
1031  std::map<uInt,uInt> tcalIdToRecNoMap;
1032  const Table& calOffTcalTable = caloff->tcal().table();
1033  {
1034    ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1035    const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1036    size_t tcalIdsEnd = tcalIds.nelements();
1037    for (uInt i = 0; i < tcalIdsEnd; i++) {
1038      tcalIdToRecNoMap[tcalIds[i]] = i;
1039    }
1040  }
1041  ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1042
1043  if ( tout.nrow() != tcon.nrow() ) {
1044    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1045  }
1046  // iteration by scanno or cycle no.
1047  TableIterator sit(tout, "SCANNO");
1048  TableIterator s2it(tcon, "SCANNO");
1049  while ( !sit.pastEnd() ) {
1050    Table toff = sit.table();
1051    TableRow row(toff);
1052    Table t = s2it.table();
1053    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1054    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1055    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1056    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1057    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1058    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1059    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1060    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1061    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1062    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1063    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1064
1065    for (uInt i=0; i < toff.nrow(); ++i) {
1066      //skip these checks -> assumes the data order are the same between the cal on off pairs
1067      //
1068      Vector<Float> specCalon, specCaloff;
1069      // to store scalar (mean) tsys
1070      Vector<Float> tsysout(1);
1071      uInt tcalId, polno;
1072      Double offint, onint;
1073      outpolCol.get(i, polno);
1074      outspecCol.get(i, specCaloff);
1075      onspecCol.get(i, specCalon);
1076      Vector<uChar> flagCaloff, flagCalon;
1077      outflagCol.get(i, flagCaloff);
1078      onflagCol.get(i, flagCalon);
1079      outtcalIdCol.get(i, tcalId);
1080      outintCol.get(i, offint);
1081      onintCol.get(i, onint);
1082      // caluculate mean Tsys
1083      uInt nchan = specCaloff.nelements();
1084      // percentage of edge cut off
1085      uInt pc = 10;
1086      uInt bchan = nchan/pc;
1087      uInt echan = nchan-bchan;
1088
1089      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1090      Vector<Float> testsubsp = specCaloff(chansl);
1091      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1092      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1093      MaskedArray<Float> spdiff = spon-spoff;
1094      uInt noff = spoff.nelementsValid();
1095      //uInt non = spon.nelementsValid();
1096      uInt ndiff = spdiff.nelementsValid();
1097      Float meantsys;
1098
1099/**
1100      Double subspec, subdiff;
1101      uInt usednchan;
1102      subspec = 0;
1103      subdiff = 0;
1104      usednchan = 0;
1105      for(uInt k=(bchan-1); k<echan; k++) {
1106        subspec += specCaloff[k];
1107        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1108        ++usednchan;
1109      }
1110**/
1111      // get tcal if input tcal <= 0
1112      Float tcalUsed;
1113      tcalUsed = tcal;
1114      if ( tcal <= 0.0 ) {
1115        uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1116        calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1117//         if (polno<=3) {
1118//           tcalUsed = tcalout[polno];
1119//         }
1120//         else {
1121//           tcalUsed = tcalout[0];
1122//         }
1123        if ( tcalout.size() == 1 )
1124          tcalUsed = tcalout[0] ;
1125        else if ( tcalout.size() == nchan )
1126          tcalUsed = mean(tcalout) ;
1127        else {
1128          uInt ipol = polno ;
1129          if ( ipol > 3 ) ipol = 0 ;
1130          tcalUsed = tcalout[ipol] ;
1131        }
1132      }
1133
1134      Float meanoff;
1135      Float meandiff;
1136      if (noff && ndiff) {
1137         //Debug
1138         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1139         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1140         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1141         meanoff = sum(spoff)/noff;
1142         meandiff = sum(spdiff)/ndiff;
1143         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1144      }
1145      else {
1146         meantsys=1;
1147      }
1148
1149      tsysout[0] = Float(meantsys);
1150      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1151      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1152      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1153      //uInt ncaloff = mcaloff.nelementsValid();
1154      //uInt ncalon = mcalon.nelementsValid();
1155
1156      outintCol.put(i, offint+onint);
1157      outspecCol.put(i, sig.getArray());
1158      outflagCol.put(i, flagsFromMA(sig));
1159      outtsysCol.put(i, tsysout);
1160    }
1161    ++sit;
1162    ++s2it;
1163  }
1164  return out;
1165}
1166
1167//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1168// observatiions.
1169// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1170//        no smoothing).
1171// output: resultant scantable [= (sig-ref/ref)*tsys]
1172CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1173                                          const CountedPtr < Scantable >& ref,
1174                                          int smoothref,
1175                                          casa::Float tsysv,
1176                                          casa::Float tau )
1177{
1178if ( ! ref->conformant(*sig) ) {
1179    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1180  }
1181  setInsitu(false);
1182  CountedPtr< Scantable > out = getScantable(sig, false);
1183  CountedPtr< Scantable > smref;
1184  if ( smoothref > 1 ) {
1185    float fsmoothref = static_cast<float>(smoothref);
1186    std::string inkernel = "boxcar";
1187    smref = smooth(ref, inkernel, fsmoothref );
1188    ostringstream oss;
1189    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1190    pushLog(String(oss));
1191  }
1192  else {
1193    smref = ref;
1194  }
1195  Table& tout = out->table();
1196  const Table& tref = smref->table();
1197  if ( tout.nrow() != tref.nrow() ) {
1198    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1199  }
1200  // iteration by scanno? or cycle no.
1201  TableIterator sit(tout, "SCANNO");
1202  TableIterator s2it(tref, "SCANNO");
1203  while ( !sit.pastEnd() ) {
1204    Table ton = sit.table();
1205    Table t = s2it.table();
1206    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1207    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1208    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1209    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1210    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1211    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1212    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1213    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1214    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1215    for (uInt i=0; i < ton.nrow(); ++i) {
1216
1217      Double onint, refint;
1218      Vector<Float> specon, specref;
1219      // to store scalar (mean) tsys
1220      Vector<Float> tsysref;
1221      outintCol.get(i, onint);
1222      refintCol.get(i, refint);
1223      outspecCol.get(i, specon);
1224      refspecCol.get(i, specref);
1225      Vector<uChar> flagref, flagon;
1226      outflagCol.get(i, flagon);
1227      refflagCol.get(i, flagref);
1228      reftsysCol.get(i, tsysref);
1229
1230      Float tsysrefscalar;
1231      if ( tsysv > 0.0 ) {
1232        ostringstream oss;
1233        Float elev;
1234        refelevCol.get(i, elev);
1235        oss << "user specified Tsys = " << tsysv;
1236        // do recalc elevation if EL = 0
1237        if ( elev == 0 ) {
1238          throw(AipsError("EL=0, elevation data is missing."));
1239        } else {
1240          if ( tau <= 0.0 ) {
1241            throw(AipsError("Valid tau is not supplied."));
1242          } else {
1243            tsysrefscalar = tsysv * exp(tau/elev);
1244          }
1245        }
1246        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1247        pushLog(String(oss));
1248      }
1249      else {
1250        tsysrefscalar = tsysref[0];
1251      }
1252      //get quotient spectrum
1253      MaskedArray<Float> mref = maskedArray(specref, flagref);
1254      MaskedArray<Float> mon = maskedArray(specon, flagon);
1255      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1256      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1257
1258      //Debug
1259      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1260      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1261      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1262      // fill the result, replay signal tsys by reference tsys
1263      outintCol.put(i, resint);
1264      outspecCol.put(i, specres.getArray());
1265      outflagCol.put(i, flagsFromMA(specres));
1266      outtsysCol.put(i, tsysref);
1267    }
1268    ++sit;
1269    ++s2it;
1270  }
1271  return out;
1272}
1273
1274CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1275                                     const std::vector<int>& scans,
1276                                     int smoothref,
1277                                     casa::Float tsysv,
1278                                     casa::Float tau,
1279                                     casa::Float tcal )
1280
1281{
1282  setInsitu(false);
1283  STSelector sel;
1284  std::vector<int> scan1, scan2, beams, types;
1285  std::vector< vector<int> > scanpair;
1286  //std::vector<string> calstate;
1287  std::vector<int> calstate;
1288  String msg;
1289
1290  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1291  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1292
1293  std::vector< CountedPtr< Scantable > > sctables;
1294  sctables.push_back(s1b1on);
1295  sctables.push_back(s1b1off);
1296  sctables.push_back(s1b2on);
1297  sctables.push_back(s1b2off);
1298  sctables.push_back(s2b1on);
1299  sctables.push_back(s2b1off);
1300  sctables.push_back(s2b2on);
1301  sctables.push_back(s2b2off);
1302
1303  //check scanlist
1304  int n=s->checkScanInfo(scans);
1305  if (n==1) {
1306     throw(AipsError("Incorrect scan pairs. "));
1307  }
1308
1309  // Assume scans contain only a pair of consecutive scan numbers.
1310  // It is assumed that first beam, b1,  is on target.
1311  // There is no check if the first beam is on or not.
1312  if ( scans.size()==1 ) {
1313    scan1.push_back(scans[0]);
1314    scan2.push_back(scans[0]+1);
1315  } else if ( scans.size()==2 ) {
1316   scan1.push_back(scans[0]);
1317   scan2.push_back(scans[1]);
1318  } else {
1319    if ( scans.size()%2 == 0 ) {
1320      for (uInt i=0; i<scans.size(); i++) {
1321        if (i%2 == 0) {
1322          scan1.push_back(scans[i]);
1323        }
1324        else {
1325          scan2.push_back(scans[i]);
1326        }
1327      }
1328    } else {
1329      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1330    }
1331  }
1332  scanpair.push_back(scan1);
1333  scanpair.push_back(scan2);
1334  //calstate.push_back("*calon");
1335  //calstate.push_back("*[^calon]");
1336  calstate.push_back(SrcType::NODCAL);
1337  calstate.push_back(SrcType::NOD);
1338  CountedPtr< Scantable > ws = getScantable(s, false);
1339  uInt l=0;
1340  while ( l < sctables.size() ) {
1341    for (uInt i=0; i < 2; i++) {
1342      for (uInt j=0; j < 2; j++) {
1343        for (uInt k=0; k < 2; k++) {
1344          sel.reset();
1345          sel.setScans(scanpair[i]);
1346          //sel.setName(calstate[k]);
1347          types.clear();
1348          types.push_back(calstate[k]);
1349          sel.setTypes(types);
1350          beams.clear();
1351          beams.push_back(j);
1352          sel.setBeams(beams);
1353          ws->setSelection(sel);
1354          sctables[l]= getScantable(ws, false);
1355          l++;
1356        }
1357      }
1358    }
1359  }
1360
1361  // replace here by splitData or getData functionality
1362  CountedPtr< Scantable > sig1;
1363  CountedPtr< Scantable > ref1;
1364  CountedPtr< Scantable > sig2;
1365  CountedPtr< Scantable > ref2;
1366  CountedPtr< Scantable > calb1;
1367  CountedPtr< Scantable > calb2;
1368
1369  msg=String("Processing dototalpower for subset of the data");
1370  ostringstream oss1;
1371  oss1 << msg  << endl;
1372  pushLog(String(oss1));
1373  // Debug for IRC CS data
1374  //float tcal1=7.0;
1375  //float tcal2=4.0;
1376  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1377  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1378  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1379  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1380
1381  // correction of user-specified tsys for elevation here
1382
1383  // dosigref calibration
1384  msg=String("Processing dosigref for subset of the data");
1385  ostringstream oss2;
1386  oss2 << msg  << endl;
1387  pushLog(String(oss2));
1388  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1389  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1390
1391  // iteration by scanno or cycle no.
1392  Table& tcalb1 = calb1->table();
1393  Table& tcalb2 = calb2->table();
1394  TableIterator sit(tcalb1, "SCANNO");
1395  TableIterator s2it(tcalb2, "SCANNO");
1396  while ( !sit.pastEnd() ) {
1397    Table t1 = sit.table();
1398    Table t2= s2it.table();
1399    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1400    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1401    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1402    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1403    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1404    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1405    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1406    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1407    for (uInt i=0; i < t1.nrow(); ++i) {
1408      Vector<Float> spec1, spec2;
1409      // to store scalar (mean) tsys
1410      Vector<Float> tsys1, tsys2;
1411      Vector<uChar> flag1, flag2;
1412      Double tint1, tint2;
1413      outspecCol.get(i, spec1);
1414      t2specCol.get(i, spec2);
1415      outflagCol.get(i, flag1);
1416      t2flagCol.get(i, flag2);
1417      outtsysCol.get(i, tsys1);
1418      t2tsysCol.get(i, tsys2);
1419      outintCol.get(i, tint1);
1420      t2intCol.get(i, tint2);
1421      // average
1422      // assume scalar tsys for weights
1423      Float wt1, wt2, tsyssq1, tsyssq2;
1424      tsyssq1 = tsys1[0]*tsys1[0];
1425      tsyssq2 = tsys2[0]*tsys2[0];
1426      wt1 = Float(tint1)/tsyssq1;
1427      wt2 = Float(tint2)/tsyssq2;
1428      Float invsumwt=1/(wt1+wt2);
1429      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1430      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1431      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1432      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1433      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1434      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1435      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1436      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1437      Array<Float> avtsys =  tsys1;
1438
1439      outspecCol.put(i, avspec.getArray());
1440      outflagCol.put(i, flagsFromMA(avspec));
1441      outtsysCol.put(i, avtsys);
1442    }
1443    ++sit;
1444    ++s2it;
1445  }
1446  return calb1;
1447}
1448
1449//GBTIDL version of frequency switched data calibration
1450CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1451                                      const std::vector<int>& scans,
1452                                      int smoothref,
1453                                      casa::Float tsysv,
1454                                      casa::Float tau,
1455                                      casa::Float tcal )
1456{
1457
1458
1459  (void) scans; //currently unused
1460  STSelector sel;
1461  CountedPtr< Scantable > ws = getScantable(s, false);
1462  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1463  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1464  Bool nofold=False;
1465  vector<int> types ;
1466
1467  //split the data
1468  //sel.setName("*_fs");
1469  types.push_back( SrcType::FSON ) ;
1470  sel.setTypes( types ) ;
1471  ws->setSelection(sel);
1472  sig = getScantable(ws,false);
1473  sel.reset();
1474  types.clear() ;
1475  //sel.setName("*_fs_calon");
1476  types.push_back( SrcType::FONCAL ) ;
1477  sel.setTypes( types ) ;
1478  ws->setSelection(sel);
1479  sigwcal = getScantable(ws,false);
1480  sel.reset();
1481  types.clear() ;
1482  //sel.setName("*_fsr");
1483  types.push_back( SrcType::FSOFF ) ;
1484  sel.setTypes( types ) ;
1485  ws->setSelection(sel);
1486  ref = getScantable(ws,false);
1487  sel.reset();
1488  types.clear() ;
1489  //sel.setName("*_fsr_calon");
1490  types.push_back( SrcType::FOFFCAL ) ;
1491  sel.setTypes( types ) ;
1492  ws->setSelection(sel);
1493  refwcal = getScantable(ws,false);
1494  sel.reset() ;
1495  types.clear() ;
1496
1497  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1498  calref = dototalpower(refwcal, ref, tcal=tcal);
1499
1500  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1501  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1502
1503  Table& tabout1=out1->table();
1504  Table& tabout2=out2->table();
1505  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1506  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1507  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1508  Vector<Float> spec; specCol.get(0, spec);
1509  uInt nchan = spec.nelements();
1510  uInt freqid1; freqidCol1.get(0,freqid1);
1511  uInt freqid2; freqidCol2.get(0,freqid2);
1512  Double rp1, rp2, rv1, rv2, inc1, inc2;
1513  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1514  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1515  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1516  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1517  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1518  if (rp1==rp2) {
1519    Double foffset = rv1 - rv2;
1520    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1521    if (choffset >= nchan) {
1522      //cerr<<"out-band frequency switching, no folding"<<endl;
1523      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1524      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1525      nofold = True;
1526    }
1527  }
1528
1529  if (nofold) {
1530    std::vector< CountedPtr< Scantable > > tabs;
1531    tabs.push_back(out1);
1532    tabs.push_back(out2);
1533    out = merge(tabs);
1534  }
1535  else {
1536    //out = out1;
1537    Double choffset = ( rv1 - rv2 ) / inc2 ;
1538    out = dofold( out1, out2, choffset ) ;
1539  }
1540   
1541  return out;
1542}
1543
1544CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1545                                      const CountedPtr<Scantable> &ref,
1546                                      Double choffset,
1547                                      Double choffset2 )
1548{
1549  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1550  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1551
1552  // output scantable
1553  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1554
1555  // separate choffset to integer part and decimal part
1556  Int ioffset = (Int)choffset ;
1557  Double doffset = choffset - ioffset ;
1558  Int ioffset2 = (Int)choffset2 ;
1559  Double doffset2 = choffset2 - ioffset2 ;
1560  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1561  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1562
1563  // get column
1564  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1565  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1566  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1567  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1568  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1569  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1570  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1571  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1572  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1573  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1574
1575  // check
1576  if ( ioffset == 0 ) {
1577    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1578    os << "channel offset is zero, no folding" << LogIO::POST ;
1579    return out ;
1580  }
1581  int nchan = ref->nchan() ;
1582  if ( abs(ioffset) >= nchan ) {
1583    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1584    os << "out-band frequency switching, no folding" << LogIO::POST ;
1585    return out ;
1586  }
1587
1588  // attach column for output scantable
1589  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1590  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1591  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1592  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1593  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1594  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1595
1596  // for each row
1597  // assume that the data order are same between sig and ref
1598  RowAccumulator acc( asap::W_TINTSYS ) ;
1599  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1600    // get values
1601    Vector<Float> spsig ;
1602    specCol1.get( i, spsig ) ;
1603    Vector<Float> spref ;
1604    specCol2.get( i, spref ) ;
1605    Vector<Float> tsyssig ;
1606    tsysCol1.get( i, tsyssig ) ;
1607    Vector<Float> tsysref ;
1608    tsysCol2.get( i, tsysref ) ;
1609    Vector<uChar> flagsig ;
1610    flagCol1.get( i, flagsig ) ;
1611    Vector<uChar> flagref ;
1612    flagCol2.get( i, flagref ) ;
1613    Double timesig ;
1614    mjdCol1.get( i, timesig ) ;
1615    Double timeref ;
1616    mjdCol2.get( i, timeref ) ;
1617    Double intsig ;
1618    intervalCol1.get( i, intsig ) ;
1619    Double intref ;
1620    intervalCol2.get( i, intref ) ;
1621
1622    // shift reference spectra
1623    int refchan = spref.nelements() ;
1624    Vector<Float> sspref( spref.nelements() ) ;
1625    Vector<Float> stsysref( tsysref.nelements() ) ;
1626    Vector<uChar> sflagref( flagref.nelements() ) ;
1627    if ( ioffset > 0 ) {
1628      // SPECTRA and FLAGTRA
1629      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1630        sspref[j] = spref[j+ioffset] ;
1631        sflagref[j] = flagref[j+ioffset] ;
1632      }
1633      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1634        sspref[j] = spref[j-refchan+ioffset] ;
1635        sflagref[j] = flagref[j-refchan+ioffset] ;
1636      }
1637      spref = sspref.copy() ;
1638      flagref = sflagref.copy() ;
1639      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1640        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1641        sflagref[j] = flagref[j+1] + flagref[j] ;
1642      }
1643      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1644      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1645
1646      // TSYS
1647      if ( spref.nelements() == tsysref.nelements() ) {
1648        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1649          stsysref[j] = tsysref[j+ioffset] ;
1650        }
1651        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1652          stsysref[j] = tsysref[j-refchan+ioffset] ;
1653        }
1654        tsysref = stsysref.copy() ;
1655        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1656          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1657        }
1658        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1659      }
1660    }
1661    else {
1662      // SPECTRA and FLAGTRA
1663      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1664        sspref[j] = spref[refchan+ioffset+j] ;
1665        sflagref[j] = flagref[refchan+ioffset+j] ;
1666      }
1667      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1668        sspref[j] = spref[j+ioffset] ;
1669        sflagref[j] = flagref[j+ioffset] ;
1670      }
1671      spref = sspref.copy() ;
1672      flagref = sflagref.copy() ;
1673      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1674      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1675      for ( int j = 1 ; j < refchan ; j++ ) {
1676        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1677        sflagref[j] = flagref[j-1] + flagref[j] ;
1678      }
1679      // TSYS
1680      if ( spref.nelements() == tsysref.nelements() ) {
1681        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1682          stsysref[j] = tsysref[refchan+ioffset+j] ;
1683        }
1684        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1685          stsysref[j] = tsysref[j+ioffset] ;
1686        }
1687        tsysref = stsysref.copy() ;
1688        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1689        for ( int j = 1 ; j < refchan ; j++ ) {
1690          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1691        }
1692      }
1693    }
1694
1695    // shift signal spectra if necessary (only for APEX?)
1696    if ( choffset2 != 0.0 ) {
1697      int sigchan = spsig.nelements() ;
1698      Vector<Float> sspsig( spsig.nelements() ) ;
1699      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1700      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1701      if ( ioffset2 > 0 ) {
1702        // SPECTRA and FLAGTRA
1703        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1704          sspsig[j] = spsig[j+ioffset2] ;
1705          sflagsig[j] = flagsig[j+ioffset2] ;
1706        }
1707        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1708          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1709          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1710        }
1711        spsig = sspsig.copy() ;
1712        flagsig = sflagsig.copy() ;
1713        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1714          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1715          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1716        }
1717        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1718        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1719        // TSTS
1720        if ( spsig.nelements() == tsyssig.nelements() ) {
1721          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1722            stsyssig[j] = tsyssig[j+ioffset2] ;
1723          }
1724          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1725            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1726          }
1727          tsyssig = stsyssig.copy() ;
1728          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1729            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1730          }
1731          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1732        }
1733      }
1734      else {
1735        // SPECTRA and FLAGTRA
1736        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1737          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1738          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1739        }
1740        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1741          sspsig[j] = spsig[j+ioffset2] ;
1742          sflagsig[j] = flagsig[j+ioffset2] ;
1743        }
1744        spsig = sspsig.copy() ;
1745        flagsig = sflagsig.copy() ;
1746        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1747        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1748        for ( int j = 1 ; j < sigchan ; j++ ) {
1749          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1750          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1751        }
1752        // TSYS
1753        if ( spsig.nelements() == tsyssig.nelements() ) {
1754          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1755            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1756          }
1757          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1758            stsyssig[j] = tsyssig[j+ioffset2] ;
1759          }
1760          tsyssig = stsyssig.copy() ;
1761          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1762          for ( int j = 1 ; j < sigchan ; j++ ) {
1763            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1764          }
1765        }
1766      }
1767    }
1768
1769    // folding
1770    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1771    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1772   
1773    // put result
1774    specColOut.put( i, acc.getSpectrum() ) ;
1775    const Vector<Bool> &msk = acc.getMask() ;
1776    Vector<uChar> flg( msk.shape() ) ;
1777    convertArray( flg, !msk ) ;
1778    flagColOut.put( i, flg ) ;
1779    tsysColOut.put( i, acc.getTsys() ) ;
1780    intervalColOut.put( i, acc.getInterval() ) ;
1781    mjdColOut.put( i, acc.getTime() ) ;
1782    // change FREQ_ID to unshifted IF setting (only for APEX?)
1783    if ( choffset2 != 0.0 ) {
1784      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1785      double refpix, refval, increment ;
1786      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1787      refval -= choffset * increment ;
1788      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1789      Vector<uInt> freqids = fidColOut.getColumn() ;
1790      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1791        if ( freqids[j] == freqid )
1792          freqids[j] = newfreqid ;
1793      }
1794      fidColOut.putColumn( freqids ) ;
1795    }
1796
1797    acc.reset() ;
1798  }
1799
1800  return out ;
1801}
1802
1803
1804CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1805{
1806  // make copy or reference
1807  CountedPtr< Scantable > out = getScantable(in, false);
1808  Table& tout = out->table();
1809  Block<String> cols(4);
1810  cols[0] = String("SCANNO");
1811  cols[1] = String("CYCLENO");
1812  cols[2] = String("BEAMNO");
1813  cols[3] = String("POLNO");
1814  TableIterator iter(tout, cols);
1815  while (!iter.pastEnd()) {
1816    Table subt = iter.table();
1817    // this should leave us with two rows for the two IFs....if not ignore
1818    if (subt.nrow() != 2 ) {
1819      continue;
1820    }
1821    ArrayColumn<Float> specCol(subt, "SPECTRA");
1822    ArrayColumn<Float> tsysCol(subt, "TSYS");
1823    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1824    Vector<Float> onspec,offspec, ontsys, offtsys;
1825    Vector<uChar> onflag, offflag;
1826    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1827    specCol.get(0, onspec);   specCol.get(1, offspec);
1828    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1829    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1830    MaskedArray<Float> off = maskedArray(offspec, offflag);
1831    MaskedArray<Float> oncopy = on.copy();
1832
1833    on /= off; on -= 1.0f;
1834    on *= ontsys[0];
1835    off /= oncopy; off -= 1.0f;
1836    off *= offtsys[0];
1837    specCol.put(0, on.getArray());
1838    const Vector<Bool>& m0 = on.getMask();
1839    Vector<uChar> flags0(m0.shape());
1840    convertArray(flags0, !m0);
1841    flagCol.put(0, flags0);
1842
1843    specCol.put(1, off.getArray());
1844    const Vector<Bool>& m1 = off.getMask();
1845    Vector<uChar> flags1(m1.shape());
1846    convertArray(flags1, !m1);
1847    flagCol.put(1, flags1);
1848    ++iter;
1849  }
1850
1851  return out;
1852}
1853
1854std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1855                                        const std::vector< bool > & mask,
1856                                        const std::string& which )
1857{
1858
1859  Vector<Bool> m(mask);
1860  const Table& tab = in->table();
1861  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1862  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1863  std::vector<float> out;
1864  for (uInt i=0; i < tab.nrow(); ++i ) {
1865    Vector<Float> spec; specCol.get(i, spec);
1866    Vector<uChar> flag; flagCol.get(i, flag);
1867    MaskedArray<Float> ma  = maskedArray(spec, flag);
1868    float outstat = 0.0;
1869    if ( spec.nelements() == m.nelements() ) {
1870      outstat = mathutil::statistics(which, ma(m));
1871    } else {
1872      outstat = mathutil::statistics(which, ma);
1873    }
1874    out.push_back(outstat);
1875  }
1876  return out;
1877}
1878
1879std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1880                                        const std::vector< bool > & mask,
1881                                        const std::string& which,
1882                                        int row )
1883{
1884
1885  Vector<Bool> m(mask);
1886  const Table& tab = in->table();
1887  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1888  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1889  std::vector<float> out;
1890
1891  Vector<Float> spec; specCol.get(row, spec);
1892  Vector<uChar> flag; flagCol.get(row, flag);
1893  MaskedArray<Float> ma  = maskedArray(spec, flag);
1894  float outstat = 0.0;
1895  if ( spec.nelements() == m.nelements() ) {
1896    outstat = mathutil::statistics(which, ma(m));
1897  } else {
1898    outstat = mathutil::statistics(which, ma);
1899  }
1900  out.push_back(outstat);
1901
1902  return out;
1903}
1904
1905std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1906                                        const std::vector< bool > & mask,
1907                                        const std::string& which )
1908{
1909
1910  Vector<Bool> m(mask);
1911  const Table& tab = in->table();
1912  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1913  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1914  std::vector<int> out;
1915  for (uInt i=0; i < tab.nrow(); ++i ) {
1916    Vector<Float> spec; specCol.get(i, spec);
1917    Vector<uChar> flag; flagCol.get(i, flag);
1918    MaskedArray<Float> ma  = maskedArray(spec, flag);
1919    if (ma.ndim() != 1) {
1920      throw (ArrayError(
1921          "std::vector<int> STMath::minMaxChan("
1922          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1923          " std::string &which)"
1924          " - MaskedArray is not 1D"));
1925    }
1926    IPosition outpos(1,0);
1927    if ( spec.nelements() == m.nelements() ) {
1928      outpos = mathutil::minMaxPos(which, ma(m));
1929    } else {
1930      outpos = mathutil::minMaxPos(which, ma);
1931    }
1932    out.push_back(outpos[0]);
1933  }
1934  return out;
1935}
1936
1937CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1938                                     int width )
1939{
1940  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1941  CountedPtr< Scantable > out = getScantable(in, false);
1942  Table& tout = out->table();
1943  out->frequencies().rescale(width, "BIN");
1944  ArrayColumn<Float> specCol(tout, "SPECTRA");
1945  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1946  for (uInt i=0; i < tout.nrow(); ++i ) {
1947    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1948    MaskedArray<Float> maout;
1949    LatticeUtilities::bin(maout, main, 0, Int(width));
1950    /// @todo implement channel based tsys binning
1951    specCol.put(i, maout.getArray());
1952    flagCol.put(i, flagsFromMA(maout));
1953    // take only the first binned spectrum's length for the deprecated
1954    // global header item nChan
1955    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1956                                       Int(maout.getArray().nelements()));
1957  }
1958  return out;
1959}
1960
1961CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1962                                          const std::string& method,
1963                                          float width )
1964//
1965// Should add the possibility of width being specified in km/s. This means
1966// that for each freqID (SpectralCoordinate) we will need to convert to an
1967// average channel width (say at the reference pixel).  Then we would need
1968// to be careful to make sure each spectrum (of different freqID)
1969// is the same length.
1970//
1971{
1972  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1973  Int interpMethod(stringToIMethod(method));
1974
1975  CountedPtr< Scantable > out = getScantable(in, false);
1976  Table& tout = out->table();
1977
1978// Resample SpectralCoordinates (one per freqID)
1979  out->frequencies().rescale(width, "RESAMPLE");
1980  TableIterator iter(tout, "IFNO");
1981  TableRow row(tout);
1982  while ( !iter.pastEnd() ) {
1983    Table tab = iter.table();
1984    ArrayColumn<Float> specCol(tab, "SPECTRA");
1985    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1986    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1987    Vector<Float> spec;
1988    Vector<uChar> flag;
1989    specCol.get(0,spec); // the number of channels should be constant per IF
1990    uInt nChanIn = spec.nelements();
1991    Vector<Float> xIn(nChanIn); indgen(xIn);
1992    Int fac =  Int(nChanIn/width);
1993    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1994    uInt k = 0;
1995    Float x = 0.0;
1996    while (x < Float(nChanIn) ) {
1997      xOut(k) = x;
1998      k++;
1999      x += width;
2000    }
2001    uInt nChanOut = k;
2002    xOut.resize(nChanOut, True);
2003    // process all rows for this IFNO
2004    Vector<Float> specOut;
2005    Vector<Bool> maskOut;
2006    Vector<uChar> flagOut;
2007    for (uInt i=0; i < tab.nrow(); ++i) {
2008      specCol.get(i, spec);
2009      flagCol.get(i, flag);
2010      Vector<Bool> mask(flag.nelements());
2011      convertArray(mask, flag);
2012
2013      IPosition shapeIn(spec.shape());
2014      //sh.nchan = nChanOut;
2015      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2016                                                   xIn, spec, mask,
2017                                                   interpMethod, True, True);
2018      /// @todo do the same for channel based Tsys
2019      flagOut.resize(maskOut.nelements());
2020      convertArray(flagOut, maskOut);
2021      specCol.put(i, specOut);
2022      flagCol.put(i, flagOut);
2023    }
2024    ++iter;
2025  }
2026
2027  return out;
2028}
2029
2030STMath::imethod STMath::stringToIMethod(const std::string& in)
2031{
2032  static STMath::imap lookup;
2033
2034  // initialize the lookup table if necessary
2035  if ( lookup.empty() ) {
2036    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
2037    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2038    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
2039    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
2040  }
2041
2042  STMath::imap::const_iterator iter = lookup.find(in);
2043
2044  if ( lookup.end() == iter ) {
2045    std::string message = in;
2046    message += " is not a valid interpolation mode";
2047    throw(AipsError(message));
2048  }
2049  return iter->second;
2050}
2051
2052WeightType STMath::stringToWeight(const std::string& in)
2053{
2054  static std::map<std::string, WeightType> lookup;
2055
2056  // initialize the lookup table if necessary
2057  if ( lookup.empty() ) {
2058    lookup["NONE"]   = asap::W_NONE;
2059    lookup["TINT"] = asap::W_TINT;
2060    lookup["TINTSYS"]  = asap::W_TINTSYS;
2061    lookup["TSYS"]  = asap::W_TSYS;
2062    lookup["VAR"]  = asap::W_VAR;
2063  }
2064
2065  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2066
2067  if ( lookup.end() == iter ) {
2068    std::string message = in;
2069    message += " is not a valid weighting mode";
2070    throw(AipsError(message));
2071  }
2072  return iter->second;
2073}
2074
2075CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2076                                               const vector< float > & coeff,
2077                                               const std::string & filename,
2078                                               const std::string& method)
2079{
2080  // Get elevation data from Scantable and convert to degrees
2081  CountedPtr< Scantable > out = getScantable(in, false);
2082  Table& tab = out->table();
2083  ROScalarColumn<Float> elev(tab, "ELEVATION");
2084  Vector<Float> x = elev.getColumn();
2085  x *= Float(180 / C::pi);                        // Degrees
2086
2087  Vector<Float> coeffs(coeff);
2088  const uInt nc = coeffs.nelements();
2089  if ( filename.length() > 0 && nc > 0 ) {
2090    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2091  }
2092
2093  // Correct
2094  if ( nc > 0 || filename.length() == 0 ) {
2095    // Find instrument
2096    Bool throwit = True;
2097    Instrument inst =
2098      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2099                                throwit);
2100
2101    // Set polynomial
2102    Polynomial<Float>* ppoly = 0;
2103    Vector<Float> coeff;
2104    String msg;
2105    if ( nc > 0 ) {
2106      ppoly = new Polynomial<Float>(nc-1);
2107      coeff = coeffs;
2108      msg = String("user");
2109    } else {
2110      STAttr sdAttr;
2111      coeff = sdAttr.gainElevationPoly(inst);
2112      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2113      msg = String("built in");
2114    }
2115
2116    if ( coeff.nelements() > 0 ) {
2117      ppoly->setCoefficients(coeff);
2118    } else {
2119      delete ppoly;
2120      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2121    }
2122    ostringstream oss;
2123    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2124    oss << "   " <<  coeff;
2125    pushLog(String(oss));
2126    const uInt nrow = tab.nrow();
2127    Vector<Float> factor(nrow);
2128    for ( uInt i=0; i < nrow; ++i ) {
2129      factor[i] = 1.0 / (*ppoly)(x[i]);
2130    }
2131    delete ppoly;
2132    scaleByVector(tab, factor, true);
2133
2134  } else {
2135    // Read and correct
2136    pushLog("Making correction from ascii Table");
2137    scaleFromAsciiTable(tab, filename, method, x, true);
2138  }
2139  return out;
2140}
2141
2142void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2143                                 const std::string& method,
2144                                 const Vector<Float>& xout, bool dotsys)
2145{
2146
2147// Read gain-elevation ascii file data into a Table.
2148
2149  String formatString;
2150  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2151  scaleFromTable(in, tbl, method, xout, dotsys);
2152}
2153
2154void STMath::scaleFromTable(Table& in,
2155                            const Table& table,
2156                            const std::string& method,
2157                            const Vector<Float>& xout, bool dotsys)
2158{
2159
2160  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2161  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2162  Vector<Float> xin = geElCol.getColumn();
2163  Vector<Float> yin = geFacCol.getColumn();
2164  Vector<Bool> maskin(xin.nelements(),True);
2165
2166  // Interpolate (and extrapolate) with desired method
2167
2168  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2169
2170   Vector<Float> yout;
2171   Vector<Bool> maskout;
2172   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2173                                                xin, yin, maskin, interp,
2174                                                True, True);
2175
2176   scaleByVector(in, Float(1.0)/yout, dotsys);
2177}
2178
2179void STMath::scaleByVector( Table& in,
2180                            const Vector< Float >& factor,
2181                            bool dotsys )
2182{
2183  uInt nrow = in.nrow();
2184  if ( factor.nelements() != nrow ) {
2185    throw(AipsError("factors.nelements() != table.nelements()"));
2186  }
2187  ArrayColumn<Float> specCol(in, "SPECTRA");
2188  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2189  ArrayColumn<Float> tsysCol(in, "TSYS");
2190  for (uInt i=0; i < nrow; ++i) {
2191    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2192    ma *= factor[i];
2193    specCol.put(i, ma.getArray());
2194    flagCol.put(i, flagsFromMA(ma));
2195    if ( dotsys ) {
2196      Vector<Float> tsys = tsysCol(i);
2197      tsys *= factor[i];
2198      tsysCol.put(i,tsys);
2199    }
2200  }
2201}
2202
2203CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2204                                             float d, float etaap,
2205                                             float jyperk )
2206{
2207  CountedPtr< Scantable > out = getScantable(in, false);
2208  Table& tab = in->table();
2209  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2210  Unit K(String("K"));
2211  Unit JY(String("Jy"));
2212
2213  bool tokelvin = true;
2214  Double cfac = 1.0;
2215
2216  if ( fluxUnit == JY ) {
2217    pushLog("Converting to K");
2218    Quantum<Double> t(1.0,fluxUnit);
2219    Quantum<Double> t2 = t.get(JY);
2220    cfac = (t2 / t).getValue();               // value to Jy
2221
2222    tokelvin = true;
2223    out->setFluxUnit("K");
2224  } else if ( fluxUnit == K ) {
2225    pushLog("Converting to Jy");
2226    Quantum<Double> t(1.0,fluxUnit);
2227    Quantum<Double> t2 = t.get(K);
2228    cfac = (t2 / t).getValue();              // value to K
2229
2230    tokelvin = false;
2231    out->setFluxUnit("Jy");
2232  } else {
2233    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2234  }
2235  // Make sure input values are converted to either Jy or K first...
2236  Float factor = cfac;
2237
2238  // Select method
2239  if (jyperk > 0.0) {
2240    factor *= jyperk;
2241    if ( tokelvin ) factor = 1.0 / jyperk;
2242    ostringstream oss;
2243    oss << "Jy/K = " << jyperk;
2244    pushLog(String(oss));
2245    Vector<Float> factors(tab.nrow(), factor);
2246    scaleByVector(tab,factors, false);
2247  } else if ( etaap > 0.0) {
2248    if (d < 0) {
2249      Instrument inst =
2250        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2251                                  True);
2252      STAttr sda;
2253      d = sda.diameter(inst);
2254    }
2255    jyperk = STAttr::findJyPerK(etaap, d);
2256    ostringstream oss;
2257    oss << "Jy/K = " << jyperk;
2258    pushLog(String(oss));
2259    factor *= jyperk;
2260    if ( tokelvin ) {
2261      factor = 1.0 / factor;
2262    }
2263    Vector<Float> factors(tab.nrow(), factor);
2264    scaleByVector(tab, factors, False);
2265  } else {
2266
2267    // OK now we must deal with automatic look up of values.
2268    // We must also deal with the fact that the factors need
2269    // to be computed per IF and may be different and may
2270    // change per integration.
2271
2272    pushLog("Looking up conversion factors");
2273    convertBrightnessUnits(out, tokelvin, cfac);
2274  }
2275
2276  return out;
2277}
2278
2279void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2280                                     bool tokelvin, float cfac )
2281{
2282  Table& table = in->table();
2283  Instrument inst =
2284    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2285  TableIterator iter(table, "FREQ_ID");
2286  STFrequencies stfreqs = in->frequencies();
2287  STAttr sdAtt;
2288  while (!iter.pastEnd()) {
2289    Table tab = iter.table();
2290    ArrayColumn<Float> specCol(tab, "SPECTRA");
2291    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2292    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2293    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2294
2295    uInt freqid; freqidCol.get(0, freqid);
2296    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2297    // STAttr.JyPerK has a Vector interface... change sometime.
2298    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2299    for ( uInt i=0; i<tab.nrow(); ++i) {
2300      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2301      Float factor = cfac * jyperk;
2302      if ( tokelvin ) factor = Float(1.0) / factor;
2303      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2304      ma *= factor;
2305      specCol.put(i, ma.getArray());
2306      flagCol.put(i, flagsFromMA(ma));
2307    }
2308  ++iter;
2309  }
2310}
2311
2312CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2313                                         const std::vector<float>& tau )
2314{
2315  CountedPtr< Scantable > out = getScantable(in, false);
2316
2317  Table outtab = out->table();
2318
2319  const Int ntau = uInt(tau.size());
2320  std::vector<float>::const_iterator tauit = tau.begin();
2321  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2322               AipsError);
2323  TableIterator iiter(outtab, "IFNO");
2324  while ( !iiter.pastEnd() ) {
2325    Table itab = iiter.table();
2326    TableIterator piter(itab, "POLNO");
2327    while ( !piter.pastEnd() ) {
2328      Table tab = piter.table();
2329      ROScalarColumn<Float> elev(tab, "ELEVATION");
2330      ArrayColumn<Float> specCol(tab, "SPECTRA");
2331      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2332      ArrayColumn<Float> tsysCol(tab, "TSYS");
2333      for ( uInt i=0; i<tab.nrow(); ++i) {
2334        Float zdist = Float(C::pi_2) - elev(i);
2335        Float factor = exp(*tauit/cos(zdist));
2336        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2337        ma *= factor;
2338        specCol.put(i, ma.getArray());
2339        flagCol.put(i, flagsFromMA(ma));
2340        Vector<Float> tsys;
2341        tsysCol.get(i, tsys);
2342        tsys *= factor;
2343        tsysCol.put(i, tsys);
2344      }
2345      if (ntau == in->nif()*in->npol() ) {
2346        tauit++;
2347      }
2348      piter++;
2349    }
2350    if (ntau >= in->nif() ) {
2351      tauit++;
2352    }
2353    iiter++;
2354  }
2355  return out;
2356}
2357
2358CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2359                                             const std::string& kernel,
2360                                             float width, int order)
2361{
2362  CountedPtr< Scantable > out = getScantable(in, false);
2363  Table table = out->table();
2364
2365  TableIterator iter(table, "IFNO");
2366  while (!iter.pastEnd()) {
2367    Table tab = iter.table();
2368    ArrayColumn<Float> specCol(tab, "SPECTRA");
2369    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2370    Vector<Float> spec;
2371    Vector<uChar> flag;
2372    for (uInt i = 0; i < tab.nrow(); ++i) {
2373      specCol.get(i, spec);
2374      flagCol.get(i, flag);
2375      Vector<Bool> mask(flag.nelements());
2376      convertArray(mask, flag);
2377      Vector<Float> specout;
2378      Vector<Bool> maskout;
2379      if (kernel == "hanning") {
2380        mathutil::hanning(specout, maskout, spec, !mask);
2381        convertArray(flag, !maskout);
2382      } else if (kernel == "rmedian") {
2383        mathutil::runningMedian(specout, maskout, spec , mask, width);
2384        convertArray(flag, maskout);
2385      } else if (kernel == "poly") {
2386        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2387        convertArray(flag, !maskout);
2388      }
2389
2390      for (uInt j = 0; j < flag.nelements(); ++j) {
2391        uChar userFlag = 1 << 7;
2392        if (maskout[j]==True) userFlag = 0 << 7;
2393        flag(j) = userFlag;
2394      }
2395
2396      flagCol.put(i, flag);
2397      specCol.put(i, specout);
2398    }
2399  ++iter;
2400  }
2401  return out;
2402}
2403
2404CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2405                                        const std::string& kernel, float width,
2406                                        int order)
2407{
2408  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2409    return smoothOther(in, kernel, width, order);
2410  }
2411  CountedPtr< Scantable > out = getScantable(in, false);
2412  Table& table = out->table();
2413  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2414  // same IFNO should have same no of channels
2415  // this saves overhead
2416  TableIterator iter(table, "IFNO");
2417  while (!iter.pastEnd()) {
2418    Table tab = iter.table();
2419    ArrayColumn<Float> specCol(tab, "SPECTRA");
2420    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2421    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2422    uInt nchan = tmpspec.nelements();
2423    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2424    Convolver<Float> conv(kvec, IPosition(1,nchan));
2425    Vector<Float> spec;
2426    Vector<uChar> flag;
2427    for ( uInt i=0; i<tab.nrow(); ++i) {
2428      specCol.get(i, spec);
2429      flagCol.get(i, flag);
2430      Vector<Bool> mask(flag.nelements());
2431      convertArray(mask, flag);
2432      Vector<Float> specout;
2433      mathutil::replaceMaskByZero(specout, mask);
2434      conv.linearConv(specout, spec);
2435      specCol.put(i, specout);
2436    }
2437    ++iter;
2438  }
2439  return out;
2440}
2441
2442CountedPtr< Scantable >
2443  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2444{
2445  if ( in.size() < 2 ) {
2446    throw(AipsError("Need at least two scantables to perform a merge."));
2447  }
2448  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2449  bool insitu = insitu_;
2450  setInsitu(false);
2451  CountedPtr< Scantable > out = getScantable(*it, false);
2452  setInsitu(insitu);
2453  Table& tout = out->table();
2454  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2455  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2456  // Renumber SCANNO to be 0-based
2457  Vector<uInt> scannos = scannocol.getColumn();
2458  uInt offset = min(scannos);
2459  scannos -= offset;
2460  scannocol.putColumn(scannos);
2461  uInt newscanno = max(scannos)+1;
2462  ++it;
2463  while ( it != in.end() ){
2464    if ( ! (*it)->conformant(*out) ) {
2465      // non conformant.
2466      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2467      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2468      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2469    }
2470    out->appendToHistoryTable((*it)->history());
2471    const Table& tab = (*it)->table();
2472
2473    Block<String> cols(3);
2474    cols[0] = String("FREQ_ID");
2475    cols[1] = String("MOLECULE_ID");
2476    cols[2] = String("FOCUS_ID");
2477
2478    TableIterator scanit(tab, "SCANNO");
2479    while (!scanit.pastEnd()) {
2480      ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2481      Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2482      thescannocol.putColumn(thescannos);
2483      TableIterator subit(scanit.table(), cols);
2484      while ( !subit.pastEnd() ) {
2485        uInt nrow = tout.nrow();
2486        Table thetab = subit.table();
2487        ROTableRow row(thetab);
2488        Vector<uInt> thecolvals(thetab.nrow());
2489        ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2490        ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2491        ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2492        // The selected subset of table should have
2493        // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2494        const TableRecord& rec = row.get(0);
2495        // Set the proper FREQ_ID
2496        Double rv,rp,inc;
2497        (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2498        uInt id;
2499        id = out->frequencies().addEntry(rp, rv, inc);
2500        thecolvals = id;
2501        thefreqidcol.putColumn(thecolvals);
2502        // Set the proper MOLECULE_ID
2503        Vector<String> name,fname;Vector<Double> rf;
2504        (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2505        id = out->molecules().addEntry(rf, name, fname);
2506        thecolvals = id;
2507        themolidcol.putColumn(thecolvals);
2508        // Set the proper FOCUS_ID
2509        Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2510        (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2511                                fxy, fxyp, rec.asuInt("FOCUS_ID"));
2512        id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2513                                   fxy, fxyp);
2514        thecolvals = id;
2515        thefocusidcol.putColumn(thecolvals);
2516
2517        tout.addRow(thetab.nrow());
2518        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2519
2520        ++subit;
2521      }
2522      ++newscanno;
2523      ++scanit;
2524    }
2525    ++it;
2526  }
2527  return out;
2528}
2529
2530CountedPtr< Scantable >
2531  STMath::invertPhase( const CountedPtr < Scantable >& in )
2532{
2533  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2534}
2535
2536CountedPtr< Scantable >
2537  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2538{
2539   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2540}
2541
2542CountedPtr< Scantable >
2543  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2544{
2545  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2546}
2547
2548CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2549                                             STPol::polOperation fptr,
2550                                             Float phase )
2551{
2552  CountedPtr< Scantable > out = getScantable(in, false);
2553  Table& tout = out->table();
2554  Block<String> cols(4);
2555  cols[0] = String("SCANNO");
2556  cols[1] = String("BEAMNO");
2557  cols[2] = String("IFNO");
2558  cols[3] = String("CYCLENO");
2559  TableIterator iter(tout, cols);
2560  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2561                                               out->getPolType() );
2562  while (!iter.pastEnd()) {
2563    Table t = iter.table();
2564    ArrayColumn<Float> speccol(t, "SPECTRA");
2565    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2566    Matrix<Float> pols(speccol.getColumn());
2567    try {
2568      stpol->setSpectra(pols);
2569      Float fang,fhand;
2570      fang = in->focusTable_.getTotalAngle(focidcol(0));
2571      fhand = in->focusTable_.getFeedHand(focidcol(0));
2572      stpol->setPhaseCorrections(fang, fhand);
2573      // use a member function pointer in STPol.  This only works on
2574      // the STPol pointer itself, not the Counted Pointer so
2575      // derefernce it.
2576      (&(*(stpol))->*fptr)(phase);
2577      speccol.putColumn(stpol->getSpectra());
2578    } catch (AipsError& e) {
2579      //delete stpol;stpol=0;
2580      throw(e);
2581    }
2582    ++iter;
2583  }
2584  //delete stpol;stpol=0;
2585  return out;
2586}
2587
2588CountedPtr< Scantable >
2589  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2590{
2591  CountedPtr< Scantable > out = getScantable(in, false);
2592  Table& tout = out->table();
2593  Table t0 = tout(tout.col("POLNO") == 0);
2594  Table t1 = tout(tout.col("POLNO") == 1);
2595  if ( t0.nrow() != t1.nrow() )
2596    throw(AipsError("Inconsistent number of polarisations"));
2597  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2598  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2599  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2600  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2601  Matrix<Float> s0 = speccol0.getColumn();
2602  Matrix<uChar> f0 = flagcol0.getColumn();
2603  speccol0.putColumn(speccol1.getColumn());
2604  flagcol0.putColumn(flagcol1.getColumn());
2605  speccol1.putColumn(s0);
2606  flagcol1.putColumn(f0);
2607  return out;
2608}
2609
2610CountedPtr< Scantable >
2611  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2612                                const std::vector<bool>& mask,
2613                                const std::string& weight )
2614{
2615  if (in->npol() < 2 )
2616    throw(AipsError("averagePolarisations can only be applied to two or more"
2617                    "polarisations"));
2618  bool insitu = insitu_;
2619  setInsitu(false);
2620  CountedPtr< Scantable > pols = getScantable(in, true);
2621  setInsitu(insitu);
2622  Table& tout = pols->table();
2623  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2624  Table tab = tableCommand(taql, in->table());
2625  if (tab.nrow() == 0 )
2626    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2627  TableCopy::copyRows(tout, tab);
2628  TableVector<uInt> vec(tout, "POLNO");
2629  vec = 0;
2630  pols->table_.rwKeywordSet().define("nPol", Int(1));
2631  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2632  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2633  std::vector<CountedPtr<Scantable> > vpols;
2634  vpols.push_back(pols);
2635  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2636  return out;
2637}
2638
2639CountedPtr< Scantable >
2640  STMath::averageBeams( const CountedPtr< Scantable > & in,
2641                        const std::vector<bool>& mask,
2642                        const std::string& weight )
2643{
2644  bool insitu = insitu_;
2645  setInsitu(false);
2646  CountedPtr< Scantable > beams = getScantable(in, false);
2647  setInsitu(insitu);
2648  Table& tout = beams->table();
2649  // give all rows the same BEAMNO
2650  TableVector<uInt> vec(tout, "BEAMNO");
2651  vec = 0;
2652  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2653  std::vector<CountedPtr<Scantable> > vbeams;
2654  vbeams.push_back(beams);
2655  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2656  return out;
2657}
2658
2659
2660CountedPtr< Scantable >
2661  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2662                                const std::string & refTime,
2663                                const std::string & method)
2664{
2665  // clone as this is not working insitu
2666  bool insitu = insitu_;
2667  setInsitu(false);
2668  CountedPtr< Scantable > out = getScantable(in, false);
2669  setInsitu(insitu);
2670  Table& tout = out->table();
2671  // Get reference Epoch to time of first row or given String
2672  Unit DAY(String("d"));
2673  MEpoch::Ref epochRef(in->getTimeReference());
2674  MEpoch refEpoch;
2675  if (refTime.length()>0) {
2676    Quantum<Double> qt;
2677    if (MVTime::read(qt,refTime)) {
2678      MVEpoch mv(qt);
2679      refEpoch = MEpoch(mv, epochRef);
2680   } else {
2681      throw(AipsError("Invalid format for Epoch string"));
2682   }
2683  } else {
2684    refEpoch = in->timeCol_(0);
2685  }
2686  MPosition refPos = in->getAntennaPosition();
2687
2688  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2689  /*
2690  // Comment from MV.
2691  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2692  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2693  // test if user frame is different to base frame
2694  if ( in->frequencies().getFrameString(true)
2695       == in->frequencies().getFrameString(false) ) {
2696    throw(AipsError("Can't convert as no output frame has been set"
2697                    " (use set_freqframe) or it is aligned already."));
2698  }
2699  */
2700  MFrequency::Types system = in->frequencies().getFrame();
2701  MVTime mvt(refEpoch.getValue());
2702  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2703  ostringstream oss;
2704  oss << "Aligned at reference Epoch " << epochout
2705      << " in frame " << MFrequency::showType(system);
2706  pushLog(String(oss));
2707  // set up the iterator
2708  Block<String> cols(4);
2709  // select by constant direction
2710  cols[0] = String("SRCNAME");
2711  cols[1] = String("BEAMNO");
2712  // select by IF ( no of channels varies over this )
2713  cols[2] = String("IFNO");
2714  // select by restfrequency
2715  cols[3] = String("MOLECULE_ID");
2716  TableIterator iter(tout, cols);
2717  while ( !iter.pastEnd() ) {
2718    Table t = iter.table();
2719    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2720    TableIterator fiter(t, "FREQ_ID");
2721    // determine nchan from the first row. This should work as
2722    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2723
2724    ROArrayColumn<Float> sCol(t, "SPECTRA");
2725    const MDirection direction = dirCol(0);
2726    const uInt nchan = sCol(0).nelements();
2727
2728    // skip operations if there is nothing to align
2729    if (fiter.pastEnd()) {
2730        continue;
2731    }
2732
2733    Table ftab = fiter.table();
2734    // align all frequency ids with respect to the first encountered id
2735    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2736    // get the SpectralCoordinate for the freqid, which we are iterating over
2737    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2738    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2739                                direction, refPos, system );
2740    // realign the SpectralCoordinate and put into the output Scantable
2741    Vector<String> units(1);
2742    units = String("Hz");
2743    Bool linear=True;
2744    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2745    sc2.setWorldAxisUnits(units);
2746    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2747                                                sc2.referenceValue()[0],
2748                                                sc2.increment()[0]);
2749    while ( !fiter.pastEnd() ) {
2750      ftab = fiter.table();
2751      // spectral coordinate for the current FREQ_ID
2752      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2753      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2754      // create the "global" abcissa for alignment with same FREQ_ID
2755      Vector<Double> abc(nchan);
2756      for (uInt i=0; i<nchan; i++) {
2757           Double w;
2758           sC.toWorld(w,Double(i));
2759           abc[i] = w;
2760      }
2761      TableVector<uInt> tvec(ftab, "FREQ_ID");
2762      // assign new frequency id to all rows
2763      tvec = id;
2764      // cache abcissa for same time stamps, so iterate over those
2765      TableIterator timeiter(ftab, "TIME");
2766      while ( !timeiter.pastEnd() ) {
2767        Table tab = timeiter.table();
2768        ArrayColumn<Float> specCol(tab, "SPECTRA");
2769        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2770        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2771        // use align abcissa cache after the first row
2772        // these rows should be just be POLNO
2773        bool first = true;
2774        for (int i=0; i<int(tab.nrow()); ++i) {
2775          // input values
2776          Vector<uChar> flag = flagCol(i);
2777          Vector<Bool> mask(flag.shape());
2778          Vector<Float> specOut, spec;
2779          spec  = specCol(i);
2780          Vector<Bool> maskOut;Vector<uChar> flagOut;
2781          convertArray(mask, flag);
2782          // alignment
2783          Bool ok = fa.align(specOut, maskOut, abc, spec,
2784                             mask, timeCol(i), !first,
2785                             interp, False);
2786          (void) ok; // unused stop compiler nagging     
2787          // back into scantable
2788          flagOut.resize(maskOut.nelements());
2789          convertArray(flagOut, maskOut);
2790          flagCol.put(i, flagOut);
2791          specCol.put(i, specOut);
2792          // start abcissa caching
2793          first = false;
2794        }
2795        // next timestamp
2796        ++timeiter;
2797      }
2798      // next FREQ_ID
2799      ++fiter;
2800    }
2801    // next aligner
2802    ++iter;
2803  }
2804  // set this afterwards to ensure we are doing insitu correctly.
2805  out->frequencies().setFrame(system, true);
2806  return out;
2807}
2808
2809CountedPtr<Scantable>
2810  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2811                                     const std::string & newtype )
2812{
2813  if (in->npol() != 2 && in->npol() != 4)
2814    throw(AipsError("Can only convert two or four polarisations."));
2815  if ( in->getPolType() == newtype )
2816    throw(AipsError("No need to convert."));
2817  if ( ! in->selector_.empty() )
2818    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2819  bool insitu = insitu_;
2820  setInsitu(false);
2821  CountedPtr< Scantable > out = getScantable(in, true);
2822  setInsitu(insitu);
2823  Table& tout = out->table();
2824  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2825
2826  Block<String> cols(4);
2827  cols[0] = "SCANNO";
2828  cols[1] = "CYCLENO";
2829  cols[2] = "BEAMNO";
2830  cols[3] = "IFNO";
2831  TableIterator it(in->originalTable_, cols);
2832  String basetype = in->getPolType();
2833  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2834  try {
2835    while ( !it.pastEnd() ) {
2836      Table tab = it.table();
2837      uInt row = tab.rowNumbers()[0];
2838      stpol->setSpectra(in->getPolMatrix(row));
2839      Float fang,fhand;
2840      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2841      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2842      stpol->setPhaseCorrections(fang, fhand);
2843      Int npolout = 0;
2844      for (uInt i=0; i<tab.nrow(); ++i) {
2845        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2846        if ( outvec.nelements() > 0 ) {
2847          tout.addRow();
2848          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2849          ArrayColumn<Float> sCol(tout,"SPECTRA");
2850          ScalarColumn<uInt> pCol(tout,"POLNO");
2851          sCol.put(tout.nrow()-1 ,outvec);
2852          pCol.put(tout.nrow()-1 ,uInt(npolout));
2853          npolout++;
2854       }
2855      }
2856      tout.rwKeywordSet().define("nPol", npolout);
2857      ++it;
2858    }
2859  } catch (AipsError& e) {
2860    delete stpol;
2861    throw(e);
2862  }
2863  delete stpol;
2864  return out;
2865}
2866
2867CountedPtr< Scantable >
2868  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2869                           const std::string & scantype )
2870{
2871  bool insitu = insitu_;
2872  setInsitu(false);
2873  CountedPtr< Scantable > out = getScantable(in, true);
2874  setInsitu(insitu);
2875  Table& tout = out->table();
2876  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2877  if (scantype == "on") {
2878    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2879  }
2880  Table tab = tableCommand(taql, in->table());
2881  TableCopy::copyRows(tout, tab);
2882  if (scantype == "on") {
2883    // re-index SCANNO to 0
2884    TableVector<uInt> vec(tout, "SCANNO");
2885    vec = 0;
2886  }
2887  return out;
2888}
2889
2890std::vector<float>
2891  asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2892                     const std::vector<int>& whichrow,
2893                     bool getRealImag )
2894{
2895  std::vector<float> res;
2896  Table tab = in->table();
2897  std::vector<bool> mask;
2898
2899  if (whichrow.size() < 1) {          // for all rows (by default)
2900    int nrow = int(tab.nrow());
2901    for (int i = 0; i < nrow; ++i) {
2902      res = in->execFFT(i, mask, getRealImag);
2903    }
2904  } else {                           // for specified rows
2905    for (uInt i = 0; i < whichrow.size(); ++i) {
2906      res = in->execFFT(i, mask, getRealImag);
2907    }
2908  }
2909
2910  return res;
2911}
2912
2913
2914CountedPtr<Scantable>
2915  asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2916                         double start, double end,
2917                         const std::string& mode )
2918{
2919  CountedPtr<Scantable> out = getScantable(in, false);
2920  Table& tout = out->table();
2921  TableIterator iter(tout, "FREQ_ID");
2922  FFTServer<Float,Complex> ffts;
2923
2924  while ( !iter.pastEnd() ) {
2925    Table tab = iter.table();
2926    Double rp,rv,inc;
2927    ROTableRow row(tab);
2928    const TableRecord& rec = row.get(0);
2929    uInt freqid = rec.asuInt("FREQ_ID");
2930    out->frequencies().getEntry(rp, rv, inc, freqid);
2931    ArrayColumn<Float> specCol(tab, "SPECTRA");
2932    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2933
2934    for (int i=0; i<int(tab.nrow()); ++i) {
2935      Vector<Float> spec = specCol(i);
2936      Vector<uChar> flag = flagCol(i);
2937      std::vector<bool> mask;
2938      for (uInt j = 0; j < flag.nelements(); ++j) {
2939        mask.push_back(!(flag[j]>0));
2940      }
2941      mathutil::doZeroOrderInterpolation(spec, mask);
2942
2943      Vector<Complex> lags;
2944      ffts.fft0(lags, spec);
2945
2946      Int lag0(start+0.5);
2947      Int lag1(end+0.5);
2948      if (mode == "frequency") {
2949        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2950        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2951      }
2952      Int lstart =  max(0, lag0);
2953      Int lend   =  min(Int(lags.nelements()-1), lag1);
2954      if (lstart == lend) {
2955        lags[lstart] = Complex(0.0);
2956      } else {
2957        if (lstart > lend) {
2958          Int tmp = lend;
2959          lend = lstart;
2960          lstart = tmp;
2961        }
2962        for (int j=lstart; j <=lend ;++j) {
2963          lags[j] = Complex(0.0);
2964        }
2965      }
2966
2967      ffts.fft0(spec, lags);
2968
2969      specCol.put(i, spec);
2970    }
2971    ++iter;
2972  }
2973  return out;
2974}
2975
2976// Averaging spectra with different channel/resolution
2977CountedPtr<Scantable>
2978STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2979                     const bool& compel,
2980                     const std::vector<bool>& mask,
2981                     const std::string& weight,
2982                     const std::string& avmode )
2983  throw ( casa::AipsError )
2984{
2985  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2986  if ( avmode == "SCAN" && in.size() != 1 )
2987    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2988                    "Use merge first."));
2989 
2990  // 2012/02/17 TN
2991  // Since STGrid is implemented, average doesn't consider direction
2992  // when accumulating
2993  // check if OTF observation
2994//   String obstype = in[0]->getHeader().obstype ;
2995//   Double tol = 0.0 ;
2996//   if ( obstype.find( "OTF" ) != String::npos ) {
2997//     tol = TOL_OTF ;
2998//   }
2999//   else {
3000//     tol = TOL_POINT ;
3001//   }
3002
3003  CountedPtr<Scantable> out ;     // processed result
3004  if ( compel ) {
3005    std::vector< CountedPtr<Scantable> > newin ; // input for average process
3006    uInt insize = in.size() ;    // number of input scantables
3007
3008    // TEST: do normal average in each table before IF grouping
3009    os << "Do preliminary averaging" << LogIO::POST ;
3010    vector< CountedPtr<Scantable> > tmpin( insize ) ;
3011    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3012      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
3013      tmpin[itable] = average( v, mask, weight, avmode ) ;
3014    }
3015
3016    // warning
3017    os << "Average spectra with different spectral resolution" << LogIO::POST ;
3018
3019    // temporarily set coordinfo
3020    vector<string> oldinfo( insize ) ;
3021    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3022      vector<string> coordinfo = in[itable]->getCoordInfo() ;
3023      oldinfo[itable] = coordinfo[0] ;
3024      coordinfo[0] = "Hz" ;
3025      tmpin[itable]->setCoordInfo( coordinfo ) ;
3026    }
3027
3028    // columns
3029    ScalarColumn<uInt> freqIDCol ;
3030    ScalarColumn<uInt> ifnoCol ;
3031    ScalarColumn<uInt> scannoCol ;
3032
3033
3034    // check IF frequency coverage
3035    // freqid: list of FREQ_ID, which is used, in each table 
3036    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3037    //         each table
3038    // freqid[insize][numIF]
3039    // freqid: [[id00, id01, ...],
3040    //          [id10, id11, ...],
3041    //          ...
3042    //          [idn0, idn1, ...]]
3043    // iffreq[insize][numIF*2]
3044    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3045    //          [min_id10, max_id10, min_id11, max_id11, ...],
3046    //          ...
3047    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3048    //os << "Check IF settings in each table" << LogIO::POST ;
3049    vector< vector<uInt> > freqid( insize );
3050    vector< vector<double> > iffreq( insize ) ;
3051    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3052      uInt rows = tmpin[itable]->nrow() ;
3053      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3054      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3055        if ( freqid[itable].size() == freqnrows ) {
3056          break ;
3057        }
3058        else {
3059          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3060          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3061          uInt id = freqIDCol( irow ) ;
3062          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3063            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3064            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3065            freqid[itable].push_back( id ) ;
3066            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3067            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3068          }
3069        }
3070      }
3071    }
3072
3073    // debug
3074    //os << "IF settings summary:" << endl ;
3075    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3076    //os << "   Table" << i << endl ;
3077    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3078    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3079    //}
3080    //}
3081    //os << endl ;
3082    //os.post() ;
3083
3084    // IF grouping based on their frequency coverage
3085    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3086    // ifgfreq: list of minimum and maximum frequency in each IF group
3087    // ifgrp[numgrp][nummember*2]
3088    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3089    //         [table10, freqrow10, table11, freqrow11, ...],
3090    //         ...
3091    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3092    // ifgfreq[numgrp*2]
3093    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3094    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3095    vector< vector<uInt> > ifgrp ;
3096    vector<double> ifgfreq ;
3097
3098    // parameter for IF grouping
3099    // groupmode = OR    retrieve all region
3100    //             AND   only retrieve overlaped region
3101    //string groupmode = "AND" ;
3102    string groupmode = "OR" ;
3103    uInt sizecr = 0 ;
3104    if ( groupmode == "AND" )
3105      sizecr = 2 ;
3106    else if ( groupmode == "OR" )
3107      sizecr = 0 ;
3108
3109    vector<double> sortedfreq ;
3110    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3111      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3112        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3113          sortedfreq.push_back( iffreq[i][j] ) ;
3114      }
3115    }
3116    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3117    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3118      ifgfreq.push_back( *i ) ;
3119      ifgfreq.push_back( *(i+1) ) ;
3120    }
3121    ifgrp.resize( ifgfreq.size()/2 ) ;
3122    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3123      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3124        double range0 = iffreq[itable][2*iif] ;
3125        double range1 = iffreq[itable][2*iif+1] ;
3126        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3127          double fmin = max( range0, ifgfreq[2*j] ) ;
3128          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3129          if ( fmin < fmax ) {
3130            ifgrp[j].push_back( itable ) ;
3131            ifgrp[j].push_back( freqid[itable][iif] ) ;
3132          }
3133        }
3134      }
3135    }
3136    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3137    vector<double>::iterator giter = ifgfreq.begin() ;
3138    while( fiter != ifgrp.end() ) {
3139      if ( fiter->size() <= sizecr ) {
3140        fiter = ifgrp.erase( fiter ) ;
3141        giter = ifgfreq.erase( giter ) ;
3142        giter = ifgfreq.erase( giter ) ;
3143      }
3144      else {
3145        fiter++ ;
3146        advance( giter, 2 ) ;
3147      }
3148    }
3149
3150    // Grouping continuous IF groups (without frequency gap)
3151    // freqgrp: list of IF group indexes in each frequency group
3152    // freqrange: list of minimum and maximum frequency in each frequency group
3153    // freqgrp[numgrp][nummember]
3154    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3155    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3156    //           ...
3157    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3158    // freqrange[numgrp*2]
3159    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3160    vector< vector<uInt> > freqgrp ;
3161    double freqrange = 0.0 ;
3162    uInt grpnum = 0 ;
3163    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3164      // Assumed that ifgfreq was sorted
3165      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3166        freqgrp[grpnum-1].push_back( i ) ;
3167      }
3168      else {
3169        vector<uInt> grp0( 1, i ) ;
3170        freqgrp.push_back( grp0 ) ;
3171        grpnum++ ;
3172      }
3173      freqrange = ifgfreq[2*i+1] ;
3174    }
3175       
3176
3177    // print IF groups
3178    ostringstream oss ;
3179    oss << "IF Group summary: " << endl ;
3180    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3181    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3182      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3183      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3184        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3185      }
3186      oss << endl ;
3187    }
3188    oss << endl ;
3189    os << oss.str() << LogIO::POST ;
3190   
3191    // print frequency group
3192    oss.str("") ;
3193    oss << "Frequency Group summary: " << endl ;
3194    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3195    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3196      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3197      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3198        oss << freqgrp[i][j] << " " ;
3199      }
3200      oss << endl ;
3201    }
3202    oss << endl ;
3203    os << oss.str() << LogIO::POST ;
3204
3205    // membership check
3206    // groups: list of IF group indexes whose frequency range overlaps with
3207    //         that of each table and IF
3208    // groups[numtable][numIF][nummembership]
3209    // groups: [[[grp, grp,...], [grp, grp,...],...],
3210    //          [[grp, grp,...], [grp, grp,...],...],
3211    //          ...
3212    //          [[grp, grp,...], [grp, grp,...],...]]
3213    vector< vector< vector<uInt> > > groups( insize ) ;
3214    for ( uInt i = 0 ; i < insize ; i++ ) {
3215      groups[i].resize( freqid[i].size() ) ;
3216    }
3217    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3218      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3219        uInt tableid = ifgrp[igrp][2*imem] ;
3220        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3221        if ( iter != freqid[tableid].end() ) {
3222          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3223          groups[tableid][rowid].push_back( igrp ) ;
3224        }
3225      }
3226    }
3227
3228    // print membership
3229    //oss.str("") ;
3230    //for ( uInt i = 0 ; i < insize ; i++ ) {
3231    //oss << "Table " << i << endl ;
3232    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3233    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3234    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3235    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3236    //}
3237    //oss << endl ;
3238    //}
3239    //}
3240    //os << oss.str() << LogIO::POST ;
3241
3242    // set back coordinfo
3243    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3244      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3245      coordinfo[0] = oldinfo[itable] ;
3246      tmpin[itable]->setCoordInfo( coordinfo ) ;
3247    }
3248
3249    // Create additional table if needed
3250    bool oldInsitu = insitu_ ;
3251    setInsitu( false ) ;
3252    vector< vector<uInt> > addrow( insize ) ;
3253    vector<uInt> addtable( insize, 0 ) ;
3254    vector<uInt> newtableids( insize ) ;
3255    vector<uInt> newifids( insize, 0 ) ;
3256    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3257      //os << "Table " << itable << ": " ;
3258      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3259        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3260        //os << addrow[itable][ifrow] << " " ;
3261      }
3262      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3263      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3264    }
3265    newin.resize( insize ) ;
3266    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3267    for ( uInt i = 0 ; i < insize ; i++ ) {
3268      newtableids[i] = i ;
3269    }
3270    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3271      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3272        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3273        vector<int> freqidlist ;
3274        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3275          if ( groups[itable][i].size() > iadd + 1 ) {
3276            freqidlist.push_back( freqid[itable][i] ) ;
3277          }
3278        }
3279        stringstream taqlstream ;
3280        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3281        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3282          taqlstream << freqidlist[i] ;
3283          if ( i < freqidlist.size() - 1 )
3284            taqlstream << "," ;
3285          else
3286            taqlstream << "]" ;
3287        }
3288        string taql = taqlstream.str() ;
3289        //os << "taql = " << taql << LogIO::POST ;
3290        STSelector selector = STSelector() ;
3291        selector.setTaQL( taql ) ;
3292        add->setSelection( selector ) ;
3293        newin.push_back( add ) ;
3294        newtableids.push_back( itable ) ;
3295        newifids.push_back( iadd + 1 ) ;
3296      }
3297    }
3298
3299    // udpate ifgrp
3300    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3301      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3302        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3303          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3304            uInt igrp = groups[itable][ifrow][iadd+1] ;
3305            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3306              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3307                ifgrp[igrp][2*imem] = insize + iadd ;
3308              }
3309            }
3310          }
3311        }
3312      }
3313    }
3314
3315    // print IF groups again for debug
3316    //oss.str( "" ) ;
3317    //oss << "IF Group summary: " << endl ;
3318    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3319    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3320    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3321    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3322    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3323    //}
3324    //oss << endl ;
3325    //}
3326    //oss << endl ;
3327    //os << oss.str() << LogIO::POST ;
3328
3329    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3330    os << "All scan number is set to 0" << LogIO::POST ;
3331    //os << "All IF number is set to IF group index" << LogIO::POST ;
3332    insize = newin.size() ;
3333    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3334      uInt rows = newin[itable]->nrow() ;
3335      Table &tmpt = newin[itable]->table() ;
3336      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3337      scannoCol.attach( tmpt, "SCANNO" ) ;
3338      ifnoCol.attach( tmpt, "IFNO" ) ;
3339      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3340        scannoCol.put( irow, 0 ) ;
3341        uInt freqID = freqIDCol( irow ) ;
3342        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3343        if ( iter != freqid[newtableids[itable]].end() ) {
3344          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3345          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3346        }
3347        else {
3348          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3349        }
3350      }
3351    }
3352    oldinfo.resize( insize ) ;
3353    setInsitu( oldInsitu ) ;
3354
3355    // temporarily set coordinfo
3356    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3357      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3358      oldinfo[itable] = coordinfo[0] ;
3359      coordinfo[0] = "Hz" ;
3360      newin[itable]->setCoordInfo( coordinfo ) ;
3361    }
3362
3363    // save column values in the vector
3364    vector< vector<uInt> > freqTableIdVec( insize ) ;
3365    vector< vector<uInt> > freqIdVec( insize ) ;
3366    vector< vector<uInt> > ifNoVec( insize ) ;
3367    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3368      ScalarColumn<uInt> freqIDs ;
3369      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3370      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3371      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3372      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3373        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3374      }
3375      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3376        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3377        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3378      }
3379    }
3380
3381    // reset spectra and flagtra: pick up common part of frequency coverage
3382    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3383    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3384      uInt rows = newin[itable]->nrow() ;
3385      int nminchan = -1 ;
3386      int nmaxchan = -1 ;
3387      vector<uInt> freqIdUpdate ;
3388      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3389        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3390        double minfreq = ifgfreq[2*ifno] ;
3391        double maxfreq = ifgfreq[2*ifno+1] ;
3392        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3393        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3394        int nchan = abcissa.size() ;
3395        double resol = abcissa[1] - abcissa[0] ;
3396        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3397        if ( minfreq <= abcissa[0] )
3398          nminchan = 0 ;
3399        else {
3400          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3401          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3402          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3403        }
3404        if ( maxfreq >= abcissa[abcissa.size()-1] )
3405          nmaxchan = abcissa.size() - 1 ;
3406        else {
3407          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3408          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3409          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3410        }
3411        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3412        if ( nmaxchan > nminchan ) {
3413          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3414          int newchan = nmaxchan - nminchan + 1 ;
3415          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3416            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3417        }
3418        else {
3419          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3420        }
3421      }
3422      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3423        uInt freqId = freqIdUpdate[i] ;
3424        Double refpix ;
3425        Double refval ;
3426        Double increment ;
3427       
3428        // update row
3429        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3430        refval = refval - ( refpix - nminchan ) * increment ;
3431        refpix = 0 ;
3432        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3433      }   
3434    }
3435
3436   
3437    // reset spectra and flagtra: align spectral resolution
3438    //os << "Align spectral resolution" << LogIO::POST ;
3439    // gmaxdnu: the coarsest frequency resolution in the frequency group
3440    // gmemid: member index that have a resolution equal to gmaxdnu
3441    // gmaxdnu[numfreqgrp]
3442    // gmaxdnu: [dnu0, dnu1, ...]
3443    // gmemid[numfreqgrp]
3444    // gmemid: [id0, id1, ...]
3445    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3446    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3447    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3448      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3449      int minchan = INT_MAX ;     // minimum channel number
3450      Double refpixref = -1 ;     // reference of 'reference pixel'
3451      Double refvalref = -1 ;     // reference of 'reference frequency'
3452      Double refinc = -1 ;        // reference frequency resolution
3453      uInt refreqid ;
3454      uInt reftable = INT_MAX;
3455      // process only if group member > 1
3456      if ( ifgrp[igrp].size() > 2 ) {
3457        // find minchan and maxdnu in each group
3458        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3459          uInt tableid = ifgrp[igrp][2*imem] ;
3460          uInt rowid = ifgrp[igrp][2*imem+1] ;
3461          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3462          if ( iter != freqIdVec[tableid].end() ) {
3463            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3464            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3465            int nchan = abcissa.size() ;
3466            double dnu = abcissa[1] - abcissa[0] ;
3467            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3468            if ( nchan < minchan ) {
3469              minchan = nchan ;
3470              maxdnu = dnu ;
3471              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3472              refreqid = rowid ;
3473              reftable = tableid ;
3474            }
3475          }
3476        }
3477        // regrid spectra in each group
3478        os << "GROUP " << igrp << endl ;
3479        os << "   Channel number is adjusted to " << minchan << endl ;
3480        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3481        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3482          uInt tableid = ifgrp[igrp][2*imem] ;
3483          uInt rowid = ifgrp[igrp][2*imem+1] ;
3484          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3485          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3486          //os << "   regridChannel applied to " ;
3487          //if ( tableid != reftable )
3488          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3489          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3490            uInt tfreqid = freqIdVec[tableid][irow] ;
3491            if ( tfreqid == rowid ) {     
3492              //os << irow << " " ;
3493              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3494              freqIDCol.put( irow, refreqid ) ;
3495              freqIdVec[tableid][irow] = refreqid ;
3496            }
3497          }
3498          //os << LogIO::POST ;
3499        }
3500      }
3501      else {
3502        uInt tableid = ifgrp[igrp][0] ;
3503        uInt rowid = ifgrp[igrp][1] ;
3504        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3505        if ( iter != freqIdVec[tableid].end() ) {
3506          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3507          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3508          minchan = abcissa.size() ;
3509          maxdnu = abcissa[1] - abcissa[0] ;
3510        }
3511      }
3512      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3513        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3514          if ( maxdnu > gmaxdnu[i] ) {
3515            gmaxdnu[i] = maxdnu ;
3516            gmemid[i] = igrp ;
3517          }
3518          break ;
3519        }
3520      }
3521    }
3522
3523    // set back coordinfo
3524    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3525      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3526      coordinfo[0] = oldinfo[itable] ;
3527      newin[itable]->setCoordInfo( coordinfo ) ;
3528    }     
3529
3530    // accumulate all rows into the first table
3531    // NOTE: assumed in.size() = 1
3532    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3533    if ( newin.size() == 1 )
3534      tmp[0] = newin[0] ;
3535    else
3536      tmp[0] = merge( newin ) ;
3537
3538    //return tmp[0] ;
3539
3540    // average
3541    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3542
3543    //return tmpout ;
3544
3545    // combine frequency group
3546    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3547    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3548    vector<string> coordinfo = tmpout->getCoordInfo() ;
3549    oldinfo[0] = coordinfo[0] ;
3550    coordinfo[0] = "Hz" ;
3551    tmpout->setCoordInfo( coordinfo ) ;
3552    // create proformas of output table
3553    stringstream taqlstream ;
3554    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3555    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3556      taqlstream << gmemid[i] ;
3557      if ( i < gmemid.size() - 1 )
3558        taqlstream << "," ;
3559      else
3560        taqlstream << "]" ;
3561    }
3562    string taql = taqlstream.str() ;
3563    //os << "taql = " << taql << LogIO::POST ;
3564    STSelector selector = STSelector() ;
3565    selector.setTaQL( taql ) ;
3566    oldInsitu = insitu_ ;
3567    setInsitu( false ) ;
3568    out = getScantable( tmpout, false ) ;
3569    setInsitu( oldInsitu ) ;
3570    out->setSelection( selector ) ;
3571    // regrid rows
3572    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3573    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3574      uInt ifno = ifnoCol( irow ) ;
3575      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3576        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3577          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3578          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3579          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3580          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3581          break ;
3582        }
3583      }
3584    }
3585    // combine spectra
3586    ArrayColumn<Float> specColOut ;
3587    specColOut.attach( out->table(), "SPECTRA" ) ;
3588    ArrayColumn<uChar> flagColOut ;
3589    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3590    ScalarColumn<uInt> ifnoColOut ;
3591    ifnoColOut.attach( out->table(), "IFNO" ) ;
3592    ScalarColumn<uInt> polnoColOut ;
3593    polnoColOut.attach( out->table(), "POLNO" ) ;
3594    ScalarColumn<uInt> freqidColOut ;
3595    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3596//     MDirection::ScalarColumn dirColOut ;
3597//     dirColOut.attach( out->table(), "DIRECTION" ) ;
3598    Table &tab = tmpout->table() ;
3599    Block<String> cols(1);
3600    cols[0] = String("POLNO") ;
3601    TableIterator iter( tab, cols ) ;
3602    bool done = false ;
3603    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3604    while( !iter.pastEnd() ) {
3605      vector< vector<Float> > specout( freqgrp.size() ) ;
3606      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3607      ArrayColumn<Float> specCols ;
3608      specCols.attach( iter.table(), "SPECTRA" ) ;
3609      ArrayColumn<uChar> flagCols ;
3610      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3611      ifnoCol.attach( iter.table(), "IFNO" ) ;
3612      ScalarColumn<uInt> polnos ;
3613      polnos.attach( iter.table(), "POLNO" ) ;
3614//       MDirection::ScalarColumn dircol ;
3615//       dircol.attach( iter.table(), "DIRECTION" ) ;
3616      uInt polno = polnos( 0 ) ;
3617      //os << "POLNO iteration: " << polno << LogIO::POST ;
3618//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3619//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3620//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3621//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3622//          uInt ifno = ifnoCol( irow ) ;
3623//          if ( ifno == freqgrp[igrp][imem] ) {
3624//            Vector<Float> spec = specCols( irow ) ;
3625//            Vector<uChar> flag = flagCols( irow ) ;
3626//            vector<Float> svec ;
3627//            spec.tovector( svec ) ;
3628//            vector<uChar> fvec ;
3629//            flag.tovector( fvec ) ;
3630//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3631//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3632//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3633//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3634//            sizes[igrp][imem] = spec.nelements() ;
3635//          }
3636//        }
3637//      }
3638//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3639//        uInt ifout = ifnoColOut( irow ) ;
3640//        uInt polout = polnoColOut( irow ) ;
3641//        if ( ifout == gmemid[igrp] && polout == polno ) {
3642//          // set SPECTRA and FRAGTRA
3643//          Vector<Float> newspec( specout[igrp] ) ;
3644//          Vector<uChar> newflag( flagout[igrp] ) ;
3645//          specColOut.put( irow, newspec ) ;
3646//          flagColOut.put( irow, newflag ) ;
3647//          // IFNO renumbering
3648//          ifnoColOut.put( irow, igrp ) ;
3649//        }
3650//      }
3651//       }
3652      // get a list of number of channels for each frequency group member
3653      if ( !done ) {
3654        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3655          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3656          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3657            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3658              uInt ifno = ifnoCol( irow ) ;
3659              if ( ifno == freqgrp[igrp][imem] ) {
3660                Vector<Float> spec = specCols( irow ) ;
3661                sizes[igrp][imem] = spec.nelements() ;
3662                break ;
3663              }               
3664            }
3665          }
3666        }
3667        done = true ;
3668      }
3669      // combine spectra
3670      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3671        uInt polout = polnoColOut( irow ) ;
3672        if ( polout == polno ) {
3673          uInt ifout = ifnoColOut( irow ) ;
3674//           Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3675          uInt igrp ;
3676          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3677            if ( ifout == gmemid[jgrp] ) {
3678              igrp = jgrp ;
3679              break ;
3680            }
3681          }
3682          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3683            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3684              uInt ifno = ifnoCol( jrow ) ;
3685              // 2012/02/17 TN
3686              // Since STGrid is implemented, average doesn't consider direction
3687              // when accumulating
3688//               Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3689//               //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3690//               Double dx = tdir[0] - direction[0] ;
3691//               Double dy = tdir[1] - direction[1] ;
3692//               Double dd = sqrt( dx * dx + dy * dy ) ;
3693              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3694//               if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3695              if ( ifno == freqgrp[igrp][imem] ) {
3696                Vector<Float> spec = specCols( jrow ) ;
3697                Vector<uChar> flag = flagCols( jrow ) ;
3698                vector<Float> svec ;
3699                spec.tovector( svec ) ;
3700                vector<uChar> fvec ;
3701                flag.tovector( fvec ) ;
3702                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3703                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3704                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3705                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3706              }
3707            }
3708          }
3709          // set SPECTRA and FRAGTRA
3710          Vector<Float> newspec( specout[igrp] ) ;
3711          Vector<uChar> newflag( flagout[igrp] ) ;
3712          specColOut.put( irow, newspec ) ;
3713          flagColOut.put( irow, newflag ) ;
3714          // IFNO renumbering
3715          ifnoColOut.put( irow, igrp ) ;
3716        }
3717      }
3718      iter++ ;
3719    }
3720    // update FREQUENCIES subtable
3721    vector<bool> updated( freqgrp.size(), false ) ;
3722    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3723      uInt index = 0 ;
3724      uInt pixShift = 0 ;
3725      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3726        pixShift += sizes[igrp][index++] ;
3727      }
3728      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3729        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3730          uInt freqidOut = freqidColOut( irow ) ;
3731          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3732          double refpix ;
3733          double refval ;
3734          double increm ;
3735          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3736          refpix += pixShift ;
3737          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3738          updated[igrp] = true ;
3739        }
3740      }
3741    }
3742
3743    //out = tmpout ;
3744
3745    coordinfo = tmpout->getCoordInfo() ;
3746    coordinfo[0] = oldinfo[0] ;
3747    tmpout->setCoordInfo( coordinfo ) ;
3748  }
3749  else {
3750    // simple average
3751    out =  average( in, mask, weight, avmode ) ;
3752  }
3753 
3754  return out;
3755}
3756
3757CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3758                                     const String calmode,
3759                                     const String antname )
3760{
3761  // frequency switch
3762  if ( calmode == "fs" ) {
3763    return cwcalfs( s, antname ) ;
3764  }
3765  else {
3766    vector<bool> masks = s->getMask( 0 ) ;
3767    vector<int> types ;
3768
3769    // sky scan
3770    STSelector sel = STSelector() ;
3771    types.push_back( SrcType::SKY ) ;
3772    sel.setTypes( types ) ;
3773    s->setSelection( sel ) ;
3774    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3775    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3776    s->unsetSelection() ;
3777    sel.reset() ;
3778    types.clear() ;
3779
3780    // hot scan
3781    types.push_back( SrcType::HOT ) ;
3782    sel.setTypes( types ) ;
3783    s->setSelection( sel ) ;
3784    tmp.clear() ;
3785    tmp.push_back( getScantable( s, false ) ) ;
3786    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3787    s->unsetSelection() ;
3788    sel.reset() ;
3789    types.clear() ;
3790   
3791    // cold scan
3792    CountedPtr<Scantable> acold ;
3793//     types.push_back( SrcType::COLD ) ;
3794//     sel.setTypes( types ) ;
3795//     s->setSelection( sel ) ;
3796//     tmp.clear() ;
3797//     tmp.push_back( getScantable( s, false ) ) ;
3798//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3799//     s->unsetSelection() ;
3800//     sel.reset() ;
3801//     types.clear() ;
3802
3803    // off scan
3804    types.push_back( SrcType::PSOFF ) ;
3805    sel.setTypes( types ) ;
3806    s->setSelection( sel ) ;
3807    tmp.clear() ;
3808    tmp.push_back( getScantable( s, false ) ) ;
3809    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3810    s->unsetSelection() ;
3811    sel.reset() ;
3812    types.clear() ;
3813   
3814    // on scan
3815    bool insitu = insitu_ ;
3816    insitu_ = false ;
3817    CountedPtr<Scantable> out = getScantable( s, true ) ;
3818    insitu_ = insitu ;
3819    types.push_back( SrcType::PSON ) ;
3820    sel.setTypes( types ) ;
3821    s->setSelection( sel ) ;
3822    TableCopy::copyRows( out->table(), s->table() ) ;
3823    s->unsetSelection() ;
3824    sel.reset() ;
3825    types.clear() ;
3826   
3827    // process each on scan
3828    ArrayColumn<Float> tsysCol ;
3829    tsysCol.attach( out->table(), "TSYS" ) ;
3830    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3831      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3832      out->setSpectrum( sp, i ) ;
3833      string reftime = out->getTime( i ) ;
3834      vector<int> ii( 1, out->getIF( i ) ) ;
3835      vector<int> ib( 1, out->getBeam( i ) ) ;
3836      vector<int> ip( 1, out->getPol( i ) ) ;
3837      sel.setIFs( ii ) ;
3838      sel.setBeams( ib ) ;
3839      sel.setPolarizations( ip ) ;
3840      asky->setSelection( sel ) ;   
3841      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3842      const Vector<Float> Vtsys( sptsys ) ;
3843      tsysCol.put( i, Vtsys ) ;
3844      asky->unsetSelection() ;
3845      sel.reset() ;
3846    }
3847
3848    // flux unit
3849    out->setFluxUnit( "K" ) ;
3850
3851    return out ;
3852  }
3853}
3854 
3855CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3856                                       const String calmode )
3857{
3858  // frequency switch
3859  if ( calmode == "fs" ) {
3860    return almacalfs( s ) ;
3861  }
3862  else {
3863//     double t0, t1 ;
3864//     t0 = mathutil::gettimeofday_sec() ;
3865    vector<bool> masks = s->getMask( 0 ) ;
3866   
3867    // off scan
3868    STSelector sel = STSelector() ;
3869    vector<int> types( 1, SrcType::PSOFF ) ;
3870    //types.push_back( SrcType::PSOFF ) ;
3871    sel.setTypes( types ) ;
3872    s->setSelection( sel ) ;
3873    // TODO 2010/01/08 TN
3874    // Grouping by time should be needed before averaging.
3875    // Each group must have own unique SCANNO (should be renumbered).
3876    // See PIPELINE/SDCalibration.py
3877    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3878    Table ttab = soff->table() ;
3879//     String tmpname = File::newUniqueName( "./", "temp" ).baseName() ;
3880//     Table ttab = s->table().copyToMemoryTable( tmpname, False ) ;
3881    ROScalarColumn<Double> *timeCol = new ROScalarColumn<Double>( ttab, "TIME" ) ;
3882    uInt nrow = timeCol->nrow() ;
3883    Vector<Double> timeSep = timeCol->getColumn() ;
3884    delete timeCol ;
3885    for ( uInt i = nrow-2 ; i > 0 ; i-- ) {
3886      timeSep[i] -= timeSep[i-1] ;
3887    }
3888    Vector<Double> interval = soff->integrCol_.getColumn() ;
3889    interval /= 86400.0 ;
3890    Block<uInt> gaplist( 100 ) ;
3891    uInt glidx = 0 ;
3892    uInt glsize = gaplist.size() ;
3893    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3894      double gap = 2.0 * timeSep[i+1] / ( interval[i] + interval[i+1] ) ;
3895      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3896      if ( gap > 1.1 ) {
3897//         cout << "detected gap between " << i << " and " << i+1 << endl ;
3898        gaplist[glidx] = i ;
3899        glidx++ ;
3900      }
3901      if ( glidx >= glsize ) {
3902//         cout << "resize gaplist" << endl ;
3903        glsize += 100 ;
3904        gaplist.resize( glsize ) ;
3905      }
3906    }
3907    gaplist[glidx] = nrow - 1 ;
3908    glidx++ ;
3909//     cout << "gaplist = " << Vector<uInt>(IPosition(1,glidx),gaplist.storage()) << endl ;
3910    uInt newid = 0 ;
3911    Vector<uInt> newscanno( nrow, 0 ) ;
3912    uInt *p = newscanno.data() ;
3913    IPosition pos( 1 ) ;
3914    for ( uInt i = 1 ; i < glidx  ; i++ ) {
3915      pos[0] = gaplist[i] - gaplist[i-1] ;
3916      Vector<uInt> scnslice( pos, p+gaplist[i-1]+1, SHARE ) ;
3917      scnslice = i ;
3918    }
3919    soff->scanCol_.putColumn( newscanno ) ;
3920//     cout << "new scancol = " << soff->scanCol_.getColumn() << endl ;
3921//     double t2 = mathutil::gettimeofday_sec() ;
3922    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3923    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3924//     cout << "elapsed time for average(): " << mathutil::gettimeofday_sec()-t2 << " sec" << endl ;
3925    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3926    s->unsetSelection() ;
3927    sel.reset() ;
3928//     t1 = mathutil::gettimeofday_sec() ;
3929//     cout << "elapsed time for off averaging: " << t1-t0 << " sec" << endl ;
3930   
3931    // on scan
3932//     t0 = mathutil::gettimeofday_sec() ;
3933    bool insitu = insitu_ ;
3934    insitu_ = false ;
3935    CountedPtr<Scantable> out = getScantable( s, true ) ;
3936    insitu_ = insitu ;
3937    types[0] = SrcType::PSON ;
3938    sel.setTypes( types ) ;
3939    s->setSelection( sel ) ;
3940    TableCopy::copyRows( out->table(), s->table() ) ;
3941    s->unsetSelection() ;
3942    sel.reset() ;
3943//     t1 = mathutil::gettimeofday_sec() ;
3944//     cout << "elapsed time for preparing output table: " << t1-t0 << " sec" << endl ;
3945
3946    // process each on scan
3947//     t0 = mathutil::gettimeofday_sec() ;
3948//     for ( int i = 0 ; i < out->nrow() ; i++ ) {
3949//       vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3950//       out->setSpectrum( sp, i ) ;
3951//     }
3952
3953    // using STIdxIterAcc
3954    vector<string> cols( 3 ) ;
3955    cols[0] = "BEAMNO" ;
3956    cols[1] = "POLNO" ;
3957    cols[2] = "IFNO" ;
3958    STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
3959    while ( !iter->pastEnd() ) {
3960      Vector<uInt> ids = iter->current() ;
3961      stringstream ss ;
3962      ss << "SELECT FROM $1 WHERE "
3963         << "BEAMNO==" << ids[0] << "&&"
3964         << "POLNO==" << ids[1] << "&&"
3965         << "IFNO==" << ids[2] ;
3966      sel.setTaQL( ss.str() ) ;
3967      aoff->setSelection( sel ) ;
3968      Vector<uInt> rows = iter->getRows( SHARE ) ;
3969      calibrateALMA( out, aoff, rows ) ;
3970      aoff->unsetSelection() ;
3971      sel.reset() ;
3972      iter->next() ;
3973    }
3974    delete iter ;
3975
3976//     t1 = mathutil::gettimeofday_sec() ;
3977//     cout << "elapsed time for calibration: " << t1-t0 << " sec" << endl ;
3978
3979    // flux unit
3980    out->setFluxUnit( "K" ) ;
3981
3982    return out ;
3983  }
3984}
3985
3986CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3987                                       const String antname )
3988{
3989  vector<int> types ;
3990
3991  // APEX calibration mode
3992  int apexcalmode = 1 ;
3993 
3994  if ( antname.find( "APEX" ) != string::npos ) {
3995    // check if off scan exists or not
3996    STSelector sel = STSelector() ;
3997    //sel.setName( offstr1 ) ;
3998    types.push_back( SrcType::FLOOFF ) ;
3999    sel.setTypes( types ) ;
4000    try {
4001      s->setSelection( sel ) ;
4002    }
4003    catch ( AipsError &e ) {
4004      apexcalmode = 0 ;
4005    }
4006    sel.reset() ;
4007  }
4008  s->unsetSelection() ;
4009  types.clear() ;
4010
4011  vector<bool> masks = s->getMask( 0 ) ;
4012  CountedPtr<Scantable> ssig, sref ;
4013  CountedPtr<Scantable> out ;
4014
4015  if ( antname.find( "APEX" ) != string::npos ) {
4016    // APEX calibration
4017    // sky scan
4018    STSelector sel = STSelector() ;
4019    types.push_back( SrcType::FLOSKY ) ;
4020    sel.setTypes( types ) ;
4021    s->setSelection( sel ) ;
4022    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4023    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
4024    s->unsetSelection() ;
4025    sel.reset() ;
4026    types.clear() ;
4027    types.push_back( SrcType::FHISKY ) ;
4028    sel.setTypes( types ) ;
4029    s->setSelection( sel ) ;
4030    tmp.clear() ;
4031    tmp.push_back( getScantable( s, false ) ) ;
4032    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
4033    s->unsetSelection() ;
4034    sel.reset() ;
4035    types.clear() ;
4036   
4037    // hot scan
4038    types.push_back( SrcType::FLOHOT ) ;
4039    sel.setTypes( types ) ;
4040    s->setSelection( sel ) ;
4041    tmp.clear() ;
4042    tmp.push_back( getScantable( s, false ) ) ;
4043    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
4044    s->unsetSelection() ;
4045    sel.reset() ;
4046    types.clear() ;
4047    types.push_back( SrcType::FHIHOT ) ;
4048    sel.setTypes( types ) ;
4049    s->setSelection( sel ) ;
4050    tmp.clear() ;
4051    tmp.push_back( getScantable( s, false ) ) ;
4052    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
4053    s->unsetSelection() ;
4054    sel.reset() ;
4055    types.clear() ;
4056   
4057    // cold scan
4058    CountedPtr<Scantable> acoldlo, acoldhi ;
4059//     types.push_back( SrcType::FLOCOLD ) ;
4060//     sel.setTypes( types ) ;
4061//     s->setSelection( sel ) ;
4062//     tmp.clear() ;
4063//     tmp.push_back( getScantable( s, false ) ) ;
4064//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
4065//     s->unsetSelection() ;
4066//     sel.reset() ;
4067//     types.clear() ;
4068//     types.push_back( SrcType::FHICOLD ) ;
4069//     sel.setTypes( types ) ;
4070//     s->setSelection( sel ) ;
4071//     tmp.clear() ;
4072//     tmp.push_back( getScantable( s, false ) ) ;
4073//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
4074//     s->unsetSelection() ;
4075//     sel.reset() ;
4076//     types.clear() ;
4077
4078    // ref scan
4079    bool insitu = insitu_ ;
4080    insitu_ = false ;
4081    sref = getScantable( s, true ) ;
4082    insitu_ = insitu ;
4083    types.push_back( SrcType::FSLO ) ;
4084    sel.setTypes( types ) ;
4085    s->setSelection( sel ) ;
4086    TableCopy::copyRows( sref->table(), s->table() ) ;
4087    s->unsetSelection() ;
4088    sel.reset() ;
4089    types.clear() ;
4090   
4091    // sig scan
4092    insitu_ = false ;
4093    ssig = getScantable( s, true ) ;
4094    insitu_ = insitu ;
4095    types.push_back( SrcType::FSHI ) ;
4096    sel.setTypes( types ) ;
4097    s->setSelection( sel ) ;
4098    TableCopy::copyRows( ssig->table(), s->table() ) ;
4099    s->unsetSelection() ;
4100    sel.reset() ; 
4101    types.clear() ;
4102         
4103    if ( apexcalmode == 0 ) {
4104      // APEX fs data without off scan
4105      // process each sig and ref scan
4106      ArrayColumn<Float> tsysCollo ;
4107      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4108      ArrayColumn<Float> tsysColhi ;
4109      tsysColhi.attach( sref->table(), "TSYS" ) ;
4110      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4111        vector< CountedPtr<Scantable> > sky( 2 ) ;
4112        sky[0] = askylo ;
4113        sky[1] = askyhi ;
4114        vector< CountedPtr<Scantable> > hot( 2 ) ;
4115        hot[0] = ahotlo ;
4116        hot[1] = ahothi ;
4117        vector< CountedPtr<Scantable> > cold( 2 ) ;
4118        //cold[0] = acoldlo ;
4119        //cold[1] = acoldhi ;
4120        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4121        ssig->setSpectrum( sp, i ) ;
4122        string reftime = ssig->getTime( i ) ;
4123        vector<int> ii( 1, ssig->getIF( i ) ) ;
4124        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4125        vector<int> ip( 1, ssig->getPol( i ) ) ;
4126        sel.setIFs( ii ) ;
4127        sel.setBeams( ib ) ;
4128        sel.setPolarizations( ip ) ;
4129        askylo->setSelection( sel ) ;
4130        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4131        const Vector<Float> Vtsyslo( sptsys ) ;
4132        tsysCollo.put( i, Vtsyslo ) ;
4133        askylo->unsetSelection() ;
4134        sel.reset() ;
4135        sky[0] = askyhi ;
4136        sky[1] = askylo ;
4137        hot[0] = ahothi ;
4138        hot[1] = ahotlo ;
4139        cold[0] = acoldhi ;
4140        cold[1] = acoldlo ;
4141        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4142        sref->setSpectrum( sp, i ) ;
4143        reftime = sref->getTime( i ) ;
4144        ii[0] = sref->getIF( i )  ;
4145        ib[0] = sref->getBeam( i ) ;
4146        ip[0] = sref->getPol( i ) ;
4147        sel.setIFs( ii ) ;
4148        sel.setBeams( ib ) ;
4149        sel.setPolarizations( ip ) ;
4150        askyhi->setSelection( sel ) ;   
4151        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4152        const Vector<Float> Vtsyshi( sptsys ) ;
4153        tsysColhi.put( i, Vtsyshi ) ;
4154        askyhi->unsetSelection() ;
4155        sel.reset() ;
4156      }
4157    }
4158    else if ( apexcalmode == 1 ) {
4159      // APEX fs data with off scan
4160      // off scan
4161      types.push_back( SrcType::FLOOFF ) ;
4162      sel.setTypes( types ) ;
4163      s->setSelection( sel ) ;
4164      tmp.clear() ;
4165      tmp.push_back( getScantable( s, false ) ) ;
4166      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4167      s->unsetSelection() ;
4168      sel.reset() ;
4169      types.clear() ;
4170      types.push_back( SrcType::FHIOFF ) ;
4171      sel.setTypes( types ) ;
4172      s->setSelection( sel ) ;
4173      tmp.clear() ;
4174      tmp.push_back( getScantable( s, false ) ) ;
4175      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4176      s->unsetSelection() ;
4177      sel.reset() ;
4178      types.clear() ;
4179     
4180      // process each sig and ref scan
4181      ArrayColumn<Float> tsysCollo ;
4182      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4183      ArrayColumn<Float> tsysColhi ;
4184      tsysColhi.attach( sref->table(), "TSYS" ) ;
4185      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4186        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4187        ssig->setSpectrum( sp, i ) ;
4188        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4189        string reftime = ssig->getTime( i ) ;
4190        vector<int> ii( 1, ssig->getIF( i ) ) ;
4191        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4192        vector<int> ip( 1, ssig->getPol( i ) ) ;
4193        sel.setIFs( ii ) ;
4194        sel.setBeams( ib ) ;
4195        sel.setPolarizations( ip ) ;
4196        askylo->setSelection( sel ) ;
4197        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4198        const Vector<Float> Vtsyslo( sptsys ) ;
4199        tsysCollo.put( i, Vtsyslo ) ;
4200        askylo->unsetSelection() ;
4201        sel.reset() ;
4202        sref->setSpectrum( sp, i ) ;
4203        reftime = sref->getTime( i ) ;
4204        ii[0] = sref->getIF( i )  ;
4205        ib[0] = sref->getBeam( i ) ;
4206        ip[0] = sref->getPol( i ) ;
4207        sel.setIFs( ii ) ;
4208        sel.setBeams( ib ) ;
4209        sel.setPolarizations( ip ) ;
4210        askyhi->setSelection( sel ) ;   
4211        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4212        const Vector<Float> Vtsyshi( sptsys ) ;
4213        tsysColhi.put( i, Vtsyshi ) ;
4214        askyhi->unsetSelection() ;
4215        sel.reset() ;
4216      }
4217    }
4218  }
4219  else {
4220    // non-APEX fs data
4221    // sky scan
4222    STSelector sel = STSelector() ;
4223    types.push_back( SrcType::SKY ) ;
4224    sel.setTypes( types ) ;
4225    s->setSelection( sel ) ;
4226    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4227    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4228    s->unsetSelection() ;
4229    sel.reset() ;
4230    types.clear() ;
4231   
4232    // hot scan
4233    types.push_back( SrcType::HOT ) ;
4234    sel.setTypes( types ) ;
4235    s->setSelection( sel ) ;
4236    tmp.clear() ;
4237    tmp.push_back( getScantable( s, false ) ) ;
4238    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4239    s->unsetSelection() ;
4240    sel.reset() ;
4241    types.clear() ;
4242
4243    // cold scan
4244    CountedPtr<Scantable> acold ;
4245//     types.push_back( SrcType::COLD ) ;
4246//     sel.setTypes( types ) ;
4247//     s->setSelection( sel ) ;
4248//     tmp.clear() ;
4249//     tmp.push_back( getScantable( s, false ) ) ;
4250//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4251//     s->unsetSelection() ;
4252//     sel.reset() ;
4253//     types.clear() ;
4254   
4255    // ref scan
4256    bool insitu = insitu_ ;
4257    insitu_ = false ;
4258    sref = getScantable( s, true ) ;
4259    insitu_ = insitu ;
4260    types.push_back( SrcType::FSOFF ) ;
4261    sel.setTypes( types ) ;
4262    s->setSelection( sel ) ;
4263    TableCopy::copyRows( sref->table(), s->table() ) ;
4264    s->unsetSelection() ;
4265    sel.reset() ;
4266    types.clear() ;
4267   
4268    // sig scan
4269    insitu_ = false ;
4270    ssig = getScantable( s, true ) ;
4271    insitu_ = insitu ;
4272    types.push_back( SrcType::FSON ) ;
4273    sel.setTypes( types ) ;
4274    s->setSelection( sel ) ;
4275    TableCopy::copyRows( ssig->table(), s->table() ) ;
4276    s->unsetSelection() ;
4277    sel.reset() ;
4278    types.clear() ;
4279
4280    // process each sig and ref scan
4281    ArrayColumn<Float> tsysColsig ;
4282    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4283    ArrayColumn<Float> tsysColref ;
4284    tsysColref.attach( ssig->table(), "TSYS" ) ;
4285    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4286      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4287      ssig->setSpectrum( sp, i ) ;
4288      string reftime = ssig->getTime( i ) ;
4289      vector<int> ii( 1, ssig->getIF( i ) ) ;
4290      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4291      vector<int> ip( 1, ssig->getPol( i ) ) ;
4292      sel.setIFs( ii ) ;
4293      sel.setBeams( ib ) ;
4294      sel.setPolarizations( ip ) ;
4295      asky->setSelection( sel ) ;
4296      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4297      const Vector<Float> Vtsys( sptsys ) ;
4298      tsysColsig.put( i, Vtsys ) ;
4299      asky->unsetSelection() ;
4300      sel.reset() ;
4301      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4302      sref->setSpectrum( sp, i ) ;
4303      tsysColref.put( i, Vtsys ) ;
4304    }
4305  }
4306
4307  // do folding if necessary
4308  Table sigtab = ssig->table() ;
4309  Table reftab = sref->table() ;
4310  ScalarColumn<uInt> sigifnoCol ;
4311  ScalarColumn<uInt> refifnoCol ;
4312  ScalarColumn<uInt> sigfidCol ;
4313  ScalarColumn<uInt> reffidCol ;
4314  Int nchan = (Int)ssig->nchan() ;
4315  sigifnoCol.attach( sigtab, "IFNO" ) ;
4316  refifnoCol.attach( reftab, "IFNO" ) ;
4317  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4318  reffidCol.attach( reftab, "FREQ_ID" ) ;
4319  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4320  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4321  vector<uInt> sfids_unique ;
4322  vector<uInt> rfids_unique ;
4323  vector<uInt> sifno_unique ;
4324  vector<uInt> rifno_unique ;
4325  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4326    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4327      sfids_unique.push_back( sfids[i] ) ;
4328      sifno_unique.push_back( ssig->getIF( i ) ) ;
4329    }
4330    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4331      rfids_unique.push_back( rfids[i] ) ;
4332      rifno_unique.push_back( sref->getIF( i ) ) ;
4333    }
4334  }
4335  double refpix_sig, refval_sig, increment_sig ;
4336  double refpix_ref, refval_ref, increment_ref ;
4337  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4338  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4339    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4340    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4341    if ( refpix_sig == refpix_ref ) {
4342      double foffset = refval_ref - refval_sig ;
4343      int choffset = static_cast<int>(foffset/increment_sig) ;
4344      double doffset = foffset / increment_sig ;
4345      if ( abs(choffset) >= nchan ) {
4346        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4347        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4348        os << "Just return signal data" << LogIO::POST ;
4349        //std::vector< CountedPtr<Scantable> > tabs ;
4350        //tabs.push_back( ssig ) ;
4351        //tabs.push_back( sref ) ;
4352        //out = merge( tabs ) ;
4353        tmp[i] = ssig ;
4354      }
4355      else {
4356        STSelector sel = STSelector() ;
4357        vector<int> v( 1, sifno_unique[i] ) ;
4358        sel.setIFs( v ) ;
4359        ssig->setSelection( sel ) ;
4360        sel.reset() ;
4361        v[0] = rifno_unique[i] ;
4362        sel.setIFs( v ) ;
4363        sref->setSelection( sel ) ;
4364        sel.reset() ;
4365        if ( antname.find( "APEX" ) != string::npos ) {
4366          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4367          //tmp[i] = dofold( ssig, sref, doffset ) ;
4368        }
4369        else {
4370          tmp[i] = dofold( ssig, sref, doffset ) ;
4371        }
4372        ssig->unsetSelection() ;
4373        sref->unsetSelection() ;
4374      }
4375    }
4376  }
4377
4378  if ( tmp.size() > 1 ) {
4379    out = merge( tmp ) ;
4380  }
4381  else {
4382    out = tmp[0] ;
4383  }
4384
4385  // flux unit
4386  out->setFluxUnit( "K" ) ;
4387
4388  return out ;
4389}
4390
4391CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4392{
4393  (void) s; //currently unused
4394  CountedPtr<Scantable> out ;
4395
4396  return out ;
4397}
4398
4399vector<float> STMath::getSpectrumFromTime( string reftime,
4400                                           CountedPtr<Scantable>& s,
4401                                           string mode )
4402{
4403  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4404  vector<float> sp ;
4405
4406  if ( s->nrow() == 0 ) {
4407    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4408    return sp ;
4409  }
4410  else if ( s->nrow() == 1 ) {
4411    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4412    return s->getSpectrum( 0 ) ;
4413  }
4414  else {
4415    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4416    if ( mode == "before" ) {
4417      int id = -1 ;
4418      if ( idx[0] != -1 ) {
4419        id = idx[0] ;
4420      }
4421      else if ( idx[1] != -1 ) {
4422        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4423        id = idx[1] ;
4424      }
4425      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4426      sp = s->getSpectrum( id ) ;
4427    }
4428    else if ( mode == "after" ) {
4429      int id = -1 ;
4430      if ( idx[1] != -1 ) {
4431        id = idx[1] ;
4432      }
4433      else if ( idx[0] != -1 ) {
4434        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4435        id = idx[1] ;
4436      }
4437      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4438      sp = s->getSpectrum( id ) ;
4439    }
4440    else if ( mode == "nearest" ) {
4441      int id = -1 ;
4442      if ( idx[0] == -1 ) {
4443        id = idx[1] ;
4444      }
4445      else if ( idx[1] == -1 ) {
4446        id = idx[0] ;
4447      }
4448      else if ( idx[0] == idx[1] ) {
4449        id = idx[0] ;
4450      }
4451      else {
4452        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4453        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4454        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4455        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4456        double tref = getMJD( reftime ) ;
4457        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4458          id = idx[1] ;
4459        }
4460        else {
4461          id = idx[0] ;
4462        }
4463      }
4464      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4465      sp = s->getSpectrum( id ) ;     
4466    }
4467    else if ( mode == "linear" ) {
4468      if ( idx[0] == -1 ) {
4469        // use after
4470        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4471        int id = idx[1] ;
4472        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4473        sp = s->getSpectrum( id ) ;
4474      }
4475      else if ( idx[1] == -1 ) {
4476        // use before
4477        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4478        int id = idx[0] ;
4479        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4480        sp = s->getSpectrum( id ) ;
4481      }
4482      else if ( idx[0] == idx[1] ) {
4483        // use before
4484        //os << "No need to interporate." << LogIO::POST ;
4485        int id = idx[0] ;
4486        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4487        sp = s->getSpectrum( id ) ;
4488      }
4489      else {
4490        // do interpolation
4491        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4492        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4493        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4494        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4495        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4496        double tref = getMJD( reftime ) ;
4497        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4498        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4499        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4500          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4501          sp.push_back( v ) ;
4502        }
4503      }
4504    }
4505    else {
4506      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4507    }
4508    return sp ;
4509  }
4510}
4511
4512vector<float> STMath::getSpectrumFromTime( double reftime,
4513                                           Vector<Double> &timeVec,
4514                                           CountedPtr<Scantable>& s,
4515                                           string mode )
4516{
4517  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4518  vector<float> sp ;
4519
4520  if ( s->nrow() == 0 ) {
4521    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4522    return sp ;
4523  }
4524  else if ( s->nrow() == 1 ) {
4525    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4526    return s->getSpectrum( 0 ) ;
4527  }
4528  else {
4529    //ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4530    //Vector<Double> timeVec = timeCol.getColumn() ;
4531    vector<int> idx = getRowIdFromTime( reftime, timeVec ) ;
4532    if ( mode == "before" ) {
4533      int id = -1 ;
4534      if ( idx[0] != -1 ) {
4535        id = idx[0] ;
4536      }
4537      else if ( idx[1] != -1 ) {
4538        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4539        id = idx[1] ;
4540      }
4541      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4542      sp = s->getSpectrum( id ) ;
4543    }
4544    else if ( mode == "after" ) {
4545      int id = -1 ;
4546      if ( idx[1] != -1 ) {
4547        id = idx[1] ;
4548      }
4549      else if ( idx[0] != -1 ) {
4550        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4551        id = idx[1] ;
4552      }
4553      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4554      sp = s->getSpectrum( id ) ;
4555    }
4556    else if ( mode == "nearest" ) {
4557      int id = -1 ;
4558      if ( idx[0] == -1 ) {
4559        id = idx[1] ;
4560      }
4561      else if ( idx[1] == -1 ) {
4562        id = idx[0] ;
4563      }
4564      else if ( idx[0] == idx[1] ) {
4565        id = idx[0] ;
4566      }
4567      else {
4568        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4569        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4570//         double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4571//         double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4572        double t0 = timeVec[idx[0]] ;
4573        double t1 = timeVec[idx[1]] ;
4574//         cout << "t0-t0c=" << t0-t0c << endl ;
4575//         cout << "t1-t1c=" << t1-t1c << endl ;
4576//         double tref = getMJD( reftime ) ;
4577        double tref = reftime ;
4578        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4579          id = idx[1] ;
4580        }
4581        else {
4582          id = idx[0] ;
4583        }
4584      }
4585      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4586      sp = s->getSpectrum( id ) ;     
4587    }
4588    else if ( mode == "linear" ) {
4589      if ( idx[0] == -1 ) {
4590        // use after
4591        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4592        int id = idx[1] ;
4593        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4594        sp = s->getSpectrum( id ) ;
4595      }
4596      else if ( idx[1] == -1 ) {
4597        // use before
4598        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4599        int id = idx[0] ;
4600        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4601        sp = s->getSpectrum( id ) ;
4602      }
4603      else if ( idx[0] == idx[1] ) {
4604        // use before
4605        //os << "No need to interporate." << LogIO::POST ;
4606        int id = idx[0] ;
4607        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4608        sp = s->getSpectrum( id ) ;
4609      }
4610      else {
4611        // do interpolation
4612        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4613        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4614        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4615//         double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4616//         double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4617        double t0 = timeVec[idx[0]] ;
4618        double t1 = timeVec[idx[1]] ;
4619//         cout << "t0-t0c=" << t0-t0c << endl ;
4620//         cout << "t1-t1c=" << t1-t1c << endl ;
4621//         double tref = getMJD( reftime ) ;
4622        double tref = reftime ;
4623        sp = s->getSpectrum( idx[0] ) ;
4624        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4625        double tfactor = ( tref - t0 ) / ( t1 - t0 ) ;
4626        for ( unsigned int i = 0 ; i < sp.size() ; i++ ) {
4627          sp[i] = ( sp1[i] - sp[i] ) * tfactor + sp[i] ;
4628        }
4629      }
4630    }
4631    else {
4632      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4633    }
4634    return sp ;
4635  }
4636}
4637
4638double STMath::getMJD( string strtime )
4639{
4640  if ( strtime.find("/") == string::npos ) {
4641    // MJD time string
4642    return atof( strtime.c_str() ) ;
4643  }
4644  else {
4645    // string in YYYY/MM/DD/HH:MM:SS format
4646    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4647    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4648    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4649    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4650    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4651    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4652    Time t( year, month, day, hour, minute, sec ) ;
4653    return t.modifiedJulianDay() ;
4654  }
4655}
4656
4657vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4658{
4659  double reft = getMJD( reftime ) ;
4660  double dtmin = 1.0e100 ;
4661  double dtmax = -1.0e100 ;
4662  vector<double> dt ;
4663  int just_before = -1 ;
4664  int just_after = -1 ;
4665  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4666    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4667  }
4668  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4669    if ( dt[i] > 0.0 ) {
4670      // after reftime
4671      if ( dt[i] < dtmin ) {
4672        just_after = i ;
4673        dtmin = dt[i] ;
4674      }
4675    }
4676    else if ( dt[i] < 0.0 ) {
4677      // before reftime
4678      if ( dt[i] > dtmax ) {
4679        just_before = i ;
4680        dtmax = dt[i] ;
4681      }
4682    }
4683    else {
4684      // just a reftime
4685      just_before = i ;
4686      just_after = i ;
4687      dtmax = 0 ;
4688      dtmin = 0 ;
4689      break ;
4690    }
4691  }
4692
4693  vector<int> v ;
4694  v.push_back( just_before ) ;
4695  v.push_back( just_after ) ;
4696
4697  return v ;
4698}
4699
4700vector<int> STMath::getRowIdFromTime( double reftime, Vector<Double> &t )
4701{
4702//   double reft = reftime ;
4703  double dtmin = 1.0e100 ;
4704  double dtmax = -1.0e100 ;
4705//   vector<double> dt ;
4706  int just_before = -1 ;
4707  int just_after = -1 ;
4708  //cout << setprecision(24) << reft << endl ;
4709//   ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4710//   for ( int i = 0 ; i < s->nrow() ; i++ ) {
4711//     cout << setprecision(24) << timeCol(i) << endl ;
4712//     //dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4713//     dt.push_back( timeCol(i) - reft ) ;
4714//   }
4715  Vector<Double> dt = t - reftime ;
4716  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4717    if ( dt[i] > 0.0 ) {
4718      // after reftime
4719      if ( dt[i] < dtmin ) {
4720        just_after = i ;
4721        dtmin = dt[i] ;
4722      }
4723    }
4724    else if ( dt[i] < 0.0 ) {
4725      // before reftime
4726      if ( dt[i] > dtmax ) {
4727        just_before = i ;
4728        dtmax = dt[i] ;
4729      }
4730    }
4731    else {
4732      // just a reftime
4733      just_before = i ;
4734      just_after = i ;
4735      dtmax = 0 ;
4736      dtmin = 0 ;
4737      break ;
4738    }
4739  }
4740
4741  vector<int> v(2) ;
4742  v[0] = just_before ;
4743  v[1] = just_after ;
4744
4745  return v ;
4746}
4747
4748vector<float> STMath::getTcalFromTime( string reftime,
4749                                       CountedPtr<Scantable>& s,
4750                                       string mode )
4751{
4752  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4753  vector<float> tcal ;
4754  STTcal tcalTable = s->tcal() ;
4755  String time ;
4756  Vector<Float> tcalval ;
4757  if ( s->nrow() == 0 ) {
4758    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4759    return tcal ;
4760  }
4761  else if ( s->nrow() == 1 ) {
4762    uInt tcalid = s->getTcalId( 0 ) ;
4763    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4764    tcalTable.getEntry( time, tcalval, tcalid ) ;
4765    tcalval.tovector( tcal ) ;
4766    return tcal ;
4767  }
4768  else {
4769    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4770    if ( mode == "before" ) {
4771      int id = -1 ;
4772      if ( idx[0] != -1 ) {
4773        id = idx[0] ;
4774      }
4775      else if ( idx[1] != -1 ) {
4776        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4777        id = idx[1] ;
4778      }
4779      uInt tcalid = s->getTcalId( id ) ;
4780      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4781      tcalTable.getEntry( time, tcalval, tcalid ) ;
4782      tcalval.tovector( tcal ) ;
4783    }
4784    else if ( mode == "after" ) {
4785      int id = -1 ;
4786      if ( idx[1] != -1 ) {
4787        id = idx[1] ;
4788      }
4789      else if ( idx[0] != -1 ) {
4790        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4791        id = idx[1] ;
4792      }
4793      uInt tcalid = s->getTcalId( id ) ;
4794      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4795      tcalTable.getEntry( time, tcalval, tcalid ) ;
4796      tcalval.tovector( tcal ) ;
4797    }
4798    else if ( mode == "nearest" ) {
4799      int id = -1 ;
4800      if ( idx[0] == -1 ) {
4801        id = idx[1] ;
4802      }
4803      else if ( idx[1] == -1 ) {
4804        id = idx[0] ;
4805      }
4806      else if ( idx[0] == idx[1] ) {
4807        id = idx[0] ;
4808      }
4809      else {
4810        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4811        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4812        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4813        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4814        double tref = getMJD( reftime ) ;
4815        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4816          id = idx[1] ;
4817        }
4818        else {
4819          id = idx[0] ;
4820        }
4821      }
4822      uInt tcalid = s->getTcalId( id ) ;
4823      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4824      tcalTable.getEntry( time, tcalval, tcalid ) ;
4825      tcalval.tovector( tcal ) ;
4826    }
4827    else if ( mode == "linear" ) {
4828      if ( idx[0] == -1 ) {
4829        // use after
4830        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4831        int id = idx[1] ;
4832        uInt tcalid = s->getTcalId( id ) ;
4833        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4834        tcalTable.getEntry( time, tcalval, tcalid ) ;
4835        tcalval.tovector( tcal ) ;
4836      }
4837      else if ( idx[1] == -1 ) {
4838        // use before
4839        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4840        int id = idx[0] ;
4841        uInt tcalid = s->getTcalId( id ) ;
4842        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4843        tcalTable.getEntry( time, tcalval, tcalid ) ;
4844        tcalval.tovector( tcal ) ;
4845      }
4846      else if ( idx[0] == idx[1] ) {
4847        // use before
4848        //os << "No need to interporate." << LogIO::POST ;
4849        int id = idx[0] ;
4850        uInt tcalid = s->getTcalId( id ) ;
4851        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4852        tcalTable.getEntry( time, tcalval, tcalid ) ;
4853        tcalval.tovector( tcal ) ;
4854      }
4855      else {
4856        // do interpolation
4857        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4858        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4859        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4860        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4861        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4862        double tref = getMJD( reftime ) ;
4863        vector<float> tcal0 ;
4864        vector<float> tcal1 ;
4865        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4866        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4867        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4868        tcalval.tovector( tcal0 ) ;
4869        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4870        tcalval.tovector( tcal1 ) ;       
4871        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4872          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4873          tcal.push_back( v ) ;
4874        }
4875      }
4876    }
4877    else {
4878      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4879    }
4880    return tcal ;
4881  }
4882}
4883
4884vector<float> STMath::getTsysFromTime( string reftime,
4885                                       CountedPtr<Scantable>& s,
4886                                       string mode )
4887{
4888  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4889  ArrayColumn<Float> tsysCol ;
4890  tsysCol.attach( s->table(), "TSYS" ) ;
4891  vector<float> tsys ;
4892  String time ;
4893  Vector<Float> tsysval ;
4894  if ( s->nrow() == 0 ) {
4895    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4896    return tsys ;
4897  }
4898  else if ( s->nrow() == 1 ) {
4899    //os << "use row " << 0 << LogIO::POST ;
4900    tsysval = tsysCol( 0 ) ;
4901    tsysval.tovector( tsys ) ;
4902    return tsys ;
4903  }
4904  else {
4905    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4906    if ( mode == "before" ) {
4907      int id = -1 ;
4908      if ( idx[0] != -1 ) {
4909        id = idx[0] ;
4910      }
4911      else if ( idx[1] != -1 ) {
4912        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4913        id = idx[1] ;
4914      }
4915      //os << "use row " << id << LogIO::POST ;
4916      tsysval = tsysCol( id ) ;
4917      tsysval.tovector( tsys ) ;
4918    }
4919    else if ( mode == "after" ) {
4920      int id = -1 ;
4921      if ( idx[1] != -1 ) {
4922        id = idx[1] ;
4923      }
4924      else if ( idx[0] != -1 ) {
4925        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4926        id = idx[1] ;
4927      }
4928      //os << "use row " << id << LogIO::POST ;
4929      tsysval = tsysCol( id ) ;
4930      tsysval.tovector( tsys ) ;
4931    }
4932    else if ( mode == "nearest" ) {
4933      int id = -1 ;
4934      if ( idx[0] == -1 ) {
4935        id = idx[1] ;
4936      }
4937      else if ( idx[1] == -1 ) {
4938        id = idx[0] ;
4939      }
4940      else if ( idx[0] == idx[1] ) {
4941        id = idx[0] ;
4942      }
4943      else {
4944        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4945        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4946        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4947        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4948        double tref = getMJD( reftime ) ;
4949        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4950          id = idx[1] ;
4951        }
4952        else {
4953          id = idx[0] ;
4954        }
4955      }
4956      //os << "use row " << id << LogIO::POST ;
4957      tsysval = tsysCol( id ) ;
4958      tsysval.tovector( tsys ) ;
4959    }
4960    else if ( mode == "linear" ) {
4961      if ( idx[0] == -1 ) {
4962        // use after
4963        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4964        int id = idx[1] ;
4965        //os << "use row " << id << LogIO::POST ;
4966        tsysval = tsysCol( id ) ;
4967        tsysval.tovector( tsys ) ;
4968      }
4969      else if ( idx[1] == -1 ) {
4970        // use before
4971        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4972        int id = idx[0] ;
4973        //os << "use row " << id << LogIO::POST ;
4974        tsysval = tsysCol( id ) ;
4975        tsysval.tovector( tsys ) ;
4976      }
4977      else if ( idx[0] == idx[1] ) {
4978        // use before
4979        //os << "No need to interporate." << LogIO::POST ;
4980        int id = idx[0] ;
4981        //os << "use row " << id << LogIO::POST ;
4982        tsysval = tsysCol( id ) ;
4983        tsysval.tovector( tsys ) ;
4984      }
4985      else {
4986        // do interpolation
4987        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4988        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4989        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4990        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4991        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4992        double tref = getMJD( reftime ) ;
4993        vector<float> tsys0 ;
4994        vector<float> tsys1 ;
4995        tsysval = tsysCol( idx[0] ) ;
4996        tsysval.tovector( tsys0 ) ;
4997        tsysval = tsysCol( idx[1] ) ;
4998        tsysval.tovector( tsys1 ) ;       
4999        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
5000          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
5001          tsys.push_back( v ) ;
5002        }
5003      }
5004    }
5005    else {
5006      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
5007    }
5008    return tsys ;
5009  }
5010}
5011
5012vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5013                                            CountedPtr<Scantable>& off,
5014                                            CountedPtr<Scantable>& sky,
5015                                            CountedPtr<Scantable>& hot,
5016                                            CountedPtr<Scantable>& cold,
5017                                            int index,
5018                                            string antname )
5019{
5020  (void) cold; //currently unused
5021  string reftime = on->getTime( index ) ;
5022  vector<int> ii( 1, on->getIF( index ) ) ;
5023  vector<int> ib( 1, on->getBeam( index ) ) ;
5024  vector<int> ip( 1, on->getPol( index ) ) ;
5025  STSelector sel = STSelector() ;
5026  sel.setIFs( ii ) ;
5027  sel.setBeams( ib ) ;
5028  sel.setPolarizations( ip ) ;
5029  sky->setSelection( sel ) ;
5030  hot->setSelection( sel ) ;
5031  //cold->setSelection( sel ) ;
5032  off->setSelection( sel ) ;
5033  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5034  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5035  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5036  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
5037  vector<float> spec = on->getSpectrum( index ) ;
5038  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5039  vector<float> sp( tcal.size() ) ;
5040  if ( antname.find( "APEX" ) != string::npos ) {
5041    // using gain array
5042    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5043      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
5044        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
5045      sp[j] = v ;
5046    }
5047  }
5048  else {
5049    // Chopper-Wheel calibration (Ulich & Haas 1976)
5050    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5051      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
5052      sp[j] = v ;
5053    }
5054  }
5055  sel.reset() ;
5056  sky->unsetSelection() ;
5057  hot->unsetSelection() ;
5058  //cold->unsetSelection() ;
5059  off->unsetSelection() ;
5060
5061  return sp ;
5062}
5063
5064vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5065                                            CountedPtr<Scantable>& off,
5066                                            int index )
5067{
5068//   string reftime = on->getTime( index ) ;
5069  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5070  Vector<Double> timeVec = timeCol.getColumn() ;
5071  //ROTableColumn timeCol( on->table(), "TIME" ) ;
5072  timeCol.attach( on->table(), "TIME" ) ;
5073  double reftime = timeCol.asdouble(index) ;
5074  vector<int> ii( 1, on->getIF( index ) ) ;
5075  vector<int> ib( 1, on->getBeam( index ) ) ;
5076  vector<int> ip( 1, on->getPol( index ) ) ;
5077  STSelector sel = STSelector() ;
5078  sel.setIFs( ii ) ;
5079  sel.setBeams( ib ) ;
5080  sel.setPolarizations( ip ) ;
5081  off->setSelection( sel ) ;
5082  vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
5083  vector<float> spec = on->getSpectrum( index ) ;
5084  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5085  //vector<float> tsys = on->getTsysVec( index ) ;
5086  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5087  Vector<Float> tsys = tsysCol( index ) ;
5088  vector<float> sp( spec.size() ) ;
5089  // ALMA Calibration
5090  //
5091  // Ta* = Tsys * ( ON - OFF ) / OFF
5092  //
5093  // 2010/01/07 Takeshi Nakazato
5094  unsigned int tsyssize = tsys.nelements() ;
5095  unsigned int spsize = sp.size() ;
5096  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5097    float tscale = 0.0 ;
5098    if ( tsyssize == spsize )
5099      tscale = tsys[j] ;
5100    else
5101      tscale = tsys[0] ;
5102    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5103    sp[j] = v ;
5104  }
5105  sel.reset() ;
5106  off->unsetSelection() ;
5107
5108  return sp ;
5109}
5110
5111void STMath::calibrateALMA( CountedPtr<Scantable>& on,
5112                            CountedPtr<Scantable>& off )
5113{
5114  //   string reftime = on->getTime( index ) ;
5115  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5116  Vector<Double> timeVec = timeCol.getColumn() ;
5117  //ROTableColumn timeCol( on->table(), "TIME" ) ;
5118  timeCol.attach( on->table(), "TIME" ) ;
5119  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5120  vector<float> sp( on->nchan( on->getIF(0) ) ) ;
5121  unsigned int spsize = sp.size() ;
5122  for ( int index = 0 ; index < on->nrow() ; index++ ) {
5123    double reftime = timeCol.asdouble(index) ;
5124    vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
5125    vector<float> spec = on->getSpectrum( index ) ;
5126    Vector<Float> tsys = tsysCol( index ) ;
5127    // ALMA Calibration
5128    //
5129    // Ta* = Tsys * ( ON - OFF ) / OFF
5130    //
5131    // 2010/01/07 Takeshi Nakazato
5132    unsigned int tsyssize = tsys.nelements() ;
5133    for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5134      float tscale = 0.0 ;
5135      if ( tsyssize == spsize )
5136        tscale = tsys[j] ;
5137      else
5138        tscale = tsys[0] ;
5139      float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5140      sp[j] = v ;
5141    }
5142    on->setSpectrum( sp, index ) ;
5143  }
5144}
5145
5146void STMath::calibrateALMA( CountedPtr<Scantable>& on,
5147                            CountedPtr<Scantable>& off,
5148                            Vector<uInt>& rows )
5149{
5150//   string reftime = on->getTime( index ) ;
5151  ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5152  Vector<Double> timeVec = timeCol.getColumn() ;
5153  //ROTableColumn timeCol( on->table(), "TIME" ) ;
5154  timeCol.attach( on->table(), "TIME" ) ;
5155  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5156  vector<float> sp( on->nchan( on->getIF(rows[0]) ) ) ;
5157  unsigned int spsize = sp.size() ;
5158  // I know that the data is contiguous
5159  const uInt *p = rows.data() ;
5160  for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
5161    //int index = rows[irow] ;
5162    //double reftime = timeCol.asdouble(index) ;
5163    double reftime = timeCol.asdouble(*p) ;
5164    vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
5165    //vector<float> spec = on->getSpectrum( index ) ;
5166    //Vector<Float> tsys = tsysCol( index ) ;
5167    vector<float> spec = on->getSpectrum( *p ) ;
5168    Vector<Float> tsys = tsysCol( *p ) ;
5169    // ALMA Calibration
5170    //
5171    // Ta* = Tsys * ( ON - OFF ) / OFF
5172    //
5173    // 2010/01/07 Takeshi Nakazato
5174    unsigned int tsyssize = tsys.nelements() ;
5175    for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5176      float tscale = 0.0 ;
5177      if ( tsyssize == spsize )
5178        tscale = tsys[j] ;
5179      else
5180        tscale = tsys[0] ;
5181      float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5182      sp[j] = v ;
5183    }
5184    //on->setSpectrum( sp, index ) ;
5185    on->setSpectrum( sp, *p ) ;
5186    p++ ;
5187  }
5188}
5189
5190vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5191                                              CountedPtr<Scantable>& ref,
5192                                              CountedPtr<Scantable>& sky,
5193                                              CountedPtr<Scantable>& hot,
5194                                              CountedPtr<Scantable>& cold,
5195                                              int index )
5196{
5197  (void) cold; //currently unused
5198  string reftime = sig->getTime( index ) ;
5199  vector<int> ii( 1, sig->getIF( index ) ) ;
5200  vector<int> ib( 1, sig->getBeam( index ) ) ;
5201  vector<int> ip( 1, sig->getPol( index ) ) ;
5202  vector<int> ic( 1, sig->getScan( index ) ) ;
5203  STSelector sel = STSelector() ;
5204  sel.setIFs( ii ) ;
5205  sel.setBeams( ib ) ;
5206  sel.setPolarizations( ip ) ;
5207  sky->setSelection( sel ) ;
5208  hot->setSelection( sel ) ;
5209  //cold->setSelection( sel ) ;
5210  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5211  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5212  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5213  vector<float> spref = ref->getSpectrum( index ) ;
5214  vector<float> spsig = sig->getSpectrum( index ) ;
5215  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5216  vector<float> sp( tcal.size() ) ;
5217  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5218    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
5219    sp[j] = v ;
5220  }
5221  sel.reset() ;
5222  sky->unsetSelection() ;
5223  hot->unsetSelection() ;
5224  //cold->unsetSelection() ;
5225
5226  return sp ;
5227}
5228
5229vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5230                                              CountedPtr<Scantable>& ref,
5231                                              vector< CountedPtr<Scantable> >& sky,
5232                                              vector< CountedPtr<Scantable> >& hot,
5233                                              vector< CountedPtr<Scantable> >& cold,
5234                                              int index )
5235{
5236  (void) cold; //currently unused
5237  string reftime = sig->getTime( index ) ;
5238  vector<int> ii( 1, sig->getIF( index ) ) ;
5239  vector<int> ib( 1, sig->getBeam( index ) ) ;
5240  vector<int> ip( 1, sig->getPol( index ) ) ;
5241  vector<int> ic( 1, sig->getScan( index ) ) ;
5242  STSelector sel = STSelector() ;
5243  sel.setIFs( ii ) ;
5244  sel.setBeams( ib ) ;
5245  sel.setPolarizations( ip ) ;
5246  sky[0]->setSelection( sel ) ;
5247  hot[0]->setSelection( sel ) ;
5248  //cold[0]->setSelection( sel ) ;
5249  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
5250  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
5251  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
5252  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
5253  sel.reset() ;
5254  ii[0] = ref->getIF( index ) ;
5255  sel.setIFs( ii ) ;
5256  sel.setBeams( ib ) ;
5257  sel.setPolarizations( ip ) ;
5258  sky[1]->setSelection( sel ) ;
5259  hot[1]->setSelection( sel ) ;
5260  //cold[1]->setSelection( sel ) ;
5261  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
5262  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
5263  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
5264  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
5265  vector<float> spref = ref->getSpectrum( index ) ;
5266  vector<float> spsig = sig->getSpectrum( index ) ;
5267  vector<float> sp( tcals.size() ) ;
5268  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
5269    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
5270    sp[j] = v ;
5271  }
5272  sel.reset() ;
5273  sky[0]->unsetSelection() ;
5274  hot[0]->unsetSelection() ;
5275  //cold[0]->unsetSelection() ;
5276  sky[1]->unsetSelection() ;
5277  hot[1]->unsetSelection() ;
5278  //cold[1]->unsetSelection() ;
5279
5280  return sp ;
5281}
Note: See TracBrowser for help on using the repository browser.