source: branches/hpc33/src/STMath.cpp@ 2539

Last change on this file since 2539 was 2539, checked in by Takeshi Nakazato, 13 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Describe your changes here...

Speedup STMath::average(). Duplicated data selection for first input table
is removed by merging TableIterator loop with for loop over the rows for
output table.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 183.3 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <sstream>
14
15#include <casa/iomanip.h>
16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
19#include <casa/Arrays/ArrayMath.h>
20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
24#include <casa/Containers/RecordField.h>
25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
27
28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
31#include <coordinates/Coordinates/SpectralCoordinate.h>
32
33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
37#include <scimath/Mathematics/VectorKernel.h>
38
39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
49#include <atnf/PKSIO/SrcType.h>
50
51#include "RowAccumulator.h"
52#include "STAttr.h"
53#include "STMath.h"
54#include "STSelector.h"
55#include "Accelerator.h"
56#include "STIdxIter.h"
57
58using namespace casa;
59using namespace asap;
60
61
62// 2012/02/17 TN
63// Since STGrid is implemented, average doesn't consider direction
64// when accumulating
65// tolerance for direction comparison (rad)
66// #define TOL_OTF 1.0e-15
67// #define TOL_POINT 2.9088821e-4 // 1 arcmin
68
69STMath::STMath(bool insitu) :
70 insitu_(insitu)
71{
72}
73
74
75STMath::~STMath()
76{
77}
78
79CountedPtr<Scantable>
80STMath::average( const std::vector<CountedPtr<Scantable> >& in,
81 const std::vector<bool>& mask,
82 const std::string& weight,
83 const std::string& avmode)
84{
85 // double t0, t1 ;
86 // t0 = mathutil::gettimeofday_sec() ;
87
88 LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
89 if ( avmode == "SCAN" && in.size() != 1 )
90 throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
91 "Use merge first."));
92 WeightType wtype = stringToWeight(weight);
93
94 // 2012/02/17 TN
95 // Since STGrid is implemented, average doesn't consider direction
96 // when accumulating
97 // check if OTF observation
98// String obstype = in[0]->getHeader().obstype ;
99// Double tol = 0.0 ;
100// if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
101// tol = TOL_OTF ;
102// }
103// else {
104// tol = TOL_POINT ;
105// }
106
107 // output
108 // clone as this is non insitu
109 bool insitu = insitu_;
110 setInsitu(false);
111 CountedPtr< Scantable > out = getScantable(in[0], true);
112 setInsitu(insitu);
113 std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
114 ++stit;
115 while ( stit != in.end() ) {
116 out->appendToHistoryTable((*stit)->history());
117 ++stit;
118 }
119
120 Table& tout = out->table();
121
122 /// @todo check if all scantables are conformant
123
124 ArrayColumn<Float> specColOut(tout,"SPECTRA");
125 ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
126 ArrayColumn<Float> tsysColOut(tout,"TSYS");
127 ScalarColumn<Double> mjdColOut(tout,"TIME");
128 ScalarColumn<Double> intColOut(tout,"INTERVAL");
129 ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
130 ScalarColumn<uInt> scanColOut(tout,"SCANNO");
131
132 // set up the output table rows. These are based on the structure of the
133 // FIRST scantable in the vector
134 const Table& baset = in[0]->table();
135
136 RowAccumulator acc(wtype);
137 Vector<Bool> cmask(mask);
138 acc.setUserMask(cmask);
139 ROTableRow row(tout);
140 ROArrayColumn<Float> specCol, tsysCol;
141 ROArrayColumn<uChar> flagCol;
142 ROScalarColumn<Double> mjdCol, intCol;
143 ROScalarColumn<Int> scanIDCol;
144
145 Vector<uInt> rowstodelete;
146
147 Block<String> cols(3);
148 cols[0] = String("BEAMNO");
149 cols[1] = String("IFNO");
150 cols[2] = String("POLNO");
151 if ( avmode == "SOURCE" ) {
152 cols.resize(4);
153 cols[3] = String("SRCNAME");
154 }
155 if ( avmode == "SCAN" && in.size() == 1) {
156 //cols.resize(4);
157 //cols[3] = String("SCANNO");
158 cols.resize(5);
159 cols[3] = String("SRCNAME");
160 cols[4] = String("SCANNO");
161 }
162 uInt outrowCount = 0;
163 TableIterator iter(baset, cols);
164// int count = 0 ;
165 while (!iter.pastEnd()) {
166 Table subt = iter.table();
167 // copy the first row of this selection into the new table
168 tout.addRow();
169 TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
170 // re-index to 0
171 if ( avmode != "SCAN" && avmode != "SOURCE" ) {
172 scanColOut.put(outrowCount, uInt(0));
173 }
174 /*
175 ++outrowCount;
176 */
177 // 2012/02/17 TN
178 // Since STGrid is implemented, average doesn't consider direction
179 // when accumulating
180// MDirection::ScalarColumn dircol ;
181// dircol.attach( subt, "DIRECTION" ) ;
182// Int length = subt.nrow() ;
183// vector< Vector<Double> > dirs ;
184// vector<int> indexes ;
185// for ( Int i = 0 ; i < length ; i++ ) {
186// Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
187// //os << << count++ << ": " ;
188// //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
189// bool adddir = true ;
190// for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
191// //if ( allTrue( t == dirs[j] ) ) {
192// Double dx = t[0] - dirs[j][0] ;
193// Double dy = t[1] - dirs[j][1] ;
194// Double dd = sqrt( dx * dx + dy * dy ) ;
195// //if ( allNearAbs( t, dirs[j], tol ) ) {
196// if ( dd <= tol ) {
197// adddir = false ;
198// break ;
199// }
200// }
201// if ( adddir ) {
202// dirs.push_back( t ) ;
203// indexes.push_back( i ) ;
204// }
205// }
206// uInt rowNum = dirs.size() ;
207// tout.addRow( rowNum ) ;
208// for ( uInt i = 0 ; i < rowNum ; i++ ) {
209// TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
210// // re-index to 0
211// if ( avmode != "SCAN" && avmode != "SOURCE" ) {
212// scanColOut.put(outrowCount+i, uInt(0));
213// }
214// }
215// outrowCount += rowNum ;
216/*
217 ++iter;
218 }
219 RowAccumulator acc(wtype);
220 Vector<Bool> cmask(mask);
221 acc.setUserMask(cmask);
222 ROTableRow row(tout);
223 ROArrayColumn<Float> specCol, tsysCol;
224 ROArrayColumn<uChar> flagCol;
225 ROScalarColumn<Double> mjdCol, intCol;
226 ROScalarColumn<Int> scanIDCol;
227
228 Vector<uInt> rowstodelete;
229*/
230
231// merge loop
232 uInt i = outrowCount ;
233// for (uInt i=0; i < tout.nrow(); ++i) {
234
235 // in[0] is already selected by TableItertor
236 specCol.attach(subt,"SPECTRA");
237 flagCol.attach(subt,"FLAGTRA");
238 tsysCol.attach(subt,"TSYS");
239 intCol.attach(subt,"INTERVAL");
240 mjdCol.attach(subt,"TIME");
241 Vector<Float> spec,tsys;
242 Vector<uChar> flag;
243 Double inter,time;
244 for (uInt k = 0; k < subt.nrow(); ++k ) {
245 flagCol.get(k, flag);
246 Vector<Bool> bflag(flag.shape());
247 convertArray(bflag, flag);
248 /*
249 if ( allEQ(bflag, True) ) {
250 continue;//don't accumulate
251 }
252 */
253 specCol.get(k, spec);
254 tsysCol.get(k, tsys);
255 intCol.get(k, inter);
256 mjdCol.get(k, time);
257 // spectrum has to be added last to enable weighting by the other values
258 acc.add(spec, !bflag, tsys, inter, time);
259 }
260
261 // If there exists a channel at which all the input spectra are masked,
262 // spec has 'nan' values for that channel and it may affect the following
263 // processes. To avoid this, replacing 'nan' values in spec with
264 // weighted-mean of all spectra in the following line.
265 // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
266 acc.replaceNaN();
267
268 // in[0] is already selected by TableIterator so that it is not necessary to process
269 // in[0] here
270 //for ( int j=0; j < int(in.size()); ++j ) {
271 for ( int j=1; j < int(in.size()); ++j ) {
272 const Table& tin = in[j]->table();
273 const TableRecord& rec = row.get(i);
274 ROScalarColumn<Double> tmp(tin, "TIME");
275 Double td;tmp.get(0,td);
276
277#if 1
278 static char const*const colNames1[] = { "IFNO", "BEAMNO", "POLNO" };
279 uInt const values1[] = { rec.asuInt("IFNO"), rec.asuInt("BEAMNO"), rec.asuInt("POLNO") };
280 SingleTypeEqPredicate<uInt, 3> myPred(tin, colNames1, values1);
281 CustomTableExprNodeRep myNodeRep(tin, myPred);
282 myNodeRep.link(); // to avoid automatic delete when myExpr is destructed.
283 CustomTableExprNode myExpr(myNodeRep);
284 Table basesubt = tin(myExpr);
285#else
286 Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
287 && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
288 && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
289#endif
290 // Table subt;
291 if ( avmode == "SOURCE") {
292 subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
293 } else if (avmode == "SCAN") {
294 subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
295 && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
296 } else {
297 subt = basesubt;
298 }
299
300 // 2012/02/17 TN
301 // Since STGrid is implemented, average doesn't consider direction
302 // when accumulating
303// vector<uInt> removeRows ;
304// uInt nrsubt = subt.nrow() ;
305// for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
306// //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
307// Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
308// Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
309// double dx = x0[0] - x1[0];
310// double dy = x0[1] - x1[1];
311// Double dd = sqrt( dx * dx + dy * dy ) ;
312// //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
313// if ( dd > tol ) {
314// removeRows.push_back( irow ) ;
315// }
316// }
317// if ( removeRows.size() != 0 ) {
318// subt.removeRow( removeRows ) ;
319// }
320
321// if ( nrsubt == removeRows.size() )
322// throw(AipsError("Averaging data is empty.")) ;
323
324 specCol.attach(subt,"SPECTRA");
325 flagCol.attach(subt,"FLAGTRA");
326 tsysCol.attach(subt,"TSYS");
327 intCol.attach(subt,"INTERVAL");
328 mjdCol.attach(subt,"TIME");
329 Vector<Float> spec,tsys;
330 Vector<uChar> flag;
331 Double inter,time;
332 for (uInt k = 0; k < subt.nrow(); ++k ) {
333 flagCol.get(k, flag);
334 Vector<Bool> bflag(flag.shape());
335 convertArray(bflag, flag);
336 /*
337 if ( allEQ(bflag, True) ) {
338 continue;//don't accumulate
339 }
340 */
341 specCol.get(k, spec);
342 tsysCol.get(k, tsys);
343 intCol.get(k, inter);
344 mjdCol.get(k, time);
345 // spectrum has to be added last to enable weighting by the other values
346 acc.add(spec, !bflag, tsys, inter, time);
347 }
348
349 // If there exists a channel at which all the input spectra are masked,
350 // spec has 'nan' values for that channel and it may affect the following
351 // processes. To avoid this, replacing 'nan' values in spec with
352 // weighted-mean of all spectra in the following line.
353 // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
354 acc.replaceNaN();
355 }
356 const Vector<Bool>& msk = acc.getMask();
357 if ( allEQ(msk, False) ) {
358 uint n = rowstodelete.nelements();
359 rowstodelete.resize(n+1, True);
360 rowstodelete[n] = i;
361 continue;
362 }
363 //write out
364 if (acc.state()) {
365 Vector<uChar> flg(msk.shape());
366 convertArray(flg, !msk);
367 for (uInt k = 0; k < flg.nelements(); ++k) {
368 uChar userFlag = 1 << 7;
369 if (msk[k]==True) userFlag = 0 << 7;
370 flg(k) = userFlag;
371 }
372
373 flagColOut.put(i, flg);
374 specColOut.put(i, acc.getSpectrum());
375 tsysColOut.put(i, acc.getTsys());
376 intColOut.put(i, acc.getInterval());
377 mjdColOut.put(i, acc.getTime());
378 // we should only have one cycle now -> reset it to be 0
379 // frequency switched data has different CYCLENO for different IFNO
380 // which requires resetting this value
381 cycColOut.put(i, uInt(0));
382 } else {
383 ostringstream oss;
384 oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
385 pushLog(String(oss));
386 }
387 acc.reset();
388
389 // merge with while loop for preparing out table
390 ++outrowCount;
391 ++iter ;
392 }
393
394 if (rowstodelete.nelements() > 0) {
395 os << rowstodelete << LogIO::POST ;
396 tout.removeRow(rowstodelete);
397 if (tout.nrow() == 0) {
398 throw(AipsError("Can't average fully flagged data."));
399 }
400 }
401
402 // t1 = mathutil::gettimeofday_sec() ;
403 // cout << "elapsed time for average(): " << t1-t0 << " sec" << endl ;
404
405 return out;
406}
407
408CountedPtr< Scantable >
409STMath::averageChannel( const CountedPtr < Scantable > & in,
410 const std::string & mode,
411 const std::string& avmode )
412{
413 (void) mode; // currently unused
414 // 2012/02/17 TN
415 // Since STGrid is implemented, average doesn't consider direction
416 // when accumulating
417 // check if OTF observation
418// String obstype = in->getHeader().obstype ;
419// Double tol = 0.0 ;
420// if ( obstype.find( "OTF" ) != String::npos ) {
421// tol = TOL_OTF ;
422// }
423// else {
424// tol = TOL_POINT ;
425// }
426
427 // clone as this is non insitu
428 bool insitu = insitu_;
429 setInsitu(false);
430 CountedPtr< Scantable > out = getScantable(in, true);
431 setInsitu(insitu);
432 Table& tout = out->table();
433 ArrayColumn<Float> specColOut(tout,"SPECTRA");
434 ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
435 ArrayColumn<Float> tsysColOut(tout,"TSYS");
436 ScalarColumn<uInt> scanColOut(tout,"SCANNO");
437 ScalarColumn<Double> intColOut(tout, "INTERVAL");
438 Table tmp = in->table().sort("BEAMNO");
439 Block<String> cols(3);
440 cols[0] = String("BEAMNO");
441 cols[1] = String("IFNO");
442 cols[2] = String("POLNO");
443 if ( avmode == "SCAN") {
444 cols.resize(4);
445 cols[3] = String("SCANNO");
446 }
447 uInt outrowCount = 0;
448 uChar userflag = 1 << 7;
449 TableIterator iter(tmp, cols);
450 while (!iter.pastEnd()) {
451 Table subt = iter.table();
452 ROArrayColumn<Float> specCol, tsysCol;
453 ROArrayColumn<uChar> flagCol;
454 ROScalarColumn<Double> intCol(subt, "INTERVAL");
455 specCol.attach(subt,"SPECTRA");
456 flagCol.attach(subt,"FLAGTRA");
457 tsysCol.attach(subt,"TSYS");
458
459 tout.addRow();
460 TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
461 if ( avmode != "SCAN") {
462 scanColOut.put(outrowCount, uInt(0));
463 }
464 Vector<Float> tmp;
465 specCol.get(0, tmp);
466 uInt nchan = tmp.nelements();
467 // have to do channel by channel here as MaskedArrMath
468 // doesn't have partialMedians
469 Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
470 Vector<Float> outspec(nchan);
471 Vector<uChar> outflag(nchan,0);
472 Vector<Float> outtsys(1);/// @fixme when tsys is channel based
473 for (uInt i=0; i<nchan; ++i) {
474 Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
475 MaskedArray<Float> ma = maskedArray(specs,flags);
476 outspec[i] = median(ma);
477 if ( allEQ(ma.getMask(), False) )
478 outflag[i] = userflag;// flag data
479 }
480 outtsys[0] = median(tsysCol.getColumn());
481 specColOut.put(outrowCount, outspec);
482 flagColOut.put(outrowCount, outflag);
483 tsysColOut.put(outrowCount, outtsys);
484 Double intsum = sum(intCol.getColumn());
485 intColOut.put(outrowCount, intsum);
486 ++outrowCount;
487 ++iter;
488
489 // 2012/02/17 TN
490 // Since STGrid is implemented, average doesn't consider direction
491 // when accumulating
492// MDirection::ScalarColumn dircol ;
493// dircol.attach( subt, "DIRECTION" ) ;
494// Int length = subt.nrow() ;
495// vector< Vector<Double> > dirs ;
496// vector<int> indexes ;
497// // Handle MX mode averaging
498// if (in->nbeam() > 1 ) {
499// length = 1;
500// }
501// for ( Int i = 0 ; i < length ; i++ ) {
502// Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
503// bool adddir = true ;
504// for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
505// //if ( allTrue( t == dirs[j] ) ) {
506// Double dx = t[0] - dirs[j][0] ;
507// Double dy = t[1] - dirs[j][1] ;
508// Double dd = sqrt( dx * dx + dy * dy ) ;
509// //if ( allNearAbs( t, dirs[j], tol ) ) {
510// if ( dd <= tol ) {
511// adddir = false ;
512// break ;
513// }
514// }
515// if ( adddir ) {
516// dirs.push_back( t ) ;
517// indexes.push_back( i ) ;
518// }
519// }
520// uInt rowNum = dirs.size() ;
521// tout.addRow( rowNum );
522// for ( uInt i = 0 ; i < rowNum ; i++ ) {
523// TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
524// // Handle MX mode averaging
525// if ( avmode != "SCAN") {
526// scanColOut.put(outrowCount+i, uInt(0));
527// }
528// }
529// MDirection::ScalarColumn dircolOut ;
530// dircolOut.attach( tout, "DIRECTION" ) ;
531// for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
532// Vector<Double> t = \
533// dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
534// Vector<Float> tmp;
535// specCol.get(0, tmp);
536// uInt nchan = tmp.nelements();
537// // have to do channel by channel here as MaskedArrMath
538// // doesn't have partialMedians
539// Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
540// // mask spectra for different DIRECTION
541// for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
542// Vector<Double> direction = \
543// dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
544// //if ( t[0] != direction[0] || t[1] != direction[1] ) {
545// Double dx = t[0] - direction[0];
546// Double dy = t[1] - direction[1];
547// Double dd = sqrt(dx*dx + dy*dy);
548// //if ( !allNearAbs( t, direction, tol ) ) {
549// if ( dd > tol && in->nbeam() < 2 ) {
550// flags[jrow] = userflag ;
551// }
552// }
553// Vector<Float> outspec(nchan);
554// Vector<uChar> outflag(nchan,0);
555// Vector<Float> outtsys(1);/// @fixme when tsys is channel based
556// for (uInt i=0; i<nchan; ++i) {
557// Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
558// MaskedArray<Float> ma = maskedArray(specs,flags);
559// outspec[i] = median(ma);
560// if ( allEQ(ma.getMask(), False) )
561// outflag[i] = userflag;// flag data
562// }
563// outtsys[0] = median(tsysCol.getColumn());
564// specColOut.put(outrowCount+irow, outspec);
565// flagColOut.put(outrowCount+irow, outflag);
566// tsysColOut.put(outrowCount+irow, outtsys);
567// Vector<Double> integ = intCol.getColumn() ;
568// MaskedArray<Double> mi = maskedArray( integ, flags ) ;
569// Double intsum = sum(mi);
570// intColOut.put(outrowCount+irow, intsum);
571// }
572// outrowCount += rowNum ;
573// ++iter;
574 }
575 return out;
576}
577
578CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
579 bool droprows)
580{
581 if (insitu_) {
582 return in;
583 }
584 else {
585 // clone
586 return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
587 }
588}
589
590CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
591 float val,
592 const std::string& mode,
593 bool tsys )
594{
595 CountedPtr< Scantable > out = getScantable(in, false);
596 Table& tab = out->table();
597 ArrayColumn<Float> specCol(tab,"SPECTRA");
598 ArrayColumn<Float> tsysCol(tab,"TSYS");
599 if (mode=="DIV") val = 1.0/val ;
600 else if (mode=="SUB") val *= -1.0 ;
601 for (uInt i=0; i<tab.nrow(); ++i) {
602 Vector<Float> spec;
603 Vector<Float> ts;
604 specCol.get(i, spec);
605 tsysCol.get(i, ts);
606 if (mode == "MUL" || mode == "DIV") {
607 //if (mode == "DIV") val = 1.0/val;
608 spec *= val;
609 specCol.put(i, spec);
610 if ( tsys ) {
611 ts *= val;
612 tsysCol.put(i, ts);
613 }
614 } else if ( mode == "ADD" || mode == "SUB") {
615 //if (mode == "SUB") val *= -1.0;
616 spec += val;
617 specCol.put(i, spec);
618 if ( tsys ) {
619 ts += val;
620 tsysCol.put(i, ts);
621 }
622 }
623 }
624 return out;
625}
626
627CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
628 const std::vector<float> val,
629 const std::string& mode,
630 const std::string& opmode,
631 bool tsys )
632{
633 CountedPtr< Scantable > out ;
634 if ( opmode == "channel" ) {
635 out = arrayOperateChannel( in, val, mode, tsys ) ;
636 }
637 else if ( opmode == "row" ) {
638 out = arrayOperateRow( in, val, mode, tsys ) ;
639 }
640 else {
641 throw( AipsError( "Unknown array operation mode." ) ) ;
642 }
643 return out ;
644}
645
646CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
647 const std::vector<float> val,
648 const std::string& mode,
649 bool tsys )
650{
651 if ( val.size() == 1 ){
652 return unaryOperate( in, val[0], mode, tsys ) ;
653 }
654
655 // conformity of SPECTRA and TSYS
656 if ( tsys ) {
657 TableIterator titer(in->table(), "IFNO");
658 while ( !titer.pastEnd() ) {
659 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
660 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
661 Array<Float> spec = specCol.getColumn() ;
662 Array<Float> ts = tsysCol.getColumn() ;
663 if ( !spec.conform( ts ) ) {
664 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
665 }
666 titer.next() ;
667 }
668 }
669
670 // check if all spectra in the scantable have the same number of channel
671 vector<uInt> nchans;
672 vector<uInt> ifnos = in->getIFNos() ;
673 for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
674 nchans.push_back( in->nchan( ifnos[i] ) ) ;
675 }
676 Vector<uInt> mchans( nchans ) ;
677 if ( anyNE( mchans, mchans[0] ) ) {
678 throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
679 }
680
681 // check if vector size is equal to nchan
682 Vector<Float> fact( val ) ;
683 if ( fact.nelements() != mchans[0] ) {
684 throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
685 }
686
687 // check divided by zero
688 if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
689 throw( AipsError("Divided by zero is not recommended." ) ) ;
690 }
691
692 CountedPtr< Scantable > out = getScantable(in, false);
693 Table& tab = out->table();
694 ArrayColumn<Float> specCol(tab,"SPECTRA");
695 ArrayColumn<Float> tsysCol(tab,"TSYS");
696 if (mode == "DIV") fact = (float)1.0 / fact;
697 else if (mode == "SUB") fact *= (float)-1.0 ;
698 for (uInt i=0; i<tab.nrow(); ++i) {
699 Vector<Float> spec;
700 Vector<Float> ts;
701 specCol.get(i, spec);
702 tsysCol.get(i, ts);
703 if (mode == "MUL" || mode == "DIV") {
704 //if (mode == "DIV") fact = (float)1.0 / fact;
705 spec *= fact;
706 specCol.put(i, spec);
707 if ( tsys ) {
708 ts *= fact;
709 tsysCol.put(i, ts);
710 }
711 } else if ( mode == "ADD" || mode == "SUB") {
712 //if (mode == "SUB") fact *= (float)-1.0 ;
713 spec += fact;
714 specCol.put(i, spec);
715 if ( tsys ) {
716 ts += fact;
717 tsysCol.put(i, ts);
718 }
719 }
720 }
721 return out;
722}
723
724CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
725 const std::vector<float> val,
726 const std::string& mode,
727 bool tsys )
728{
729 if ( val.size() == 1 ) {
730 return unaryOperate( in, val[0], mode, tsys ) ;
731 }
732
733 // conformity of SPECTRA and TSYS
734 if ( tsys ) {
735 TableIterator titer(in->table(), "IFNO");
736 while ( !titer.pastEnd() ) {
737 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
738 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
739 Array<Float> spec = specCol.getColumn() ;
740 Array<Float> ts = tsysCol.getColumn() ;
741 if ( !spec.conform( ts ) ) {
742 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
743 }
744 titer.next() ;
745 }
746 }
747
748 // check if vector size is equal to nrow
749 Vector<Float> fact( val ) ;
750 if (fact.nelements() != uInt(in->nrow())) {
751 throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
752 }
753
754 // check divided by zero
755 if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
756 throw( AipsError("Divided by zero is not recommended." ) ) ;
757 }
758
759 CountedPtr< Scantable > out = getScantable(in, false);
760 Table& tab = out->table();
761 ArrayColumn<Float> specCol(tab,"SPECTRA");
762 ArrayColumn<Float> tsysCol(tab,"TSYS");
763 if (mode == "DIV") fact = (float)1.0 / fact;
764 if (mode == "SUB") fact *= (float)-1.0 ;
765 for (uInt i=0; i<tab.nrow(); ++i) {
766 Vector<Float> spec;
767 Vector<Float> ts;
768 specCol.get(i, spec);
769 tsysCol.get(i, ts);
770 if (mode == "MUL" || mode == "DIV") {
771 spec *= fact[i];
772 specCol.put(i, spec);
773 if ( tsys ) {
774 ts *= fact[i];
775 tsysCol.put(i, ts);
776 }
777 } else if ( mode == "ADD" || mode == "SUB") {
778 spec += fact[i];
779 specCol.put(i, spec);
780 if ( tsys ) {
781 ts += fact[i];
782 tsysCol.put(i, ts);
783 }
784 }
785 }
786 return out;
787}
788
789CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
790 const std::vector< std::vector<float> > val,
791 const std::string& mode,
792 bool tsys )
793{
794 // conformity of SPECTRA and TSYS
795 if ( tsys ) {
796 TableIterator titer(in->table(), "IFNO");
797 while ( !titer.pastEnd() ) {
798 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
799 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
800 Array<Float> spec = specCol.getColumn() ;
801 Array<Float> ts = tsysCol.getColumn() ;
802 if ( !spec.conform( ts ) ) {
803 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
804 }
805 titer.next() ;
806 }
807 }
808
809 // some checks
810 vector<uInt> nchans;
811 for (Int i = 0 ; i < in->nrow() ; i++) {
812 nchans.push_back((in->getSpectrum(i)).size());
813 }
814 //Vector<uInt> mchans( nchans ) ;
815 vector< Vector<Float> > facts ;
816 for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
817 Vector<Float> tmp( val[i] ) ;
818 // check divided by zero
819 if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
820 throw( AipsError("Divided by zero is not recommended." ) ) ;
821 }
822 // conformity check
823 if ( tmp.nelements() != nchans[i] ) {
824 stringstream ss ;
825 ss << "Row " << i << ": Vector size must be same as number of channel." ;
826 throw( AipsError( ss.str() ) ) ;
827 }
828 facts.push_back( tmp ) ;
829 }
830
831
832 CountedPtr< Scantable > out = getScantable(in, false);
833 Table& tab = out->table();
834 ArrayColumn<Float> specCol(tab,"SPECTRA");
835 ArrayColumn<Float> tsysCol(tab,"TSYS");
836 for (uInt i=0; i<tab.nrow(); ++i) {
837 Vector<Float> fact = facts[i] ;
838 Vector<Float> spec;
839 Vector<Float> ts;
840 specCol.get(i, spec);
841 tsysCol.get(i, ts);
842 if (mode == "MUL" || mode == "DIV") {
843 if (mode == "DIV") fact = (float)1.0 / fact;
844 spec *= fact;
845 specCol.put(i, spec);
846 if ( tsys ) {
847 ts *= fact;
848 tsysCol.put(i, ts);
849 }
850 } else if ( mode == "ADD" || mode == "SUB") {
851 if (mode == "SUB") fact *= (float)-1.0 ;
852 spec += fact;
853 specCol.put(i, spec);
854 if ( tsys ) {
855 ts += fact;
856 tsysCol.put(i, ts);
857 }
858 }
859 }
860 return out;
861}
862
863CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
864 const CountedPtr<Scantable>& right,
865 const std::string& mode)
866{
867 bool insitu = insitu_;
868 if ( ! left->conformant(*right) ) {
869 throw(AipsError("'left' and 'right' scantables are not conformant."));
870 }
871 setInsitu(false);
872 CountedPtr< Scantable > out = getScantable(left, false);
873 setInsitu(insitu);
874 Table& tout = out->table();
875 Block<String> coln(5);
876 coln[0] = "SCANNO"; coln[1] = "CYCLENO"; coln[2] = "BEAMNO";
877 coln[3] = "IFNO"; coln[4] = "POLNO";
878 Table tmpl = tout.sort(coln);
879 Table tmpr = right->table().sort(coln);
880 ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
881 ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
882 ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
883 ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
884
885 for (uInt i=0; i<tout.nrow(); ++i) {
886 Vector<Float> lspecvec, rspecvec;
887 Vector<uChar> lflagvec, rflagvec;
888 lspecvec = lspecCol(i); rspecvec = rspecCol(i);
889 lflagvec = lflagCol(i); rflagvec = rflagCol(i);
890 MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
891 MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
892 if (mode == "ADD") {
893 mleft += mright;
894 } else if ( mode == "SUB") {
895 mleft -= mright;
896 } else if ( mode == "MUL") {
897 mleft *= mright;
898 } else if ( mode == "DIV") {
899 mleft /= mright;
900 } else {
901 throw(AipsError("Illegal binary operator"));
902 }
903 lspecCol.put(i, mleft.getArray());
904 }
905 return out;
906}
907
908
909
910MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
911 const Vector<uChar>& f)
912{
913 Vector<Bool> mask;
914 mask.resize(f.shape());
915 convertArray(mask, f);
916 return MaskedArray<Float>(s,!mask);
917}
918
919MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
920 const Vector<uChar>& f)
921{
922 Vector<Bool> mask;
923 mask.resize(f.shape());
924 convertArray(mask, f);
925 return MaskedArray<Double>(s,!mask);
926}
927
928Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
929{
930 const Vector<Bool>& m = ma.getMask();
931 Vector<uChar> flags(m.shape());
932 convertArray(flags, !m);
933 return flags;
934}
935
936CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
937 const std::string & mode,
938 bool preserve )
939{
940 /// @todo make other modes available
941 /// modes should be "nearest", "pair"
942 // make this operation non insitu
943 (void) mode; //currently unused
944 const Table& tin = in->table();
945 Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
946 Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
947 if ( offs.nrow() == 0 )
948 throw(AipsError("No 'off' scans present."));
949 // put all "on" scans into output table
950
951 bool insitu = insitu_;
952 setInsitu(false);
953 CountedPtr< Scantable > out = getScantable(in, true);
954 setInsitu(insitu);
955 Table& tout = out->table();
956
957 TableCopy::copyRows(tout, ons);
958 TableRow row(tout);
959 ROScalarColumn<Double> offtimeCol(offs, "TIME");
960 ArrayColumn<Float> outspecCol(tout, "SPECTRA");
961 ROArrayColumn<Float> outtsysCol(tout, "TSYS");
962 ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
963 for (uInt i=0; i < tout.nrow(); ++i) {
964 const TableRecord& rec = row.get(i);
965 Double ontime = rec.asDouble("TIME");
966 Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
967 && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
968 && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
969 ROScalarColumn<Double> offtimeCol(presel, "TIME");
970
971 Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
972 // Timestamp may vary within a cycle ???!!!
973 // increase this by 0.01 sec in case of rounding errors...
974 // There might be a better way to do this.
975 // fix to this fix. TIME is MJD, so 1.0d not 1.0s
976 mindeltat += 0.01/24./60./60.;
977 Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
978
979 if ( sel.nrow() < 1 ) {
980 throw(AipsError("No closest in time found... This could be a rounding "
981 "issue. Try quotient instead."));
982 }
983 TableRow offrow(sel);
984 const TableRecord& offrec = offrow.get(0);//should only be one row
985 RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
986 RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
987 RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
988 /// @fixme this assumes tsys is a scalar not vector
989 Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
990 Vector<Float> specon, tsyson;
991 outtsysCol.get(i, tsyson);
992 outspecCol.get(i, specon);
993 Vector<uChar> flagon;
994 outflagCol.get(i, flagon);
995 MaskedArray<Float> mon = maskedArray(specon, flagon);
996 MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
997 MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
998 if (preserve) {
999 quot -= tsysoffscalar;
1000 } else {
1001 quot -= tsyson[0];
1002 }
1003 outspecCol.put(i, quot.getArray());
1004 outflagCol.put(i, flagsFromMA(quot));
1005 }
1006 // renumber scanno
1007 TableIterator it(tout, "SCANNO");
1008 uInt i = 0;
1009 while ( !it.pastEnd() ) {
1010 Table t = it.table();
1011 TableVector<uInt> vec(t, "SCANNO");
1012 vec = i;
1013 ++i;
1014 ++it;
1015 }
1016 return out;
1017}
1018
1019
1020CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
1021 const CountedPtr< Scantable > & off,
1022 bool preserve )
1023{
1024 bool insitu = insitu_;
1025 if ( ! on->conformant(*off) ) {
1026 throw(AipsError("'on' and 'off' scantables are not conformant."));
1027 }
1028 setInsitu(false);
1029 CountedPtr< Scantable > out = getScantable(on, false);
1030 setInsitu(insitu);
1031 Table& tout = out->table();
1032 const Table& toff = off->table();
1033 TableIterator sit(tout, "SCANNO");
1034 TableIterator s2it(toff, "SCANNO");
1035 while ( !sit.pastEnd() ) {
1036 Table ton = sit.table();
1037 TableRow row(ton);
1038 Table t = s2it.table();
1039 ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1040 ROArrayColumn<Float> outtsysCol(ton, "TSYS");
1041 ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1042 for (uInt i=0; i < ton.nrow(); ++i) {
1043 const TableRecord& rec = row.get(i);
1044 Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1045 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
1046 && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
1047 if ( offsel.nrow() == 0 )
1048 throw AipsError("STMath::quotient: no matching off");
1049 TableRow offrow(offsel);
1050 const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
1051 RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1052 RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1053 RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1054 Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1055 Vector<Float> specon, tsyson;
1056 outtsysCol.get(i, tsyson);
1057 outspecCol.get(i, specon);
1058 Vector<uChar> flagon;
1059 outflagCol.get(i, flagon);
1060 MaskedArray<Float> mon = maskedArray(specon, flagon);
1061 MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1062 MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1063 if (preserve) {
1064 quot -= tsysoffscalar;
1065 } else {
1066 quot -= tsyson[0];
1067 }
1068 outspecCol.put(i, quot.getArray());
1069 outflagCol.put(i, flagsFromMA(quot));
1070 }
1071 ++sit;
1072 ++s2it;
1073 // take the first off for each on scan which doesn't have a
1074 // matching off scan
1075 // non <= noff: matching pairs, non > noff matching pairs then first off
1076 if ( s2it.pastEnd() ) s2it.reset();
1077 }
1078 return out;
1079}
1080
1081// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1082// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1083// do it for each cycles in a specific scan.
1084CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1085 const CountedPtr< Scantable >& caloff, Float tcal )
1086{
1087 if ( ! calon->conformant(*caloff) ) {
1088 throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1089 }
1090 setInsitu(false);
1091 CountedPtr< Scantable > out = getScantable(caloff, false);
1092 Table& tout = out->table();
1093 const Table& tcon = calon->table();
1094 Vector<Float> tcalout;
1095
1096 std::map<uInt,uInt> tcalIdToRecNoMap;
1097 const Table& calOffTcalTable = caloff->tcal().table();
1098 {
1099 ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1100 const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1101 size_t tcalIdsEnd = tcalIds.nelements();
1102 for (uInt i = 0; i < tcalIdsEnd; i++) {
1103 tcalIdToRecNoMap[tcalIds[i]] = i;
1104 }
1105 }
1106 ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1107
1108 if ( tout.nrow() != tcon.nrow() ) {
1109 throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1110 }
1111 // iteration by scanno or cycle no.
1112 TableIterator sit(tout, "SCANNO");
1113 TableIterator s2it(tcon, "SCANNO");
1114 while ( !sit.pastEnd() ) {
1115 Table toff = sit.table();
1116 TableRow row(toff);
1117 Table t = s2it.table();
1118 ScalarColumn<Double> outintCol(toff, "INTERVAL");
1119 ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1120 ArrayColumn<Float> outtsysCol(toff, "TSYS");
1121 ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1122 ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1123 ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1124 ROScalarColumn<Double> onintCol(t, "INTERVAL");
1125 ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1126 ROArrayColumn<Float> ontsysCol(t, "TSYS");
1127 ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1128 //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1129
1130 for (uInt i=0; i < toff.nrow(); ++i) {
1131 //skip these checks -> assumes the data order are the same between the cal on off pairs
1132 //
1133 Vector<Float> specCalon, specCaloff;
1134 // to store scalar (mean) tsys
1135 Vector<Float> tsysout(1);
1136 uInt tcalId, polno;
1137 Double offint, onint;
1138 outpolCol.get(i, polno);
1139 outspecCol.get(i, specCaloff);
1140 onspecCol.get(i, specCalon);
1141 Vector<uChar> flagCaloff, flagCalon;
1142 outflagCol.get(i, flagCaloff);
1143 onflagCol.get(i, flagCalon);
1144 outtcalIdCol.get(i, tcalId);
1145 outintCol.get(i, offint);
1146 onintCol.get(i, onint);
1147 // caluculate mean Tsys
1148 uInt nchan = specCaloff.nelements();
1149 // percentage of edge cut off
1150 uInt pc = 10;
1151 uInt bchan = nchan/pc;
1152 uInt echan = nchan-bchan;
1153
1154 Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1155 Vector<Float> testsubsp = specCaloff(chansl);
1156 MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1157 MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1158 MaskedArray<Float> spdiff = spon-spoff;
1159 uInt noff = spoff.nelementsValid();
1160 //uInt non = spon.nelementsValid();
1161 uInt ndiff = spdiff.nelementsValid();
1162 Float meantsys;
1163
1164/**
1165 Double subspec, subdiff;
1166 uInt usednchan;
1167 subspec = 0;
1168 subdiff = 0;
1169 usednchan = 0;
1170 for(uInt k=(bchan-1); k<echan; k++) {
1171 subspec += specCaloff[k];
1172 subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1173 ++usednchan;
1174 }
1175**/
1176 // get tcal if input tcal <= 0
1177 Float tcalUsed;
1178 tcalUsed = tcal;
1179 if ( tcal <= 0.0 ) {
1180 uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1181 calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
1182// if (polno<=3) {
1183// tcalUsed = tcalout[polno];
1184// }
1185// else {
1186// tcalUsed = tcalout[0];
1187// }
1188 if ( tcalout.size() == 1 )
1189 tcalUsed = tcalout[0] ;
1190 else if ( tcalout.size() == nchan )
1191 tcalUsed = mean(tcalout) ;
1192 else {
1193 uInt ipol = polno ;
1194 if ( ipol > 3 ) ipol = 0 ;
1195 tcalUsed = tcalout[ipol] ;
1196 }
1197 }
1198
1199 Float meanoff;
1200 Float meandiff;
1201 if (noff && ndiff) {
1202 //Debug
1203 //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1204 //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1205 //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1206 meanoff = sum(spoff)/noff;
1207 meandiff = sum(spdiff)/ndiff;
1208 meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1209 }
1210 else {
1211 meantsys=1;
1212 }
1213
1214 tsysout[0] = Float(meantsys);
1215 MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1216 MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1217 MaskedArray<Float> sig = Float(0.5) * (mcaloff + mcalon);
1218 //uInt ncaloff = mcaloff.nelementsValid();
1219 //uInt ncalon = mcalon.nelementsValid();
1220
1221 outintCol.put(i, offint+onint);
1222 outspecCol.put(i, sig.getArray());
1223 outflagCol.put(i, flagsFromMA(sig));
1224 outtsysCol.put(i, tsysout);
1225 }
1226 ++sit;
1227 ++s2it;
1228 }
1229 return out;
1230}
1231
1232//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1233// observatiions.
1234// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1235// no smoothing).
1236// output: resultant scantable [= (sig-ref/ref)*tsys]
1237CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1238 const CountedPtr < Scantable >& ref,
1239 int smoothref,
1240 casa::Float tsysv,
1241 casa::Float tau )
1242{
1243if ( ! ref->conformant(*sig) ) {
1244 throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1245 }
1246 setInsitu(false);
1247 CountedPtr< Scantable > out = getScantable(sig, false);
1248 CountedPtr< Scantable > smref;
1249 if ( smoothref > 1 ) {
1250 float fsmoothref = static_cast<float>(smoothref);
1251 std::string inkernel = "boxcar";
1252 smref = smooth(ref, inkernel, fsmoothref );
1253 ostringstream oss;
1254 oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1255 pushLog(String(oss));
1256 }
1257 else {
1258 smref = ref;
1259 }
1260 Table& tout = out->table();
1261 const Table& tref = smref->table();
1262 if ( tout.nrow() != tref.nrow() ) {
1263 throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1264 }
1265 // iteration by scanno? or cycle no.
1266 TableIterator sit(tout, "SCANNO");
1267 TableIterator s2it(tref, "SCANNO");
1268 while ( !sit.pastEnd() ) {
1269 Table ton = sit.table();
1270 Table t = s2it.table();
1271 ScalarColumn<Double> outintCol(ton, "INTERVAL");
1272 ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1273 ArrayColumn<Float> outtsysCol(ton, "TSYS");
1274 ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1275 ArrayColumn<Float> refspecCol(t, "SPECTRA");
1276 ROScalarColumn<Double> refintCol(t, "INTERVAL");
1277 ROArrayColumn<Float> reftsysCol(t, "TSYS");
1278 ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1279 ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1280 for (uInt i=0; i < ton.nrow(); ++i) {
1281
1282 Double onint, refint;
1283 Vector<Float> specon, specref;
1284 // to store scalar (mean) tsys
1285 Vector<Float> tsysref;
1286 outintCol.get(i, onint);
1287 refintCol.get(i, refint);
1288 outspecCol.get(i, specon);
1289 refspecCol.get(i, specref);
1290 Vector<uChar> flagref, flagon;
1291 outflagCol.get(i, flagon);
1292 refflagCol.get(i, flagref);
1293 reftsysCol.get(i, tsysref);
1294
1295 Float tsysrefscalar;
1296 if ( tsysv > 0.0 ) {
1297 ostringstream oss;
1298 Float elev;
1299 refelevCol.get(i, elev);
1300 oss << "user specified Tsys = " << tsysv;
1301 // do recalc elevation if EL = 0
1302 if ( elev == 0 ) {
1303 throw(AipsError("EL=0, elevation data is missing."));
1304 } else {
1305 if ( tau <= 0.0 ) {
1306 throw(AipsError("Valid tau is not supplied."));
1307 } else {
1308 tsysrefscalar = tsysv * exp(tau/elev);
1309 }
1310 }
1311 oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1312 pushLog(String(oss));
1313 }
1314 else {
1315 tsysrefscalar = tsysref[0];
1316 }
1317 //get quotient spectrum
1318 MaskedArray<Float> mref = maskedArray(specref, flagref);
1319 MaskedArray<Float> mon = maskedArray(specon, flagon);
1320 MaskedArray<Float> specres = tsysrefscalar*((mon - mref)/mref);
1321 Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1322
1323 //Debug
1324 //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1325 //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1326 //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1327 // fill the result, replay signal tsys by reference tsys
1328 outintCol.put(i, resint);
1329 outspecCol.put(i, specres.getArray());
1330 outflagCol.put(i, flagsFromMA(specres));
1331 outtsysCol.put(i, tsysref);
1332 }
1333 ++sit;
1334 ++s2it;
1335 }
1336 return out;
1337}
1338
1339CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1340 const std::vector<int>& scans,
1341 int smoothref,
1342 casa::Float tsysv,
1343 casa::Float tau,
1344 casa::Float tcal )
1345
1346{
1347 setInsitu(false);
1348 STSelector sel;
1349 std::vector<int> scan1, scan2, beams, types;
1350 std::vector< vector<int> > scanpair;
1351 //std::vector<string> calstate;
1352 std::vector<int> calstate;
1353 String msg;
1354
1355 CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1356 CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1357
1358 std::vector< CountedPtr< Scantable > > sctables;
1359 sctables.push_back(s1b1on);
1360 sctables.push_back(s1b1off);
1361 sctables.push_back(s1b2on);
1362 sctables.push_back(s1b2off);
1363 sctables.push_back(s2b1on);
1364 sctables.push_back(s2b1off);
1365 sctables.push_back(s2b2on);
1366 sctables.push_back(s2b2off);
1367
1368 //check scanlist
1369 int n=s->checkScanInfo(scans);
1370 if (n==1) {
1371 throw(AipsError("Incorrect scan pairs. "));
1372 }
1373
1374 // Assume scans contain only a pair of consecutive scan numbers.
1375 // It is assumed that first beam, b1, is on target.
1376 // There is no check if the first beam is on or not.
1377 if ( scans.size()==1 ) {
1378 scan1.push_back(scans[0]);
1379 scan2.push_back(scans[0]+1);
1380 } else if ( scans.size()==2 ) {
1381 scan1.push_back(scans[0]);
1382 scan2.push_back(scans[1]);
1383 } else {
1384 if ( scans.size()%2 == 0 ) {
1385 for (uInt i=0; i<scans.size(); i++) {
1386 if (i%2 == 0) {
1387 scan1.push_back(scans[i]);
1388 }
1389 else {
1390 scan2.push_back(scans[i]);
1391 }
1392 }
1393 } else {
1394 throw(AipsError("Odd numbers of scans, cannot form pairs."));
1395 }
1396 }
1397 scanpair.push_back(scan1);
1398 scanpair.push_back(scan2);
1399 //calstate.push_back("*calon");
1400 //calstate.push_back("*[^calon]");
1401 calstate.push_back(SrcType::NODCAL);
1402 calstate.push_back(SrcType::NOD);
1403 CountedPtr< Scantable > ws = getScantable(s, false);
1404 uInt l=0;
1405 while ( l < sctables.size() ) {
1406 for (uInt i=0; i < 2; i++) {
1407 for (uInt j=0; j < 2; j++) {
1408 for (uInt k=0; k < 2; k++) {
1409 sel.reset();
1410 sel.setScans(scanpair[i]);
1411 //sel.setName(calstate[k]);
1412 types.clear();
1413 types.push_back(calstate[k]);
1414 sel.setTypes(types);
1415 beams.clear();
1416 beams.push_back(j);
1417 sel.setBeams(beams);
1418 ws->setSelection(sel);
1419 sctables[l]= getScantable(ws, false);
1420 l++;
1421 }
1422 }
1423 }
1424 }
1425
1426 // replace here by splitData or getData functionality
1427 CountedPtr< Scantable > sig1;
1428 CountedPtr< Scantable > ref1;
1429 CountedPtr< Scantable > sig2;
1430 CountedPtr< Scantable > ref2;
1431 CountedPtr< Scantable > calb1;
1432 CountedPtr< Scantable > calb2;
1433
1434 msg=String("Processing dototalpower for subset of the data");
1435 ostringstream oss1;
1436 oss1 << msg << endl;
1437 pushLog(String(oss1));
1438 // Debug for IRC CS data
1439 //float tcal1=7.0;
1440 //float tcal2=4.0;
1441 sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1442 ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1443 ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1444 sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1445
1446 // correction of user-specified tsys for elevation here
1447
1448 // dosigref calibration
1449 msg=String("Processing dosigref for subset of the data");
1450 ostringstream oss2;
1451 oss2 << msg << endl;
1452 pushLog(String(oss2));
1453 calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1454 calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1455
1456 // iteration by scanno or cycle no.
1457 Table& tcalb1 = calb1->table();
1458 Table& tcalb2 = calb2->table();
1459 TableIterator sit(tcalb1, "SCANNO");
1460 TableIterator s2it(tcalb2, "SCANNO");
1461 while ( !sit.pastEnd() ) {
1462 Table t1 = sit.table();
1463 Table t2= s2it.table();
1464 ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1465 ArrayColumn<Float> outtsysCol(t1, "TSYS");
1466 ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1467 ScalarColumn<Double> outintCol(t1, "INTERVAL");
1468 ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1469 ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1470 ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1471 ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1472 for (uInt i=0; i < t1.nrow(); ++i) {
1473 Vector<Float> spec1, spec2;
1474 // to store scalar (mean) tsys
1475 Vector<Float> tsys1, tsys2;
1476 Vector<uChar> flag1, flag2;
1477 Double tint1, tint2;
1478 outspecCol.get(i, spec1);
1479 t2specCol.get(i, spec2);
1480 outflagCol.get(i, flag1);
1481 t2flagCol.get(i, flag2);
1482 outtsysCol.get(i, tsys1);
1483 t2tsysCol.get(i, tsys2);
1484 outintCol.get(i, tint1);
1485 t2intCol.get(i, tint2);
1486 // average
1487 // assume scalar tsys for weights
1488 Float wt1, wt2, tsyssq1, tsyssq2;
1489 tsyssq1 = tsys1[0]*tsys1[0];
1490 tsyssq2 = tsys2[0]*tsys2[0];
1491 wt1 = Float(tint1)/tsyssq1;
1492 wt2 = Float(tint2)/tsyssq2;
1493 Float invsumwt=1/(wt1+wt2);
1494 MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1495 MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1496 MaskedArray<Float> avspec = invsumwt * (wt1*mspec1 + wt2*mspec2);
1497 //Array<Float> avtsys = Float(0.5) * (tsys1 + tsys2);
1498 // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1499 // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1500 // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1501 tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1502 Array<Float> avtsys = tsys1;
1503
1504 outspecCol.put(i, avspec.getArray());
1505 outflagCol.put(i, flagsFromMA(avspec));
1506 outtsysCol.put(i, avtsys);
1507 }
1508 ++sit;
1509 ++s2it;
1510 }
1511 return calb1;
1512}
1513
1514//GBTIDL version of frequency switched data calibration
1515CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1516 const std::vector<int>& scans,
1517 int smoothref,
1518 casa::Float tsysv,
1519 casa::Float tau,
1520 casa::Float tcal )
1521{
1522
1523
1524 (void) scans; //currently unused
1525 STSelector sel;
1526 CountedPtr< Scantable > ws = getScantable(s, false);
1527 CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1528 CountedPtr< Scantable > calsig, calref, out, out1, out2;
1529 Bool nofold=False;
1530 vector<int> types ;
1531
1532 //split the data
1533 //sel.setName("*_fs");
1534 types.push_back( SrcType::FSON ) ;
1535 sel.setTypes( types ) ;
1536 ws->setSelection(sel);
1537 sig = getScantable(ws,false);
1538 sel.reset();
1539 types.clear() ;
1540 //sel.setName("*_fs_calon");
1541 types.push_back( SrcType::FONCAL ) ;
1542 sel.setTypes( types ) ;
1543 ws->setSelection(sel);
1544 sigwcal = getScantable(ws,false);
1545 sel.reset();
1546 types.clear() ;
1547 //sel.setName("*_fsr");
1548 types.push_back( SrcType::FSOFF ) ;
1549 sel.setTypes( types ) ;
1550 ws->setSelection(sel);
1551 ref = getScantable(ws,false);
1552 sel.reset();
1553 types.clear() ;
1554 //sel.setName("*_fsr_calon");
1555 types.push_back( SrcType::FOFFCAL ) ;
1556 sel.setTypes( types ) ;
1557 ws->setSelection(sel);
1558 refwcal = getScantable(ws,false);
1559 sel.reset() ;
1560 types.clear() ;
1561
1562 calsig = dototalpower(sigwcal, sig, tcal=tcal);
1563 calref = dototalpower(refwcal, ref, tcal=tcal);
1564
1565 out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1566 out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1567
1568 Table& tabout1=out1->table();
1569 Table& tabout2=out2->table();
1570 ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1571 ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1572 ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1573 Vector<Float> spec; specCol.get(0, spec);
1574 uInt nchan = spec.nelements();
1575 uInt freqid1; freqidCol1.get(0,freqid1);
1576 uInt freqid2; freqidCol2.get(0,freqid2);
1577 Double rp1, rp2, rv1, rv2, inc1, inc2;
1578 out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1579 out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1580 //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1581 //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1582 //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1583 if (rp1==rp2) {
1584 Double foffset = rv1 - rv2;
1585 uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1586 if (choffset >= nchan) {
1587 //cerr<<"out-band frequency switching, no folding"<<endl;
1588 LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1589 os<<"out-band frequency switching, no folding"<<LogIO::POST;
1590 nofold = True;
1591 }
1592 }
1593
1594 if (nofold) {
1595 std::vector< CountedPtr< Scantable > > tabs;
1596 tabs.push_back(out1);
1597 tabs.push_back(out2);
1598 out = merge(tabs);
1599 }
1600 else {
1601 //out = out1;
1602 Double choffset = ( rv1 - rv2 ) / inc2 ;
1603 out = dofold( out1, out2, choffset ) ;
1604 }
1605
1606 return out;
1607}
1608
1609CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1610 const CountedPtr<Scantable> &ref,
1611 Double choffset,
1612 Double choffset2 )
1613{
1614 LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1615 os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1616
1617 // output scantable
1618 CountedPtr<Scantable> out = getScantable( sig, false ) ;
1619
1620 // separate choffset to integer part and decimal part
1621 Int ioffset = (Int)choffset ;
1622 Double doffset = choffset - ioffset ;
1623 Int ioffset2 = (Int)choffset2 ;
1624 Double doffset2 = choffset2 - ioffset2 ;
1625 os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1626 os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ;
1627
1628 // get column
1629 ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1630 ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1631 ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1632 ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1633 ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1634 ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1635 ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1636 ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1637 ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1638 ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1639
1640 // check
1641 if ( ioffset == 0 ) {
1642 LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1643 os << "channel offset is zero, no folding" << LogIO::POST ;
1644 return out ;
1645 }
1646 int nchan = ref->nchan() ;
1647 if ( abs(ioffset) >= nchan ) {
1648 LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1649 os << "out-band frequency switching, no folding" << LogIO::POST ;
1650 return out ;
1651 }
1652
1653 // attach column for output scantable
1654 ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1655 ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1656 ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1657 ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1658 ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1659 ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1660
1661 // for each row
1662 // assume that the data order are same between sig and ref
1663 RowAccumulator acc( asap::W_TINTSYS ) ;
1664 for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1665 // get values
1666 Vector<Float> spsig ;
1667 specCol1.get( i, spsig ) ;
1668 Vector<Float> spref ;
1669 specCol2.get( i, spref ) ;
1670 Vector<Float> tsyssig ;
1671 tsysCol1.get( i, tsyssig ) ;
1672 Vector<Float> tsysref ;
1673 tsysCol2.get( i, tsysref ) ;
1674 Vector<uChar> flagsig ;
1675 flagCol1.get( i, flagsig ) ;
1676 Vector<uChar> flagref ;
1677 flagCol2.get( i, flagref ) ;
1678 Double timesig ;
1679 mjdCol1.get( i, timesig ) ;
1680 Double timeref ;
1681 mjdCol2.get( i, timeref ) ;
1682 Double intsig ;
1683 intervalCol1.get( i, intsig ) ;
1684 Double intref ;
1685 intervalCol2.get( i, intref ) ;
1686
1687 // shift reference spectra
1688 int refchan = spref.nelements() ;
1689 Vector<Float> sspref( spref.nelements() ) ;
1690 Vector<Float> stsysref( tsysref.nelements() ) ;
1691 Vector<uChar> sflagref( flagref.nelements() ) ;
1692 if ( ioffset > 0 ) {
1693 // SPECTRA and FLAGTRA
1694 for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1695 sspref[j] = spref[j+ioffset] ;
1696 sflagref[j] = flagref[j+ioffset] ;
1697 }
1698 for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1699 sspref[j] = spref[j-refchan+ioffset] ;
1700 sflagref[j] = flagref[j-refchan+ioffset] ;
1701 }
1702 spref = sspref.copy() ;
1703 flagref = sflagref.copy() ;
1704 for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1705 sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1706 sflagref[j] = flagref[j+1] + flagref[j] ;
1707 }
1708 sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1709 sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1710
1711 // TSYS
1712 if ( spref.nelements() == tsysref.nelements() ) {
1713 for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1714 stsysref[j] = tsysref[j+ioffset] ;
1715 }
1716 for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1717 stsysref[j] = tsysref[j-refchan+ioffset] ;
1718 }
1719 tsysref = stsysref.copy() ;
1720 for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1721 stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1722 }
1723 stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1724 }
1725 }
1726 else {
1727 // SPECTRA and FLAGTRA
1728 for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1729 sspref[j] = spref[refchan+ioffset+j] ;
1730 sflagref[j] = flagref[refchan+ioffset+j] ;
1731 }
1732 for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1733 sspref[j] = spref[j+ioffset] ;
1734 sflagref[j] = flagref[j+ioffset] ;
1735 }
1736 spref = sspref.copy() ;
1737 flagref = sflagref.copy() ;
1738 sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1739 sflagref[0] = flagref[0] + flagref[refchan-1] ;
1740 for ( int j = 1 ; j < refchan ; j++ ) {
1741 sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1742 sflagref[j] = flagref[j-1] + flagref[j] ;
1743 }
1744 // TSYS
1745 if ( spref.nelements() == tsysref.nelements() ) {
1746 for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1747 stsysref[j] = tsysref[refchan+ioffset+j] ;
1748 }
1749 for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1750 stsysref[j] = tsysref[j+ioffset] ;
1751 }
1752 tsysref = stsysref.copy() ;
1753 stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1754 for ( int j = 1 ; j < refchan ; j++ ) {
1755 stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1756 }
1757 }
1758 }
1759
1760 // shift signal spectra if necessary (only for APEX?)
1761 if ( choffset2 != 0.0 ) {
1762 int sigchan = spsig.nelements() ;
1763 Vector<Float> sspsig( spsig.nelements() ) ;
1764 Vector<Float> stsyssig( tsyssig.nelements() ) ;
1765 Vector<uChar> sflagsig( flagsig.nelements() ) ;
1766 if ( ioffset2 > 0 ) {
1767 // SPECTRA and FLAGTRA
1768 for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1769 sspsig[j] = spsig[j+ioffset2] ;
1770 sflagsig[j] = flagsig[j+ioffset2] ;
1771 }
1772 for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1773 sspsig[j] = spsig[j-sigchan+ioffset2] ;
1774 sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1775 }
1776 spsig = sspsig.copy() ;
1777 flagsig = sflagsig.copy() ;
1778 for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1779 sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1780 sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1781 }
1782 sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1783 sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1784 // TSTS
1785 if ( spsig.nelements() == tsyssig.nelements() ) {
1786 for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1787 stsyssig[j] = tsyssig[j+ioffset2] ;
1788 }
1789 for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1790 stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1791 }
1792 tsyssig = stsyssig.copy() ;
1793 for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1794 stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1795 }
1796 stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1797 }
1798 }
1799 else {
1800 // SPECTRA and FLAGTRA
1801 for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1802 sspsig[j] = spsig[sigchan+ioffset2+j] ;
1803 sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1804 }
1805 for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1806 sspsig[j] = spsig[j+ioffset2] ;
1807 sflagsig[j] = flagsig[j+ioffset2] ;
1808 }
1809 spsig = sspsig.copy() ;
1810 flagsig = sflagsig.copy() ;
1811 sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1812 sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1813 for ( int j = 1 ; j < sigchan ; j++ ) {
1814 sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1815 sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1816 }
1817 // TSYS
1818 if ( spsig.nelements() == tsyssig.nelements() ) {
1819 for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1820 stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1821 }
1822 for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1823 stsyssig[j] = tsyssig[j+ioffset2] ;
1824 }
1825 tsyssig = stsyssig.copy() ;
1826 stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1827 for ( int j = 1 ; j < sigchan ; j++ ) {
1828 stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1829 }
1830 }
1831 }
1832 }
1833
1834 // folding
1835 acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1836 acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1837
1838 // put result
1839 specColOut.put( i, acc.getSpectrum() ) ;
1840 const Vector<Bool> &msk = acc.getMask() ;
1841 Vector<uChar> flg( msk.shape() ) ;
1842 convertArray( flg, !msk ) ;
1843 flagColOut.put( i, flg ) ;
1844 tsysColOut.put( i, acc.getTsys() ) ;
1845 intervalColOut.put( i, acc.getInterval() ) ;
1846 mjdColOut.put( i, acc.getTime() ) ;
1847 // change FREQ_ID to unshifted IF setting (only for APEX?)
1848 if ( choffset2 != 0.0 ) {
1849 uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1850 double refpix, refval, increment ;
1851 out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1852 refval -= choffset * increment ;
1853 uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1854 Vector<uInt> freqids = fidColOut.getColumn() ;
1855 for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1856 if ( freqids[j] == freqid )
1857 freqids[j] = newfreqid ;
1858 }
1859 fidColOut.putColumn( freqids ) ;
1860 }
1861
1862 acc.reset() ;
1863 }
1864
1865 return out ;
1866}
1867
1868
1869CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1870{
1871 // make copy or reference
1872 CountedPtr< Scantable > out = getScantable(in, false);
1873 Table& tout = out->table();
1874 Block<String> cols(4);
1875 cols[0] = String("SCANNO");
1876 cols[1] = String("CYCLENO");
1877 cols[2] = String("BEAMNO");
1878 cols[3] = String("POLNO");
1879 TableIterator iter(tout, cols);
1880 while (!iter.pastEnd()) {
1881 Table subt = iter.table();
1882 // this should leave us with two rows for the two IFs....if not ignore
1883 if (subt.nrow() != 2 ) {
1884 continue;
1885 }
1886 ArrayColumn<Float> specCol(subt, "SPECTRA");
1887 ArrayColumn<Float> tsysCol(subt, "TSYS");
1888 ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1889 Vector<Float> onspec,offspec, ontsys, offtsys;
1890 Vector<uChar> onflag, offflag;
1891 tsysCol.get(0, ontsys); tsysCol.get(1, offtsys);
1892 specCol.get(0, onspec); specCol.get(1, offspec);
1893 flagCol.get(0, onflag); flagCol.get(1, offflag);
1894 MaskedArray<Float> on = maskedArray(onspec, onflag);
1895 MaskedArray<Float> off = maskedArray(offspec, offflag);
1896 MaskedArray<Float> oncopy = on.copy();
1897
1898 on /= off; on -= 1.0f;
1899 on *= ontsys[0];
1900 off /= oncopy; off -= 1.0f;
1901 off *= offtsys[0];
1902 specCol.put(0, on.getArray());
1903 const Vector<Bool>& m0 = on.getMask();
1904 Vector<uChar> flags0(m0.shape());
1905 convertArray(flags0, !m0);
1906 flagCol.put(0, flags0);
1907
1908 specCol.put(1, off.getArray());
1909 const Vector<Bool>& m1 = off.getMask();
1910 Vector<uChar> flags1(m1.shape());
1911 convertArray(flags1, !m1);
1912 flagCol.put(1, flags1);
1913 ++iter;
1914 }
1915
1916 return out;
1917}
1918
1919std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1920 const std::vector< bool > & mask,
1921 const std::string& which )
1922{
1923
1924 Vector<Bool> m(mask);
1925 const Table& tab = in->table();
1926 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1927 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1928 std::vector<float> out;
1929 for (uInt i=0; i < tab.nrow(); ++i ) {
1930 Vector<Float> spec; specCol.get(i, spec);
1931 Vector<uChar> flag; flagCol.get(i, flag);
1932 MaskedArray<Float> ma = maskedArray(spec, flag);
1933 float outstat = 0.0;
1934 if ( spec.nelements() == m.nelements() ) {
1935 outstat = mathutil::statistics(which, ma(m));
1936 } else {
1937 outstat = mathutil::statistics(which, ma);
1938 }
1939 out.push_back(outstat);
1940 }
1941 return out;
1942}
1943
1944std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1945 const std::vector< bool > & mask,
1946 const std::string& which,
1947 int row )
1948{
1949
1950 Vector<Bool> m(mask);
1951 const Table& tab = in->table();
1952 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1953 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1954 std::vector<float> out;
1955
1956 Vector<Float> spec; specCol.get(row, spec);
1957 Vector<uChar> flag; flagCol.get(row, flag);
1958 MaskedArray<Float> ma = maskedArray(spec, flag);
1959 float outstat = 0.0;
1960 if ( spec.nelements() == m.nelements() ) {
1961 outstat = mathutil::statistics(which, ma(m));
1962 } else {
1963 outstat = mathutil::statistics(which, ma);
1964 }
1965 out.push_back(outstat);
1966
1967 return out;
1968}
1969
1970std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1971 const std::vector< bool > & mask,
1972 const std::string& which )
1973{
1974
1975 Vector<Bool> m(mask);
1976 const Table& tab = in->table();
1977 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1978 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1979 std::vector<int> out;
1980 for (uInt i=0; i < tab.nrow(); ++i ) {
1981 Vector<Float> spec; specCol.get(i, spec);
1982 Vector<uChar> flag; flagCol.get(i, flag);
1983 MaskedArray<Float> ma = maskedArray(spec, flag);
1984 if (ma.ndim() != 1) {
1985 throw (ArrayError(
1986 "std::vector<int> STMath::minMaxChan("
1987 "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1988 " std::string &which)"
1989 " - MaskedArray is not 1D"));
1990 }
1991 IPosition outpos(1,0);
1992 if ( spec.nelements() == m.nelements() ) {
1993 outpos = mathutil::minMaxPos(which, ma(m));
1994 } else {
1995 outpos = mathutil::minMaxPos(which, ma);
1996 }
1997 out.push_back(outpos[0]);
1998 }
1999 return out;
2000}
2001
2002CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
2003 int width )
2004{
2005 if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
2006 CountedPtr< Scantable > out = getScantable(in, false);
2007 Table& tout = out->table();
2008 out->frequencies().rescale(width, "BIN");
2009 ArrayColumn<Float> specCol(tout, "SPECTRA");
2010 ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
2011 for (uInt i=0; i < tout.nrow(); ++i ) {
2012 MaskedArray<Float> main = maskedArray(specCol(i), flagCol(i));
2013 MaskedArray<Float> maout;
2014 LatticeUtilities::bin(maout, main, 0, Int(width));
2015 /// @todo implement channel based tsys binning
2016 specCol.put(i, maout.getArray());
2017 flagCol.put(i, flagsFromMA(maout));
2018 // take only the first binned spectrum's length for the deprecated
2019 // global header item nChan
2020 if (i==0) tout.rwKeywordSet().define(String("nChan"),
2021 Int(maout.getArray().nelements()));
2022 }
2023 return out;
2024}
2025
2026CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
2027 const std::string& method,
2028 float width )
2029//
2030// Should add the possibility of width being specified in km/s. This means
2031// that for each freqID (SpectralCoordinate) we will need to convert to an
2032// average channel width (say at the reference pixel). Then we would need
2033// to be careful to make sure each spectrum (of different freqID)
2034// is the same length.
2035//
2036{
2037 //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
2038 Int interpMethod(stringToIMethod(method));
2039
2040 CountedPtr< Scantable > out = getScantable(in, false);
2041 Table& tout = out->table();
2042
2043// Resample SpectralCoordinates (one per freqID)
2044 out->frequencies().rescale(width, "RESAMPLE");
2045 TableIterator iter(tout, "IFNO");
2046 TableRow row(tout);
2047 while ( !iter.pastEnd() ) {
2048 Table tab = iter.table();
2049 ArrayColumn<Float> specCol(tab, "SPECTRA");
2050 //ArrayColumn<Float> tsysCol(tout, "TSYS");
2051 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2052 Vector<Float> spec;
2053 Vector<uChar> flag;
2054 specCol.get(0,spec); // the number of channels should be constant per IF
2055 uInt nChanIn = spec.nelements();
2056 Vector<Float> xIn(nChanIn); indgen(xIn);
2057 Int fac = Int(nChanIn/width);
2058 Vector<Float> xOut(fac+10); // 10 to be safe - resize later
2059 uInt k = 0;
2060 Float x = 0.0;
2061 while (x < Float(nChanIn) ) {
2062 xOut(k) = x;
2063 k++;
2064 x += width;
2065 }
2066 uInt nChanOut = k;
2067 xOut.resize(nChanOut, True);
2068 // process all rows for this IFNO
2069 Vector<Float> specOut;
2070 Vector<Bool> maskOut;
2071 Vector<uChar> flagOut;
2072 for (uInt i=0; i < tab.nrow(); ++i) {
2073 specCol.get(i, spec);
2074 flagCol.get(i, flag);
2075 Vector<Bool> mask(flag.nelements());
2076 convertArray(mask, flag);
2077
2078 IPosition shapeIn(spec.shape());
2079 //sh.nchan = nChanOut;
2080 InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2081 xIn, spec, mask,
2082 interpMethod, True, True);
2083 /// @todo do the same for channel based Tsys
2084 flagOut.resize(maskOut.nelements());
2085 convertArray(flagOut, maskOut);
2086 specCol.put(i, specOut);
2087 flagCol.put(i, flagOut);
2088 }
2089 ++iter;
2090 }
2091
2092 return out;
2093}
2094
2095STMath::imethod STMath::stringToIMethod(const std::string& in)
2096{
2097 static STMath::imap lookup;
2098
2099 // initialize the lookup table if necessary
2100 if ( lookup.empty() ) {
2101 lookup["nearest"] = InterpolateArray1D<Double,Float>::nearestNeighbour;
2102 lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2103 lookup["cubic"] = InterpolateArray1D<Double,Float>::cubic;
2104 lookup["spline"] = InterpolateArray1D<Double,Float>::spline;
2105 }
2106
2107 STMath::imap::const_iterator iter = lookup.find(in);
2108
2109 if ( lookup.end() == iter ) {
2110 std::string message = in;
2111 message += " is not a valid interpolation mode";
2112 throw(AipsError(message));
2113 }
2114 return iter->second;
2115}
2116
2117WeightType STMath::stringToWeight(const std::string& in)
2118{
2119 static std::map<std::string, WeightType> lookup;
2120
2121 // initialize the lookup table if necessary
2122 if ( lookup.empty() ) {
2123 lookup["NONE"] = asap::W_NONE;
2124 lookup["TINT"] = asap::W_TINT;
2125 lookup["TINTSYS"] = asap::W_TINTSYS;
2126 lookup["TSYS"] = asap::W_TSYS;
2127 lookup["VAR"] = asap::W_VAR;
2128 }
2129
2130 std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2131
2132 if ( lookup.end() == iter ) {
2133 std::string message = in;
2134 message += " is not a valid weighting mode";
2135 throw(AipsError(message));
2136 }
2137 return iter->second;
2138}
2139
2140CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2141 const vector< float > & coeff,
2142 const std::string & filename,
2143 const std::string& method)
2144{
2145 // Get elevation data from Scantable and convert to degrees
2146 CountedPtr< Scantable > out = getScantable(in, false);
2147 Table& tab = out->table();
2148 ROScalarColumn<Float> elev(tab, "ELEVATION");
2149 Vector<Float> x = elev.getColumn();
2150 x *= Float(180 / C::pi); // Degrees
2151
2152 Vector<Float> coeffs(coeff);
2153 const uInt nc = coeffs.nelements();
2154 if ( filename.length() > 0 && nc > 0 ) {
2155 throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2156 }
2157
2158 // Correct
2159 if ( nc > 0 || filename.length() == 0 ) {
2160 // Find instrument
2161 Bool throwit = True;
2162 Instrument inst =
2163 STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2164 throwit);
2165
2166 // Set polynomial
2167 Polynomial<Float>* ppoly = 0;
2168 Vector<Float> coeff;
2169 String msg;
2170 if ( nc > 0 ) {
2171 ppoly = new Polynomial<Float>(nc-1);
2172 coeff = coeffs;
2173 msg = String("user");
2174 } else {
2175 STAttr sdAttr;
2176 coeff = sdAttr.gainElevationPoly(inst);
2177 ppoly = new Polynomial<Float>(coeff.nelements()-1);
2178 msg = String("built in");
2179 }
2180
2181 if ( coeff.nelements() > 0 ) {
2182 ppoly->setCoefficients(coeff);
2183 } else {
2184 delete ppoly;
2185 throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2186 }
2187 ostringstream oss;
2188 oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2189 oss << " " << coeff;
2190 pushLog(String(oss));
2191 const uInt nrow = tab.nrow();
2192 Vector<Float> factor(nrow);
2193 for ( uInt i=0; i < nrow; ++i ) {
2194 factor[i] = 1.0 / (*ppoly)(x[i]);
2195 }
2196 delete ppoly;
2197 scaleByVector(tab, factor, true);
2198
2199 } else {
2200 // Read and correct
2201 pushLog("Making correction from ascii Table");
2202 scaleFromAsciiTable(tab, filename, method, x, true);
2203 }
2204 return out;
2205}
2206
2207void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2208 const std::string& method,
2209 const Vector<Float>& xout, bool dotsys)
2210{
2211
2212// Read gain-elevation ascii file data into a Table.
2213
2214 String formatString;
2215 Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2216 scaleFromTable(in, tbl, method, xout, dotsys);
2217}
2218
2219void STMath::scaleFromTable(Table& in,
2220 const Table& table,
2221 const std::string& method,
2222 const Vector<Float>& xout, bool dotsys)
2223{
2224
2225 ROScalarColumn<Float> geElCol(table, "ELEVATION");
2226 ROScalarColumn<Float> geFacCol(table, "FACTOR");
2227 Vector<Float> xin = geElCol.getColumn();
2228 Vector<Float> yin = geFacCol.getColumn();
2229 Vector<Bool> maskin(xin.nelements(),True);
2230
2231 // Interpolate (and extrapolate) with desired method
2232
2233 InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2234
2235 Vector<Float> yout;
2236 Vector<Bool> maskout;
2237 InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2238 xin, yin, maskin, interp,
2239 True, True);
2240
2241 scaleByVector(in, Float(1.0)/yout, dotsys);
2242}
2243
2244void STMath::scaleByVector( Table& in,
2245 const Vector< Float >& factor,
2246 bool dotsys )
2247{
2248 uInt nrow = in.nrow();
2249 if ( factor.nelements() != nrow ) {
2250 throw(AipsError("factors.nelements() != table.nelements()"));
2251 }
2252 ArrayColumn<Float> specCol(in, "SPECTRA");
2253 ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2254 ArrayColumn<Float> tsysCol(in, "TSYS");
2255 for (uInt i=0; i < nrow; ++i) {
2256 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2257 ma *= factor[i];
2258 specCol.put(i, ma.getArray());
2259 flagCol.put(i, flagsFromMA(ma));
2260 if ( dotsys ) {
2261 Vector<Float> tsys = tsysCol(i);
2262 tsys *= factor[i];
2263 tsysCol.put(i,tsys);
2264 }
2265 }
2266}
2267
2268CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2269 float d, float etaap,
2270 float jyperk )
2271{
2272 CountedPtr< Scantable > out = getScantable(in, false);
2273 Table& tab = in->table();
2274 Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2275 Unit K(String("K"));
2276 Unit JY(String("Jy"));
2277
2278 bool tokelvin = true;
2279 Double cfac = 1.0;
2280
2281 if ( fluxUnit == JY ) {
2282 pushLog("Converting to K");
2283 Quantum<Double> t(1.0,fluxUnit);
2284 Quantum<Double> t2 = t.get(JY);
2285 cfac = (t2 / t).getValue(); // value to Jy
2286
2287 tokelvin = true;
2288 out->setFluxUnit("K");
2289 } else if ( fluxUnit == K ) {
2290 pushLog("Converting to Jy");
2291 Quantum<Double> t(1.0,fluxUnit);
2292 Quantum<Double> t2 = t.get(K);
2293 cfac = (t2 / t).getValue(); // value to K
2294
2295 tokelvin = false;
2296 out->setFluxUnit("Jy");
2297 } else {
2298 throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2299 }
2300 // Make sure input values are converted to either Jy or K first...
2301 Float factor = cfac;
2302
2303 // Select method
2304 if (jyperk > 0.0) {
2305 factor *= jyperk;
2306 if ( tokelvin ) factor = 1.0 / jyperk;
2307 ostringstream oss;
2308 oss << "Jy/K = " << jyperk;
2309 pushLog(String(oss));
2310 Vector<Float> factors(tab.nrow(), factor);
2311 scaleByVector(tab,factors, false);
2312 } else if ( etaap > 0.0) {
2313 if (d < 0) {
2314 Instrument inst =
2315 STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2316 True);
2317 STAttr sda;
2318 d = sda.diameter(inst);
2319 }
2320 jyperk = STAttr::findJyPerK(etaap, d);
2321 ostringstream oss;
2322 oss << "Jy/K = " << jyperk;
2323 pushLog(String(oss));
2324 factor *= jyperk;
2325 if ( tokelvin ) {
2326 factor = 1.0 / factor;
2327 }
2328 Vector<Float> factors(tab.nrow(), factor);
2329 scaleByVector(tab, factors, False);
2330 } else {
2331
2332 // OK now we must deal with automatic look up of values.
2333 // We must also deal with the fact that the factors need
2334 // to be computed per IF and may be different and may
2335 // change per integration.
2336
2337 pushLog("Looking up conversion factors");
2338 convertBrightnessUnits(out, tokelvin, cfac);
2339 }
2340
2341 return out;
2342}
2343
2344void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2345 bool tokelvin, float cfac )
2346{
2347 Table& table = in->table();
2348 Instrument inst =
2349 STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2350 TableIterator iter(table, "FREQ_ID");
2351 STFrequencies stfreqs = in->frequencies();
2352 STAttr sdAtt;
2353 while (!iter.pastEnd()) {
2354 Table tab = iter.table();
2355 ArrayColumn<Float> specCol(tab, "SPECTRA");
2356 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2357 ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2358 MEpoch::ROScalarColumn timeCol(tab, "TIME");
2359
2360 uInt freqid; freqidCol.get(0, freqid);
2361 Vector<Float> tmpspec; specCol.get(0, tmpspec);
2362 // STAttr.JyPerK has a Vector interface... change sometime.
2363 Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2364 for ( uInt i=0; i<tab.nrow(); ++i) {
2365 Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2366 Float factor = cfac * jyperk;
2367 if ( tokelvin ) factor = Float(1.0) / factor;
2368 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2369 ma *= factor;
2370 specCol.put(i, ma.getArray());
2371 flagCol.put(i, flagsFromMA(ma));
2372 }
2373 ++iter;
2374 }
2375}
2376
2377CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2378 const std::vector<float>& tau )
2379{
2380 CountedPtr< Scantable > out = getScantable(in, false);
2381
2382 Table outtab = out->table();
2383
2384 const Int ntau = uInt(tau.size());
2385 std::vector<float>::const_iterator tauit = tau.begin();
2386 AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2387 AipsError);
2388 TableIterator iiter(outtab, "IFNO");
2389 while ( !iiter.pastEnd() ) {
2390 Table itab = iiter.table();
2391 TableIterator piter(itab, "POLNO");
2392 while ( !piter.pastEnd() ) {
2393 Table tab = piter.table();
2394 ROScalarColumn<Float> elev(tab, "ELEVATION");
2395 ArrayColumn<Float> specCol(tab, "SPECTRA");
2396 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2397 ArrayColumn<Float> tsysCol(tab, "TSYS");
2398 for ( uInt i=0; i<tab.nrow(); ++i) {
2399 Float zdist = Float(C::pi_2) - elev(i);
2400 Float factor = exp(*tauit/cos(zdist));
2401 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2402 ma *= factor;
2403 specCol.put(i, ma.getArray());
2404 flagCol.put(i, flagsFromMA(ma));
2405 Vector<Float> tsys;
2406 tsysCol.get(i, tsys);
2407 tsys *= factor;
2408 tsysCol.put(i, tsys);
2409 }
2410 if (ntau == in->nif()*in->npol() ) {
2411 tauit++;
2412 }
2413 piter++;
2414 }
2415 if (ntau >= in->nif() ) {
2416 tauit++;
2417 }
2418 iiter++;
2419 }
2420 return out;
2421}
2422
2423CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2424 const std::string& kernel,
2425 float width, int order)
2426{
2427 CountedPtr< Scantable > out = getScantable(in, false);
2428 Table table = out->table();
2429
2430 TableIterator iter(table, "IFNO");
2431 while (!iter.pastEnd()) {
2432 Table tab = iter.table();
2433 ArrayColumn<Float> specCol(tab, "SPECTRA");
2434 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2435 Vector<Float> spec;
2436 Vector<uChar> flag;
2437 for (uInt i = 0; i < tab.nrow(); ++i) {
2438 specCol.get(i, spec);
2439 flagCol.get(i, flag);
2440 Vector<Bool> mask(flag.nelements());
2441 convertArray(mask, flag);
2442 Vector<Float> specout;
2443 Vector<Bool> maskout;
2444 if (kernel == "hanning") {
2445 mathutil::hanning(specout, maskout, spec, !mask);
2446 convertArray(flag, !maskout);
2447 } else if (kernel == "rmedian") {
2448 mathutil::runningMedian(specout, maskout, spec , mask, width);
2449 convertArray(flag, maskout);
2450 } else if (kernel == "poly") {
2451 mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2452 convertArray(flag, !maskout);
2453 }
2454
2455 for (uInt j = 0; j < flag.nelements(); ++j) {
2456 uChar userFlag = 1 << 7;
2457 if (maskout[j]==True) userFlag = 0 << 7;
2458 flag(j) = userFlag;
2459 }
2460
2461 flagCol.put(i, flag);
2462 specCol.put(i, specout);
2463 }
2464 ++iter;
2465 }
2466 return out;
2467}
2468
2469CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2470 const std::string& kernel, float width,
2471 int order)
2472{
2473 if (kernel == "rmedian" || kernel == "hanning" || kernel == "poly") {
2474 return smoothOther(in, kernel, width, order);
2475 }
2476 CountedPtr< Scantable > out = getScantable(in, false);
2477 Table& table = out->table();
2478 VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2479 // same IFNO should have same no of channels
2480 // this saves overhead
2481 TableIterator iter(table, "IFNO");
2482 while (!iter.pastEnd()) {
2483 Table tab = iter.table();
2484 ArrayColumn<Float> specCol(tab, "SPECTRA");
2485 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2486 Vector<Float> tmpspec; specCol.get(0, tmpspec);
2487 uInt nchan = tmpspec.nelements();
2488 Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2489 Convolver<Float> conv(kvec, IPosition(1,nchan));
2490 Vector<Float> spec;
2491 Vector<uChar> flag;
2492 for ( uInt i=0; i<tab.nrow(); ++i) {
2493 specCol.get(i, spec);
2494 flagCol.get(i, flag);
2495 Vector<Bool> mask(flag.nelements());
2496 convertArray(mask, flag);
2497 Vector<Float> specout;
2498 mathutil::replaceMaskByZero(specout, mask);
2499 conv.linearConv(specout, spec);
2500 specCol.put(i, specout);
2501 }
2502 ++iter;
2503 }
2504 return out;
2505}
2506
2507CountedPtr< Scantable >
2508 STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2509{
2510 if ( in.size() < 2 ) {
2511 throw(AipsError("Need at least two scantables to perform a merge."));
2512 }
2513 std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2514 bool insitu = insitu_;
2515 setInsitu(false);
2516 CountedPtr< Scantable > out = getScantable(*it, false);
2517 setInsitu(insitu);
2518 Table& tout = out->table();
2519 ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2520 ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2521 // Renumber SCANNO to be 0-based
2522 Vector<uInt> scannos = scannocol.getColumn();
2523 uInt offset = min(scannos);
2524 scannos -= offset;
2525 scannocol.putColumn(scannos);
2526 uInt newscanno = max(scannos)+1;
2527 ++it;
2528 while ( it != in.end() ){
2529 if ( ! (*it)->conformant(*out) ) {
2530 // non conformant.
2531 //pushLog(String("Warning: Can't merge scantables as header info differs."));
2532 LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2533 os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2534 }
2535 out->appendToHistoryTable((*it)->history());
2536 const Table& tab = (*it)->table();
2537
2538 Block<String> cols(3);
2539 cols[0] = String("FREQ_ID");
2540 cols[1] = String("MOLECULE_ID");
2541 cols[2] = String("FOCUS_ID");
2542
2543 TableIterator scanit(tab, "SCANNO");
2544 while (!scanit.pastEnd()) {
2545 ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2546 Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2547 thescannocol.putColumn(thescannos);
2548 TableIterator subit(scanit.table(), cols);
2549 while ( !subit.pastEnd() ) {
2550 uInt nrow = tout.nrow();
2551 Table thetab = subit.table();
2552 ROTableRow row(thetab);
2553 Vector<uInt> thecolvals(thetab.nrow());
2554 ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2555 ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2556 ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2557 // The selected subset of table should have
2558 // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2559 const TableRecord& rec = row.get(0);
2560 // Set the proper FREQ_ID
2561 Double rv,rp,inc;
2562 (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2563 uInt id;
2564 id = out->frequencies().addEntry(rp, rv, inc);
2565 thecolvals = id;
2566 thefreqidcol.putColumn(thecolvals);
2567 // Set the proper MOLECULE_ID
2568 Vector<String> name,fname;Vector<Double> rf;
2569 (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2570 id = out->molecules().addEntry(rf, name, fname);
2571 thecolvals = id;
2572 themolidcol.putColumn(thecolvals);
2573 // Set the proper FOCUS_ID
2574 Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2575 (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2576 fxy, fxyp, rec.asuInt("FOCUS_ID"));
2577 id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2578 fxy, fxyp);
2579 thecolvals = id;
2580 thefocusidcol.putColumn(thecolvals);
2581
2582 tout.addRow(thetab.nrow());
2583 TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2584
2585 ++subit;
2586 }
2587 ++newscanno;
2588 ++scanit;
2589 }
2590 ++it;
2591 }
2592 return out;
2593}
2594
2595CountedPtr< Scantable >
2596 STMath::invertPhase( const CountedPtr < Scantable >& in )
2597{
2598 return applyToPol(in, &STPol::invertPhase, Float(0.0));
2599}
2600
2601CountedPtr< Scantable >
2602 STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2603{
2604 return applyToPol(in, &STPol::rotatePhase, Float(phase));
2605}
2606
2607CountedPtr< Scantable >
2608 STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2609{
2610 return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2611}
2612
2613CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2614 STPol::polOperation fptr,
2615 Float phase )
2616{
2617 CountedPtr< Scantable > out = getScantable(in, false);
2618 Table& tout = out->table();
2619 Block<String> cols(4);
2620 cols[0] = String("SCANNO");
2621 cols[1] = String("BEAMNO");
2622 cols[2] = String("IFNO");
2623 cols[3] = String("CYCLENO");
2624 TableIterator iter(tout, cols);
2625 CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2626 out->getPolType() );
2627 while (!iter.pastEnd()) {
2628 Table t = iter.table();
2629 ArrayColumn<Float> speccol(t, "SPECTRA");
2630 ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2631 Matrix<Float> pols(speccol.getColumn());
2632 try {
2633 stpol->setSpectra(pols);
2634 Float fang,fhand;
2635 fang = in->focusTable_.getTotalAngle(focidcol(0));
2636 fhand = in->focusTable_.getFeedHand(focidcol(0));
2637 stpol->setPhaseCorrections(fang, fhand);
2638 // use a member function pointer in STPol. This only works on
2639 // the STPol pointer itself, not the Counted Pointer so
2640 // derefernce it.
2641 (&(*(stpol))->*fptr)(phase);
2642 speccol.putColumn(stpol->getSpectra());
2643 } catch (AipsError& e) {
2644 //delete stpol;stpol=0;
2645 throw(e);
2646 }
2647 ++iter;
2648 }
2649 //delete stpol;stpol=0;
2650 return out;
2651}
2652
2653CountedPtr< Scantable >
2654 STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2655{
2656 CountedPtr< Scantable > out = getScantable(in, false);
2657 Table& tout = out->table();
2658 Table t0 = tout(tout.col("POLNO") == 0);
2659 Table t1 = tout(tout.col("POLNO") == 1);
2660 if ( t0.nrow() != t1.nrow() )
2661 throw(AipsError("Inconsistent number of polarisations"));
2662 ArrayColumn<Float> speccol0(t0, "SPECTRA");
2663 ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2664 ArrayColumn<Float> speccol1(t1, "SPECTRA");
2665 ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2666 Matrix<Float> s0 = speccol0.getColumn();
2667 Matrix<uChar> f0 = flagcol0.getColumn();
2668 speccol0.putColumn(speccol1.getColumn());
2669 flagcol0.putColumn(flagcol1.getColumn());
2670 speccol1.putColumn(s0);
2671 flagcol1.putColumn(f0);
2672 return out;
2673}
2674
2675CountedPtr< Scantable >
2676 STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2677 const std::vector<bool>& mask,
2678 const std::string& weight )
2679{
2680 if (in->npol() < 2 )
2681 throw(AipsError("averagePolarisations can only be applied to two or more"
2682 "polarisations"));
2683 bool insitu = insitu_;
2684 setInsitu(false);
2685 CountedPtr< Scantable > pols = getScantable(in, true);
2686 setInsitu(insitu);
2687 Table& tout = pols->table();
2688 std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2689 Table tab = tableCommand(taql, in->table());
2690 if (tab.nrow() == 0 )
2691 throw(AipsError("Could not find any rows with POLNO==0 and POLNO==1"));
2692 TableCopy::copyRows(tout, tab);
2693 TableVector<uInt> vec(tout, "POLNO");
2694 vec = 0;
2695 pols->table_.rwKeywordSet().define("nPol", Int(1));
2696 pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2697 //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2698 std::vector<CountedPtr<Scantable> > vpols;
2699 vpols.push_back(pols);
2700 CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2701 return out;
2702}
2703
2704CountedPtr< Scantable >
2705 STMath::averageBeams( const CountedPtr< Scantable > & in,
2706 const std::vector<bool>& mask,
2707 const std::string& weight )
2708{
2709 bool insitu = insitu_;
2710 setInsitu(false);
2711 CountedPtr< Scantable > beams = getScantable(in, false);
2712 setInsitu(insitu);
2713 Table& tout = beams->table();
2714 // give all rows the same BEAMNO
2715 TableVector<uInt> vec(tout, "BEAMNO");
2716 vec = 0;
2717 beams->table_.rwKeywordSet().define("nBeam", Int(1));
2718 std::vector<CountedPtr<Scantable> > vbeams;
2719 vbeams.push_back(beams);
2720 CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2721 return out;
2722}
2723
2724
2725CountedPtr< Scantable >
2726 asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2727 const std::string & refTime,
2728 const std::string & method)
2729{
2730 // clone as this is not working insitu
2731 bool insitu = insitu_;
2732 setInsitu(false);
2733 CountedPtr< Scantable > out = getScantable(in, false);
2734 setInsitu(insitu);
2735 Table& tout = out->table();
2736 // Get reference Epoch to time of first row or given String
2737 Unit DAY(String("d"));
2738 MEpoch::Ref epochRef(in->getTimeReference());
2739 MEpoch refEpoch;
2740 if (refTime.length()>0) {
2741 Quantum<Double> qt;
2742 if (MVTime::read(qt,refTime)) {
2743 MVEpoch mv(qt);
2744 refEpoch = MEpoch(mv, epochRef);
2745 } else {
2746 throw(AipsError("Invalid format for Epoch string"));
2747 }
2748 } else {
2749 refEpoch = in->timeCol_(0);
2750 }
2751 MPosition refPos = in->getAntennaPosition();
2752
2753 InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2754 /*
2755 // Comment from MV.
2756 // the following code has been commented out because different FREQ_IDs have to be aligned together even
2757 // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2758 // test if user frame is different to base frame
2759 if ( in->frequencies().getFrameString(true)
2760 == in->frequencies().getFrameString(false) ) {
2761 throw(AipsError("Can't convert as no output frame has been set"
2762 " (use set_freqframe) or it is aligned already."));
2763 }
2764 */
2765 MFrequency::Types system = in->frequencies().getFrame();
2766 MVTime mvt(refEpoch.getValue());
2767 String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2768 ostringstream oss;
2769 oss << "Aligned at reference Epoch " << epochout
2770 << " in frame " << MFrequency::showType(system);
2771 pushLog(String(oss));
2772 // set up the iterator
2773 Block<String> cols(4);
2774 // select by constant direction
2775 cols[0] = String("SRCNAME");
2776 cols[1] = String("BEAMNO");
2777 // select by IF ( no of channels varies over this )
2778 cols[2] = String("IFNO");
2779 // select by restfrequency
2780 cols[3] = String("MOLECULE_ID");
2781 TableIterator iter(tout, cols);
2782 while ( !iter.pastEnd() ) {
2783 Table t = iter.table();
2784 MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2785 TableIterator fiter(t, "FREQ_ID");
2786 // determine nchan from the first row. This should work as
2787 // we are iterating over BEAMNO and IFNO // we should have constant direction
2788
2789 ROArrayColumn<Float> sCol(t, "SPECTRA");
2790 const MDirection direction = dirCol(0);
2791 const uInt nchan = sCol(0).nelements();
2792
2793 // skip operations if there is nothing to align
2794 if (fiter.pastEnd()) {
2795 continue;
2796 }
2797
2798 Table ftab = fiter.table();
2799 // align all frequency ids with respect to the first encountered id
2800 ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2801 // get the SpectralCoordinate for the freqid, which we are iterating over
2802 SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2803 FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2804 direction, refPos, system );
2805 // realign the SpectralCoordinate and put into the output Scantable
2806 Vector<String> units(1);
2807 units = String("Hz");
2808 Bool linear=True;
2809 SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2810 sc2.setWorldAxisUnits(units);
2811 const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2812 sc2.referenceValue()[0],
2813 sc2.increment()[0]);
2814 while ( !fiter.pastEnd() ) {
2815 ftab = fiter.table();
2816 // spectral coordinate for the current FREQ_ID
2817 ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2818 sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2819 // create the "global" abcissa for alignment with same FREQ_ID
2820 Vector<Double> abc(nchan);
2821 for (uInt i=0; i<nchan; i++) {
2822 Double w;
2823 sC.toWorld(w,Double(i));
2824 abc[i] = w;
2825 }
2826 TableVector<uInt> tvec(ftab, "FREQ_ID");
2827 // assign new frequency id to all rows
2828 tvec = id;
2829 // cache abcissa for same time stamps, so iterate over those
2830 TableIterator timeiter(ftab, "TIME");
2831 while ( !timeiter.pastEnd() ) {
2832 Table tab = timeiter.table();
2833 ArrayColumn<Float> specCol(tab, "SPECTRA");
2834 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2835 MEpoch::ROScalarColumn timeCol(tab, "TIME");
2836 // use align abcissa cache after the first row
2837 // these rows should be just be POLNO
2838 bool first = true;
2839 for (int i=0; i<int(tab.nrow()); ++i) {
2840 // input values
2841 Vector<uChar> flag = flagCol(i);
2842 Vector<Bool> mask(flag.shape());
2843 Vector<Float> specOut, spec;
2844 spec = specCol(i);
2845 Vector<Bool> maskOut;Vector<uChar> flagOut;
2846 convertArray(mask, flag);
2847 // alignment
2848 Bool ok = fa.align(specOut, maskOut, abc, spec,
2849 mask, timeCol(i), !first,
2850 interp, False);
2851 (void) ok; // unused stop compiler nagging
2852 // back into scantable
2853 flagOut.resize(maskOut.nelements());
2854 convertArray(flagOut, maskOut);
2855 flagCol.put(i, flagOut);
2856 specCol.put(i, specOut);
2857 // start abcissa caching
2858 first = false;
2859 }
2860 // next timestamp
2861 ++timeiter;
2862 }
2863 // next FREQ_ID
2864 ++fiter;
2865 }
2866 // next aligner
2867 ++iter;
2868 }
2869 // set this afterwards to ensure we are doing insitu correctly.
2870 out->frequencies().setFrame(system, true);
2871 return out;
2872}
2873
2874CountedPtr<Scantable>
2875 asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2876 const std::string & newtype )
2877{
2878 if (in->npol() != 2 && in->npol() != 4)
2879 throw(AipsError("Can only convert two or four polarisations."));
2880 if ( in->getPolType() == newtype )
2881 throw(AipsError("No need to convert."));
2882 if ( ! in->selector_.empty() )
2883 throw(AipsError("Can only convert whole scantable. Unset the selection."));
2884 bool insitu = insitu_;
2885 setInsitu(false);
2886 CountedPtr< Scantable > out = getScantable(in, true);
2887 setInsitu(insitu);
2888 Table& tout = out->table();
2889 tout.rwKeywordSet().define("POLTYPE", String(newtype));
2890
2891 Block<String> cols(4);
2892 cols[0] = "SCANNO";
2893 cols[1] = "CYCLENO";
2894 cols[2] = "BEAMNO";
2895 cols[3] = "IFNO";
2896 TableIterator it(in->originalTable_, cols);
2897 String basetype = in->getPolType();
2898 STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2899 try {
2900 while ( !it.pastEnd() ) {
2901 Table tab = it.table();
2902 uInt row = tab.rowNumbers()[0];
2903 stpol->setSpectra(in->getPolMatrix(row));
2904 Float fang,fhand;
2905 fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2906 fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2907 stpol->setPhaseCorrections(fang, fhand);
2908 Int npolout = 0;
2909 for (uInt i=0; i<tab.nrow(); ++i) {
2910 Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2911 if ( outvec.nelements() > 0 ) {
2912 tout.addRow();
2913 TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2914 ArrayColumn<Float> sCol(tout,"SPECTRA");
2915 ScalarColumn<uInt> pCol(tout,"POLNO");
2916 sCol.put(tout.nrow()-1 ,outvec);
2917 pCol.put(tout.nrow()-1 ,uInt(npolout));
2918 npolout++;
2919 }
2920 }
2921 tout.rwKeywordSet().define("nPol", npolout);
2922 ++it;
2923 }
2924 } catch (AipsError& e) {
2925 delete stpol;
2926 throw(e);
2927 }
2928 delete stpol;
2929 return out;
2930}
2931
2932CountedPtr< Scantable >
2933 asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2934 const std::string & scantype )
2935{
2936 bool insitu = insitu_;
2937 setInsitu(false);
2938 CountedPtr< Scantable > out = getScantable(in, true);
2939 setInsitu(insitu);
2940 Table& tout = out->table();
2941 std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2942 if (scantype == "on") {
2943 taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2944 }
2945 Table tab = tableCommand(taql, in->table());
2946 TableCopy::copyRows(tout, tab);
2947 if (scantype == "on") {
2948 // re-index SCANNO to 0
2949 TableVector<uInt> vec(tout, "SCANNO");
2950 vec = 0;
2951 }
2952 return out;
2953}
2954
2955std::vector<float>
2956 asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2957 const std::vector<int>& whichrow,
2958 bool getRealImag )
2959{
2960 std::vector<float> res;
2961 Table tab = in->table();
2962 std::vector<bool> mask;
2963
2964 if (whichrow.size() < 1) { // for all rows (by default)
2965 int nrow = int(tab.nrow());
2966 for (int i = 0; i < nrow; ++i) {
2967 res = in->execFFT(i, mask, getRealImag);
2968 }
2969 } else { // for specified rows
2970 for (uInt i = 0; i < whichrow.size(); ++i) {
2971 res = in->execFFT(i, mask, getRealImag);
2972 }
2973 }
2974
2975 return res;
2976}
2977
2978
2979CountedPtr<Scantable>
2980 asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
2981 double start, double end,
2982 const std::string& mode )
2983{
2984 CountedPtr<Scantable> out = getScantable(in, false);
2985 Table& tout = out->table();
2986 TableIterator iter(tout, "FREQ_ID");
2987 FFTServer<Float,Complex> ffts;
2988
2989 while ( !iter.pastEnd() ) {
2990 Table tab = iter.table();
2991 Double rp,rv,inc;
2992 ROTableRow row(tab);
2993 const TableRecord& rec = row.get(0);
2994 uInt freqid = rec.asuInt("FREQ_ID");
2995 out->frequencies().getEntry(rp, rv, inc, freqid);
2996 ArrayColumn<Float> specCol(tab, "SPECTRA");
2997 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2998
2999 for (int i=0; i<int(tab.nrow()); ++i) {
3000 Vector<Float> spec = specCol(i);
3001 Vector<uChar> flag = flagCol(i);
3002 std::vector<bool> mask;
3003 for (uInt j = 0; j < flag.nelements(); ++j) {
3004 mask.push_back(!(flag[j]>0));
3005 }
3006 mathutil::doZeroOrderInterpolation(spec, mask);
3007
3008 Vector<Complex> lags;
3009 ffts.fft0(lags, spec);
3010
3011 Int lag0(start+0.5);
3012 Int lag1(end+0.5);
3013 if (mode == "frequency") {
3014 lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
3015 lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
3016 }
3017 Int lstart = max(0, lag0);
3018 Int lend = min(Int(lags.nelements()-1), lag1);
3019 if (lstart == lend) {
3020 lags[lstart] = Complex(0.0);
3021 } else {
3022 if (lstart > lend) {
3023 Int tmp = lend;
3024 lend = lstart;
3025 lstart = tmp;
3026 }
3027 for (int j=lstart; j <=lend ;++j) {
3028 lags[j] = Complex(0.0);
3029 }
3030 }
3031
3032 ffts.fft0(spec, lags);
3033
3034 specCol.put(i, spec);
3035 }
3036 ++iter;
3037 }
3038 return out;
3039}
3040
3041// Averaging spectra with different channel/resolution
3042CountedPtr<Scantable>
3043STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
3044 const bool& compel,
3045 const std::vector<bool>& mask,
3046 const std::string& weight,
3047 const std::string& avmode )
3048 throw ( casa::AipsError )
3049{
3050 LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
3051 if ( avmode == "SCAN" && in.size() != 1 )
3052 throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
3053 "Use merge first."));
3054
3055 // 2012/02/17 TN
3056 // Since STGrid is implemented, average doesn't consider direction
3057 // when accumulating
3058 // check if OTF observation
3059// String obstype = in[0]->getHeader().obstype ;
3060// Double tol = 0.0 ;
3061// if ( obstype.find( "OTF" ) != String::npos ) {
3062// tol = TOL_OTF ;
3063// }
3064// else {
3065// tol = TOL_POINT ;
3066// }
3067
3068 CountedPtr<Scantable> out ; // processed result
3069 if ( compel ) {
3070 std::vector< CountedPtr<Scantable> > newin ; // input for average process
3071 uInt insize = in.size() ; // number of input scantables
3072
3073 // TEST: do normal average in each table before IF grouping
3074 os << "Do preliminary averaging" << LogIO::POST ;
3075 vector< CountedPtr<Scantable> > tmpin( insize ) ;
3076 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3077 vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
3078 tmpin[itable] = average( v, mask, weight, avmode ) ;
3079 }
3080
3081 // warning
3082 os << "Average spectra with different spectral resolution" << LogIO::POST ;
3083
3084 // temporarily set coordinfo
3085 vector<string> oldinfo( insize ) ;
3086 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3087 vector<string> coordinfo = in[itable]->getCoordInfo() ;
3088 oldinfo[itable] = coordinfo[0] ;
3089 coordinfo[0] = "Hz" ;
3090 tmpin[itable]->setCoordInfo( coordinfo ) ;
3091 }
3092
3093 // columns
3094 ScalarColumn<uInt> freqIDCol ;
3095 ScalarColumn<uInt> ifnoCol ;
3096 ScalarColumn<uInt> scannoCol ;
3097
3098
3099 // check IF frequency coverage
3100 // freqid: list of FREQ_ID, which is used, in each table
3101 // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3102 // each table
3103 // freqid[insize][numIF]
3104 // freqid: [[id00, id01, ...],
3105 // [id10, id11, ...],
3106 // ...
3107 // [idn0, idn1, ...]]
3108 // iffreq[insize][numIF*2]
3109 // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3110 // [min_id10, max_id10, min_id11, max_id11, ...],
3111 // ...
3112 // [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3113 //os << "Check IF settings in each table" << LogIO::POST ;
3114 vector< vector<uInt> > freqid( insize );
3115 vector< vector<double> > iffreq( insize ) ;
3116 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3117 uInt rows = tmpin[itable]->nrow() ;
3118 uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3119 for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3120 if ( freqid[itable].size() == freqnrows ) {
3121 break ;
3122 }
3123 else {
3124 freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3125 ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3126 uInt id = freqIDCol( irow ) ;
3127 if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3128 //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3129 vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3130 freqid[itable].push_back( id ) ;
3131 iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3132 iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3133 }
3134 }
3135 }
3136 }
3137
3138 // debug
3139 //os << "IF settings summary:" << endl ;
3140 //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3141 //os << " Table" << i << endl ;
3142 //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3143 //os << " id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3144 //}
3145 //}
3146 //os << endl ;
3147 //os.post() ;
3148
3149 // IF grouping based on their frequency coverage
3150 // ifgrp: list of table index and FREQ_ID for all members in each IF group
3151 // ifgfreq: list of minimum and maximum frequency in each IF group
3152 // ifgrp[numgrp][nummember*2]
3153 // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3154 // [table10, freqrow10, table11, freqrow11, ...],
3155 // ...
3156 // [tablen0, freqrown0, tablen1, freqrown1, ...]]
3157 // ifgfreq[numgrp*2]
3158 // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3159 //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3160 vector< vector<uInt> > ifgrp ;
3161 vector<double> ifgfreq ;
3162
3163 // parameter for IF grouping
3164 // groupmode = OR retrieve all region
3165 // AND only retrieve overlaped region
3166 //string groupmode = "AND" ;
3167 string groupmode = "OR" ;
3168 uInt sizecr = 0 ;
3169 if ( groupmode == "AND" )
3170 sizecr = 2 ;
3171 else if ( groupmode == "OR" )
3172 sizecr = 0 ;
3173
3174 vector<double> sortedfreq ;
3175 for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3176 for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3177 if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3178 sortedfreq.push_back( iffreq[i][j] ) ;
3179 }
3180 }
3181 sort( sortedfreq.begin(), sortedfreq.end() ) ;
3182 for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3183 ifgfreq.push_back( *i ) ;
3184 ifgfreq.push_back( *(i+1) ) ;
3185 }
3186 ifgrp.resize( ifgfreq.size()/2 ) ;
3187 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3188 for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3189 double range0 = iffreq[itable][2*iif] ;
3190 double range1 = iffreq[itable][2*iif+1] ;
3191 for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3192 double fmin = max( range0, ifgfreq[2*j] ) ;
3193 double fmax = min( range1, ifgfreq[2*j+1] ) ;
3194 if ( fmin < fmax ) {
3195 ifgrp[j].push_back( itable ) ;
3196 ifgrp[j].push_back( freqid[itable][iif] ) ;
3197 }
3198 }
3199 }
3200 }
3201 vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3202 vector<double>::iterator giter = ifgfreq.begin() ;
3203 while( fiter != ifgrp.end() ) {
3204 if ( fiter->size() <= sizecr ) {
3205 fiter = ifgrp.erase( fiter ) ;
3206 giter = ifgfreq.erase( giter ) ;
3207 giter = ifgfreq.erase( giter ) ;
3208 }
3209 else {
3210 fiter++ ;
3211 advance( giter, 2 ) ;
3212 }
3213 }
3214
3215 // Grouping continuous IF groups (without frequency gap)
3216 // freqgrp: list of IF group indexes in each frequency group
3217 // freqrange: list of minimum and maximum frequency in each frequency group
3218 // freqgrp[numgrp][nummember]
3219 // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3220 // [ifgrp10, ifgrp11, ifgrp12, ...],
3221 // ...
3222 // [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3223 // freqrange[numgrp*2]
3224 // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3225 vector< vector<uInt> > freqgrp ;
3226 double freqrange = 0.0 ;
3227 uInt grpnum = 0 ;
3228 for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3229 // Assumed that ifgfreq was sorted
3230 if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3231 freqgrp[grpnum-1].push_back( i ) ;
3232 }
3233 else {
3234 vector<uInt> grp0( 1, i ) ;
3235 freqgrp.push_back( grp0 ) ;
3236 grpnum++ ;
3237 }
3238 freqrange = ifgfreq[2*i+1] ;
3239 }
3240
3241
3242 // print IF groups
3243 ostringstream oss ;
3244 oss << "IF Group summary: " << endl ;
3245 oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3246 for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3247 oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3248 for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3249 oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3250 }
3251 oss << endl ;
3252 }
3253 oss << endl ;
3254 os << oss.str() << LogIO::POST ;
3255
3256 // print frequency group
3257 oss.str("") ;
3258 oss << "Frequency Group summary: " << endl ;
3259 oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3260 for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3261 oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3262 for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3263 oss << freqgrp[i][j] << " " ;
3264 }
3265 oss << endl ;
3266 }
3267 oss << endl ;
3268 os << oss.str() << LogIO::POST ;
3269
3270 // membership check
3271 // groups: list of IF group indexes whose frequency range overlaps with
3272 // that of each table and IF
3273 // groups[numtable][numIF][nummembership]
3274 // groups: [[[grp, grp,...], [grp, grp,...],...],
3275 // [[grp, grp,...], [grp, grp,...],...],
3276 // ...
3277 // [[grp, grp,...], [grp, grp,...],...]]
3278 vector< vector< vector<uInt> > > groups( insize ) ;
3279 for ( uInt i = 0 ; i < insize ; i++ ) {
3280 groups[i].resize( freqid[i].size() ) ;
3281 }
3282 for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3283 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3284 uInt tableid = ifgrp[igrp][2*imem] ;
3285 vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3286 if ( iter != freqid[tableid].end() ) {
3287 uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3288 groups[tableid][rowid].push_back( igrp ) ;
3289 }
3290 }
3291 }
3292
3293 // print membership
3294 //oss.str("") ;
3295 //for ( uInt i = 0 ; i < insize ; i++ ) {
3296 //oss << "Table " << i << endl ;
3297 //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3298 //oss << " FREQ_ID " << setw( 2 ) << freqid[i][j] << ": " ;
3299 //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3300 //oss << setw( 2 ) << groups[i][j][k] << " " ;
3301 //}
3302 //oss << endl ;
3303 //}
3304 //}
3305 //os << oss.str() << LogIO::POST ;
3306
3307 // set back coordinfo
3308 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3309 vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3310 coordinfo[0] = oldinfo[itable] ;
3311 tmpin[itable]->setCoordInfo( coordinfo ) ;
3312 }
3313
3314 // Create additional table if needed
3315 bool oldInsitu = insitu_ ;
3316 setInsitu( false ) ;
3317 vector< vector<uInt> > addrow( insize ) ;
3318 vector<uInt> addtable( insize, 0 ) ;
3319 vector<uInt> newtableids( insize ) ;
3320 vector<uInt> newifids( insize, 0 ) ;
3321 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3322 //os << "Table " << itable << ": " ;
3323 for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3324 addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3325 //os << addrow[itable][ifrow] << " " ;
3326 }
3327 addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3328 //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3329 }
3330 newin.resize( insize ) ;
3331 copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3332 for ( uInt i = 0 ; i < insize ; i++ ) {
3333 newtableids[i] = i ;
3334 }
3335 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3336 for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3337 CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3338 vector<int> freqidlist ;
3339 for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3340 if ( groups[itable][i].size() > iadd + 1 ) {
3341 freqidlist.push_back( freqid[itable][i] ) ;
3342 }
3343 }
3344 stringstream taqlstream ;
3345 taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3346 for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3347 taqlstream << freqidlist[i] ;
3348 if ( i < freqidlist.size() - 1 )
3349 taqlstream << "," ;
3350 else
3351 taqlstream << "]" ;
3352 }
3353 string taql = taqlstream.str() ;
3354 //os << "taql = " << taql << LogIO::POST ;
3355 STSelector selector = STSelector() ;
3356 selector.setTaQL( taql ) ;
3357 add->setSelection( selector ) ;
3358 newin.push_back( add ) ;
3359 newtableids.push_back( itable ) ;
3360 newifids.push_back( iadd + 1 ) ;
3361 }
3362 }
3363
3364 // udpate ifgrp
3365 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3366 for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3367 for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3368 if ( groups[itable][ifrow].size() > iadd + 1 ) {
3369 uInt igrp = groups[itable][ifrow][iadd+1] ;
3370 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3371 if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3372 ifgrp[igrp][2*imem] = insize + iadd ;
3373 }
3374 }
3375 }
3376 }
3377 }
3378 }
3379
3380 // print IF groups again for debug
3381 //oss.str( "" ) ;
3382 //oss << "IF Group summary: " << endl ;
3383 //oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3384 //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3385 //oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3386 //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3387 //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3388 //}
3389 //oss << endl ;
3390 //}
3391 //oss << endl ;
3392 //os << oss.str() << LogIO::POST ;
3393
3394 // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3395 os << "All scan number is set to 0" << LogIO::POST ;
3396 //os << "All IF number is set to IF group index" << LogIO::POST ;
3397 insize = newin.size() ;
3398 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3399 uInt rows = newin[itable]->nrow() ;
3400 Table &tmpt = newin[itable]->table() ;
3401 freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3402 scannoCol.attach( tmpt, "SCANNO" ) ;
3403 ifnoCol.attach( tmpt, "IFNO" ) ;
3404 for ( uInt irow=0 ; irow < rows ; irow++ ) {
3405 scannoCol.put( irow, 0 ) ;
3406 uInt freqID = freqIDCol( irow ) ;
3407 vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3408 if ( iter != freqid[newtableids[itable]].end() ) {
3409 uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3410 ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3411 }
3412 else {
3413 throw(AipsError("IF grouping was wrong in additional tables.")) ;
3414 }
3415 }
3416 }
3417 oldinfo.resize( insize ) ;
3418 setInsitu( oldInsitu ) ;
3419
3420 // temporarily set coordinfo
3421 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3422 vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3423 oldinfo[itable] = coordinfo[0] ;
3424 coordinfo[0] = "Hz" ;
3425 newin[itable]->setCoordInfo( coordinfo ) ;
3426 }
3427
3428 // save column values in the vector
3429 vector< vector<uInt> > freqTableIdVec( insize ) ;
3430 vector< vector<uInt> > freqIdVec( insize ) ;
3431 vector< vector<uInt> > ifNoVec( insize ) ;
3432 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3433 ScalarColumn<uInt> freqIDs ;
3434 freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3435 ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3436 freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3437 for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3438 freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3439 }
3440 for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3441 freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3442 ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3443 }
3444 }
3445
3446 // reset spectra and flagtra: pick up common part of frequency coverage
3447 //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3448 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3449 uInt rows = newin[itable]->nrow() ;
3450 int nminchan = -1 ;
3451 int nmaxchan = -1 ;
3452 vector<uInt> freqIdUpdate ;
3453 for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3454 uInt ifno = ifNoVec[itable][irow] ; // IFNO is reset by group index
3455 double minfreq = ifgfreq[2*ifno] ;
3456 double maxfreq = ifgfreq[2*ifno+1] ;
3457 //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3458 vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3459 int nchan = abcissa.size() ;
3460 double resol = abcissa[1] - abcissa[0] ;
3461 //os << "abcissa range : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3462 if ( minfreq <= abcissa[0] )
3463 nminchan = 0 ;
3464 else {
3465 //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3466 double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3467 nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3468 }
3469 if ( maxfreq >= abcissa[abcissa.size()-1] )
3470 nmaxchan = abcissa.size() - 1 ;
3471 else {
3472 //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3473 double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3474 nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3475 }
3476 //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3477 if ( nmaxchan > nminchan ) {
3478 newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3479 int newchan = nmaxchan - nminchan + 1 ;
3480 if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3481 freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3482 }
3483 else {
3484 throw(AipsError("Failed to pick up common part of frequency range.")) ;
3485 }
3486 }
3487 for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3488 uInt freqId = freqIdUpdate[i] ;
3489 Double refpix ;
3490 Double refval ;
3491 Double increment ;
3492
3493 // update row
3494 newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3495 refval = refval - ( refpix - nminchan ) * increment ;
3496 refpix = 0 ;
3497 newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3498 }
3499 }
3500
3501
3502 // reset spectra and flagtra: align spectral resolution
3503 //os << "Align spectral resolution" << LogIO::POST ;
3504 // gmaxdnu: the coarsest frequency resolution in the frequency group
3505 // gmemid: member index that have a resolution equal to gmaxdnu
3506 // gmaxdnu[numfreqgrp]
3507 // gmaxdnu: [dnu0, dnu1, ...]
3508 // gmemid[numfreqgrp]
3509 // gmemid: [id0, id1, ...]
3510 vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3511 vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3512 for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3513 double maxdnu = 0.0 ; // maximum (coarsest) frequency resolution
3514 int minchan = INT_MAX ; // minimum channel number
3515 Double refpixref = -1 ; // reference of 'reference pixel'
3516 Double refvalref = -1 ; // reference of 'reference frequency'
3517 Double refinc = -1 ; // reference frequency resolution
3518 uInt refreqid ;
3519 uInt reftable = INT_MAX;
3520 // process only if group member > 1
3521 if ( ifgrp[igrp].size() > 2 ) {
3522 // find minchan and maxdnu in each group
3523 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3524 uInt tableid = ifgrp[igrp][2*imem] ;
3525 uInt rowid = ifgrp[igrp][2*imem+1] ;
3526 vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3527 if ( iter != freqIdVec[tableid].end() ) {
3528 uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3529 vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3530 int nchan = abcissa.size() ;
3531 double dnu = abcissa[1] - abcissa[0] ;
3532 //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3533 if ( nchan < minchan ) {
3534 minchan = nchan ;
3535 maxdnu = dnu ;
3536 newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3537 refreqid = rowid ;
3538 reftable = tableid ;
3539 }
3540 }
3541 }
3542 // regrid spectra in each group
3543 os << "GROUP " << igrp << endl ;
3544 os << " Channel number is adjusted to " << minchan << endl ;
3545 os << " Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3546 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3547 uInt tableid = ifgrp[igrp][2*imem] ;
3548 uInt rowid = ifgrp[igrp][2*imem+1] ;
3549 freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3550 //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3551 //os << " regridChannel applied to " ;
3552 //if ( tableid != reftable )
3553 refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3554 for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3555 uInt tfreqid = freqIdVec[tableid][irow] ;
3556 if ( tfreqid == rowid ) {
3557 //os << irow << " " ;
3558 newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3559 freqIDCol.put( irow, refreqid ) ;
3560 freqIdVec[tableid][irow] = refreqid ;
3561 }
3562 }
3563 //os << LogIO::POST ;
3564 }
3565 }
3566 else {
3567 uInt tableid = ifgrp[igrp][0] ;
3568 uInt rowid = ifgrp[igrp][1] ;
3569 vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3570 if ( iter != freqIdVec[tableid].end() ) {
3571 uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3572 vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3573 minchan = abcissa.size() ;
3574 maxdnu = abcissa[1] - abcissa[0] ;
3575 }
3576 }
3577 for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3578 if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3579 if ( maxdnu > gmaxdnu[i] ) {
3580 gmaxdnu[i] = maxdnu ;
3581 gmemid[i] = igrp ;
3582 }
3583 break ;
3584 }
3585 }
3586 }
3587
3588 // set back coordinfo
3589 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3590 vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3591 coordinfo[0] = oldinfo[itable] ;
3592 newin[itable]->setCoordInfo( coordinfo ) ;
3593 }
3594
3595 // accumulate all rows into the first table
3596 // NOTE: assumed in.size() = 1
3597 vector< CountedPtr<Scantable> > tmp( 1 ) ;
3598 if ( newin.size() == 1 )
3599 tmp[0] = newin[0] ;
3600 else
3601 tmp[0] = merge( newin ) ;
3602
3603 //return tmp[0] ;
3604
3605 // average
3606 CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3607
3608 //return tmpout ;
3609
3610 // combine frequency group
3611 os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3612 os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3613 vector<string> coordinfo = tmpout->getCoordInfo() ;
3614 oldinfo[0] = coordinfo[0] ;
3615 coordinfo[0] = "Hz" ;
3616 tmpout->setCoordInfo( coordinfo ) ;
3617 // create proformas of output table
3618 stringstream taqlstream ;
3619 taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3620 for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3621 taqlstream << gmemid[i] ;
3622 if ( i < gmemid.size() - 1 )
3623 taqlstream << "," ;
3624 else
3625 taqlstream << "]" ;
3626 }
3627 string taql = taqlstream.str() ;
3628 //os << "taql = " << taql << LogIO::POST ;
3629 STSelector selector = STSelector() ;
3630 selector.setTaQL( taql ) ;
3631 oldInsitu = insitu_ ;
3632 setInsitu( false ) ;
3633 out = getScantable( tmpout, false ) ;
3634 setInsitu( oldInsitu ) ;
3635 out->setSelection( selector ) ;
3636 // regrid rows
3637 ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3638 for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3639 uInt ifno = ifnoCol( irow ) ;
3640 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3641 if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3642 vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3643 double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3644 int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3645 tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3646 break ;
3647 }
3648 }
3649 }
3650 // combine spectra
3651 ArrayColumn<Float> specColOut ;
3652 specColOut.attach( out->table(), "SPECTRA" ) ;
3653 ArrayColumn<uChar> flagColOut ;
3654 flagColOut.attach( out->table(), "FLAGTRA" ) ;
3655 ScalarColumn<uInt> ifnoColOut ;
3656 ifnoColOut.attach( out->table(), "IFNO" ) ;
3657 ScalarColumn<uInt> polnoColOut ;
3658 polnoColOut.attach( out->table(), "POLNO" ) ;
3659 ScalarColumn<uInt> freqidColOut ;
3660 freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3661// MDirection::ScalarColumn dirColOut ;
3662// dirColOut.attach( out->table(), "DIRECTION" ) ;
3663 Table &tab = tmpout->table() ;
3664 Block<String> cols(1);
3665 cols[0] = String("POLNO") ;
3666 TableIterator iter( tab, cols ) ;
3667 bool done = false ;
3668 vector< vector<uInt> > sizes( freqgrp.size() ) ;
3669 while( !iter.pastEnd() ) {
3670 vector< vector<Float> > specout( freqgrp.size() ) ;
3671 vector< vector<uChar> > flagout( freqgrp.size() ) ;
3672 ArrayColumn<Float> specCols ;
3673 specCols.attach( iter.table(), "SPECTRA" ) ;
3674 ArrayColumn<uChar> flagCols ;
3675 flagCols.attach( iter.table(), "FLAGTRA" ) ;
3676 ifnoCol.attach( iter.table(), "IFNO" ) ;
3677 ScalarColumn<uInt> polnos ;
3678 polnos.attach( iter.table(), "POLNO" ) ;
3679// MDirection::ScalarColumn dircol ;
3680// dircol.attach( iter.table(), "DIRECTION" ) ;
3681 uInt polno = polnos( 0 ) ;
3682 //os << "POLNO iteration: " << polno << LogIO::POST ;
3683// for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3684// sizes[igrp].resize( freqgrp[igrp].size() ) ;
3685// for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3686// for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3687// uInt ifno = ifnoCol( irow ) ;
3688// if ( ifno == freqgrp[igrp][imem] ) {
3689// Vector<Float> spec = specCols( irow ) ;
3690// Vector<uChar> flag = flagCols( irow ) ;
3691// vector<Float> svec ;
3692// spec.tovector( svec ) ;
3693// vector<uChar> fvec ;
3694// flag.tovector( fvec ) ;
3695// //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3696// specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3697// flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3698// //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3699// sizes[igrp][imem] = spec.nelements() ;
3700// }
3701// }
3702// }
3703// for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3704// uInt ifout = ifnoColOut( irow ) ;
3705// uInt polout = polnoColOut( irow ) ;
3706// if ( ifout == gmemid[igrp] && polout == polno ) {
3707// // set SPECTRA and FRAGTRA
3708// Vector<Float> newspec( specout[igrp] ) ;
3709// Vector<uChar> newflag( flagout[igrp] ) ;
3710// specColOut.put( irow, newspec ) ;
3711// flagColOut.put( irow, newflag ) ;
3712// // IFNO renumbering
3713// ifnoColOut.put( irow, igrp ) ;
3714// }
3715// }
3716// }
3717 // get a list of number of channels for each frequency group member
3718 if ( !done ) {
3719 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3720 sizes[igrp].resize( freqgrp[igrp].size() ) ;
3721 for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3722 for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3723 uInt ifno = ifnoCol( irow ) ;
3724 if ( ifno == freqgrp[igrp][imem] ) {
3725 Vector<Float> spec = specCols( irow ) ;
3726 sizes[igrp][imem] = spec.nelements() ;
3727 break ;
3728 }
3729 }
3730 }
3731 }
3732 done = true ;
3733 }
3734 // combine spectra
3735 for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3736 uInt polout = polnoColOut( irow ) ;
3737 if ( polout == polno ) {
3738 uInt ifout = ifnoColOut( irow ) ;
3739// Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3740 uInt igrp ;
3741 for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3742 if ( ifout == gmemid[jgrp] ) {
3743 igrp = jgrp ;
3744 break ;
3745 }
3746 }
3747 for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3748 for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3749 uInt ifno = ifnoCol( jrow ) ;
3750 // 2012/02/17 TN
3751 // Since STGrid is implemented, average doesn't consider direction
3752 // when accumulating
3753// Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3754// //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction ) ) {
3755// Double dx = tdir[0] - direction[0] ;
3756// Double dy = tdir[1] - direction[1] ;
3757// Double dd = sqrt( dx * dx + dy * dy ) ;
3758 //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3759// if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3760 if ( ifno == freqgrp[igrp][imem] ) {
3761 Vector<Float> spec = specCols( jrow ) ;
3762 Vector<uChar> flag = flagCols( jrow ) ;
3763 vector<Float> svec ;
3764 spec.tovector( svec ) ;
3765 vector<uChar> fvec ;
3766 flag.tovector( fvec ) ;
3767 //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3768 specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3769 flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3770 //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3771 }
3772 }
3773 }
3774 // set SPECTRA and FRAGTRA
3775 Vector<Float> newspec( specout[igrp] ) ;
3776 Vector<uChar> newflag( flagout[igrp] ) ;
3777 specColOut.put( irow, newspec ) ;
3778 flagColOut.put( irow, newflag ) ;
3779 // IFNO renumbering
3780 ifnoColOut.put( irow, igrp ) ;
3781 }
3782 }
3783 iter++ ;
3784 }
3785 // update FREQUENCIES subtable
3786 vector<bool> updated( freqgrp.size(), false ) ;
3787 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3788 uInt index = 0 ;
3789 uInt pixShift = 0 ;
3790 while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3791 pixShift += sizes[igrp][index++] ;
3792 }
3793 for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3794 if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3795 uInt freqidOut = freqidColOut( irow ) ;
3796 //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3797 double refpix ;
3798 double refval ;
3799 double increm ;
3800 out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3801 refpix += pixShift ;
3802 out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3803 updated[igrp] = true ;
3804 }
3805 }
3806 }
3807
3808 //out = tmpout ;
3809
3810 coordinfo = tmpout->getCoordInfo() ;
3811 coordinfo[0] = oldinfo[0] ;
3812 tmpout->setCoordInfo( coordinfo ) ;
3813 }
3814 else {
3815 // simple average
3816 out = average( in, mask, weight, avmode ) ;
3817 }
3818
3819 return out;
3820}
3821
3822CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3823 const String calmode,
3824 const String antname )
3825{
3826 // frequency switch
3827 if ( calmode == "fs" ) {
3828 return cwcalfs( s, antname ) ;
3829 }
3830 else {
3831 vector<bool> masks = s->getMask( 0 ) ;
3832 vector<int> types ;
3833
3834 // sky scan
3835 STSelector sel = STSelector() ;
3836 types.push_back( SrcType::SKY ) ;
3837 sel.setTypes( types ) ;
3838 s->setSelection( sel ) ;
3839 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3840 CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3841 s->unsetSelection() ;
3842 sel.reset() ;
3843 types.clear() ;
3844
3845 // hot scan
3846 types.push_back( SrcType::HOT ) ;
3847 sel.setTypes( types ) ;
3848 s->setSelection( sel ) ;
3849 tmp.clear() ;
3850 tmp.push_back( getScantable( s, false ) ) ;
3851 CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3852 s->unsetSelection() ;
3853 sel.reset() ;
3854 types.clear() ;
3855
3856 // cold scan
3857 CountedPtr<Scantable> acold ;
3858// types.push_back( SrcType::COLD ) ;
3859// sel.setTypes( types ) ;
3860// s->setSelection( sel ) ;
3861// tmp.clear() ;
3862// tmp.push_back( getScantable( s, false ) ) ;
3863// CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3864// s->unsetSelection() ;
3865// sel.reset() ;
3866// types.clear() ;
3867
3868 // off scan
3869 types.push_back( SrcType::PSOFF ) ;
3870 sel.setTypes( types ) ;
3871 s->setSelection( sel ) ;
3872 tmp.clear() ;
3873 tmp.push_back( getScantable( s, false ) ) ;
3874 CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3875 s->unsetSelection() ;
3876 sel.reset() ;
3877 types.clear() ;
3878
3879 // on scan
3880 bool insitu = insitu_ ;
3881 insitu_ = false ;
3882 CountedPtr<Scantable> out = getScantable( s, true ) ;
3883 insitu_ = insitu ;
3884 types.push_back( SrcType::PSON ) ;
3885 sel.setTypes( types ) ;
3886 s->setSelection( sel ) ;
3887 TableCopy::copyRows( out->table(), s->table() ) ;
3888 s->unsetSelection() ;
3889 sel.reset() ;
3890 types.clear() ;
3891
3892 // process each on scan
3893 ArrayColumn<Float> tsysCol ;
3894 tsysCol.attach( out->table(), "TSYS" ) ;
3895 for ( int i = 0 ; i < out->nrow() ; i++ ) {
3896 vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3897 out->setSpectrum( sp, i ) ;
3898 string reftime = out->getTime( i ) ;
3899 vector<int> ii( 1, out->getIF( i ) ) ;
3900 vector<int> ib( 1, out->getBeam( i ) ) ;
3901 vector<int> ip( 1, out->getPol( i ) ) ;
3902 sel.setIFs( ii ) ;
3903 sel.setBeams( ib ) ;
3904 sel.setPolarizations( ip ) ;
3905 asky->setSelection( sel ) ;
3906 vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3907 const Vector<Float> Vtsys( sptsys ) ;
3908 tsysCol.put( i, Vtsys ) ;
3909 asky->unsetSelection() ;
3910 sel.reset() ;
3911 }
3912
3913 // flux unit
3914 out->setFluxUnit( "K" ) ;
3915
3916 return out ;
3917 }
3918}
3919
3920CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3921 const String calmode )
3922{
3923 // frequency switch
3924 if ( calmode == "fs" ) {
3925 return almacalfs( s ) ;
3926 }
3927 else {
3928 // double t0, t1 ;
3929 // t0 = mathutil::gettimeofday_sec() ;
3930 vector<bool> masks = s->getMask( 0 ) ;
3931
3932 // off scan
3933 STSelector sel = STSelector() ;
3934 vector<int> types( 1, SrcType::PSOFF ) ;
3935 //types.push_back( SrcType::PSOFF ) ;
3936 sel.setTypes( types ) ;
3937 s->setSelection( sel ) ;
3938 // TODO 2010/01/08 TN
3939 // Grouping by time should be needed before averaging.
3940 // Each group must have own unique SCANNO (should be renumbered).
3941 // See PIPELINE/SDCalibration.py
3942 CountedPtr<Scantable> soff = getScantable( s, false ) ;
3943 Table ttab = soff->table() ;
3944// String tmpname = File::newUniqueName( "./", "temp" ).baseName() ;
3945// Table ttab = s->table().copyToMemoryTable( tmpname, False ) ;
3946 ROScalarColumn<Double> *timeCol = new ROScalarColumn<Double>( ttab, "TIME" ) ;
3947 uInt nrow = timeCol->nrow() ;
3948 Vector<Double> timeSep = timeCol->getColumn() ;
3949 delete timeCol ;
3950 for ( uInt i = nrow-2 ; i > 0 ; i-- ) {
3951 timeSep[i] -= timeSep[i-1] ;
3952 }
3953 Vector<Double> interval = soff->integrCol_.getColumn() ;
3954 interval /= 86400.0 ;
3955 Block<uInt> gaplist( 100 ) ;
3956 uInt glidx = 0 ;
3957 uInt glsize = gaplist.size() ;
3958 for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3959 double gap = 2.0 * timeSep[i+1] / ( interval[i] + interval[i+1] ) ;
3960 //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3961 if ( gap > 1.1 ) {
3962// cout << "detected gap between " << i << " and " << i+1 << endl ;
3963 gaplist[glidx] = i ;
3964 glidx++ ;
3965 }
3966 if ( glidx >= glsize ) {
3967// cout << "resize gaplist" << endl ;
3968 glsize += 100 ;
3969 gaplist.resize( glsize ) ;
3970 }
3971 }
3972 gaplist[glidx] = nrow - 1 ;
3973 glidx++ ;
3974// cout << "gaplist = " << Vector<uInt>(IPosition(1,glidx),gaplist.storage()) << endl ;
3975 uInt newid = 0 ;
3976 Vector<uInt> newscanno( nrow, 0 ) ;
3977 uInt *p = newscanno.data() ;
3978 IPosition pos( 1 ) ;
3979 for ( uInt i = 1 ; i < glidx ; i++ ) {
3980 pos[0] = gaplist[i] - gaplist[i-1] ;
3981 Vector<uInt> scnslice( pos, p+gaplist[i-1]+1, SHARE ) ;
3982 scnslice = i ;
3983 }
3984 soff->scanCol_.putColumn( newscanno ) ;
3985// cout << "new scancol = " << soff->scanCol_.getColumn() << endl ;
3986// double t2 = mathutil::gettimeofday_sec() ;
3987 vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3988 CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3989 // double t3 = mathutil::gettimeofday_sec() ;
3990 //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3991 s->unsetSelection() ;
3992 sel.reset() ;
3993 // t1 = mathutil::gettimeofday_sec() ;
3994 // cout << "elapsed time for off averaging: " << t1-t0 << " sec" << endl ;
3995 // cout << " elapsed time for average(): " << t3-t2 << " sec" << endl ;
3996
3997 // on scan
3998 // t0 = mathutil::gettimeofday_sec() ;
3999 bool insitu = insitu_ ;
4000 insitu_ = false ;
4001 CountedPtr<Scantable> out = getScantable( s, true ) ;
4002 insitu_ = insitu ;
4003 types[0] = SrcType::PSON ;
4004 sel.setTypes( types ) ;
4005 s->setSelection( sel ) ;
4006 TableCopy::copyRows( out->table(), s->table() ) ;
4007 s->unsetSelection() ;
4008 sel.reset() ;
4009 // t1 = mathutil::gettimeofday_sec() ;
4010 // cout << "elapsed time for preparing output table: " << t1-t0 << " sec" << endl ;
4011
4012 // process each on scan
4013 // t0 = mathutil::gettimeofday_sec() ;
4014// for ( int i = 0 ; i < out->nrow() ; i++ ) {
4015// vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
4016// out->setSpectrum( sp, i ) ;
4017// }
4018
4019 // using STIdxIterAcc
4020 vector<string> cols( 3 ) ;
4021 cols[0] = "BEAMNO" ;
4022 cols[1] = "POLNO" ;
4023 cols[2] = "IFNO" ;
4024 STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
4025 while ( !iter->pastEnd() ) {
4026 Vector<uInt> ids = iter->current() ;
4027 stringstream ss ;
4028 ss << "SELECT FROM $1 WHERE "
4029 << "BEAMNO==" << ids[0] << "&&"
4030 << "POLNO==" << ids[1] << "&&"
4031 << "IFNO==" << ids[2] ;
4032 sel.setTaQL( ss.str() ) ;
4033 aoff->setSelection( sel ) ;
4034 Vector<uInt> rows = iter->getRows( SHARE ) ;
4035 calibrateALMA( out, aoff, rows ) ;
4036 aoff->unsetSelection() ;
4037 sel.reset() ;
4038 iter->next() ;
4039 }
4040 delete iter ;
4041
4042 // t1 = mathutil::gettimeofday_sec() ;
4043 // cout << "elapsed time for calibration: " << t1-t0 << " sec" << endl ;
4044
4045 // flux unit
4046 out->setFluxUnit( "K" ) ;
4047
4048 return out ;
4049 }
4050}
4051
4052CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
4053 const String antname )
4054{
4055 vector<int> types ;
4056
4057 // APEX calibration mode
4058 int apexcalmode = 1 ;
4059
4060 if ( antname.find( "APEX" ) != string::npos ) {
4061 // check if off scan exists or not
4062 STSelector sel = STSelector() ;
4063 //sel.setName( offstr1 ) ;
4064 types.push_back( SrcType::FLOOFF ) ;
4065 sel.setTypes( types ) ;
4066 try {
4067 s->setSelection( sel ) ;
4068 }
4069 catch ( AipsError &e ) {
4070 apexcalmode = 0 ;
4071 }
4072 sel.reset() ;
4073 }
4074 s->unsetSelection() ;
4075 types.clear() ;
4076
4077 vector<bool> masks = s->getMask( 0 ) ;
4078 CountedPtr<Scantable> ssig, sref ;
4079 CountedPtr<Scantable> out ;
4080
4081 if ( antname.find( "APEX" ) != string::npos ) {
4082 // APEX calibration
4083 // sky scan
4084 STSelector sel = STSelector() ;
4085 types.push_back( SrcType::FLOSKY ) ;
4086 sel.setTypes( types ) ;
4087 s->setSelection( sel ) ;
4088 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4089 CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
4090 s->unsetSelection() ;
4091 sel.reset() ;
4092 types.clear() ;
4093 types.push_back( SrcType::FHISKY ) ;
4094 sel.setTypes( types ) ;
4095 s->setSelection( sel ) ;
4096 tmp.clear() ;
4097 tmp.push_back( getScantable( s, false ) ) ;
4098 CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
4099 s->unsetSelection() ;
4100 sel.reset() ;
4101 types.clear() ;
4102
4103 // hot scan
4104 types.push_back( SrcType::FLOHOT ) ;
4105 sel.setTypes( types ) ;
4106 s->setSelection( sel ) ;
4107 tmp.clear() ;
4108 tmp.push_back( getScantable( s, false ) ) ;
4109 CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
4110 s->unsetSelection() ;
4111 sel.reset() ;
4112 types.clear() ;
4113 types.push_back( SrcType::FHIHOT ) ;
4114 sel.setTypes( types ) ;
4115 s->setSelection( sel ) ;
4116 tmp.clear() ;
4117 tmp.push_back( getScantable( s, false ) ) ;
4118 CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
4119 s->unsetSelection() ;
4120 sel.reset() ;
4121 types.clear() ;
4122
4123 // cold scan
4124 CountedPtr<Scantable> acoldlo, acoldhi ;
4125// types.push_back( SrcType::FLOCOLD ) ;
4126// sel.setTypes( types ) ;
4127// s->setSelection( sel ) ;
4128// tmp.clear() ;
4129// tmp.push_back( getScantable( s, false ) ) ;
4130// CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
4131// s->unsetSelection() ;
4132// sel.reset() ;
4133// types.clear() ;
4134// types.push_back( SrcType::FHICOLD ) ;
4135// sel.setTypes( types ) ;
4136// s->setSelection( sel ) ;
4137// tmp.clear() ;
4138// tmp.push_back( getScantable( s, false ) ) ;
4139// CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
4140// s->unsetSelection() ;
4141// sel.reset() ;
4142// types.clear() ;
4143
4144 // ref scan
4145 bool insitu = insitu_ ;
4146 insitu_ = false ;
4147 sref = getScantable( s, true ) ;
4148 insitu_ = insitu ;
4149 types.push_back( SrcType::FSLO ) ;
4150 sel.setTypes( types ) ;
4151 s->setSelection( sel ) ;
4152 TableCopy::copyRows( sref->table(), s->table() ) ;
4153 s->unsetSelection() ;
4154 sel.reset() ;
4155 types.clear() ;
4156
4157 // sig scan
4158 insitu_ = false ;
4159 ssig = getScantable( s, true ) ;
4160 insitu_ = insitu ;
4161 types.push_back( SrcType::FSHI ) ;
4162 sel.setTypes( types ) ;
4163 s->setSelection( sel ) ;
4164 TableCopy::copyRows( ssig->table(), s->table() ) ;
4165 s->unsetSelection() ;
4166 sel.reset() ;
4167 types.clear() ;
4168
4169 if ( apexcalmode == 0 ) {
4170 // APEX fs data without off scan
4171 // process each sig and ref scan
4172 ArrayColumn<Float> tsysCollo ;
4173 tsysCollo.attach( ssig->table(), "TSYS" ) ;
4174 ArrayColumn<Float> tsysColhi ;
4175 tsysColhi.attach( sref->table(), "TSYS" ) ;
4176 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4177 vector< CountedPtr<Scantable> > sky( 2 ) ;
4178 sky[0] = askylo ;
4179 sky[1] = askyhi ;
4180 vector< CountedPtr<Scantable> > hot( 2 ) ;
4181 hot[0] = ahotlo ;
4182 hot[1] = ahothi ;
4183 vector< CountedPtr<Scantable> > cold( 2 ) ;
4184 //cold[0] = acoldlo ;
4185 //cold[1] = acoldhi ;
4186 vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4187 ssig->setSpectrum( sp, i ) ;
4188 string reftime = ssig->getTime( i ) ;
4189 vector<int> ii( 1, ssig->getIF( i ) ) ;
4190 vector<int> ib( 1, ssig->getBeam( i ) ) ;
4191 vector<int> ip( 1, ssig->getPol( i ) ) ;
4192 sel.setIFs( ii ) ;
4193 sel.setBeams( ib ) ;
4194 sel.setPolarizations( ip ) ;
4195 askylo->setSelection( sel ) ;
4196 vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4197 const Vector<Float> Vtsyslo( sptsys ) ;
4198 tsysCollo.put( i, Vtsyslo ) ;
4199 askylo->unsetSelection() ;
4200 sel.reset() ;
4201 sky[0] = askyhi ;
4202 sky[1] = askylo ;
4203 hot[0] = ahothi ;
4204 hot[1] = ahotlo ;
4205 cold[0] = acoldhi ;
4206 cold[1] = acoldlo ;
4207 sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4208 sref->setSpectrum( sp, i ) ;
4209 reftime = sref->getTime( i ) ;
4210 ii[0] = sref->getIF( i ) ;
4211 ib[0] = sref->getBeam( i ) ;
4212 ip[0] = sref->getPol( i ) ;
4213 sel.setIFs( ii ) ;
4214 sel.setBeams( ib ) ;
4215 sel.setPolarizations( ip ) ;
4216 askyhi->setSelection( sel ) ;
4217 sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4218 const Vector<Float> Vtsyshi( sptsys ) ;
4219 tsysColhi.put( i, Vtsyshi ) ;
4220 askyhi->unsetSelection() ;
4221 sel.reset() ;
4222 }
4223 }
4224 else if ( apexcalmode == 1 ) {
4225 // APEX fs data with off scan
4226 // off scan
4227 types.push_back( SrcType::FLOOFF ) ;
4228 sel.setTypes( types ) ;
4229 s->setSelection( sel ) ;
4230 tmp.clear() ;
4231 tmp.push_back( getScantable( s, false ) ) ;
4232 CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4233 s->unsetSelection() ;
4234 sel.reset() ;
4235 types.clear() ;
4236 types.push_back( SrcType::FHIOFF ) ;
4237 sel.setTypes( types ) ;
4238 s->setSelection( sel ) ;
4239 tmp.clear() ;
4240 tmp.push_back( getScantable( s, false ) ) ;
4241 CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4242 s->unsetSelection() ;
4243 sel.reset() ;
4244 types.clear() ;
4245
4246 // process each sig and ref scan
4247 ArrayColumn<Float> tsysCollo ;
4248 tsysCollo.attach( ssig->table(), "TSYS" ) ;
4249 ArrayColumn<Float> tsysColhi ;
4250 tsysColhi.attach( sref->table(), "TSYS" ) ;
4251 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4252 vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4253 ssig->setSpectrum( sp, i ) ;
4254 sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4255 string reftime = ssig->getTime( i ) ;
4256 vector<int> ii( 1, ssig->getIF( i ) ) ;
4257 vector<int> ib( 1, ssig->getBeam( i ) ) ;
4258 vector<int> ip( 1, ssig->getPol( i ) ) ;
4259 sel.setIFs( ii ) ;
4260 sel.setBeams( ib ) ;
4261 sel.setPolarizations( ip ) ;
4262 askylo->setSelection( sel ) ;
4263 vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4264 const Vector<Float> Vtsyslo( sptsys ) ;
4265 tsysCollo.put( i, Vtsyslo ) ;
4266 askylo->unsetSelection() ;
4267 sel.reset() ;
4268 sref->setSpectrum( sp, i ) ;
4269 reftime = sref->getTime( i ) ;
4270 ii[0] = sref->getIF( i ) ;
4271 ib[0] = sref->getBeam( i ) ;
4272 ip[0] = sref->getPol( i ) ;
4273 sel.setIFs( ii ) ;
4274 sel.setBeams( ib ) ;
4275 sel.setPolarizations( ip ) ;
4276 askyhi->setSelection( sel ) ;
4277 sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4278 const Vector<Float> Vtsyshi( sptsys ) ;
4279 tsysColhi.put( i, Vtsyshi ) ;
4280 askyhi->unsetSelection() ;
4281 sel.reset() ;
4282 }
4283 }
4284 }
4285 else {
4286 // non-APEX fs data
4287 // sky scan
4288 STSelector sel = STSelector() ;
4289 types.push_back( SrcType::SKY ) ;
4290 sel.setTypes( types ) ;
4291 s->setSelection( sel ) ;
4292 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4293 CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4294 s->unsetSelection() ;
4295 sel.reset() ;
4296 types.clear() ;
4297
4298 // hot scan
4299 types.push_back( SrcType::HOT ) ;
4300 sel.setTypes( types ) ;
4301 s->setSelection( sel ) ;
4302 tmp.clear() ;
4303 tmp.push_back( getScantable( s, false ) ) ;
4304 CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4305 s->unsetSelection() ;
4306 sel.reset() ;
4307 types.clear() ;
4308
4309 // cold scan
4310 CountedPtr<Scantable> acold ;
4311// types.push_back( SrcType::COLD ) ;
4312// sel.setTypes( types ) ;
4313// s->setSelection( sel ) ;
4314// tmp.clear() ;
4315// tmp.push_back( getScantable( s, false ) ) ;
4316// CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4317// s->unsetSelection() ;
4318// sel.reset() ;
4319// types.clear() ;
4320
4321 // ref scan
4322 bool insitu = insitu_ ;
4323 insitu_ = false ;
4324 sref = getScantable( s, true ) ;
4325 insitu_ = insitu ;
4326 types.push_back( SrcType::FSOFF ) ;
4327 sel.setTypes( types ) ;
4328 s->setSelection( sel ) ;
4329 TableCopy::copyRows( sref->table(), s->table() ) ;
4330 s->unsetSelection() ;
4331 sel.reset() ;
4332 types.clear() ;
4333
4334 // sig scan
4335 insitu_ = false ;
4336 ssig = getScantable( s, true ) ;
4337 insitu_ = insitu ;
4338 types.push_back( SrcType::FSON ) ;
4339 sel.setTypes( types ) ;
4340 s->setSelection( sel ) ;
4341 TableCopy::copyRows( ssig->table(), s->table() ) ;
4342 s->unsetSelection() ;
4343 sel.reset() ;
4344 types.clear() ;
4345
4346 // process each sig and ref scan
4347 ArrayColumn<Float> tsysColsig ;
4348 tsysColsig.attach( ssig->table(), "TSYS" ) ;
4349 ArrayColumn<Float> tsysColref ;
4350 tsysColref.attach( ssig->table(), "TSYS" ) ;
4351 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4352 vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4353 ssig->setSpectrum( sp, i ) ;
4354 string reftime = ssig->getTime( i ) ;
4355 vector<int> ii( 1, ssig->getIF( i ) ) ;
4356 vector<int> ib( 1, ssig->getBeam( i ) ) ;
4357 vector<int> ip( 1, ssig->getPol( i ) ) ;
4358 sel.setIFs( ii ) ;
4359 sel.setBeams( ib ) ;
4360 sel.setPolarizations( ip ) ;
4361 asky->setSelection( sel ) ;
4362 vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4363 const Vector<Float> Vtsys( sptsys ) ;
4364 tsysColsig.put( i, Vtsys ) ;
4365 asky->unsetSelection() ;
4366 sel.reset() ;
4367 sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4368 sref->setSpectrum( sp, i ) ;
4369 tsysColref.put( i, Vtsys ) ;
4370 }
4371 }
4372
4373 // do folding if necessary
4374 Table sigtab = ssig->table() ;
4375 Table reftab = sref->table() ;
4376 ScalarColumn<uInt> sigifnoCol ;
4377 ScalarColumn<uInt> refifnoCol ;
4378 ScalarColumn<uInt> sigfidCol ;
4379 ScalarColumn<uInt> reffidCol ;
4380 Int nchan = (Int)ssig->nchan() ;
4381 sigifnoCol.attach( sigtab, "IFNO" ) ;
4382 refifnoCol.attach( reftab, "IFNO" ) ;
4383 sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4384 reffidCol.attach( reftab, "FREQ_ID" ) ;
4385 Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4386 Vector<uInt> rfids( reffidCol.getColumn() ) ;
4387 vector<uInt> sfids_unique ;
4388 vector<uInt> rfids_unique ;
4389 vector<uInt> sifno_unique ;
4390 vector<uInt> rifno_unique ;
4391 for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4392 if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4393 sfids_unique.push_back( sfids[i] ) ;
4394 sifno_unique.push_back( ssig->getIF( i ) ) ;
4395 }
4396 if ( count( rfids_unique.begin(), rfids_unique.end(), rfids[i] ) == 0 ) {
4397 rfids_unique.push_back( rfids[i] ) ;
4398 rifno_unique.push_back( sref->getIF( i ) ) ;
4399 }
4400 }
4401 double refpix_sig, refval_sig, increment_sig ;
4402 double refpix_ref, refval_ref, increment_ref ;
4403 vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4404 for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4405 ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4406 sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4407 if ( refpix_sig == refpix_ref ) {
4408 double foffset = refval_ref - refval_sig ;
4409 int choffset = static_cast<int>(foffset/increment_sig) ;
4410 double doffset = foffset / increment_sig ;
4411 if ( abs(choffset) >= nchan ) {
4412 LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4413 os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4414 os << "Just return signal data" << LogIO::POST ;
4415 //std::vector< CountedPtr<Scantable> > tabs ;
4416 //tabs.push_back( ssig ) ;
4417 //tabs.push_back( sref ) ;
4418 //out = merge( tabs ) ;
4419 tmp[i] = ssig ;
4420 }
4421 else {
4422 STSelector sel = STSelector() ;
4423 vector<int> v( 1, sifno_unique[i] ) ;
4424 sel.setIFs( v ) ;
4425 ssig->setSelection( sel ) ;
4426 sel.reset() ;
4427 v[0] = rifno_unique[i] ;
4428 sel.setIFs( v ) ;
4429 sref->setSelection( sel ) ;
4430 sel.reset() ;
4431 if ( antname.find( "APEX" ) != string::npos ) {
4432 tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4433 //tmp[i] = dofold( ssig, sref, doffset ) ;
4434 }
4435 else {
4436 tmp[i] = dofold( ssig, sref, doffset ) ;
4437 }
4438 ssig->unsetSelection() ;
4439 sref->unsetSelection() ;
4440 }
4441 }
4442 }
4443
4444 if ( tmp.size() > 1 ) {
4445 out = merge( tmp ) ;
4446 }
4447 else {
4448 out = tmp[0] ;
4449 }
4450
4451 // flux unit
4452 out->setFluxUnit( "K" ) ;
4453
4454 return out ;
4455}
4456
4457CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4458{
4459 (void) s; //currently unused
4460 CountedPtr<Scantable> out ;
4461
4462 return out ;
4463}
4464
4465vector<float> STMath::getSpectrumFromTime( string reftime,
4466 CountedPtr<Scantable>& s,
4467 string mode )
4468{
4469 LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4470 vector<float> sp ;
4471
4472 if ( s->nrow() == 0 ) {
4473 os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4474 return sp ;
4475 }
4476 else if ( s->nrow() == 1 ) {
4477 //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4478 return s->getSpectrum( 0 ) ;
4479 }
4480 else {
4481 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4482 if ( mode == "before" ) {
4483 int id = -1 ;
4484 if ( idx[0] != -1 ) {
4485 id = idx[0] ;
4486 }
4487 else if ( idx[1] != -1 ) {
4488 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4489 id = idx[1] ;
4490 }
4491 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4492 sp = s->getSpectrum( id ) ;
4493 }
4494 else if ( mode == "after" ) {
4495 int id = -1 ;
4496 if ( idx[1] != -1 ) {
4497 id = idx[1] ;
4498 }
4499 else if ( idx[0] != -1 ) {
4500 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4501 id = idx[1] ;
4502 }
4503 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4504 sp = s->getSpectrum( id ) ;
4505 }
4506 else if ( mode == "nearest" ) {
4507 int id = -1 ;
4508 if ( idx[0] == -1 ) {
4509 id = idx[1] ;
4510 }
4511 else if ( idx[1] == -1 ) {
4512 id = idx[0] ;
4513 }
4514 else if ( idx[0] == idx[1] ) {
4515 id = idx[0] ;
4516 }
4517 else {
4518 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4519 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4520 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4521 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4522 double tref = getMJD( reftime ) ;
4523 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4524 id = idx[1] ;
4525 }
4526 else {
4527 id = idx[0] ;
4528 }
4529 }
4530 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4531 sp = s->getSpectrum( id ) ;
4532 }
4533 else if ( mode == "linear" ) {
4534 if ( idx[0] == -1 ) {
4535 // use after
4536 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4537 int id = idx[1] ;
4538 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4539 sp = s->getSpectrum( id ) ;
4540 }
4541 else if ( idx[1] == -1 ) {
4542 // use before
4543 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4544 int id = idx[0] ;
4545 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4546 sp = s->getSpectrum( id ) ;
4547 }
4548 else if ( idx[0] == idx[1] ) {
4549 // use before
4550 //os << "No need to interporate." << LogIO::POST ;
4551 int id = idx[0] ;
4552 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4553 sp = s->getSpectrum( id ) ;
4554 }
4555 else {
4556 // do interpolation
4557 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4558 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4559 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4560 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4561 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4562 double tref = getMJD( reftime ) ;
4563 vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4564 vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4565 for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4566 float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4567 sp.push_back( v ) ;
4568 }
4569 }
4570 }
4571 else {
4572 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4573 }
4574 return sp ;
4575 }
4576}
4577
4578vector<float> STMath::getSpectrumFromTime( double reftime,
4579 Vector<Double> &timeVec,
4580 CountedPtr<Scantable>& s,
4581 string mode )
4582{
4583 LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4584 vector<float> sp ;
4585
4586 if ( s->nrow() == 0 ) {
4587 os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4588 return sp ;
4589 }
4590 else if ( s->nrow() == 1 ) {
4591 //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4592 return s->getSpectrum( 0 ) ;
4593 }
4594 else {
4595 //ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4596 //Vector<Double> timeVec = timeCol.getColumn() ;
4597 vector<int> idx = getRowIdFromTime( reftime, timeVec ) ;
4598 if ( mode == "before" ) {
4599 int id = -1 ;
4600 if ( idx[0] != -1 ) {
4601 id = idx[0] ;
4602 }
4603 else if ( idx[1] != -1 ) {
4604 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4605 id = idx[1] ;
4606 }
4607 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4608 sp = s->getSpectrum( id ) ;
4609 }
4610 else if ( mode == "after" ) {
4611 int id = -1 ;
4612 if ( idx[1] != -1 ) {
4613 id = idx[1] ;
4614 }
4615 else if ( idx[0] != -1 ) {
4616 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4617 id = idx[1] ;
4618 }
4619 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4620 sp = s->getSpectrum( id ) ;
4621 }
4622 else if ( mode == "nearest" ) {
4623 int id = -1 ;
4624 if ( idx[0] == -1 ) {
4625 id = idx[1] ;
4626 }
4627 else if ( idx[1] == -1 ) {
4628 id = idx[0] ;
4629 }
4630 else if ( idx[0] == idx[1] ) {
4631 id = idx[0] ;
4632 }
4633 else {
4634 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4635 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4636// double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4637// double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4638 double t0 = timeVec[idx[0]] ;
4639 double t1 = timeVec[idx[1]] ;
4640// cout << "t0-t0c=" << t0-t0c << endl ;
4641// cout << "t1-t1c=" << t1-t1c << endl ;
4642// double tref = getMJD( reftime ) ;
4643 double tref = reftime ;
4644 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4645 id = idx[1] ;
4646 }
4647 else {
4648 id = idx[0] ;
4649 }
4650 }
4651 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4652 sp = s->getSpectrum( id ) ;
4653 }
4654 else if ( mode == "linear" ) {
4655 if ( idx[0] == -1 ) {
4656 // use after
4657 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4658 int id = idx[1] ;
4659 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4660 sp = s->getSpectrum( id ) ;
4661 }
4662 else if ( idx[1] == -1 ) {
4663 // use before
4664 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4665 int id = idx[0] ;
4666 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4667 sp = s->getSpectrum( id ) ;
4668 }
4669 else if ( idx[0] == idx[1] ) {
4670 // use before
4671 //os << "No need to interporate." << LogIO::POST ;
4672 int id = idx[0] ;
4673 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4674 sp = s->getSpectrum( id ) ;
4675 }
4676 else {
4677 // do interpolation
4678 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4679 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4680 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4681// double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4682// double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4683 double t0 = timeVec[idx[0]] ;
4684 double t1 = timeVec[idx[1]] ;
4685// cout << "t0-t0c=" << t0-t0c << endl ;
4686// cout << "t1-t1c=" << t1-t1c << endl ;
4687// double tref = getMJD( reftime ) ;
4688 double tref = reftime ;
4689 sp = s->getSpectrum( idx[0] ) ;
4690 vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4691 double tfactor = ( tref - t0 ) / ( t1 - t0 ) ;
4692 for ( unsigned int i = 0 ; i < sp.size() ; i++ ) {
4693 sp[i] = ( sp1[i] - sp[i] ) * tfactor + sp[i] ;
4694 }
4695 }
4696 }
4697 else {
4698 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4699 }
4700 return sp ;
4701 }
4702}
4703
4704double STMath::getMJD( string strtime )
4705{
4706 if ( strtime.find("/") == string::npos ) {
4707 // MJD time string
4708 return atof( strtime.c_str() ) ;
4709 }
4710 else {
4711 // string in YYYY/MM/DD/HH:MM:SS format
4712 uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4713 uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4714 uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4715 uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4716 uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4717 uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4718 Time t( year, month, day, hour, minute, sec ) ;
4719 return t.modifiedJulianDay() ;
4720 }
4721}
4722
4723vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4724{
4725 double reft = getMJD( reftime ) ;
4726 double dtmin = 1.0e100 ;
4727 double dtmax = -1.0e100 ;
4728 vector<double> dt ;
4729 int just_before = -1 ;
4730 int just_after = -1 ;
4731 for ( int i = 0 ; i < s->nrow() ; i++ ) {
4732 dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4733 }
4734 for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4735 if ( dt[i] > 0.0 ) {
4736 // after reftime
4737 if ( dt[i] < dtmin ) {
4738 just_after = i ;
4739 dtmin = dt[i] ;
4740 }
4741 }
4742 else if ( dt[i] < 0.0 ) {
4743 // before reftime
4744 if ( dt[i] > dtmax ) {
4745 just_before = i ;
4746 dtmax = dt[i] ;
4747 }
4748 }
4749 else {
4750 // just a reftime
4751 just_before = i ;
4752 just_after = i ;
4753 dtmax = 0 ;
4754 dtmin = 0 ;
4755 break ;
4756 }
4757 }
4758
4759 vector<int> v ;
4760 v.push_back( just_before ) ;
4761 v.push_back( just_after ) ;
4762
4763 return v ;
4764}
4765
4766vector<int> STMath::getRowIdFromTime( double reftime, Vector<Double> &t )
4767{
4768// double reft = reftime ;
4769 double dtmin = 1.0e100 ;
4770 double dtmax = -1.0e100 ;
4771// vector<double> dt ;
4772 int just_before = -1 ;
4773 int just_after = -1 ;
4774 //cout << setprecision(24) << reft << endl ;
4775// ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4776// for ( int i = 0 ; i < s->nrow() ; i++ ) {
4777// cout << setprecision(24) << timeCol(i) << endl ;
4778// //dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4779// dt.push_back( timeCol(i) - reft ) ;
4780// }
4781 Vector<Double> dt = t - reftime ;
4782 for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4783 if ( dt[i] > 0.0 ) {
4784 // after reftime
4785 if ( dt[i] < dtmin ) {
4786 just_after = i ;
4787 dtmin = dt[i] ;
4788 }
4789 }
4790 else if ( dt[i] < 0.0 ) {
4791 // before reftime
4792 if ( dt[i] > dtmax ) {
4793 just_before = i ;
4794 dtmax = dt[i] ;
4795 }
4796 }
4797 else {
4798 // just a reftime
4799 just_before = i ;
4800 just_after = i ;
4801 dtmax = 0 ;
4802 dtmin = 0 ;
4803 break ;
4804 }
4805 }
4806
4807 vector<int> v(2) ;
4808 v[0] = just_before ;
4809 v[1] = just_after ;
4810
4811 return v ;
4812}
4813
4814vector<float> STMath::getTcalFromTime( string reftime,
4815 CountedPtr<Scantable>& s,
4816 string mode )
4817{
4818 LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4819 vector<float> tcal ;
4820 STTcal tcalTable = s->tcal() ;
4821 String time ;
4822 Vector<Float> tcalval ;
4823 if ( s->nrow() == 0 ) {
4824 os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4825 return tcal ;
4826 }
4827 else if ( s->nrow() == 1 ) {
4828 uInt tcalid = s->getTcalId( 0 ) ;
4829 //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4830 tcalTable.getEntry( time, tcalval, tcalid ) ;
4831 tcalval.tovector( tcal ) ;
4832 return tcal ;
4833 }
4834 else {
4835 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4836 if ( mode == "before" ) {
4837 int id = -1 ;
4838 if ( idx[0] != -1 ) {
4839 id = idx[0] ;
4840 }
4841 else if ( idx[1] != -1 ) {
4842 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4843 id = idx[1] ;
4844 }
4845 uInt tcalid = s->getTcalId( id ) ;
4846 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4847 tcalTable.getEntry( time, tcalval, tcalid ) ;
4848 tcalval.tovector( tcal ) ;
4849 }
4850 else if ( mode == "after" ) {
4851 int id = -1 ;
4852 if ( idx[1] != -1 ) {
4853 id = idx[1] ;
4854 }
4855 else if ( idx[0] != -1 ) {
4856 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4857 id = idx[1] ;
4858 }
4859 uInt tcalid = s->getTcalId( id ) ;
4860 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4861 tcalTable.getEntry( time, tcalval, tcalid ) ;
4862 tcalval.tovector( tcal ) ;
4863 }
4864 else if ( mode == "nearest" ) {
4865 int id = -1 ;
4866 if ( idx[0] == -1 ) {
4867 id = idx[1] ;
4868 }
4869 else if ( idx[1] == -1 ) {
4870 id = idx[0] ;
4871 }
4872 else if ( idx[0] == idx[1] ) {
4873 id = idx[0] ;
4874 }
4875 else {
4876 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4877 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4878 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4879 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4880 double tref = getMJD( reftime ) ;
4881 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4882 id = idx[1] ;
4883 }
4884 else {
4885 id = idx[0] ;
4886 }
4887 }
4888 uInt tcalid = s->getTcalId( id ) ;
4889 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4890 tcalTable.getEntry( time, tcalval, tcalid ) ;
4891 tcalval.tovector( tcal ) ;
4892 }
4893 else if ( mode == "linear" ) {
4894 if ( idx[0] == -1 ) {
4895 // use after
4896 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4897 int id = idx[1] ;
4898 uInt tcalid = s->getTcalId( id ) ;
4899 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4900 tcalTable.getEntry( time, tcalval, tcalid ) ;
4901 tcalval.tovector( tcal ) ;
4902 }
4903 else if ( idx[1] == -1 ) {
4904 // use before
4905 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4906 int id = idx[0] ;
4907 uInt tcalid = s->getTcalId( id ) ;
4908 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4909 tcalTable.getEntry( time, tcalval, tcalid ) ;
4910 tcalval.tovector( tcal ) ;
4911 }
4912 else if ( idx[0] == idx[1] ) {
4913 // use before
4914 //os << "No need to interporate." << LogIO::POST ;
4915 int id = idx[0] ;
4916 uInt tcalid = s->getTcalId( id ) ;
4917 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4918 tcalTable.getEntry( time, tcalval, tcalid ) ;
4919 tcalval.tovector( tcal ) ;
4920 }
4921 else {
4922 // do interpolation
4923 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4924 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4925 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4926 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4927 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4928 double tref = getMJD( reftime ) ;
4929 vector<float> tcal0 ;
4930 vector<float> tcal1 ;
4931 uInt tcalid0 = s->getTcalId( idx[0] ) ;
4932 uInt tcalid1 = s->getTcalId( idx[1] ) ;
4933 tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4934 tcalval.tovector( tcal0 ) ;
4935 tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4936 tcalval.tovector( tcal1 ) ;
4937 for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4938 float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4939 tcal.push_back( v ) ;
4940 }
4941 }
4942 }
4943 else {
4944 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4945 }
4946 return tcal ;
4947 }
4948}
4949
4950vector<float> STMath::getTsysFromTime( string reftime,
4951 CountedPtr<Scantable>& s,
4952 string mode )
4953{
4954 LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4955 ArrayColumn<Float> tsysCol ;
4956 tsysCol.attach( s->table(), "TSYS" ) ;
4957 vector<float> tsys ;
4958 String time ;
4959 Vector<Float> tsysval ;
4960 if ( s->nrow() == 0 ) {
4961 os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4962 return tsys ;
4963 }
4964 else if ( s->nrow() == 1 ) {
4965 //os << "use row " << 0 << LogIO::POST ;
4966 tsysval = tsysCol( 0 ) ;
4967 tsysval.tovector( tsys ) ;
4968 return tsys ;
4969 }
4970 else {
4971 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4972 if ( mode == "before" ) {
4973 int id = -1 ;
4974 if ( idx[0] != -1 ) {
4975 id = idx[0] ;
4976 }
4977 else if ( idx[1] != -1 ) {
4978 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4979 id = idx[1] ;
4980 }
4981 //os << "use row " << id << LogIO::POST ;
4982 tsysval = tsysCol( id ) ;
4983 tsysval.tovector( tsys ) ;
4984 }
4985 else if ( mode == "after" ) {
4986 int id = -1 ;
4987 if ( idx[1] != -1 ) {
4988 id = idx[1] ;
4989 }
4990 else if ( idx[0] != -1 ) {
4991 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4992 id = idx[1] ;
4993 }
4994 //os << "use row " << id << LogIO::POST ;
4995 tsysval = tsysCol( id ) ;
4996 tsysval.tovector( tsys ) ;
4997 }
4998 else if ( mode == "nearest" ) {
4999 int id = -1 ;
5000 if ( idx[0] == -1 ) {
5001 id = idx[1] ;
5002 }
5003 else if ( idx[1] == -1 ) {
5004 id = idx[0] ;
5005 }
5006 else if ( idx[0] == idx[1] ) {
5007 id = idx[0] ;
5008 }
5009 else {
5010 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
5011 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5012 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5013 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
5014 double tref = getMJD( reftime ) ;
5015 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
5016 id = idx[1] ;
5017 }
5018 else {
5019 id = idx[0] ;
5020 }
5021 }
5022 //os << "use row " << id << LogIO::POST ;
5023 tsysval = tsysCol( id ) ;
5024 tsysval.tovector( tsys ) ;
5025 }
5026 else if ( mode == "linear" ) {
5027 if ( idx[0] == -1 ) {
5028 // use after
5029 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
5030 int id = idx[1] ;
5031 //os << "use row " << id << LogIO::POST ;
5032 tsysval = tsysCol( id ) ;
5033 tsysval.tovector( tsys ) ;
5034 }
5035 else if ( idx[1] == -1 ) {
5036 // use before
5037 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
5038 int id = idx[0] ;
5039 //os << "use row " << id << LogIO::POST ;
5040 tsysval = tsysCol( id ) ;
5041 tsysval.tovector( tsys ) ;
5042 }
5043 else if ( idx[0] == idx[1] ) {
5044 // use before
5045 //os << "No need to interporate." << LogIO::POST ;
5046 int id = idx[0] ;
5047 //os << "use row " << id << LogIO::POST ;
5048 tsysval = tsysCol( id ) ;
5049 tsysval.tovector( tsys ) ;
5050 }
5051 else {
5052 // do interpolation
5053 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
5054 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
5055 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5056 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5057 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
5058 double tref = getMJD( reftime ) ;
5059 vector<float> tsys0 ;
5060 vector<float> tsys1 ;
5061 tsysval = tsysCol( idx[0] ) ;
5062 tsysval.tovector( tsys0 ) ;
5063 tsysval = tsysCol( idx[1] ) ;
5064 tsysval.tovector( tsys1 ) ;
5065 for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
5066 float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
5067 tsys.push_back( v ) ;
5068 }
5069 }
5070 }
5071 else {
5072 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
5073 }
5074 return tsys ;
5075 }
5076}
5077
5078vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5079 CountedPtr<Scantable>& off,
5080 CountedPtr<Scantable>& sky,
5081 CountedPtr<Scantable>& hot,
5082 CountedPtr<Scantable>& cold,
5083 int index,
5084 string antname )
5085{
5086 (void) cold; //currently unused
5087 string reftime = on->getTime( index ) ;
5088 vector<int> ii( 1, on->getIF( index ) ) ;
5089 vector<int> ib( 1, on->getBeam( index ) ) ;
5090 vector<int> ip( 1, on->getPol( index ) ) ;
5091 STSelector sel = STSelector() ;
5092 sel.setIFs( ii ) ;
5093 sel.setBeams( ib ) ;
5094 sel.setPolarizations( ip ) ;
5095 sky->setSelection( sel ) ;
5096 hot->setSelection( sel ) ;
5097 //cold->setSelection( sel ) ;
5098 off->setSelection( sel ) ;
5099 vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5100 vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5101 //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5102 vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
5103 vector<float> spec = on->getSpectrum( index ) ;
5104 vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5105 vector<float> sp( tcal.size() ) ;
5106 if ( antname.find( "APEX" ) != string::npos ) {
5107 // using gain array
5108 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5109 float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
5110 * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
5111 sp[j] = v ;
5112 }
5113 }
5114 else {
5115 // Chopper-Wheel calibration (Ulich & Haas 1976)
5116 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5117 float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
5118 sp[j] = v ;
5119 }
5120 }
5121 sel.reset() ;
5122 sky->unsetSelection() ;
5123 hot->unsetSelection() ;
5124 //cold->unsetSelection() ;
5125 off->unsetSelection() ;
5126
5127 return sp ;
5128}
5129
5130vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5131 CountedPtr<Scantable>& off,
5132 int index )
5133{
5134// string reftime = on->getTime( index ) ;
5135 ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5136 Vector<Double> timeVec = timeCol.getColumn() ;
5137 //ROTableColumn timeCol( on->table(), "TIME" ) ;
5138 timeCol.attach( on->table(), "TIME" ) ;
5139 double reftime = timeCol.asdouble(index) ;
5140 vector<int> ii( 1, on->getIF( index ) ) ;
5141 vector<int> ib( 1, on->getBeam( index ) ) ;
5142 vector<int> ip( 1, on->getPol( index ) ) ;
5143 STSelector sel = STSelector() ;
5144 sel.setIFs( ii ) ;
5145 sel.setBeams( ib ) ;
5146 sel.setPolarizations( ip ) ;
5147 off->setSelection( sel ) ;
5148 vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
5149 vector<float> spec = on->getSpectrum( index ) ;
5150 //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5151 //vector<float> tsys = on->getTsysVec( index ) ;
5152 ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5153 Vector<Float> tsys = tsysCol( index ) ;
5154 vector<float> sp( spec.size() ) ;
5155 // ALMA Calibration
5156 //
5157 // Ta* = Tsys * ( ON - OFF ) / OFF
5158 //
5159 // 2010/01/07 Takeshi Nakazato
5160 unsigned int tsyssize = tsys.nelements() ;
5161 unsigned int spsize = sp.size() ;
5162 for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5163 float tscale = 0.0 ;
5164 if ( tsyssize == spsize )
5165 tscale = tsys[j] ;
5166 else
5167 tscale = tsys[0] ;
5168 float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5169 sp[j] = v ;
5170 }
5171 sel.reset() ;
5172 off->unsetSelection() ;
5173
5174 return sp ;
5175}
5176
5177void STMath::calibrateALMA( CountedPtr<Scantable>& on,
5178 CountedPtr<Scantable>& off )
5179{
5180 if ( on->nrow() == 0 )
5181 return ;
5182 // string reftime = on->getTime( index ) ;
5183 ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5184 Vector<Double> timeVec = timeCol.getColumn() ;
5185 //ROTableColumn timeCol( on->table(), "TIME" ) ;
5186 timeCol.attach( on->table(), "TIME" ) ;
5187 ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5188 vector<float> sp( on->nchan( on->getIF(0) ) ) ;
5189 unsigned int spsize = sp.size() ;
5190 for ( int index = 0 ; index < on->nrow() ; index++ ) {
5191 double reftime = timeCol.asdouble(index) ;
5192 vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
5193 vector<float> spec = on->getSpectrum( index ) ;
5194 Vector<Float> tsys = tsysCol( index ) ;
5195 // ALMA Calibration
5196 //
5197 // Ta* = Tsys * ( ON - OFF ) / OFF
5198 //
5199 // 2010/01/07 Takeshi Nakazato
5200 unsigned int tsyssize = tsys.nelements() ;
5201 for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5202 float tscale = 0.0 ;
5203 if ( tsyssize == spsize )
5204 tscale = tsys[j] ;
5205 else
5206 tscale = tsys[0] ;
5207 float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5208 sp[j] = v ;
5209 }
5210 on->setSpectrum( sp, index ) ;
5211 }
5212}
5213
5214void STMath::calibrateALMA( CountedPtr<Scantable>& on,
5215 CountedPtr<Scantable>& off,
5216 Vector<uInt>& rows )
5217{
5218 // if rows is empty, just return
5219 if ( rows.nelements() == 0 )
5220 return ;
5221// string reftime = on->getTime( index ) ;
5222 ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5223 Vector<Double> timeVec = timeCol.getColumn() ;
5224 //ROTableColumn timeCol( on->table(), "TIME" ) ;
5225 timeCol.attach( on->table(), "TIME" ) ;
5226 ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5227 vector<float> sp( on->nchan( on->getIF(rows[0]) ) ) ;
5228 unsigned int spsize = sp.size() ;
5229 // I know that the data is contiguous
5230 const uInt *p = rows.data() ;
5231 for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
5232 //int index = rows[irow] ;
5233 //double reftime = timeCol.asdouble(index) ;
5234 double reftime = timeCol.asdouble(*p) ;
5235 vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
5236 //vector<float> spec = on->getSpectrum( index ) ;
5237 //Vector<Float> tsys = tsysCol( index ) ;
5238 vector<float> spec = on->getSpectrum( *p ) ;
5239 Vector<Float> tsys = tsysCol( *p ) ;
5240 // ALMA Calibration
5241 //
5242 // Ta* = Tsys * ( ON - OFF ) / OFF
5243 //
5244 // 2010/01/07 Takeshi Nakazato
5245 unsigned int tsyssize = tsys.nelements() ;
5246 for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5247 float tscale = 0.0 ;
5248 if ( tsyssize == spsize )
5249 tscale = tsys[j] ;
5250 else
5251 tscale = tsys[0] ;
5252 float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5253 sp[j] = v ;
5254 }
5255 //on->setSpectrum( sp, index ) ;
5256 on->setSpectrum( sp, *p ) ;
5257 p++ ;
5258 }
5259}
5260
5261vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5262 CountedPtr<Scantable>& ref,
5263 CountedPtr<Scantable>& sky,
5264 CountedPtr<Scantable>& hot,
5265 CountedPtr<Scantable>& cold,
5266 int index )
5267{
5268 (void) cold; //currently unused
5269 string reftime = sig->getTime( index ) ;
5270 vector<int> ii( 1, sig->getIF( index ) ) ;
5271 vector<int> ib( 1, sig->getBeam( index ) ) ;
5272 vector<int> ip( 1, sig->getPol( index ) ) ;
5273 vector<int> ic( 1, sig->getScan( index ) ) ;
5274 STSelector sel = STSelector() ;
5275 sel.setIFs( ii ) ;
5276 sel.setBeams( ib ) ;
5277 sel.setPolarizations( ip ) ;
5278 sky->setSelection( sel ) ;
5279 hot->setSelection( sel ) ;
5280 //cold->setSelection( sel ) ;
5281 vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5282 vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5283 //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5284 vector<float> spref = ref->getSpectrum( index ) ;
5285 vector<float> spsig = sig->getSpectrum( index ) ;
5286 vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5287 vector<float> sp( tcal.size() ) ;
5288 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5289 float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
5290 sp[j] = v ;
5291 }
5292 sel.reset() ;
5293 sky->unsetSelection() ;
5294 hot->unsetSelection() ;
5295 //cold->unsetSelection() ;
5296
5297 return sp ;
5298}
5299
5300vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5301 CountedPtr<Scantable>& ref,
5302 vector< CountedPtr<Scantable> >& sky,
5303 vector< CountedPtr<Scantable> >& hot,
5304 vector< CountedPtr<Scantable> >& cold,
5305 int index )
5306{
5307 (void) cold; //currently unused
5308 string reftime = sig->getTime( index ) ;
5309 vector<int> ii( 1, sig->getIF( index ) ) ;
5310 vector<int> ib( 1, sig->getBeam( index ) ) ;
5311 vector<int> ip( 1, sig->getPol( index ) ) ;
5312 vector<int> ic( 1, sig->getScan( index ) ) ;
5313 STSelector sel = STSelector() ;
5314 sel.setIFs( ii ) ;
5315 sel.setBeams( ib ) ;
5316 sel.setPolarizations( ip ) ;
5317 sky[0]->setSelection( sel ) ;
5318 hot[0]->setSelection( sel ) ;
5319 //cold[0]->setSelection( sel ) ;
5320 vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
5321 vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
5322 //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
5323 vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
5324 sel.reset() ;
5325 ii[0] = ref->getIF( index ) ;
5326 sel.setIFs( ii ) ;
5327 sel.setBeams( ib ) ;
5328 sel.setPolarizations( ip ) ;
5329 sky[1]->setSelection( sel ) ;
5330 hot[1]->setSelection( sel ) ;
5331 //cold[1]->setSelection( sel ) ;
5332 vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
5333 vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
5334 //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
5335 vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ;
5336 vector<float> spref = ref->getSpectrum( index ) ;
5337 vector<float> spsig = sig->getSpectrum( index ) ;
5338 vector<float> sp( tcals.size() ) ;
5339 for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
5340 float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
5341 sp[j] = v ;
5342 }
5343 sel.reset() ;
5344 sky[0]->unsetSelection() ;
5345 hot[0]->unsetSelection() ;
5346 //cold[0]->unsetSelection() ;
5347 sky[1]->unsetSelection() ;
5348 hot[1]->unsetSelection() ;
5349 //cold[1]->unsetSelection() ;
5350
5351 return sp ;
5352}
Note: See TracBrowser for help on using the repository browser.