source: branches/hpc33/src/STMath.cpp@ 2542

Last change on this file since 2542 was 2542, checked in by Takeshi Nakazato, 13 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Describe your changes here...

More speedup of STMath::average().

  • Reduced number of call of RowAccumulator::replaceNaN().
  • Performance of RowAccumulator::add() is improved.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 183.6 KB
RevLine 
[805]1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
[38]12
[2177]13#include <sstream>
14
[330]15#include <casa/iomanip.h>
[805]16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
[81]19#include <casa/Arrays/ArrayMath.h>
[1066]20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
[2177]22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
[805]24#include <casa/Containers/RecordField.h>
[2177]25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
[2]27
[917]28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
[2177]31#include <coordinates/Coordinates/SpectralCoordinate.h>
[917]32
[2177]33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
[177]37#include <scimath/Mathematics/VectorKernel.h>
38
[2177]39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
[1819]49#include <atnf/PKSIO/SrcType.h>
50
[805]51#include "RowAccumulator.h"
[878]52#include "STAttr.h"
[2177]53#include "STMath.h"
[1391]54#include "STSelector.h"
[2458]55#include "Accelerator.h"
[2519]56#include "STIdxIter.h"
[2]57
[805]58using namespace casa;
[83]59using namespace asap;
[2]60
[2449]61
[2432]62// 2012/02/17 TN
63// Since STGrid is implemented, average doesn't consider direction
64// when accumulating
[1819]65// tolerance for direction comparison (rad)
[2432]66// #define TOL_OTF 1.0e-15
67// #define TOL_POINT 2.9088821e-4 // 1 arcmin
[1819]68
[805]69STMath::STMath(bool insitu) :
70 insitu_(insitu)
[716]71{
72}
[170]73
74
[805]75STMath::~STMath()
[170]76{
77}
78
[805]79CountedPtr<Scantable>
[977]80STMath::average( const std::vector<CountedPtr<Scantable> >& in,
[858]81 const std::vector<bool>& mask,
[805]82 const std::string& weight,
[977]83 const std::string& avmode)
[262]84{
[2540]85// double t0, t1 ;
86// t0 = mathutil::gettimeofday_sec() ;
[2539]87
[1819]88 LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
[977]89 if ( avmode == "SCAN" && in.size() != 1 )
[1066]90 throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
91 "Use merge first."));
[805]92 WeightType wtype = stringToWeight(weight);
[926]93
[2432]94 // 2012/02/17 TN
95 // Since STGrid is implemented, average doesn't consider direction
96 // when accumulating
[1819]97 // check if OTF observation
[2432]98// String obstype = in[0]->getHeader().obstype ;
99// Double tol = 0.0 ;
100// if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
101// tol = TOL_OTF ;
102// }
103// else {
104// tol = TOL_POINT ;
105// }
[1819]106
[805]107 // output
108 // clone as this is non insitu
109 bool insitu = insitu_;
110 setInsitu(false);
[977]111 CountedPtr< Scantable > out = getScantable(in[0], true);
[805]112 setInsitu(insitu);
[977]113 std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
[862]114 ++stit;
[977]115 while ( stit != in.end() ) {
[862]116 out->appendToHistoryTable((*stit)->history());
117 ++stit;
118 }
[294]119
[805]120 Table& tout = out->table();
[701]121
[805]122 /// @todo check if all scantables are conformant
[294]123
[805]124 ArrayColumn<Float> specColOut(tout,"SPECTRA");
125 ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
126 ArrayColumn<Float> tsysColOut(tout,"TSYS");
127 ScalarColumn<Double> mjdColOut(tout,"TIME");
128 ScalarColumn<Double> intColOut(tout,"INTERVAL");
[1008]129 ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
[1145]130 ScalarColumn<uInt> scanColOut(tout,"SCANNO");
[262]131
[805]132 // set up the output table rows. These are based on the structure of the
[862]133 // FIRST scantable in the vector
[977]134 const Table& baset = in[0]->table();
[262]135
[2539]136 RowAccumulator acc(wtype);
137 Vector<Bool> cmask(mask);
138 acc.setUserMask(cmask);
[2540]139// ROTableRow row(tout);
[2539]140 ROArrayColumn<Float> specCol, tsysCol;
141 ROArrayColumn<uChar> flagCol;
142 ROScalarColumn<Double> mjdCol, intCol;
143 ROScalarColumn<Int> scanIDCol;
144
145 Vector<uInt> rowstodelete;
146
[2540]147// Block<String> cols(3);
148 vector<string> cols(3) ;
[805]149 cols[0] = String("BEAMNO");
150 cols[1] = String("IFNO");
151 cols[2] = String("POLNO");
152 if ( avmode == "SOURCE" ) {
153 cols.resize(4);
154 cols[3] = String("SRCNAME");
[488]155 }
[977]156 if ( avmode == "SCAN" && in.size() == 1) {
[1819]157 //cols.resize(4);
158 //cols[3] = String("SCANNO");
159 cols.resize(5);
160 cols[3] = String("SRCNAME");
161 cols[4] = String("SCANNO");
[2]162 }
[805]163 uInt outrowCount = 0;
[2540]164 // use STIdxIterExAcc instead of TableIterator
165 STIdxIterExAcc iter( in[0], cols ) ;
[2542]166// double t2 = 0 ;
167// double t3 = 0 ;
[2540]168// TableIterator iter(baset, cols);
[1819]169// int count = 0 ;
[805]170 while (!iter.pastEnd()) {
[2540]171 Vector<uInt> rows = iter.getRows( SHARE ) ;
172 if ( rows.nelements() == 0 ) {
173 iter.next() ;
174 continue ;
175 }
176 Vector<uInt> current = iter.current() ;
177 String srcname = iter.getSrcName() ;
178 //Table subt = iter.table();
[2432]179 // copy the first row of this selection into the new table
180 tout.addRow();
[2540]181 //TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
182 TableCopy::copyRows(tout, baset, outrowCount, rows[0], 1);
[2432]183 // re-index to 0
184 if ( avmode != "SCAN" && avmode != "SOURCE" ) {
185 scanColOut.put(outrowCount, uInt(0));
186 }
[2540]187
[2432]188 // 2012/02/17 TN
189 // Since STGrid is implemented, average doesn't consider direction
190 // when accumulating
191// MDirection::ScalarColumn dircol ;
192// dircol.attach( subt, "DIRECTION" ) ;
193// Int length = subt.nrow() ;
194// vector< Vector<Double> > dirs ;
195// vector<int> indexes ;
196// for ( Int i = 0 ; i < length ; i++ ) {
197// Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
198// //os << << count++ << ": " ;
199// //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
200// bool adddir = true ;
201// for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
202// //if ( allTrue( t == dirs[j] ) ) {
203// Double dx = t[0] - dirs[j][0] ;
204// Double dy = t[1] - dirs[j][1] ;
205// Double dd = sqrt( dx * dx + dy * dy ) ;
206// //if ( allNearAbs( t, dirs[j], tol ) ) {
207// if ( dd <= tol ) {
208// adddir = false ;
209// break ;
210// }
211// }
212// if ( adddir ) {
213// dirs.push_back( t ) ;
214// indexes.push_back( i ) ;
215// }
[1819]216// }
[2432]217// uInt rowNum = dirs.size() ;
218// tout.addRow( rowNum ) ;
219// for ( uInt i = 0 ; i < rowNum ; i++ ) {
220// TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
221// // re-index to 0
222// if ( avmode != "SCAN" && avmode != "SOURCE" ) {
223// scanColOut.put(outrowCount+i, uInt(0));
224// }
225// }
226// outrowCount += rowNum ;
[144]227
[2539]228// merge loop
229 uInt i = outrowCount ;
230// for (uInt i=0; i < tout.nrow(); ++i) {
231
232 // in[0] is already selected by TableItertor
[2540]233 specCol.attach(baset,"SPECTRA");
234 flagCol.attach(baset,"FLAGTRA");
235 tsysCol.attach(baset,"TSYS");
236 intCol.attach(baset,"INTERVAL");
237 mjdCol.attach(baset,"TIME");
[2539]238 Vector<Float> spec,tsys;
239 Vector<uChar> flag;
240 Double inter,time;
[2540]241// for (uInt k = 0; k < subt.nrow(); ++k ) {
242 for (uInt l = 0; l < rows.nelements(); ++l ) {
243 uInt k = rows[l] ;
[2539]244 flagCol.get(k, flag);
245 Vector<Bool> bflag(flag.shape());
246 convertArray(bflag, flag);
247 /*
248 if ( allEQ(bflag, True) ) {
249 continue;//don't accumulate
250 }
251 */
252 specCol.get(k, spec);
253 tsysCol.get(k, tsys);
254 intCol.get(k, inter);
255 mjdCol.get(k, time);
256 // spectrum has to be added last to enable weighting by the other values
[2542]257// t2 = mathutil::gettimeofday_sec() ;
[2539]258 acc.add(spec, !bflag, tsys, inter, time);
[2542]259// t3 += mathutil::gettimeofday_sec() - t2 ;
260
[2539]261 }
262
263
[2540]264 // in[0] is already selected by TableIterator so that index is
265 // started from 1
[2539]266 //for ( int j=0; j < int(in.size()); ++j ) {
267 for ( int j=1; j < int(in.size()); ++j ) {
[977]268 const Table& tin = in[j]->table();
[2540]269 //const TableRecord& rec = row.get(i);
[805]270 ROScalarColumn<Double> tmp(tin, "TIME");
271 Double td;tmp.get(0,td);
[2449]272
273#if 1
[2460]274 static char const*const colNames1[] = { "IFNO", "BEAMNO", "POLNO" };
[2540]275 //uInt const values1[] = { rec.asuInt("IFNO"), rec.asuInt("BEAMNO"), rec.asuInt("POLNO") };
276 uInt const values1[] = { current[1], current[0], current[2] };
[2458]277 SingleTypeEqPredicate<uInt, 3> myPred(tin, colNames1, values1);
[2470]278 CustomTableExprNodeRep myNodeRep(tin, myPred);
279 myNodeRep.link(); // to avoid automatic delete when myExpr is destructed.
280 CustomTableExprNode myExpr(myNodeRep);
[2449]281 Table basesubt = tin(myExpr);
282#else
[2540]283// Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
284// && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
285// && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
286 Table basesubt = tin( tin.col("BEAMNO") == current[0]
287 && tin.col("IFNO") == current[1]
288 && tin.col("POLNO") == current[2] );
[2449]289#endif
[2540]290 Table subt;
[805]291 if ( avmode == "SOURCE") {
[2540]292// subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
293 subt = basesubt( basesubt.col("SRCNAME") == srcname );
294
[805]295 } else if (avmode == "SCAN") {
[2540]296// subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
297// && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
298 subt = basesubt( basesubt.col("SRCNAME") == srcname
299 && basesubt.col("SCANNO") == current[4] );
[805]300 } else {
301 subt = basesubt;
302 }
[1819]303
[2432]304 // 2012/02/17 TN
305 // Since STGrid is implemented, average doesn't consider direction
306 // when accumulating
307// vector<uInt> removeRows ;
308// uInt nrsubt = subt.nrow() ;
309// for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
310// //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
311// Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
312// Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
313// double dx = x0[0] - x1[0];
314// double dy = x0[1] - x1[1];
315// Double dd = sqrt( dx * dx + dy * dy ) ;
316// //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
317// if ( dd > tol ) {
318// removeRows.push_back( irow ) ;
319// }
320// }
321// if ( removeRows.size() != 0 ) {
322// subt.removeRow( removeRows ) ;
323// }
[1819]324
[2432]325// if ( nrsubt == removeRows.size() )
326// throw(AipsError("Averaging data is empty.")) ;
[1819]327
[805]328 specCol.attach(subt,"SPECTRA");
329 flagCol.attach(subt,"FLAGTRA");
330 tsysCol.attach(subt,"TSYS");
331 intCol.attach(subt,"INTERVAL");
332 mjdCol.attach(subt,"TIME");
333 for (uInt k = 0; k < subt.nrow(); ++k ) {
334 flagCol.get(k, flag);
335 Vector<Bool> bflag(flag.shape());
336 convertArray(bflag, flag);
[1314]337 /*
[805]338 if ( allEQ(bflag, True) ) {
[1314]339 continue;//don't accumulate
[144]340 }
[1314]341 */
[805]342 specCol.get(k, spec);
343 tsysCol.get(k, tsys);
344 intCol.get(k, inter);
345 mjdCol.get(k, time);
346 // spectrum has to be added last to enable weighting by the other values
[2542]347// t2 = mathutil::gettimeofday_sec() ;
[805]348 acc.add(spec, !bflag, tsys, inter, time);
[2542]349// t3 += mathutil::gettimeofday_sec() - t2 ;
[805]350 }
[2125]351
[805]352 }
[1333]353 const Vector<Bool>& msk = acc.getMask();
354 if ( allEQ(msk, False) ) {
355 uint n = rowstodelete.nelements();
356 rowstodelete.resize(n+1, True);
357 rowstodelete[n] = i;
358 continue;
359 }
[805]360 //write out
[1819]361 if (acc.state()) {
[2542]362 // If there exists a channel at which all the input spectra are masked,
363 // spec has 'nan' values for that channel and it may affect the following
364 // processes. To avoid this, replacing 'nan' values in spec with
365 // weighted-mean of all spectra in the following line.
366 // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
367 acc.replaceNaN();
368
[1819]369 Vector<uChar> flg(msk.shape());
370 convertArray(flg, !msk);
[2125]371 for (uInt k = 0; k < flg.nelements(); ++k) {
372 uChar userFlag = 1 << 7;
373 if (msk[k]==True) userFlag = 0 << 7;
374 flg(k) = userFlag;
375 }
376
[1819]377 flagColOut.put(i, flg);
378 specColOut.put(i, acc.getSpectrum());
379 tsysColOut.put(i, acc.getTsys());
380 intColOut.put(i, acc.getInterval());
381 mjdColOut.put(i, acc.getTime());
382 // we should only have one cycle now -> reset it to be 0
383 // frequency switched data has different CYCLENO for different IFNO
384 // which requires resetting this value
385 cycColOut.put(i, uInt(0));
386 } else {
387 ostringstream oss;
388 oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
389 pushLog(String(oss));
390 }
[805]391 acc.reset();
[2539]392
393 // merge with while loop for preparing out table
394 ++outrowCount;
[2540]395// ++iter ;
396 iter.next() ;
[144]397 }
[2135]398
[1333]399 if (rowstodelete.nelements() > 0) {
[1819]400 os << rowstodelete << LogIO::POST ;
[1333]401 tout.removeRow(rowstodelete);
402 if (tout.nrow() == 0) {
403 throw(AipsError("Can't average fully flagged data."));
404 }
405 }
[2539]406
[2540]407// t1 = mathutil::gettimeofday_sec() ;
408// cout << "elapsed time for average(): " << t1-t0 << " sec" << endl ;
[2542]409// cout << " elapsed time for acc.add(): " << t3 << " sec" << endl ;
[2539]410
[805]411 return out;
[2]412}
[9]413
[1069]414CountedPtr< Scantable >
[2163]415STMath::averageChannel( const CountedPtr < Scantable > & in,
[1078]416 const std::string & mode,
417 const std::string& avmode )
[1069]418{
[2163]419 (void) mode; // currently unused
[2432]420 // 2012/02/17 TN
421 // Since STGrid is implemented, average doesn't consider direction
422 // when accumulating
[1819]423 // check if OTF observation
[2432]424// String obstype = in->getHeader().obstype ;
425// Double tol = 0.0 ;
426// if ( obstype.find( "OTF" ) != String::npos ) {
427// tol = TOL_OTF ;
428// }
429// else {
430// tol = TOL_POINT ;
431// }
[1819]432
[1069]433 // clone as this is non insitu
434 bool insitu = insitu_;
435 setInsitu(false);
436 CountedPtr< Scantable > out = getScantable(in, true);
437 setInsitu(insitu);
438 Table& tout = out->table();
439 ArrayColumn<Float> specColOut(tout,"SPECTRA");
440 ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
441 ArrayColumn<Float> tsysColOut(tout,"TSYS");
[1140]442 ScalarColumn<uInt> scanColOut(tout,"SCANNO");
[1232]443 ScalarColumn<Double> intColOut(tout, "INTERVAL");
[1140]444 Table tmp = in->table().sort("BEAMNO");
[1069]445 Block<String> cols(3);
446 cols[0] = String("BEAMNO");
447 cols[1] = String("IFNO");
448 cols[2] = String("POLNO");
[1078]449 if ( avmode == "SCAN") {
450 cols.resize(4);
451 cols[3] = String("SCANNO");
452 }
[1069]453 uInt outrowCount = 0;
454 uChar userflag = 1 << 7;
[1140]455 TableIterator iter(tmp, cols);
[1069]456 while (!iter.pastEnd()) {
457 Table subt = iter.table();
458 ROArrayColumn<Float> specCol, tsysCol;
459 ROArrayColumn<uChar> flagCol;
[1232]460 ROScalarColumn<Double> intCol(subt, "INTERVAL");
[1069]461 specCol.attach(subt,"SPECTRA");
462 flagCol.attach(subt,"FLAGTRA");
463 tsysCol.attach(subt,"TSYS");
[2432]464
465 tout.addRow();
466 TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
467 if ( avmode != "SCAN") {
468 scanColOut.put(outrowCount, uInt(0));
469 }
470 Vector<Float> tmp;
471 specCol.get(0, tmp);
472 uInt nchan = tmp.nelements();
473 // have to do channel by channel here as MaskedArrMath
474 // doesn't have partialMedians
475 Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
476 Vector<Float> outspec(nchan);
477 Vector<uChar> outflag(nchan,0);
478 Vector<Float> outtsys(1);/// @fixme when tsys is channel based
479 for (uInt i=0; i<nchan; ++i) {
480 Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
481 MaskedArray<Float> ma = maskedArray(specs,flags);
482 outspec[i] = median(ma);
483 if ( allEQ(ma.getMask(), False) )
484 outflag[i] = userflag;// flag data
485 }
486 outtsys[0] = median(tsysCol.getColumn());
487 specColOut.put(outrowCount, outspec);
488 flagColOut.put(outrowCount, outflag);
489 tsysColOut.put(outrowCount, outtsys);
490 Double intsum = sum(intCol.getColumn());
491 intColOut.put(outrowCount, intsum);
492 ++outrowCount;
493 ++iter;
494
495 // 2012/02/17 TN
496 // Since STGrid is implemented, average doesn't consider direction
497 // when accumulating
498// MDirection::ScalarColumn dircol ;
499// dircol.attach( subt, "DIRECTION" ) ;
500// Int length = subt.nrow() ;
501// vector< Vector<Double> > dirs ;
502// vector<int> indexes ;
503// // Handle MX mode averaging
504// if (in->nbeam() > 1 ) {
505// length = 1;
[1819]506// }
[2432]507// for ( Int i = 0 ; i < length ; i++ ) {
508// Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
509// bool adddir = true ;
510// for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
511// //if ( allTrue( t == dirs[j] ) ) {
512// Double dx = t[0] - dirs[j][0] ;
513// Double dy = t[1] - dirs[j][1] ;
514// Double dd = sqrt( dx * dx + dy * dy ) ;
515// //if ( allNearAbs( t, dirs[j], tol ) ) {
516// if ( dd <= tol ) {
517// adddir = false ;
518// break ;
519// }
520// }
521// if ( adddir ) {
522// dirs.push_back( t ) ;
523// indexes.push_back( i ) ;
524// }
[1819]525// }
[2432]526// uInt rowNum = dirs.size() ;
527// tout.addRow( rowNum );
528// for ( uInt i = 0 ; i < rowNum ; i++ ) {
529// TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
530// // Handle MX mode averaging
531// if ( avmode != "SCAN") {
532// scanColOut.put(outrowCount+i, uInt(0));
533// }
534// }
535// MDirection::ScalarColumn dircolOut ;
536// dircolOut.attach( tout, "DIRECTION" ) ;
537// for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
538// Vector<Double> t = \
539// dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
540// Vector<Float> tmp;
541// specCol.get(0, tmp);
542// uInt nchan = tmp.nelements();
543// // have to do channel by channel here as MaskedArrMath
544// // doesn't have partialMedians
545// Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
546// // mask spectra for different DIRECTION
547// for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
548// Vector<Double> direction = \
549// dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
550// //if ( t[0] != direction[0] || t[1] != direction[1] ) {
551// Double dx = t[0] - direction[0];
552// Double dy = t[1] - direction[1];
553// Double dd = sqrt(dx*dx + dy*dy);
554// //if ( !allNearAbs( t, direction, tol ) ) {
555// if ( dd > tol && in->nbeam() < 2 ) {
556// flags[jrow] = userflag ;
557// }
558// }
559// Vector<Float> outspec(nchan);
560// Vector<uChar> outflag(nchan,0);
561// Vector<Float> outtsys(1);/// @fixme when tsys is channel based
562// for (uInt i=0; i<nchan; ++i) {
563// Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
564// MaskedArray<Float> ma = maskedArray(specs,flags);
565// outspec[i] = median(ma);
566// if ( allEQ(ma.getMask(), False) )
567// outflag[i] = userflag;// flag data
568// }
569// outtsys[0] = median(tsysCol.getColumn());
570// specColOut.put(outrowCount+irow, outspec);
571// flagColOut.put(outrowCount+irow, outflag);
572// tsysColOut.put(outrowCount+irow, outtsys);
573// Vector<Double> integ = intCol.getColumn() ;
574// MaskedArray<Double> mi = maskedArray( integ, flags ) ;
575// Double intsum = sum(mi);
576// intColOut.put(outrowCount+irow, intsum);
577// }
578// outrowCount += rowNum ;
[1819]579// ++iter;
[1069]580 }
581 return out;
582}
583
[805]584CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
585 bool droprows)
[185]586{
[1505]587 if (insitu_) {
588 return in;
589 }
[805]590 else {
591 // clone
[1505]592 return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
[234]593 }
[805]594}
[234]595
[805]596CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
597 float val,
598 const std::string& mode,
599 bool tsys )
600{
601 CountedPtr< Scantable > out = getScantable(in, false);
602 Table& tab = out->table();
603 ArrayColumn<Float> specCol(tab,"SPECTRA");
604 ArrayColumn<Float> tsysCol(tab,"TSYS");
[2143]605 if (mode=="DIV") val = 1.0/val ;
606 else if (mode=="SUB") val *= -1.0 ;
[805]607 for (uInt i=0; i<tab.nrow(); ++i) {
608 Vector<Float> spec;
609 Vector<Float> ts;
610 specCol.get(i, spec);
611 tsysCol.get(i, ts);
[1308]612 if (mode == "MUL" || mode == "DIV") {
[2143]613 //if (mode == "DIV") val = 1.0/val;
[805]614 spec *= val;
615 specCol.put(i, spec);
616 if ( tsys ) {
617 ts *= val;
618 tsysCol.put(i, ts);
619 }
[1308]620 } else if ( mode == "ADD" || mode == "SUB") {
[2143]621 //if (mode == "SUB") val *= -1.0;
[805]622 spec += val;
623 specCol.put(i, spec);
624 if ( tsys ) {
625 ts += val;
626 tsysCol.put(i, ts);
627 }
628 }
[234]629 }
[805]630 return out;
631}
[234]632
[1819]633CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
634 const std::vector<float> val,
635 const std::string& mode,
636 const std::string& opmode,
637 bool tsys )
638{
639 CountedPtr< Scantable > out ;
640 if ( opmode == "channel" ) {
641 out = arrayOperateChannel( in, val, mode, tsys ) ;
642 }
643 else if ( opmode == "row" ) {
644 out = arrayOperateRow( in, val, mode, tsys ) ;
645 }
646 else {
647 throw( AipsError( "Unknown array operation mode." ) ) ;
648 }
649 return out ;
650}
651
652CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
653 const std::vector<float> val,
654 const std::string& mode,
655 bool tsys )
656{
657 if ( val.size() == 1 ){
658 return unaryOperate( in, val[0], mode, tsys ) ;
659 }
660
661 // conformity of SPECTRA and TSYS
662 if ( tsys ) {
663 TableIterator titer(in->table(), "IFNO");
664 while ( !titer.pastEnd() ) {
665 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
666 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
667 Array<Float> spec = specCol.getColumn() ;
668 Array<Float> ts = tsysCol.getColumn() ;
669 if ( !spec.conform( ts ) ) {
670 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
671 }
672 titer.next() ;
673 }
674 }
675
676 // check if all spectra in the scantable have the same number of channel
677 vector<uInt> nchans;
678 vector<uInt> ifnos = in->getIFNos() ;
679 for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
680 nchans.push_back( in->nchan( ifnos[i] ) ) ;
681 }
682 Vector<uInt> mchans( nchans ) ;
683 if ( anyNE( mchans, mchans[0] ) ) {
684 throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
685 }
686
687 // check if vector size is equal to nchan
688 Vector<Float> fact( val ) ;
689 if ( fact.nelements() != mchans[0] ) {
690 throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
691 }
692
693 // check divided by zero
694 if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
695 throw( AipsError("Divided by zero is not recommended." ) ) ;
696 }
697
698 CountedPtr< Scantable > out = getScantable(in, false);
699 Table& tab = out->table();
700 ArrayColumn<Float> specCol(tab,"SPECTRA");
701 ArrayColumn<Float> tsysCol(tab,"TSYS");
[2143]702 if (mode == "DIV") fact = (float)1.0 / fact;
703 else if (mode == "SUB") fact *= (float)-1.0 ;
[1819]704 for (uInt i=0; i<tab.nrow(); ++i) {
705 Vector<Float> spec;
706 Vector<Float> ts;
707 specCol.get(i, spec);
708 tsysCol.get(i, ts);
709 if (mode == "MUL" || mode == "DIV") {
[2143]710 //if (mode == "DIV") fact = (float)1.0 / fact;
[1819]711 spec *= fact;
712 specCol.put(i, spec);
713 if ( tsys ) {
714 ts *= fact;
715 tsysCol.put(i, ts);
716 }
717 } else if ( mode == "ADD" || mode == "SUB") {
[2143]718 //if (mode == "SUB") fact *= (float)-1.0 ;
[1819]719 spec += fact;
720 specCol.put(i, spec);
721 if ( tsys ) {
722 ts += fact;
723 tsysCol.put(i, ts);
724 }
725 }
726 }
727 return out;
728}
729
730CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
731 const std::vector<float> val,
732 const std::string& mode,
733 bool tsys )
734{
735 if ( val.size() == 1 ) {
736 return unaryOperate( in, val[0], mode, tsys ) ;
737 }
738
739 // conformity of SPECTRA and TSYS
740 if ( tsys ) {
741 TableIterator titer(in->table(), "IFNO");
742 while ( !titer.pastEnd() ) {
743 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
744 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
745 Array<Float> spec = specCol.getColumn() ;
746 Array<Float> ts = tsysCol.getColumn() ;
747 if ( !spec.conform( ts ) ) {
748 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
749 }
750 titer.next() ;
751 }
752 }
753
754 // check if vector size is equal to nrow
755 Vector<Float> fact( val ) ;
[2125]756 if (fact.nelements() != uInt(in->nrow())) {
[1819]757 throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
758 }
759
760 // check divided by zero
761 if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
762 throw( AipsError("Divided by zero is not recommended." ) ) ;
763 }
764
765 CountedPtr< Scantable > out = getScantable(in, false);
766 Table& tab = out->table();
767 ArrayColumn<Float> specCol(tab,"SPECTRA");
768 ArrayColumn<Float> tsysCol(tab,"TSYS");
769 if (mode == "DIV") fact = (float)1.0 / fact;
770 if (mode == "SUB") fact *= (float)-1.0 ;
771 for (uInt i=0; i<tab.nrow(); ++i) {
772 Vector<Float> spec;
773 Vector<Float> ts;
774 specCol.get(i, spec);
775 tsysCol.get(i, ts);
776 if (mode == "MUL" || mode == "DIV") {
777 spec *= fact[i];
778 specCol.put(i, spec);
779 if ( tsys ) {
780 ts *= fact[i];
781 tsysCol.put(i, ts);
782 }
783 } else if ( mode == "ADD" || mode == "SUB") {
784 spec += fact[i];
785 specCol.put(i, spec);
786 if ( tsys ) {
787 ts += fact[i];
788 tsysCol.put(i, ts);
789 }
790 }
791 }
792 return out;
793}
794
795CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
796 const std::vector< std::vector<float> > val,
797 const std::string& mode,
798 bool tsys )
799{
800 // conformity of SPECTRA and TSYS
801 if ( tsys ) {
802 TableIterator titer(in->table(), "IFNO");
803 while ( !titer.pastEnd() ) {
804 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
805 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
806 Array<Float> spec = specCol.getColumn() ;
807 Array<Float> ts = tsysCol.getColumn() ;
808 if ( !spec.conform( ts ) ) {
809 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
810 }
811 titer.next() ;
812 }
813 }
814
815 // some checks
816 vector<uInt> nchans;
[2125]817 for (Int i = 0 ; i < in->nrow() ; i++) {
818 nchans.push_back((in->getSpectrum(i)).size());
[1819]819 }
820 //Vector<uInt> mchans( nchans ) ;
821 vector< Vector<Float> > facts ;
822 for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
823 Vector<Float> tmp( val[i] ) ;
824 // check divided by zero
825 if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
826 throw( AipsError("Divided by zero is not recommended." ) ) ;
827 }
828 // conformity check
829 if ( tmp.nelements() != nchans[i] ) {
830 stringstream ss ;
831 ss << "Row " << i << ": Vector size must be same as number of channel." ;
832 throw( AipsError( ss.str() ) ) ;
833 }
834 facts.push_back( tmp ) ;
835 }
836
837
838 CountedPtr< Scantable > out = getScantable(in, false);
839 Table& tab = out->table();
840 ArrayColumn<Float> specCol(tab,"SPECTRA");
841 ArrayColumn<Float> tsysCol(tab,"TSYS");
842 for (uInt i=0; i<tab.nrow(); ++i) {
843 Vector<Float> fact = facts[i] ;
844 Vector<Float> spec;
845 Vector<Float> ts;
846 specCol.get(i, spec);
847 tsysCol.get(i, ts);
848 if (mode == "MUL" || mode == "DIV") {
849 if (mode == "DIV") fact = (float)1.0 / fact;
850 spec *= fact;
851 specCol.put(i, spec);
852 if ( tsys ) {
853 ts *= fact;
854 tsysCol.put(i, ts);
855 }
856 } else if ( mode == "ADD" || mode == "SUB") {
857 if (mode == "SUB") fact *= (float)-1.0 ;
858 spec += fact;
859 specCol.put(i, spec);
860 if ( tsys ) {
861 ts += fact;
862 tsysCol.put(i, ts);
863 }
864 }
865 }
866 return out;
867}
868
[1569]869CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
870 const CountedPtr<Scantable>& right,
[1308]871 const std::string& mode)
872{
873 bool insitu = insitu_;
874 if ( ! left->conformant(*right) ) {
875 throw(AipsError("'left' and 'right' scantables are not conformant."));
876 }
877 setInsitu(false);
878 CountedPtr< Scantable > out = getScantable(left, false);
879 setInsitu(insitu);
880 Table& tout = out->table();
881 Block<String> coln(5);
882 coln[0] = "SCANNO"; coln[1] = "CYCLENO"; coln[2] = "BEAMNO";
883 coln[3] = "IFNO"; coln[4] = "POLNO";
884 Table tmpl = tout.sort(coln);
885 Table tmpr = right->table().sort(coln);
886 ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
887 ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
888 ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
889 ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
890
891 for (uInt i=0; i<tout.nrow(); ++i) {
892 Vector<Float> lspecvec, rspecvec;
893 Vector<uChar> lflagvec, rflagvec;
894 lspecvec = lspecCol(i); rspecvec = rspecCol(i);
895 lflagvec = lflagCol(i); rflagvec = rflagCol(i);
896 MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
897 MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
898 if (mode == "ADD") {
899 mleft += mright;
900 } else if ( mode == "SUB") {
901 mleft -= mright;
902 } else if ( mode == "MUL") {
903 mleft *= mright;
904 } else if ( mode == "DIV") {
905 mleft /= mright;
906 } else {
907 throw(AipsError("Illegal binary operator"));
908 }
909 lspecCol.put(i, mleft.getArray());
910 }
911 return out;
912}
913
914
915
[805]916MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
917 const Vector<uChar>& f)
918{
919 Vector<Bool> mask;
920 mask.resize(f.shape());
921 convertArray(mask, f);
922 return MaskedArray<Float>(s,!mask);
923}
[248]924
[1819]925MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
926 const Vector<uChar>& f)
927{
928 Vector<Bool> mask;
929 mask.resize(f.shape());
930 convertArray(mask, f);
931 return MaskedArray<Double>(s,!mask);
932}
933
[805]934Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
935{
936 const Vector<Bool>& m = ma.getMask();
937 Vector<uChar> flags(m.shape());
938 convertArray(flags, !m);
939 return flags;
940}
[234]941
[1066]942CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
943 const std::string & mode,
944 bool preserve )
[805]945{
946 /// @todo make other modes available
947 /// modes should be "nearest", "pair"
948 // make this operation non insitu
[2163]949 (void) mode; //currently unused
[805]950 const Table& tin = in->table();
[1819]951 Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
952 Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
[805]953 if ( offs.nrow() == 0 )
954 throw(AipsError("No 'off' scans present."));
955 // put all "on" scans into output table
[701]956
[805]957 bool insitu = insitu_;
958 setInsitu(false);
959 CountedPtr< Scantable > out = getScantable(in, true);
960 setInsitu(insitu);
961 Table& tout = out->table();
[248]962
[805]963 TableCopy::copyRows(tout, ons);
964 TableRow row(tout);
965 ROScalarColumn<Double> offtimeCol(offs, "TIME");
966 ArrayColumn<Float> outspecCol(tout, "SPECTRA");
967 ROArrayColumn<Float> outtsysCol(tout, "TSYS");
968 ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
969 for (uInt i=0; i < tout.nrow(); ++i) {
970 const TableRecord& rec = row.get(i);
971 Double ontime = rec.asDouble("TIME");
[1321]972 Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
973 && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
974 && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
975 ROScalarColumn<Double> offtimeCol(presel, "TIME");
976
[805]977 Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
[1259]978 // Timestamp may vary within a cycle ???!!!
[1321]979 // increase this by 0.01 sec in case of rounding errors...
[1259]980 // There might be a better way to do this.
[1321]981 // fix to this fix. TIME is MJD, so 1.0d not 1.0s
982 mindeltat += 0.01/24./60./60.;
983 Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
[780]984
[1259]985 if ( sel.nrow() < 1 ) {
986 throw(AipsError("No closest in time found... This could be a rounding "
987 "issue. Try quotient instead."));
988 }
[805]989 TableRow offrow(sel);
990 const TableRecord& offrec = offrow.get(0);//should only be one row
991 RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
992 RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
993 RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
994 /// @fixme this assumes tsys is a scalar not vector
995 Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
996 Vector<Float> specon, tsyson;
997 outtsysCol.get(i, tsyson);
998 outspecCol.get(i, specon);
999 Vector<uChar> flagon;
1000 outflagCol.get(i, flagon);
1001 MaskedArray<Float> mon = maskedArray(specon, flagon);
1002 MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1003 MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1004 if (preserve) {
1005 quot -= tsysoffscalar;
1006 } else {
1007 quot -= tsyson[0];
[701]1008 }
[805]1009 outspecCol.put(i, quot.getArray());
1010 outflagCol.put(i, flagsFromMA(quot));
1011 }
[926]1012 // renumber scanno
1013 TableIterator it(tout, "SCANNO");
1014 uInt i = 0;
1015 while ( !it.pastEnd() ) {
1016 Table t = it.table();
1017 TableVector<uInt> vec(t, "SCANNO");
1018 vec = i;
1019 ++i;
1020 ++it;
1021 }
[805]1022 return out;
1023}
[234]1024
[1066]1025
1026CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
1027 const CountedPtr< Scantable > & off,
1028 bool preserve )
1029{
1030 bool insitu = insitu_;
[1069]1031 if ( ! on->conformant(*off) ) {
1032 throw(AipsError("'on' and 'off' scantables are not conformant."));
1033 }
[1066]1034 setInsitu(false);
1035 CountedPtr< Scantable > out = getScantable(on, false);
1036 setInsitu(insitu);
1037 Table& tout = out->table();
1038 const Table& toff = off->table();
1039 TableIterator sit(tout, "SCANNO");
1040 TableIterator s2it(toff, "SCANNO");
1041 while ( !sit.pastEnd() ) {
1042 Table ton = sit.table();
1043 TableRow row(ton);
1044 Table t = s2it.table();
1045 ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1046 ROArrayColumn<Float> outtsysCol(ton, "TSYS");
1047 ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1048 for (uInt i=0; i < ton.nrow(); ++i) {
1049 const TableRecord& rec = row.get(i);
1050 Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1051 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
1052 && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
[1145]1053 if ( offsel.nrow() == 0 )
1054 throw AipsError("STMath::quotient: no matching off");
[1066]1055 TableRow offrow(offsel);
1056 const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
1057 RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1058 RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1059 RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1060 Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1061 Vector<Float> specon, tsyson;
1062 outtsysCol.get(i, tsyson);
1063 outspecCol.get(i, specon);
1064 Vector<uChar> flagon;
1065 outflagCol.get(i, flagon);
1066 MaskedArray<Float> mon = maskedArray(specon, flagon);
1067 MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1068 MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1069 if (preserve) {
1070 quot -= tsysoffscalar;
1071 } else {
1072 quot -= tsyson[0];
1073 }
1074 outspecCol.put(i, quot.getArray());
1075 outflagCol.put(i, flagsFromMA(quot));
1076 }
1077 ++sit;
1078 ++s2it;
1079 // take the first off for each on scan which doesn't have a
1080 // matching off scan
1081 // non <= noff: matching pairs, non > noff matching pairs then first off
1082 if ( s2it.pastEnd() ) s2it.reset();
1083 }
1084 return out;
1085}
1086
[1391]1087// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1088// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1089// do it for each cycles in a specific scan.
1090CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1091 const CountedPtr< Scantable >& caloff, Float tcal )
1092{
[2289]1093 if ( ! calon->conformant(*caloff) ) {
[1391]1094 throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1095 }
1096 setInsitu(false);
1097 CountedPtr< Scantable > out = getScantable(caloff, false);
1098 Table& tout = out->table();
1099 const Table& tcon = calon->table();
1100 Vector<Float> tcalout;
[1066]1101
[2289]1102 std::map<uInt,uInt> tcalIdToRecNoMap;
1103 const Table& calOffTcalTable = caloff->tcal().table();
1104 {
1105 ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1106 const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1107 size_t tcalIdsEnd = tcalIds.nelements();
1108 for (uInt i = 0; i < tcalIdsEnd; i++) {
1109 tcalIdToRecNoMap[tcalIds[i]] = i;
1110 }
1111 }
1112 ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1113
[1391]1114 if ( tout.nrow() != tcon.nrow() ) {
1115 throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1116 }
1117 // iteration by scanno or cycle no.
1118 TableIterator sit(tout, "SCANNO");
1119 TableIterator s2it(tcon, "SCANNO");
1120 while ( !sit.pastEnd() ) {
1121 Table toff = sit.table();
1122 TableRow row(toff);
1123 Table t = s2it.table();
1124 ScalarColumn<Double> outintCol(toff, "INTERVAL");
1125 ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1126 ArrayColumn<Float> outtsysCol(toff, "TSYS");
1127 ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1128 ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1129 ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1130 ROScalarColumn<Double> onintCol(t, "INTERVAL");
1131 ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1132 ROArrayColumn<Float> ontsysCol(t, "TSYS");
1133 ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1134 //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1135
1136 for (uInt i=0; i < toff.nrow(); ++i) {
1137 //skip these checks -> assumes the data order are the same between the cal on off pairs
1138 //
1139 Vector<Float> specCalon, specCaloff;
1140 // to store scalar (mean) tsys
1141 Vector<Float> tsysout(1);
1142 uInt tcalId, polno;
1143 Double offint, onint;
1144 outpolCol.get(i, polno);
1145 outspecCol.get(i, specCaloff);
1146 onspecCol.get(i, specCalon);
1147 Vector<uChar> flagCaloff, flagCalon;
1148 outflagCol.get(i, flagCaloff);
1149 onflagCol.get(i, flagCalon);
1150 outtcalIdCol.get(i, tcalId);
1151 outintCol.get(i, offint);
1152 onintCol.get(i, onint);
1153 // caluculate mean Tsys
1154 uInt nchan = specCaloff.nelements();
1155 // percentage of edge cut off
1156 uInt pc = 10;
1157 uInt bchan = nchan/pc;
1158 uInt echan = nchan-bchan;
1159
1160 Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1161 Vector<Float> testsubsp = specCaloff(chansl);
1162 MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1163 MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1164 MaskedArray<Float> spdiff = spon-spoff;
1165 uInt noff = spoff.nelementsValid();
1166 //uInt non = spon.nelementsValid();
1167 uInt ndiff = spdiff.nelementsValid();
1168 Float meantsys;
1169
1170/**
1171 Double subspec, subdiff;
1172 uInt usednchan;
1173 subspec = 0;
1174 subdiff = 0;
1175 usednchan = 0;
1176 for(uInt k=(bchan-1); k<echan; k++) {
1177 subspec += specCaloff[k];
1178 subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1179 ++usednchan;
1180 }
1181**/
1182 // get tcal if input tcal <= 0
1183 Float tcalUsed;
1184 tcalUsed = tcal;
1185 if ( tcal <= 0.0 ) {
[2289]1186 uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1187 calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
[2004]1188// if (polno<=3) {
1189// tcalUsed = tcalout[polno];
1190// }
1191// else {
1192// tcalUsed = tcalout[0];
1193// }
1194 if ( tcalout.size() == 1 )
1195 tcalUsed = tcalout[0] ;
1196 else if ( tcalout.size() == nchan )
1197 tcalUsed = mean(tcalout) ;
[1391]1198 else {
[2004]1199 uInt ipol = polno ;
1200 if ( ipol > 3 ) ipol = 0 ;
1201 tcalUsed = tcalout[ipol] ;
[1391]1202 }
1203 }
1204
1205 Float meanoff;
1206 Float meandiff;
1207 if (noff && ndiff) {
1208 //Debug
1209 //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
[1819]1210 //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1211 //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
[1391]1212 meanoff = sum(spoff)/noff;
1213 meandiff = sum(spdiff)/ndiff;
1214 meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1215 }
1216 else {
1217 meantsys=1;
1218 }
1219
1220 tsysout[0] = Float(meantsys);
1221 MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1222 MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1223 MaskedArray<Float> sig = Float(0.5) * (mcaloff + mcalon);
1224 //uInt ncaloff = mcaloff.nelementsValid();
1225 //uInt ncalon = mcalon.nelementsValid();
1226
1227 outintCol.put(i, offint+onint);
1228 outspecCol.put(i, sig.getArray());
1229 outflagCol.put(i, flagsFromMA(sig));
1230 outtsysCol.put(i, tsysout);
1231 }
1232 ++sit;
1233 ++s2it;
1234 }
1235 return out;
1236}
1237
1238//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1239// observatiions.
1240// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1241// no smoothing).
1242// output: resultant scantable [= (sig-ref/ref)*tsys]
1243CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1244 const CountedPtr < Scantable >& ref,
1245 int smoothref,
1246 casa::Float tsysv,
1247 casa::Float tau )
1248{
1249if ( ! ref->conformant(*sig) ) {
1250 throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1251 }
1252 setInsitu(false);
1253 CountedPtr< Scantable > out = getScantable(sig, false);
1254 CountedPtr< Scantable > smref;
1255 if ( smoothref > 1 ) {
1256 float fsmoothref = static_cast<float>(smoothref);
1257 std::string inkernel = "boxcar";
1258 smref = smooth(ref, inkernel, fsmoothref );
1259 ostringstream oss;
1260 oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1261 pushLog(String(oss));
1262 }
1263 else {
1264 smref = ref;
1265 }
1266 Table& tout = out->table();
1267 const Table& tref = smref->table();
1268 if ( tout.nrow() != tref.nrow() ) {
1269 throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1270 }
1271 // iteration by scanno? or cycle no.
1272 TableIterator sit(tout, "SCANNO");
1273 TableIterator s2it(tref, "SCANNO");
1274 while ( !sit.pastEnd() ) {
1275 Table ton = sit.table();
1276 Table t = s2it.table();
1277 ScalarColumn<Double> outintCol(ton, "INTERVAL");
1278 ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1279 ArrayColumn<Float> outtsysCol(ton, "TSYS");
1280 ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1281 ArrayColumn<Float> refspecCol(t, "SPECTRA");
1282 ROScalarColumn<Double> refintCol(t, "INTERVAL");
1283 ROArrayColumn<Float> reftsysCol(t, "TSYS");
1284 ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1285 ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1286 for (uInt i=0; i < ton.nrow(); ++i) {
1287
1288 Double onint, refint;
1289 Vector<Float> specon, specref;
1290 // to store scalar (mean) tsys
1291 Vector<Float> tsysref;
1292 outintCol.get(i, onint);
1293 refintCol.get(i, refint);
1294 outspecCol.get(i, specon);
1295 refspecCol.get(i, specref);
1296 Vector<uChar> flagref, flagon;
1297 outflagCol.get(i, flagon);
1298 refflagCol.get(i, flagref);
1299 reftsysCol.get(i, tsysref);
1300
1301 Float tsysrefscalar;
1302 if ( tsysv > 0.0 ) {
1303 ostringstream oss;
1304 Float elev;
1305 refelevCol.get(i, elev);
1306 oss << "user specified Tsys = " << tsysv;
1307 // do recalc elevation if EL = 0
1308 if ( elev == 0 ) {
1309 throw(AipsError("EL=0, elevation data is missing."));
1310 } else {
1311 if ( tau <= 0.0 ) {
1312 throw(AipsError("Valid tau is not supplied."));
1313 } else {
1314 tsysrefscalar = tsysv * exp(tau/elev);
1315 }
1316 }
1317 oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1318 pushLog(String(oss));
1319 }
1320 else {
1321 tsysrefscalar = tsysref[0];
1322 }
1323 //get quotient spectrum
1324 MaskedArray<Float> mref = maskedArray(specref, flagref);
1325 MaskedArray<Float> mon = maskedArray(specon, flagon);
1326 MaskedArray<Float> specres = tsysrefscalar*((mon - mref)/mref);
1327 Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1328
1329 //Debug
1330 //cerr<<"Tsys used="<<tsysrefscalar<<endl;
[1819]1331 //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1332 //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
[1391]1333 // fill the result, replay signal tsys by reference tsys
1334 outintCol.put(i, resint);
1335 outspecCol.put(i, specres.getArray());
1336 outflagCol.put(i, flagsFromMA(specres));
1337 outtsysCol.put(i, tsysref);
1338 }
1339 ++sit;
1340 ++s2it;
1341 }
1342 return out;
1343}
1344
1345CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1346 const std::vector<int>& scans,
1347 int smoothref,
1348 casa::Float tsysv,
1349 casa::Float tau,
1350 casa::Float tcal )
1351
1352{
1353 setInsitu(false);
1354 STSelector sel;
[1819]1355 std::vector<int> scan1, scan2, beams, types;
[1391]1356 std::vector< vector<int> > scanpair;
[1819]1357 //std::vector<string> calstate;
1358 std::vector<int> calstate;
[1391]1359 String msg;
1360
1361 CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1362 CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1363
1364 std::vector< CountedPtr< Scantable > > sctables;
1365 sctables.push_back(s1b1on);
1366 sctables.push_back(s1b1off);
1367 sctables.push_back(s1b2on);
1368 sctables.push_back(s1b2off);
1369 sctables.push_back(s2b1on);
1370 sctables.push_back(s2b1off);
1371 sctables.push_back(s2b2on);
1372 sctables.push_back(s2b2off);
1373
1374 //check scanlist
1375 int n=s->checkScanInfo(scans);
1376 if (n==1) {
1377 throw(AipsError("Incorrect scan pairs. "));
1378 }
1379
1380 // Assume scans contain only a pair of consecutive scan numbers.
1381 // It is assumed that first beam, b1, is on target.
1382 // There is no check if the first beam is on or not.
1383 if ( scans.size()==1 ) {
1384 scan1.push_back(scans[0]);
1385 scan2.push_back(scans[0]+1);
1386 } else if ( scans.size()==2 ) {
1387 scan1.push_back(scans[0]);
1388 scan2.push_back(scans[1]);
1389 } else {
1390 if ( scans.size()%2 == 0 ) {
1391 for (uInt i=0; i<scans.size(); i++) {
1392 if (i%2 == 0) {
1393 scan1.push_back(scans[i]);
1394 }
1395 else {
1396 scan2.push_back(scans[i]);
1397 }
1398 }
1399 } else {
1400 throw(AipsError("Odd numbers of scans, cannot form pairs."));
1401 }
1402 }
1403 scanpair.push_back(scan1);
1404 scanpair.push_back(scan2);
[1819]1405 //calstate.push_back("*calon");
1406 //calstate.push_back("*[^calon]");
1407 calstate.push_back(SrcType::NODCAL);
1408 calstate.push_back(SrcType::NOD);
[1391]1409 CountedPtr< Scantable > ws = getScantable(s, false);
1410 uInt l=0;
1411 while ( l < sctables.size() ) {
1412 for (uInt i=0; i < 2; i++) {
1413 for (uInt j=0; j < 2; j++) {
1414 for (uInt k=0; k < 2; k++) {
1415 sel.reset();
1416 sel.setScans(scanpair[i]);
[1819]1417 //sel.setName(calstate[k]);
1418 types.clear();
1419 types.push_back(calstate[k]);
1420 sel.setTypes(types);
[1391]1421 beams.clear();
1422 beams.push_back(j);
1423 sel.setBeams(beams);
1424 ws->setSelection(sel);
1425 sctables[l]= getScantable(ws, false);
1426 l++;
1427 }
1428 }
1429 }
1430 }
1431
1432 // replace here by splitData or getData functionality
1433 CountedPtr< Scantable > sig1;
1434 CountedPtr< Scantable > ref1;
1435 CountedPtr< Scantable > sig2;
1436 CountedPtr< Scantable > ref2;
1437 CountedPtr< Scantable > calb1;
1438 CountedPtr< Scantable > calb2;
1439
1440 msg=String("Processing dototalpower for subset of the data");
1441 ostringstream oss1;
1442 oss1 << msg << endl;
1443 pushLog(String(oss1));
1444 // Debug for IRC CS data
1445 //float tcal1=7.0;
1446 //float tcal2=4.0;
1447 sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1448 ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1449 ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1450 sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1451
1452 // correction of user-specified tsys for elevation here
1453
1454 // dosigref calibration
1455 msg=String("Processing dosigref for subset of the data");
1456 ostringstream oss2;
1457 oss2 << msg << endl;
1458 pushLog(String(oss2));
1459 calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1460 calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1461
1462 // iteration by scanno or cycle no.
1463 Table& tcalb1 = calb1->table();
1464 Table& tcalb2 = calb2->table();
1465 TableIterator sit(tcalb1, "SCANNO");
1466 TableIterator s2it(tcalb2, "SCANNO");
1467 while ( !sit.pastEnd() ) {
1468 Table t1 = sit.table();
1469 Table t2= s2it.table();
1470 ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1471 ArrayColumn<Float> outtsysCol(t1, "TSYS");
1472 ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1473 ScalarColumn<Double> outintCol(t1, "INTERVAL");
1474 ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1475 ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1476 ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1477 ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1478 for (uInt i=0; i < t1.nrow(); ++i) {
1479 Vector<Float> spec1, spec2;
1480 // to store scalar (mean) tsys
1481 Vector<Float> tsys1, tsys2;
1482 Vector<uChar> flag1, flag2;
1483 Double tint1, tint2;
1484 outspecCol.get(i, spec1);
1485 t2specCol.get(i, spec2);
1486 outflagCol.get(i, flag1);
1487 t2flagCol.get(i, flag2);
1488 outtsysCol.get(i, tsys1);
1489 t2tsysCol.get(i, tsys2);
1490 outintCol.get(i, tint1);
1491 t2intCol.get(i, tint2);
1492 // average
1493 // assume scalar tsys for weights
1494 Float wt1, wt2, tsyssq1, tsyssq2;
1495 tsyssq1 = tsys1[0]*tsys1[0];
1496 tsyssq2 = tsys2[0]*tsys2[0];
1497 wt1 = Float(tint1)/tsyssq1;
1498 wt2 = Float(tint2)/tsyssq2;
1499 Float invsumwt=1/(wt1+wt2);
1500 MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1501 MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1502 MaskedArray<Float> avspec = invsumwt * (wt1*mspec1 + wt2*mspec2);
1503 //Array<Float> avtsys = Float(0.5) * (tsys1 + tsys2);
1504 // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
[1819]1505 // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1506 // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
[1391]1507 tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1508 Array<Float> avtsys = tsys1;
1509
1510 outspecCol.put(i, avspec.getArray());
1511 outflagCol.put(i, flagsFromMA(avspec));
1512 outtsysCol.put(i, avtsys);
1513 }
1514 ++sit;
1515 ++s2it;
1516 }
1517 return calb1;
1518}
1519
1520//GBTIDL version of frequency switched data calibration
1521CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1522 const std::vector<int>& scans,
1523 int smoothref,
1524 casa::Float tsysv,
1525 casa::Float tau,
1526 casa::Float tcal )
1527{
1528
1529
[2163]1530 (void) scans; //currently unused
[1391]1531 STSelector sel;
1532 CountedPtr< Scantable > ws = getScantable(s, false);
1533 CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
[1819]1534 CountedPtr< Scantable > calsig, calref, out, out1, out2;
1535 Bool nofold=False;
1536 vector<int> types ;
[1391]1537
1538 //split the data
[1819]1539 //sel.setName("*_fs");
1540 types.push_back( SrcType::FSON ) ;
1541 sel.setTypes( types ) ;
[1391]1542 ws->setSelection(sel);
1543 sig = getScantable(ws,false);
1544 sel.reset();
[1819]1545 types.clear() ;
1546 //sel.setName("*_fs_calon");
1547 types.push_back( SrcType::FONCAL ) ;
1548 sel.setTypes( types ) ;
[1391]1549 ws->setSelection(sel);
1550 sigwcal = getScantable(ws,false);
1551 sel.reset();
[1819]1552 types.clear() ;
1553 //sel.setName("*_fsr");
1554 types.push_back( SrcType::FSOFF ) ;
1555 sel.setTypes( types ) ;
[1391]1556 ws->setSelection(sel);
1557 ref = getScantable(ws,false);
1558 sel.reset();
[1819]1559 types.clear() ;
1560 //sel.setName("*_fsr_calon");
1561 types.push_back( SrcType::FOFFCAL ) ;
1562 sel.setTypes( types ) ;
[1391]1563 ws->setSelection(sel);
1564 refwcal = getScantable(ws,false);
[1819]1565 sel.reset() ;
1566 types.clear() ;
[1391]1567
1568 calsig = dototalpower(sigwcal, sig, tcal=tcal);
1569 calref = dototalpower(refwcal, ref, tcal=tcal);
1570
[1819]1571 out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1572 out2=dosigref(calref,calsig,smoothref,tsysv,tau);
[1391]1573
[1819]1574 Table& tabout1=out1->table();
1575 Table& tabout2=out2->table();
1576 ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1577 ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1578 ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1579 Vector<Float> spec; specCol.get(0, spec);
1580 uInt nchan = spec.nelements();
1581 uInt freqid1; freqidCol1.get(0,freqid1);
1582 uInt freqid2; freqidCol2.get(0,freqid2);
1583 Double rp1, rp2, rv1, rv2, inc1, inc2;
1584 out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1585 out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1586 //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1587 //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1588 //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1589 if (rp1==rp2) {
1590 Double foffset = rv1 - rv2;
1591 uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1592 if (choffset >= nchan) {
1593 //cerr<<"out-band frequency switching, no folding"<<endl;
1594 LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1595 os<<"out-band frequency switching, no folding"<<LogIO::POST;
1596 nofold = True;
1597 }
1598 }
1599
1600 if (nofold) {
1601 std::vector< CountedPtr< Scantable > > tabs;
1602 tabs.push_back(out1);
1603 tabs.push_back(out2);
1604 out = merge(tabs);
1605 }
1606 else {
1607 //out = out1;
1608 Double choffset = ( rv1 - rv2 ) / inc2 ;
1609 out = dofold( out1, out2, choffset ) ;
1610 }
1611
[1391]1612 return out;
1613}
1614
[1819]1615CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1616 const CountedPtr<Scantable> &ref,
1617 Double choffset,
1618 Double choffset2 )
1619{
1620 LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1621 os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
[1391]1622
[1819]1623 // output scantable
1624 CountedPtr<Scantable> out = getScantable( sig, false ) ;
1625
1626 // separate choffset to integer part and decimal part
1627 Int ioffset = (Int)choffset ;
1628 Double doffset = choffset - ioffset ;
1629 Int ioffset2 = (Int)choffset2 ;
1630 Double doffset2 = choffset2 - ioffset2 ;
1631 os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1632 os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ;
1633
1634 // get column
1635 ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1636 ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1637 ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1638 ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1639 ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1640 ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1641 ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1642 ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1643 ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1644 ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1645
1646 // check
1647 if ( ioffset == 0 ) {
1648 LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1649 os << "channel offset is zero, no folding" << LogIO::POST ;
1650 return out ;
1651 }
1652 int nchan = ref->nchan() ;
1653 if ( abs(ioffset) >= nchan ) {
1654 LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1655 os << "out-band frequency switching, no folding" << LogIO::POST ;
1656 return out ;
1657 }
1658
1659 // attach column for output scantable
1660 ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1661 ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1662 ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1663 ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1664 ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1665 ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1666
1667 // for each row
1668 // assume that the data order are same between sig and ref
1669 RowAccumulator acc( asap::W_TINTSYS ) ;
1670 for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1671 // get values
1672 Vector<Float> spsig ;
1673 specCol1.get( i, spsig ) ;
1674 Vector<Float> spref ;
1675 specCol2.get( i, spref ) ;
1676 Vector<Float> tsyssig ;
1677 tsysCol1.get( i, tsyssig ) ;
1678 Vector<Float> tsysref ;
1679 tsysCol2.get( i, tsysref ) ;
1680 Vector<uChar> flagsig ;
1681 flagCol1.get( i, flagsig ) ;
1682 Vector<uChar> flagref ;
1683 flagCol2.get( i, flagref ) ;
1684 Double timesig ;
1685 mjdCol1.get( i, timesig ) ;
1686 Double timeref ;
1687 mjdCol2.get( i, timeref ) ;
1688 Double intsig ;
1689 intervalCol1.get( i, intsig ) ;
1690 Double intref ;
1691 intervalCol2.get( i, intref ) ;
1692
1693 // shift reference spectra
1694 int refchan = spref.nelements() ;
1695 Vector<Float> sspref( spref.nelements() ) ;
1696 Vector<Float> stsysref( tsysref.nelements() ) ;
1697 Vector<uChar> sflagref( flagref.nelements() ) ;
1698 if ( ioffset > 0 ) {
1699 // SPECTRA and FLAGTRA
1700 for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1701 sspref[j] = spref[j+ioffset] ;
1702 sflagref[j] = flagref[j+ioffset] ;
1703 }
1704 for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1705 sspref[j] = spref[j-refchan+ioffset] ;
1706 sflagref[j] = flagref[j-refchan+ioffset] ;
1707 }
1708 spref = sspref.copy() ;
1709 flagref = sflagref.copy() ;
1710 for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1711 sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1712 sflagref[j] = flagref[j+1] + flagref[j] ;
1713 }
1714 sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1715 sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1716
1717 // TSYS
1718 if ( spref.nelements() == tsysref.nelements() ) {
1719 for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1720 stsysref[j] = tsysref[j+ioffset] ;
1721 }
1722 for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1723 stsysref[j] = tsysref[j-refchan+ioffset] ;
1724 }
1725 tsysref = stsysref.copy() ;
1726 for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1727 stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1728 }
1729 stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1730 }
1731 }
1732 else {
1733 // SPECTRA and FLAGTRA
1734 for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1735 sspref[j] = spref[refchan+ioffset+j] ;
1736 sflagref[j] = flagref[refchan+ioffset+j] ;
1737 }
1738 for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1739 sspref[j] = spref[j+ioffset] ;
1740 sflagref[j] = flagref[j+ioffset] ;
1741 }
1742 spref = sspref.copy() ;
1743 flagref = sflagref.copy() ;
1744 sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1745 sflagref[0] = flagref[0] + flagref[refchan-1] ;
1746 for ( int j = 1 ; j < refchan ; j++ ) {
1747 sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1748 sflagref[j] = flagref[j-1] + flagref[j] ;
1749 }
1750 // TSYS
1751 if ( spref.nelements() == tsysref.nelements() ) {
1752 for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1753 stsysref[j] = tsysref[refchan+ioffset+j] ;
1754 }
1755 for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1756 stsysref[j] = tsysref[j+ioffset] ;
1757 }
1758 tsysref = stsysref.copy() ;
1759 stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1760 for ( int j = 1 ; j < refchan ; j++ ) {
1761 stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1762 }
1763 }
1764 }
1765
1766 // shift signal spectra if necessary (only for APEX?)
1767 if ( choffset2 != 0.0 ) {
1768 int sigchan = spsig.nelements() ;
1769 Vector<Float> sspsig( spsig.nelements() ) ;
1770 Vector<Float> stsyssig( tsyssig.nelements() ) ;
1771 Vector<uChar> sflagsig( flagsig.nelements() ) ;
1772 if ( ioffset2 > 0 ) {
1773 // SPECTRA and FLAGTRA
1774 for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1775 sspsig[j] = spsig[j+ioffset2] ;
1776 sflagsig[j] = flagsig[j+ioffset2] ;
1777 }
1778 for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1779 sspsig[j] = spsig[j-sigchan+ioffset2] ;
1780 sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1781 }
1782 spsig = sspsig.copy() ;
1783 flagsig = sflagsig.copy() ;
1784 for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1785 sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1786 sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1787 }
1788 sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1789 sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1790 // TSTS
1791 if ( spsig.nelements() == tsyssig.nelements() ) {
1792 for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1793 stsyssig[j] = tsyssig[j+ioffset2] ;
1794 }
1795 for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1796 stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1797 }
1798 tsyssig = stsyssig.copy() ;
1799 for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1800 stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1801 }
1802 stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1803 }
1804 }
1805 else {
1806 // SPECTRA and FLAGTRA
1807 for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1808 sspsig[j] = spsig[sigchan+ioffset2+j] ;
1809 sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1810 }
1811 for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1812 sspsig[j] = spsig[j+ioffset2] ;
1813 sflagsig[j] = flagsig[j+ioffset2] ;
1814 }
1815 spsig = sspsig.copy() ;
1816 flagsig = sflagsig.copy() ;
1817 sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1818 sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1819 for ( int j = 1 ; j < sigchan ; j++ ) {
1820 sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1821 sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1822 }
1823 // TSYS
1824 if ( spsig.nelements() == tsyssig.nelements() ) {
1825 for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1826 stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1827 }
1828 for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1829 stsyssig[j] = tsyssig[j+ioffset2] ;
1830 }
1831 tsyssig = stsyssig.copy() ;
1832 stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1833 for ( int j = 1 ; j < sigchan ; j++ ) {
1834 stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1835 }
1836 }
1837 }
1838 }
1839
1840 // folding
1841 acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1842 acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1843
1844 // put result
1845 specColOut.put( i, acc.getSpectrum() ) ;
1846 const Vector<Bool> &msk = acc.getMask() ;
1847 Vector<uChar> flg( msk.shape() ) ;
1848 convertArray( flg, !msk ) ;
1849 flagColOut.put( i, flg ) ;
1850 tsysColOut.put( i, acc.getTsys() ) ;
1851 intervalColOut.put( i, acc.getInterval() ) ;
1852 mjdColOut.put( i, acc.getTime() ) ;
1853 // change FREQ_ID to unshifted IF setting (only for APEX?)
1854 if ( choffset2 != 0.0 ) {
1855 uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1856 double refpix, refval, increment ;
1857 out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1858 refval -= choffset * increment ;
1859 uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1860 Vector<uInt> freqids = fidColOut.getColumn() ;
1861 for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1862 if ( freqids[j] == freqid )
1863 freqids[j] = newfreqid ;
1864 }
1865 fidColOut.putColumn( freqids ) ;
1866 }
1867
1868 acc.reset() ;
1869 }
1870
1871 return out ;
1872}
1873
1874
[805]1875CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1876{
1877 // make copy or reference
1878 CountedPtr< Scantable > out = getScantable(in, false);
1879 Table& tout = out->table();
[1008]1880 Block<String> cols(4);
[805]1881 cols[0] = String("SCANNO");
[1008]1882 cols[1] = String("CYCLENO");
1883 cols[2] = String("BEAMNO");
1884 cols[3] = String("POLNO");
[805]1885 TableIterator iter(tout, cols);
1886 while (!iter.pastEnd()) {
1887 Table subt = iter.table();
1888 // this should leave us with two rows for the two IFs....if not ignore
1889 if (subt.nrow() != 2 ) {
1890 continue;
[701]1891 }
[1008]1892 ArrayColumn<Float> specCol(subt, "SPECTRA");
1893 ArrayColumn<Float> tsysCol(subt, "TSYS");
1894 ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
[805]1895 Vector<Float> onspec,offspec, ontsys, offtsys;
1896 Vector<uChar> onflag, offflag;
1897 tsysCol.get(0, ontsys); tsysCol.get(1, offtsys);
1898 specCol.get(0, onspec); specCol.get(1, offspec);
1899 flagCol.get(0, onflag); flagCol.get(1, offflag);
1900 MaskedArray<Float> on = maskedArray(onspec, onflag);
1901 MaskedArray<Float> off = maskedArray(offspec, offflag);
1902 MaskedArray<Float> oncopy = on.copy();
[248]1903
[805]1904 on /= off; on -= 1.0f;
1905 on *= ontsys[0];
1906 off /= oncopy; off -= 1.0f;
1907 off *= offtsys[0];
1908 specCol.put(0, on.getArray());
1909 const Vector<Bool>& m0 = on.getMask();
1910 Vector<uChar> flags0(m0.shape());
1911 convertArray(flags0, !m0);
1912 flagCol.put(0, flags0);
[234]1913
[805]1914 specCol.put(1, off.getArray());
1915 const Vector<Bool>& m1 = off.getMask();
1916 Vector<uChar> flags1(m1.shape());
1917 convertArray(flags1, !m1);
1918 flagCol.put(1, flags1);
[867]1919 ++iter;
[130]1920 }
[780]1921
[805]1922 return out;
[9]1923}
[48]1924
[805]1925std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1926 const std::vector< bool > & mask,
1927 const std::string& which )
[130]1928{
1929
[805]1930 Vector<Bool> m(mask);
1931 const Table& tab = in->table();
1932 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1933 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1934 std::vector<float> out;
1935 for (uInt i=0; i < tab.nrow(); ++i ) {
1936 Vector<Float> spec; specCol.get(i, spec);
[867]1937 Vector<uChar> flag; flagCol.get(i, flag);
1938 MaskedArray<Float> ma = maskedArray(spec, flag);
1939 float outstat = 0.0;
[805]1940 if ( spec.nelements() == m.nelements() ) {
1941 outstat = mathutil::statistics(which, ma(m));
1942 } else {
1943 outstat = mathutil::statistics(which, ma);
1944 }
1945 out.push_back(outstat);
[234]1946 }
[805]1947 return out;
[130]1948}
1949
[1907]1950std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1951 const std::vector< bool > & mask,
1952 const std::string& which,
1953 int row )
1954{
1955
1956 Vector<Bool> m(mask);
1957 const Table& tab = in->table();
1958 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1959 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1960 std::vector<float> out;
1961
1962 Vector<Float> spec; specCol.get(row, spec);
1963 Vector<uChar> flag; flagCol.get(row, flag);
1964 MaskedArray<Float> ma = maskedArray(spec, flag);
1965 float outstat = 0.0;
1966 if ( spec.nelements() == m.nelements() ) {
1967 outstat = mathutil::statistics(which, ma(m));
1968 } else {
1969 outstat = mathutil::statistics(which, ma);
1970 }
1971 out.push_back(outstat);
1972
1973 return out;
1974}
1975
[1819]1976std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1977 const std::vector< bool > & mask,
1978 const std::string& which )
1979{
1980
1981 Vector<Bool> m(mask);
1982 const Table& tab = in->table();
1983 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1984 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1985 std::vector<int> out;
1986 for (uInt i=0; i < tab.nrow(); ++i ) {
1987 Vector<Float> spec; specCol.get(i, spec);
1988 Vector<uChar> flag; flagCol.get(i, flag);
1989 MaskedArray<Float> ma = maskedArray(spec, flag);
1990 if (ma.ndim() != 1) {
1991 throw (ArrayError(
1992 "std::vector<int> STMath::minMaxChan("
1993 "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1994 " std::string &which)"
1995 " - MaskedArray is not 1D"));
1996 }
1997 IPosition outpos(1,0);
1998 if ( spec.nelements() == m.nelements() ) {
1999 outpos = mathutil::minMaxPos(which, ma(m));
2000 } else {
2001 outpos = mathutil::minMaxPos(which, ma);
2002 }
2003 out.push_back(outpos[0]);
2004 }
2005 return out;
2006}
2007
[805]2008CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
2009 int width )
[144]2010{
[841]2011 if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
[805]2012 CountedPtr< Scantable > out = getScantable(in, false);
2013 Table& tout = out->table();
2014 out->frequencies().rescale(width, "BIN");
2015 ArrayColumn<Float> specCol(tout, "SPECTRA");
2016 ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
2017 for (uInt i=0; i < tout.nrow(); ++i ) {
2018 MaskedArray<Float> main = maskedArray(specCol(i), flagCol(i));
2019 MaskedArray<Float> maout;
2020 LatticeUtilities::bin(maout, main, 0, Int(width));
2021 /// @todo implement channel based tsys binning
2022 specCol.put(i, maout.getArray());
2023 flagCol.put(i, flagsFromMA(maout));
2024 // take only the first binned spectrum's length for the deprecated
2025 // global header item nChan
2026 if (i==0) tout.rwKeywordSet().define(String("nChan"),
2027 Int(maout.getArray().nelements()));
[169]2028 }
[805]2029 return out;
[146]2030}
2031
[805]2032CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
2033 const std::string& method,
2034 float width )
[299]2035//
2036// Should add the possibility of width being specified in km/s. This means
[780]2037// that for each freqID (SpectralCoordinate) we will need to convert to an
2038// average channel width (say at the reference pixel). Then we would need
2039// to be careful to make sure each spectrum (of different freqID)
[299]2040// is the same length.
2041//
2042{
[996]2043 //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
[805]2044 Int interpMethod(stringToIMethod(method));
[299]2045
[805]2046 CountedPtr< Scantable > out = getScantable(in, false);
2047 Table& tout = out->table();
[299]2048
2049// Resample SpectralCoordinates (one per freqID)
[805]2050 out->frequencies().rescale(width, "RESAMPLE");
2051 TableIterator iter(tout, "IFNO");
2052 TableRow row(tout);
2053 while ( !iter.pastEnd() ) {
2054 Table tab = iter.table();
2055 ArrayColumn<Float> specCol(tab, "SPECTRA");
2056 //ArrayColumn<Float> tsysCol(tout, "TSYS");
2057 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2058 Vector<Float> spec;
2059 Vector<uChar> flag;
2060 specCol.get(0,spec); // the number of channels should be constant per IF
2061 uInt nChanIn = spec.nelements();
2062 Vector<Float> xIn(nChanIn); indgen(xIn);
2063 Int fac = Int(nChanIn/width);
2064 Vector<Float> xOut(fac+10); // 10 to be safe - resize later
2065 uInt k = 0;
2066 Float x = 0.0;
2067 while (x < Float(nChanIn) ) {
2068 xOut(k) = x;
2069 k++;
2070 x += width;
2071 }
2072 uInt nChanOut = k;
2073 xOut.resize(nChanOut, True);
2074 // process all rows for this IFNO
2075 Vector<Float> specOut;
2076 Vector<Bool> maskOut;
2077 Vector<uChar> flagOut;
2078 for (uInt i=0; i < tab.nrow(); ++i) {
2079 specCol.get(i, spec);
2080 flagCol.get(i, flag);
2081 Vector<Bool> mask(flag.nelements());
2082 convertArray(mask, flag);
[299]2083
[805]2084 IPosition shapeIn(spec.shape());
2085 //sh.nchan = nChanOut;
2086 InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2087 xIn, spec, mask,
2088 interpMethod, True, True);
2089 /// @todo do the same for channel based Tsys
2090 flagOut.resize(maskOut.nelements());
2091 convertArray(flagOut, maskOut);
2092 specCol.put(i, specOut);
2093 flagCol.put(i, flagOut);
2094 }
2095 ++iter;
[299]2096 }
2097
[805]2098 return out;
2099}
[299]2100
[805]2101STMath::imethod STMath::stringToIMethod(const std::string& in)
2102{
2103 static STMath::imap lookup;
[299]2104
[805]2105 // initialize the lookup table if necessary
2106 if ( lookup.empty() ) {
[926]2107 lookup["nearest"] = InterpolateArray1D<Double,Float>::nearestNeighbour;
2108 lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2109 lookup["cubic"] = InterpolateArray1D<Double,Float>::cubic;
2110 lookup["spline"] = InterpolateArray1D<Double,Float>::spline;
[299]2111 }
2112
[805]2113 STMath::imap::const_iterator iter = lookup.find(in);
[299]2114
[805]2115 if ( lookup.end() == iter ) {
2116 std::string message = in;
2117 message += " is not a valid interpolation mode";
2118 throw(AipsError(message));
[299]2119 }
[805]2120 return iter->second;
[299]2121}
2122
[805]2123WeightType STMath::stringToWeight(const std::string& in)
[146]2124{
[805]2125 static std::map<std::string, WeightType> lookup;
[434]2126
[805]2127 // initialize the lookup table if necessary
2128 if ( lookup.empty() ) {
[1569]2129 lookup["NONE"] = asap::W_NONE;
2130 lookup["TINT"] = asap::W_TINT;
2131 lookup["TINTSYS"] = asap::W_TINTSYS;
2132 lookup["TSYS"] = asap::W_TSYS;
2133 lookup["VAR"] = asap::W_VAR;
[805]2134 }
[434]2135
[805]2136 std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
[294]2137
[805]2138 if ( lookup.end() == iter ) {
2139 std::string message = in;
2140 message += " is not a valid weighting mode";
2141 throw(AipsError(message));
2142 }
2143 return iter->second;
[146]2144}
2145
[805]2146CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
[867]2147 const vector< float > & coeff,
[805]2148 const std::string & filename,
2149 const std::string& method)
[165]2150{
[805]2151 // Get elevation data from Scantable and convert to degrees
2152 CountedPtr< Scantable > out = getScantable(in, false);
[926]2153 Table& tab = out->table();
[805]2154 ROScalarColumn<Float> elev(tab, "ELEVATION");
2155 Vector<Float> x = elev.getColumn();
2156 x *= Float(180 / C::pi); // Degrees
[165]2157
[867]2158 Vector<Float> coeffs(coeff);
[805]2159 const uInt nc = coeffs.nelements();
2160 if ( filename.length() > 0 && nc > 0 ) {
2161 throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
[315]2162 }
[165]2163
[805]2164 // Correct
2165 if ( nc > 0 || filename.length() == 0 ) {
2166 // Find instrument
2167 Bool throwit = True;
2168 Instrument inst =
[878]2169 STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
[805]2170 throwit);
[165]2171
[805]2172 // Set polynomial
2173 Polynomial<Float>* ppoly = 0;
2174 Vector<Float> coeff;
2175 String msg;
2176 if ( nc > 0 ) {
[1618]2177 ppoly = new Polynomial<Float>(nc-1);
[805]2178 coeff = coeffs;
2179 msg = String("user");
2180 } else {
[878]2181 STAttr sdAttr;
[805]2182 coeff = sdAttr.gainElevationPoly(inst);
[1618]2183 ppoly = new Polynomial<Float>(coeff.nelements()-1);
[805]2184 msg = String("built in");
2185 }
[532]2186
[805]2187 if ( coeff.nelements() > 0 ) {
2188 ppoly->setCoefficients(coeff);
2189 } else {
2190 delete ppoly;
2191 throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2192 }
2193 ostringstream oss;
2194 oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2195 oss << " " << coeff;
2196 pushLog(String(oss));
2197 const uInt nrow = tab.nrow();
2198 Vector<Float> factor(nrow);
2199 for ( uInt i=0; i < nrow; ++i ) {
2200 factor[i] = 1.0 / (*ppoly)(x[i]);
2201 }
2202 delete ppoly;
2203 scaleByVector(tab, factor, true);
[532]2204
[805]2205 } else {
2206 // Read and correct
2207 pushLog("Making correction from ascii Table");
2208 scaleFromAsciiTable(tab, filename, method, x, true);
[532]2209 }
[805]2210 return out;
2211}
[165]2212
[805]2213void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2214 const std::string& method,
2215 const Vector<Float>& xout, bool dotsys)
2216{
[165]2217
[805]2218// Read gain-elevation ascii file data into a Table.
[165]2219
[805]2220 String formatString;
2221 Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2222 scaleFromTable(in, tbl, method, xout, dotsys);
2223}
[165]2224
[805]2225void STMath::scaleFromTable(Table& in,
2226 const Table& table,
2227 const std::string& method,
2228 const Vector<Float>& xout, bool dotsys)
2229{
[780]2230
[805]2231 ROScalarColumn<Float> geElCol(table, "ELEVATION");
2232 ROScalarColumn<Float> geFacCol(table, "FACTOR");
2233 Vector<Float> xin = geElCol.getColumn();
2234 Vector<Float> yin = geFacCol.getColumn();
2235 Vector<Bool> maskin(xin.nelements(),True);
[165]2236
[805]2237 // Interpolate (and extrapolate) with desired method
[532]2238
[996]2239 InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
[165]2240
[805]2241 Vector<Float> yout;
2242 Vector<Bool> maskout;
2243 InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
[996]2244 xin, yin, maskin, interp,
[805]2245 True, True);
[165]2246
[805]2247 scaleByVector(in, Float(1.0)/yout, dotsys);
[165]2248}
[167]2249
[805]2250void STMath::scaleByVector( Table& in,
2251 const Vector< Float >& factor,
2252 bool dotsys )
[177]2253{
[805]2254 uInt nrow = in.nrow();
2255 if ( factor.nelements() != nrow ) {
2256 throw(AipsError("factors.nelements() != table.nelements()"));
2257 }
2258 ArrayColumn<Float> specCol(in, "SPECTRA");
2259 ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2260 ArrayColumn<Float> tsysCol(in, "TSYS");
2261 for (uInt i=0; i < nrow; ++i) {
2262 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2263 ma *= factor[i];
2264 specCol.put(i, ma.getArray());
2265 flagCol.put(i, flagsFromMA(ma));
2266 if ( dotsys ) {
[926]2267 Vector<Float> tsys = tsysCol(i);
[805]2268 tsys *= factor[i];
[926]2269 tsysCol.put(i,tsys);
[805]2270 }
2271 }
[177]2272}
2273
[805]2274CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2275 float d, float etaap,
2276 float jyperk )
[221]2277{
[805]2278 CountedPtr< Scantable > out = getScantable(in, false);
2279 Table& tab = in->table();
2280 Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
[221]2281 Unit K(String("K"));
2282 Unit JY(String("Jy"));
[701]2283
[805]2284 bool tokelvin = true;
2285 Double cfac = 1.0;
[716]2286
[805]2287 if ( fluxUnit == JY ) {
[716]2288 pushLog("Converting to K");
[701]2289 Quantum<Double> t(1.0,fluxUnit);
2290 Quantum<Double> t2 = t.get(JY);
[805]2291 cfac = (t2 / t).getValue(); // value to Jy
[780]2292
[805]2293 tokelvin = true;
2294 out->setFluxUnit("K");
2295 } else if ( fluxUnit == K ) {
[716]2296 pushLog("Converting to Jy");
[701]2297 Quantum<Double> t(1.0,fluxUnit);
2298 Quantum<Double> t2 = t.get(K);
[805]2299 cfac = (t2 / t).getValue(); // value to K
[780]2300
[805]2301 tokelvin = false;
2302 out->setFluxUnit("Jy");
[221]2303 } else {
[701]2304 throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
[221]2305 }
[701]2306 // Make sure input values are converted to either Jy or K first...
[805]2307 Float factor = cfac;
[221]2308
[701]2309 // Select method
[805]2310 if (jyperk > 0.0) {
2311 factor *= jyperk;
2312 if ( tokelvin ) factor = 1.0 / jyperk;
[716]2313 ostringstream oss;
[805]2314 oss << "Jy/K = " << jyperk;
[716]2315 pushLog(String(oss));
[805]2316 Vector<Float> factors(tab.nrow(), factor);
2317 scaleByVector(tab,factors, false);
2318 } else if ( etaap > 0.0) {
[1319]2319 if (d < 0) {
2320 Instrument inst =
[1570]2321 STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
[1319]2322 True);
2323 STAttr sda;
2324 d = sda.diameter(inst);
2325 }
[996]2326 jyperk = STAttr::findJyPerK(etaap, d);
[716]2327 ostringstream oss;
[805]2328 oss << "Jy/K = " << jyperk;
[716]2329 pushLog(String(oss));
[805]2330 factor *= jyperk;
2331 if ( tokelvin ) {
[701]2332 factor = 1.0 / factor;
2333 }
[805]2334 Vector<Float> factors(tab.nrow(), factor);
2335 scaleByVector(tab, factors, False);
[354]2336 } else {
[780]2337
[701]2338 // OK now we must deal with automatic look up of values.
2339 // We must also deal with the fact that the factors need
2340 // to be computed per IF and may be different and may
2341 // change per integration.
[780]2342
[716]2343 pushLog("Looking up conversion factors");
[805]2344 convertBrightnessUnits(out, tokelvin, cfac);
[701]2345 }
[805]2346
2347 return out;
[221]2348}
2349
[805]2350void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2351 bool tokelvin, float cfac )
[227]2352{
[805]2353 Table& table = in->table();
2354 Instrument inst =
[878]2355 STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
[805]2356 TableIterator iter(table, "FREQ_ID");
2357 STFrequencies stfreqs = in->frequencies();
[878]2358 STAttr sdAtt;
[805]2359 while (!iter.pastEnd()) {
2360 Table tab = iter.table();
2361 ArrayColumn<Float> specCol(tab, "SPECTRA");
2362 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2363 ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2364 MEpoch::ROScalarColumn timeCol(tab, "TIME");
[234]2365
[805]2366 uInt freqid; freqidCol.get(0, freqid);
2367 Vector<Float> tmpspec; specCol.get(0, tmpspec);
[878]2368 // STAttr.JyPerK has a Vector interface... change sometime.
[805]2369 Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2370 for ( uInt i=0; i<tab.nrow(); ++i) {
2371 Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2372 Float factor = cfac * jyperk;
2373 if ( tokelvin ) factor = Float(1.0) / factor;
2374 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2375 ma *= factor;
2376 specCol.put(i, ma.getArray());
2377 flagCol.put(i, flagsFromMA(ma));
2378 }
[867]2379 ++iter;
[234]2380 }
[230]2381}
[227]2382
[805]2383CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
[1689]2384 const std::vector<float>& tau )
[234]2385{
[805]2386 CountedPtr< Scantable > out = getScantable(in, false);
[926]2387
[1689]2388 Table outtab = out->table();
2389
[2125]2390 const Int ntau = uInt(tau.size());
[1689]2391 std::vector<float>::const_iterator tauit = tau.begin();
2392 AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2393 AipsError);
2394 TableIterator iiter(outtab, "IFNO");
2395 while ( !iiter.pastEnd() ) {
2396 Table itab = iiter.table();
[2278]2397 TableIterator piter(itab, "POLNO");
[1689]2398 while ( !piter.pastEnd() ) {
2399 Table tab = piter.table();
2400 ROScalarColumn<Float> elev(tab, "ELEVATION");
2401 ArrayColumn<Float> specCol(tab, "SPECTRA");
2402 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2403 ArrayColumn<Float> tsysCol(tab, "TSYS");
2404 for ( uInt i=0; i<tab.nrow(); ++i) {
2405 Float zdist = Float(C::pi_2) - elev(i);
2406 Float factor = exp(*tauit/cos(zdist));
2407 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2408 ma *= factor;
2409 specCol.put(i, ma.getArray());
2410 flagCol.put(i, flagsFromMA(ma));
2411 Vector<Float> tsys;
2412 tsysCol.get(i, tsys);
2413 tsys *= factor;
2414 tsysCol.put(i, tsys);
2415 }
2416 if (ntau == in->nif()*in->npol() ) {
2417 tauit++;
2418 }
2419 piter++;
2420 }
2421 if (ntau >= in->nif() ) {
2422 tauit++;
2423 }
2424 iiter++;
[234]2425 }
[805]2426 return out;
[234]2427}
2428
[1373]2429CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2430 const std::string& kernel,
[1570]2431 float width, int order)
[1373]2432{
2433 CountedPtr< Scantable > out = getScantable(in, false);
[2125]2434 Table table = out->table();
2435
2436 TableIterator iter(table, "IFNO");
2437 while (!iter.pastEnd()) {
2438 Table tab = iter.table();
2439 ArrayColumn<Float> specCol(tab, "SPECTRA");
2440 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2441 Vector<Float> spec;
2442 Vector<uChar> flag;
2443 for (uInt i = 0; i < tab.nrow(); ++i) {
2444 specCol.get(i, spec);
2445 flagCol.get(i, flag);
2446 Vector<Bool> mask(flag.nelements());
2447 convertArray(mask, flag);
2448 Vector<Float> specout;
2449 Vector<Bool> maskout;
2450 if (kernel == "hanning") {
2451 mathutil::hanning(specout, maskout, spec, !mask);
2452 convertArray(flag, !maskout);
2453 } else if (kernel == "rmedian") {
2454 mathutil::runningMedian(specout, maskout, spec , mask, width);
2455 convertArray(flag, maskout);
2456 } else if (kernel == "poly") {
2457 mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2458 convertArray(flag, !maskout);
2459 }
2460
2461 for (uInt j = 0; j < flag.nelements(); ++j) {
2462 uChar userFlag = 1 << 7;
2463 if (maskout[j]==True) userFlag = 0 << 7;
2464 flag(j) = userFlag;
2465 }
2466
2467 flagCol.put(i, flag);
2468 specCol.put(i, specout);
[1373]2469 }
[2125]2470 ++iter;
[1373]2471 }
2472 return out;
2473}
2474
[805]2475CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
[1571]2476 const std::string& kernel, float width,
2477 int order)
[457]2478{
[1571]2479 if (kernel == "rmedian" || kernel == "hanning" || kernel == "poly") {
2480 return smoothOther(in, kernel, width, order);
[1373]2481 }
[805]2482 CountedPtr< Scantable > out = getScantable(in, false);
[1033]2483 Table& table = out->table();
[805]2484 VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2485 // same IFNO should have same no of channels
2486 // this saves overhead
2487 TableIterator iter(table, "IFNO");
2488 while (!iter.pastEnd()) {
2489 Table tab = iter.table();
2490 ArrayColumn<Float> specCol(tab, "SPECTRA");
2491 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2492 Vector<Float> tmpspec; specCol.get(0, tmpspec);
2493 uInt nchan = tmpspec.nelements();
2494 Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2495 Convolver<Float> conv(kvec, IPosition(1,nchan));
2496 Vector<Float> spec;
2497 Vector<uChar> flag;
2498 for ( uInt i=0; i<tab.nrow(); ++i) {
2499 specCol.get(i, spec);
2500 flagCol.get(i, flag);
2501 Vector<Bool> mask(flag.nelements());
2502 convertArray(mask, flag);
2503 Vector<Float> specout;
[1373]2504 mathutil::replaceMaskByZero(specout, mask);
2505 conv.linearConv(specout, spec);
2506 specCol.put(i, specout);
[805]2507 }
[867]2508 ++iter;
[701]2509 }
[805]2510 return out;
[701]2511}
[841]2512
2513CountedPtr< Scantable >
2514 STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2515{
2516 if ( in.size() < 2 ) {
[862]2517 throw(AipsError("Need at least two scantables to perform a merge."));
[841]2518 }
2519 std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2520 bool insitu = insitu_;
2521 setInsitu(false);
[862]2522 CountedPtr< Scantable > out = getScantable(*it, false);
[841]2523 setInsitu(insitu);
2524 Table& tout = out->table();
2525 ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
[917]2526 ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2527 // Renumber SCANNO to be 0-based
[926]2528 Vector<uInt> scannos = scannocol.getColumn();
2529 uInt offset = min(scannos);
[917]2530 scannos -= offset;
[926]2531 scannocol.putColumn(scannos);
2532 uInt newscanno = max(scannos)+1;
[862]2533 ++it;
[841]2534 while ( it != in.end() ){
2535 if ( ! (*it)->conformant(*out) ) {
[1439]2536 // non conformant.
[1819]2537 //pushLog(String("Warning: Can't merge scantables as header info differs."));
2538 LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2539 os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
[841]2540 }
[862]2541 out->appendToHistoryTable((*it)->history());
[841]2542 const Table& tab = (*it)->table();
[2289]2543
2544 Block<String> cols(3);
2545 cols[0] = String("FREQ_ID");
2546 cols[1] = String("MOLECULE_ID");
2547 cols[2] = String("FOCUS_ID");
2548
[841]2549 TableIterator scanit(tab, "SCANNO");
2550 while (!scanit.pastEnd()) {
[2289]2551 ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2552 Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2553 thescannocol.putColumn(thescannos);
2554 TableIterator subit(scanit.table(), cols);
2555 while ( !subit.pastEnd() ) {
[841]2556 uInt nrow = tout.nrow();
[2289]2557 Table thetab = subit.table();
2558 ROTableRow row(thetab);
2559 Vector<uInt> thecolvals(thetab.nrow());
2560 ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2561 ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2562 ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2563 // The selected subset of table should have
2564 // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2565 const TableRecord& rec = row.get(0);
2566 // Set the proper FREQ_ID
2567 Double rv,rp,inc;
2568 (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2569 uInt id;
2570 id = out->frequencies().addEntry(rp, rv, inc);
2571 thecolvals = id;
2572 thefreqidcol.putColumn(thecolvals);
2573 // Set the proper MOLECULE_ID
2574 Vector<String> name,fname;Vector<Double> rf;
2575 (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2576 id = out->molecules().addEntry(rf, name, fname);
2577 thecolvals = id;
2578 themolidcol.putColumn(thecolvals);
2579 // Set the proper FOCUS_ID
2580 Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2581 (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2582 fxy, fxyp, rec.asuInt("FOCUS_ID"));
2583 id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2584 fxy, fxyp);
2585 thecolvals = id;
2586 thefocusidcol.putColumn(thecolvals);
2587
[1505]2588 tout.addRow(thetab.nrow());
[841]2589 TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
[2289]2590
2591 ++subit;
[841]2592 }
2593 ++newscanno;
2594 ++scanit;
2595 }
2596 ++it;
2597 }
2598 return out;
2599}
[896]2600
2601CountedPtr< Scantable >
2602 STMath::invertPhase( const CountedPtr < Scantable >& in )
2603{
[996]2604 return applyToPol(in, &STPol::invertPhase, Float(0.0));
[896]2605}
2606
2607CountedPtr< Scantable >
2608 STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2609{
2610 return applyToPol(in, &STPol::rotatePhase, Float(phase));
2611}
2612
2613CountedPtr< Scantable >
2614 STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2615{
2616 return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2617}
2618
2619CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2620 STPol::polOperation fptr,
2621 Float phase )
2622{
2623 CountedPtr< Scantable > out = getScantable(in, false);
2624 Table& tout = out->table();
2625 Block<String> cols(4);
2626 cols[0] = String("SCANNO");
2627 cols[1] = String("BEAMNO");
2628 cols[2] = String("IFNO");
2629 cols[3] = String("CYCLENO");
2630 TableIterator iter(tout, cols);
[1569]2631 CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
[1384]2632 out->getPolType() );
[896]2633 while (!iter.pastEnd()) {
2634 Table t = iter.table();
2635 ArrayColumn<Float> speccol(t, "SPECTRA");
[1015]2636 ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
[1384]2637 Matrix<Float> pols(speccol.getColumn());
[896]2638 try {
2639 stpol->setSpectra(pols);
[1586]2640 Float fang,fhand;
2641 fang = in->focusTable_.getTotalAngle(focidcol(0));
[1015]2642 fhand = in->focusTable_.getFeedHand(focidcol(0));
[1586]2643 stpol->setPhaseCorrections(fang, fhand);
[1384]2644 // use a member function pointer in STPol. This only works on
2645 // the STPol pointer itself, not the Counted Pointer so
2646 // derefernce it.
2647 (&(*(stpol))->*fptr)(phase);
[896]2648 speccol.putColumn(stpol->getSpectra());
2649 } catch (AipsError& e) {
[1384]2650 //delete stpol;stpol=0;
[896]2651 throw(e);
2652 }
2653 ++iter;
2654 }
[1384]2655 //delete stpol;stpol=0;
[896]2656 return out;
2657}
2658
2659CountedPtr< Scantable >
2660 STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2661{
2662 CountedPtr< Scantable > out = getScantable(in, false);
2663 Table& tout = out->table();
2664 Table t0 = tout(tout.col("POLNO") == 0);
2665 Table t1 = tout(tout.col("POLNO") == 1);
2666 if ( t0.nrow() != t1.nrow() )
2667 throw(AipsError("Inconsistent number of polarisations"));
2668 ArrayColumn<Float> speccol0(t0, "SPECTRA");
2669 ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2670 ArrayColumn<Float> speccol1(t1, "SPECTRA");
2671 ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2672 Matrix<Float> s0 = speccol0.getColumn();
2673 Matrix<uChar> f0 = flagcol0.getColumn();
2674 speccol0.putColumn(speccol1.getColumn());
2675 flagcol0.putColumn(flagcol1.getColumn());
2676 speccol1.putColumn(s0);
2677 flagcol1.putColumn(f0);
2678 return out;
2679}
[917]2680
2681CountedPtr< Scantable >
[940]2682 STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2683 const std::vector<bool>& mask,
2684 const std::string& weight )
2685{
[1232]2686 if (in->npol() < 2 )
2687 throw(AipsError("averagePolarisations can only be applied to two or more"
2688 "polarisations"));
[1010]2689 bool insitu = insitu_;
2690 setInsitu(false);
[1232]2691 CountedPtr< Scantable > pols = getScantable(in, true);
[1010]2692 setInsitu(insitu);
2693 Table& tout = pols->table();
[1232]2694 std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2695 Table tab = tableCommand(taql, in->table());
2696 if (tab.nrow() == 0 )
2697 throw(AipsError("Could not find any rows with POLNO==0 and POLNO==1"));
2698 TableCopy::copyRows(tout, tab);
[1145]2699 TableVector<uInt> vec(tout, "POLNO");
[940]2700 vec = 0;
[1145]2701 pols->table_.rwKeywordSet().define("nPol", Int(1));
[2102]2702 pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2703 //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
[1010]2704 std::vector<CountedPtr<Scantable> > vpols;
2705 vpols.push_back(pols);
[1232]2706 CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
[940]2707 return out;
2708}
2709
[1145]2710CountedPtr< Scantable >
2711 STMath::averageBeams( const CountedPtr< Scantable > & in,
2712 const std::vector<bool>& mask,
2713 const std::string& weight )
2714{
2715 bool insitu = insitu_;
2716 setInsitu(false);
2717 CountedPtr< Scantable > beams = getScantable(in, false);
2718 setInsitu(insitu);
2719 Table& tout = beams->table();
2720 // give all rows the same BEAMNO
2721 TableVector<uInt> vec(tout, "BEAMNO");
2722 vec = 0;
2723 beams->table_.rwKeywordSet().define("nBeam", Int(1));
2724 std::vector<CountedPtr<Scantable> > vbeams;
2725 vbeams.push_back(beams);
[1232]2726 CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
[1145]2727 return out;
2728}
[940]2729
[1145]2730
[940]2731CountedPtr< Scantable >
[917]2732 asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2733 const std::string & refTime,
[926]2734 const std::string & method)
[917]2735{
[940]2736 // clone as this is not working insitu
2737 bool insitu = insitu_;
2738 setInsitu(false);
[917]2739 CountedPtr< Scantable > out = getScantable(in, false);
[940]2740 setInsitu(insitu);
[917]2741 Table& tout = out->table();
2742 // Get reference Epoch to time of first row or given String
2743 Unit DAY(String("d"));
2744 MEpoch::Ref epochRef(in->getTimeReference());
2745 MEpoch refEpoch;
2746 if (refTime.length()>0) {
2747 Quantum<Double> qt;
2748 if (MVTime::read(qt,refTime)) {
2749 MVEpoch mv(qt);
2750 refEpoch = MEpoch(mv, epochRef);
2751 } else {
2752 throw(AipsError("Invalid format for Epoch string"));
2753 }
2754 } else {
2755 refEpoch = in->timeCol_(0);
2756 }
2757 MPosition refPos = in->getAntennaPosition();
[940]2758
[996]2759 InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
[1475]2760 /*
2761 // Comment from MV.
2762 // the following code has been commented out because different FREQ_IDs have to be aligned together even
2763 // if the frame doesn't change. So far, lack of this check didn't cause any problems.
[917]2764 // test if user frame is different to base frame
2765 if ( in->frequencies().getFrameString(true)
2766 == in->frequencies().getFrameString(false) ) {
[985]2767 throw(AipsError("Can't convert as no output frame has been set"
2768 " (use set_freqframe) or it is aligned already."));
[917]2769 }
[1475]2770 */
[917]2771 MFrequency::Types system = in->frequencies().getFrame();
[940]2772 MVTime mvt(refEpoch.getValue());
2773 String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2774 ostringstream oss;
2775 oss << "Aligned at reference Epoch " << epochout
2776 << " in frame " << MFrequency::showType(system);
2777 pushLog(String(oss));
[917]2778 // set up the iterator
[926]2779 Block<String> cols(4);
2780 // select by constant direction
[917]2781 cols[0] = String("SRCNAME");
2782 cols[1] = String("BEAMNO");
2783 // select by IF ( no of channels varies over this )
2784 cols[2] = String("IFNO");
[926]2785 // select by restfrequency
2786 cols[3] = String("MOLECULE_ID");
[917]2787 TableIterator iter(tout, cols);
[926]2788 while ( !iter.pastEnd() ) {
[917]2789 Table t = iter.table();
2790 MDirection::ROScalarColumn dirCol(t, "DIRECTION");
[926]2791 TableIterator fiter(t, "FREQ_ID");
[917]2792 // determine nchan from the first row. This should work as
[926]2793 // we are iterating over BEAMNO and IFNO // we should have constant direction
2794
[917]2795 ROArrayColumn<Float> sCol(t, "SPECTRA");
[1475]2796 const MDirection direction = dirCol(0);
2797 const uInt nchan = sCol(0).nelements();
2798
2799 // skip operations if there is nothing to align
2800 if (fiter.pastEnd()) {
2801 continue;
2802 }
2803
2804 Table ftab = fiter.table();
2805 // align all frequency ids with respect to the first encountered id
2806 ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2807 // get the SpectralCoordinate for the freqid, which we are iterating over
2808 SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2809 FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2810 direction, refPos, system );
2811 // realign the SpectralCoordinate and put into the output Scantable
2812 Vector<String> units(1);
2813 units = String("Hz");
2814 Bool linear=True;
2815 SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2816 sc2.setWorldAxisUnits(units);
2817 const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2818 sc2.referenceValue()[0],
2819 sc2.increment()[0]);
[926]2820 while ( !fiter.pastEnd() ) {
[1475]2821 ftab = fiter.table();
2822 // spectral coordinate for the current FREQ_ID
2823 ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2824 sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
[926]2825 // create the "global" abcissa for alignment with same FREQ_ID
2826 Vector<Double> abc(nchan);
[917]2827 for (uInt i=0; i<nchan; i++) {
[1475]2828 Double w;
2829 sC.toWorld(w,Double(i));
2830 abc[i] = w;
[917]2831 }
[1475]2832 TableVector<uInt> tvec(ftab, "FREQ_ID");
2833 // assign new frequency id to all rows
2834 tvec = id;
[926]2835 // cache abcissa for same time stamps, so iterate over those
2836 TableIterator timeiter(ftab, "TIME");
2837 while ( !timeiter.pastEnd() ) {
2838 Table tab = timeiter.table();
2839 ArrayColumn<Float> specCol(tab, "SPECTRA");
2840 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2841 MEpoch::ROScalarColumn timeCol(tab, "TIME");
2842 // use align abcissa cache after the first row
[1475]2843 // these rows should be just be POLNO
[926]2844 bool first = true;
[996]2845 for (int i=0; i<int(tab.nrow()); ++i) {
[926]2846 // input values
2847 Vector<uChar> flag = flagCol(i);
2848 Vector<Bool> mask(flag.shape());
2849 Vector<Float> specOut, spec;
2850 spec = specCol(i);
2851 Vector<Bool> maskOut;Vector<uChar> flagOut;
2852 convertArray(mask, flag);
2853 // alignment
2854 Bool ok = fa.align(specOut, maskOut, abc, spec,
2855 mask, timeCol(i), !first,
2856 interp, False);
[2163]2857 (void) ok; // unused stop compiler nagging
[926]2858 // back into scantable
2859 flagOut.resize(maskOut.nelements());
2860 convertArray(flagOut, maskOut);
2861 flagCol.put(i, flagOut);
2862 specCol.put(i, specOut);
2863 // start abcissa caching
2864 first = false;
[917]2865 }
[926]2866 // next timestamp
2867 ++timeiter;
[917]2868 }
[940]2869 // next FREQ_ID
[926]2870 ++fiter;
[917]2871 }
2872 // next aligner
2873 ++iter;
2874 }
[940]2875 // set this afterwards to ensure we are doing insitu correctly.
2876 out->frequencies().setFrame(system, true);
[917]2877 return out;
2878}
[992]2879
2880CountedPtr<Scantable>
2881 asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2882 const std::string & newtype )
2883{
2884 if (in->npol() != 2 && in->npol() != 4)
2885 throw(AipsError("Can only convert two or four polarisations."));
2886 if ( in->getPolType() == newtype )
2887 throw(AipsError("No need to convert."));
[1000]2888 if ( ! in->selector_.empty() )
2889 throw(AipsError("Can only convert whole scantable. Unset the selection."));
[992]2890 bool insitu = insitu_;
2891 setInsitu(false);
2892 CountedPtr< Scantable > out = getScantable(in, true);
2893 setInsitu(insitu);
2894 Table& tout = out->table();
2895 tout.rwKeywordSet().define("POLTYPE", String(newtype));
2896
2897 Block<String> cols(4);
2898 cols[0] = "SCANNO";
2899 cols[1] = "CYCLENO";
2900 cols[2] = "BEAMNO";
2901 cols[3] = "IFNO";
2902 TableIterator it(in->originalTable_, cols);
2903 String basetype = in->getPolType();
2904 STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2905 try {
2906 while ( !it.pastEnd() ) {
2907 Table tab = it.table();
2908 uInt row = tab.rowNumbers()[0];
2909 stpol->setSpectra(in->getPolMatrix(row));
[1586]2910 Float fang,fhand;
2911 fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
[992]2912 fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
[1586]2913 stpol->setPhaseCorrections(fang, fhand);
[992]2914 Int npolout = 0;
2915 for (uInt i=0; i<tab.nrow(); ++i) {
2916 Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2917 if ( outvec.nelements() > 0 ) {
2918 tout.addRow();
2919 TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2920 ArrayColumn<Float> sCol(tout,"SPECTRA");
2921 ScalarColumn<uInt> pCol(tout,"POLNO");
2922 sCol.put(tout.nrow()-1 ,outvec);
2923 pCol.put(tout.nrow()-1 ,uInt(npolout));
2924 npolout++;
2925 }
2926 }
2927 tout.rwKeywordSet().define("nPol", npolout);
2928 ++it;
2929 }
2930 } catch (AipsError& e) {
2931 delete stpol;
2932 throw(e);
2933 }
2934 delete stpol;
2935 return out;
2936}
[1066]2937
[1143]2938CountedPtr< Scantable >
[1140]2939 asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2940 const std::string & scantype )
2941{
2942 bool insitu = insitu_;
2943 setInsitu(false);
2944 CountedPtr< Scantable > out = getScantable(in, true);
2945 setInsitu(insitu);
2946 Table& tout = out->table();
2947 std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2948 if (scantype == "on") {
2949 taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2950 }
2951 Table tab = tableCommand(taql, in->table());
2952 TableCopy::copyRows(tout, tab);
2953 if (scantype == "on") {
[1143]2954 // re-index SCANNO to 0
[1140]2955 TableVector<uInt> vec(tout, "SCANNO");
2956 vec = 0;
2957 }
2958 return out;
2959}
[1192]2960
[2177]2961std::vector<float>
2962 asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2963 const std::vector<int>& whichrow,
2964 bool getRealImag )
2965{
2966 std::vector<float> res;
2967 Table tab = in->table();
[2186]2968 std::vector<bool> mask;
[2177]2969
2970 if (whichrow.size() < 1) { // for all rows (by default)
2971 int nrow = int(tab.nrow());
2972 for (int i = 0; i < nrow; ++i) {
[2186]2973 res = in->execFFT(i, mask, getRealImag);
[2177]2974 }
2975 } else { // for specified rows
2976 for (uInt i = 0; i < whichrow.size(); ++i) {
[2186]2977 res = in->execFFT(i, mask, getRealImag);
[2177]2978 }
2979 }
2980
2981 return res;
2982}
2983
2984
2985CountedPtr<Scantable>
2986 asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
[1579]2987 double start, double end,
[2177]2988 const std::string& mode )
[1192]2989{
[2177]2990 CountedPtr<Scantable> out = getScantable(in, false);
[1192]2991 Table& tout = out->table();
2992 TableIterator iter(tout, "FREQ_ID");
2993 FFTServer<Float,Complex> ffts;
[2177]2994
[1192]2995 while ( !iter.pastEnd() ) {
2996 Table tab = iter.table();
2997 Double rp,rv,inc;
2998 ROTableRow row(tab);
2999 const TableRecord& rec = row.get(0);
3000 uInt freqid = rec.asuInt("FREQ_ID");
3001 out->frequencies().getEntry(rp, rv, inc, freqid);
3002 ArrayColumn<Float> specCol(tab, "SPECTRA");
3003 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
[2177]3004
[1192]3005 for (int i=0; i<int(tab.nrow()); ++i) {
3006 Vector<Float> spec = specCol(i);
3007 Vector<uChar> flag = flagCol(i);
[2186]3008 std::vector<bool> mask;
3009 for (uInt j = 0; j < flag.nelements(); ++j) {
3010 mask.push_back(!(flag[j]>0));
3011 }
3012 mathutil::doZeroOrderInterpolation(spec, mask);
[2177]3013
[1192]3014 Vector<Complex> lags;
[1203]3015 ffts.fft0(lags, spec);
[2177]3016
[1579]3017 Int lag0(start+0.5);
3018 Int lag1(end+0.5);
3019 if (mode == "frequency") {
3020 lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
3021 lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
3022 }
3023 Int lstart = max(0, lag0);
[2177]3024 Int lend = min(Int(lags.nelements()-1), lag1);
[1579]3025 if (lstart == lend) {
3026 lags[lstart] = Complex(0.0);
[1192]3027 } else {
[1579]3028 if (lstart > lend) {
3029 Int tmp = lend;
3030 lend = lstart;
3031 lstart = tmp;
3032 }
3033 for (int j=lstart; j <=lend ;++j) {
[1192]3034 lags[j] = Complex(0.0);
3035 }
3036 }
[2177]3037
[1203]3038 ffts.fft0(spec, lags);
[2177]3039
[1192]3040 specCol.put(i, spec);
3041 }
3042 ++iter;
3043 }
3044 return out;
3045}
[1819]3046
3047// Averaging spectra with different channel/resolution
3048CountedPtr<Scantable>
3049STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
3050 const bool& compel,
3051 const std::vector<bool>& mask,
3052 const std::string& weight,
3053 const std::string& avmode )
3054 throw ( casa::AipsError )
3055{
3056 LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
3057 if ( avmode == "SCAN" && in.size() != 1 )
3058 throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
3059 "Use merge first."));
3060
[2432]3061 // 2012/02/17 TN
3062 // Since STGrid is implemented, average doesn't consider direction
3063 // when accumulating
[1819]3064 // check if OTF observation
[2432]3065// String obstype = in[0]->getHeader().obstype ;
3066// Double tol = 0.0 ;
3067// if ( obstype.find( "OTF" ) != String::npos ) {
3068// tol = TOL_OTF ;
3069// }
3070// else {
3071// tol = TOL_POINT ;
3072// }
[1819]3073
3074 CountedPtr<Scantable> out ; // processed result
3075 if ( compel ) {
3076 std::vector< CountedPtr<Scantable> > newin ; // input for average process
3077 uInt insize = in.size() ; // number of input scantables
3078
3079 // TEST: do normal average in each table before IF grouping
3080 os << "Do preliminary averaging" << LogIO::POST ;
3081 vector< CountedPtr<Scantable> > tmpin( insize ) ;
3082 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3083 vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
3084 tmpin[itable] = average( v, mask, weight, avmode ) ;
3085 }
3086
3087 // warning
3088 os << "Average spectra with different spectral resolution" << LogIO::POST ;
3089
3090 // temporarily set coordinfo
3091 vector<string> oldinfo( insize ) ;
3092 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3093 vector<string> coordinfo = in[itable]->getCoordInfo() ;
3094 oldinfo[itable] = coordinfo[0] ;
3095 coordinfo[0] = "Hz" ;
3096 tmpin[itable]->setCoordInfo( coordinfo ) ;
3097 }
3098
3099 // columns
3100 ScalarColumn<uInt> freqIDCol ;
3101 ScalarColumn<uInt> ifnoCol ;
3102 ScalarColumn<uInt> scannoCol ;
3103
3104
3105 // check IF frequency coverage
3106 // freqid: list of FREQ_ID, which is used, in each table
3107 // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3108 // each table
3109 // freqid[insize][numIF]
3110 // freqid: [[id00, id01, ...],
3111 // [id10, id11, ...],
3112 // ...
3113 // [idn0, idn1, ...]]
3114 // iffreq[insize][numIF*2]
3115 // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3116 // [min_id10, max_id10, min_id11, max_id11, ...],
3117 // ...
3118 // [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3119 //os << "Check IF settings in each table" << LogIO::POST ;
3120 vector< vector<uInt> > freqid( insize );
3121 vector< vector<double> > iffreq( insize ) ;
3122 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3123 uInt rows = tmpin[itable]->nrow() ;
3124 uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3125 for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3126 if ( freqid[itable].size() == freqnrows ) {
3127 break ;
3128 }
3129 else {
3130 freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3131 ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3132 uInt id = freqIDCol( irow ) ;
3133 if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3134 //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3135 vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3136 freqid[itable].push_back( id ) ;
3137 iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3138 iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3139 }
3140 }
3141 }
3142 }
3143
3144 // debug
3145 //os << "IF settings summary:" << endl ;
3146 //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3147 //os << " Table" << i << endl ;
3148 //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3149 //os << " id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3150 //}
3151 //}
3152 //os << endl ;
3153 //os.post() ;
3154
3155 // IF grouping based on their frequency coverage
3156 // ifgrp: list of table index and FREQ_ID for all members in each IF group
3157 // ifgfreq: list of minimum and maximum frequency in each IF group
3158 // ifgrp[numgrp][nummember*2]
3159 // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3160 // [table10, freqrow10, table11, freqrow11, ...],
3161 // ...
3162 // [tablen0, freqrown0, tablen1, freqrown1, ...]]
3163 // ifgfreq[numgrp*2]
3164 // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3165 //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3166 vector< vector<uInt> > ifgrp ;
3167 vector<double> ifgfreq ;
3168
3169 // parameter for IF grouping
3170 // groupmode = OR retrieve all region
3171 // AND only retrieve overlaped region
3172 //string groupmode = "AND" ;
3173 string groupmode = "OR" ;
3174 uInt sizecr = 0 ;
3175 if ( groupmode == "AND" )
3176 sizecr = 2 ;
3177 else if ( groupmode == "OR" )
3178 sizecr = 0 ;
3179
3180 vector<double> sortedfreq ;
3181 for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3182 for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3183 if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3184 sortedfreq.push_back( iffreq[i][j] ) ;
3185 }
3186 }
3187 sort( sortedfreq.begin(), sortedfreq.end() ) ;
3188 for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3189 ifgfreq.push_back( *i ) ;
3190 ifgfreq.push_back( *(i+1) ) ;
3191 }
3192 ifgrp.resize( ifgfreq.size()/2 ) ;
3193 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3194 for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3195 double range0 = iffreq[itable][2*iif] ;
3196 double range1 = iffreq[itable][2*iif+1] ;
3197 for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3198 double fmin = max( range0, ifgfreq[2*j] ) ;
3199 double fmax = min( range1, ifgfreq[2*j+1] ) ;
3200 if ( fmin < fmax ) {
3201 ifgrp[j].push_back( itable ) ;
3202 ifgrp[j].push_back( freqid[itable][iif] ) ;
3203 }
3204 }
3205 }
3206 }
3207 vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3208 vector<double>::iterator giter = ifgfreq.begin() ;
3209 while( fiter != ifgrp.end() ) {
3210 if ( fiter->size() <= sizecr ) {
3211 fiter = ifgrp.erase( fiter ) ;
3212 giter = ifgfreq.erase( giter ) ;
3213 giter = ifgfreq.erase( giter ) ;
3214 }
3215 else {
3216 fiter++ ;
3217 advance( giter, 2 ) ;
3218 }
3219 }
3220
3221 // Grouping continuous IF groups (without frequency gap)
3222 // freqgrp: list of IF group indexes in each frequency group
3223 // freqrange: list of minimum and maximum frequency in each frequency group
3224 // freqgrp[numgrp][nummember]
3225 // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3226 // [ifgrp10, ifgrp11, ifgrp12, ...],
3227 // ...
3228 // [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3229 // freqrange[numgrp*2]
3230 // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3231 vector< vector<uInt> > freqgrp ;
3232 double freqrange = 0.0 ;
3233 uInt grpnum = 0 ;
3234 for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3235 // Assumed that ifgfreq was sorted
3236 if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3237 freqgrp[grpnum-1].push_back( i ) ;
3238 }
3239 else {
3240 vector<uInt> grp0( 1, i ) ;
3241 freqgrp.push_back( grp0 ) ;
3242 grpnum++ ;
3243 }
3244 freqrange = ifgfreq[2*i+1] ;
3245 }
3246
3247
3248 // print IF groups
3249 ostringstream oss ;
3250 oss << "IF Group summary: " << endl ;
3251 oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3252 for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3253 oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3254 for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3255 oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3256 }
3257 oss << endl ;
3258 }
3259 oss << endl ;
3260 os << oss.str() << LogIO::POST ;
3261
3262 // print frequency group
3263 oss.str("") ;
3264 oss << "Frequency Group summary: " << endl ;
3265 oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3266 for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3267 oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3268 for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3269 oss << freqgrp[i][j] << " " ;
3270 }
3271 oss << endl ;
3272 }
3273 oss << endl ;
3274 os << oss.str() << LogIO::POST ;
3275
3276 // membership check
3277 // groups: list of IF group indexes whose frequency range overlaps with
3278 // that of each table and IF
3279 // groups[numtable][numIF][nummembership]
3280 // groups: [[[grp, grp,...], [grp, grp,...],...],
3281 // [[grp, grp,...], [grp, grp,...],...],
3282 // ...
3283 // [[grp, grp,...], [grp, grp,...],...]]
3284 vector< vector< vector<uInt> > > groups( insize ) ;
3285 for ( uInt i = 0 ; i < insize ; i++ ) {
3286 groups[i].resize( freqid[i].size() ) ;
3287 }
3288 for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3289 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3290 uInt tableid = ifgrp[igrp][2*imem] ;
3291 vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3292 if ( iter != freqid[tableid].end() ) {
3293 uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3294 groups[tableid][rowid].push_back( igrp ) ;
3295 }
3296 }
3297 }
3298
3299 // print membership
3300 //oss.str("") ;
3301 //for ( uInt i = 0 ; i < insize ; i++ ) {
3302 //oss << "Table " << i << endl ;
3303 //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3304 //oss << " FREQ_ID " << setw( 2 ) << freqid[i][j] << ": " ;
3305 //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3306 //oss << setw( 2 ) << groups[i][j][k] << " " ;
3307 //}
3308 //oss << endl ;
3309 //}
3310 //}
3311 //os << oss.str() << LogIO::POST ;
3312
3313 // set back coordinfo
3314 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3315 vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3316 coordinfo[0] = oldinfo[itable] ;
3317 tmpin[itable]->setCoordInfo( coordinfo ) ;
3318 }
3319
3320 // Create additional table if needed
3321 bool oldInsitu = insitu_ ;
3322 setInsitu( false ) ;
3323 vector< vector<uInt> > addrow( insize ) ;
3324 vector<uInt> addtable( insize, 0 ) ;
3325 vector<uInt> newtableids( insize ) ;
3326 vector<uInt> newifids( insize, 0 ) ;
3327 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3328 //os << "Table " << itable << ": " ;
3329 for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3330 addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3331 //os << addrow[itable][ifrow] << " " ;
3332 }
3333 addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3334 //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3335 }
3336 newin.resize( insize ) ;
3337 copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3338 for ( uInt i = 0 ; i < insize ; i++ ) {
3339 newtableids[i] = i ;
3340 }
3341 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3342 for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3343 CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3344 vector<int> freqidlist ;
3345 for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3346 if ( groups[itable][i].size() > iadd + 1 ) {
3347 freqidlist.push_back( freqid[itable][i] ) ;
3348 }
3349 }
3350 stringstream taqlstream ;
3351 taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3352 for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
[2133]3353 taqlstream << freqidlist[i] ;
[1819]3354 if ( i < freqidlist.size() - 1 )
3355 taqlstream << "," ;
3356 else
3357 taqlstream << "]" ;
3358 }
3359 string taql = taqlstream.str() ;
3360 //os << "taql = " << taql << LogIO::POST ;
3361 STSelector selector = STSelector() ;
3362 selector.setTaQL( taql ) ;
3363 add->setSelection( selector ) ;
3364 newin.push_back( add ) ;
3365 newtableids.push_back( itable ) ;
3366 newifids.push_back( iadd + 1 ) ;
3367 }
3368 }
3369
3370 // udpate ifgrp
3371 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3372 for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3373 for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3374 if ( groups[itable][ifrow].size() > iadd + 1 ) {
3375 uInt igrp = groups[itable][ifrow][iadd+1] ;
3376 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3377 if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3378 ifgrp[igrp][2*imem] = insize + iadd ;
3379 }
3380 }
3381 }
3382 }
3383 }
3384 }
3385
3386 // print IF groups again for debug
3387 //oss.str( "" ) ;
3388 //oss << "IF Group summary: " << endl ;
3389 //oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3390 //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3391 //oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3392 //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3393 //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3394 //}
3395 //oss << endl ;
3396 //}
3397 //oss << endl ;
3398 //os << oss.str() << LogIO::POST ;
3399
3400 // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3401 os << "All scan number is set to 0" << LogIO::POST ;
3402 //os << "All IF number is set to IF group index" << LogIO::POST ;
3403 insize = newin.size() ;
3404 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3405 uInt rows = newin[itable]->nrow() ;
3406 Table &tmpt = newin[itable]->table() ;
3407 freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3408 scannoCol.attach( tmpt, "SCANNO" ) ;
3409 ifnoCol.attach( tmpt, "IFNO" ) ;
3410 for ( uInt irow=0 ; irow < rows ; irow++ ) {
3411 scannoCol.put( irow, 0 ) ;
3412 uInt freqID = freqIDCol( irow ) ;
3413 vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3414 if ( iter != freqid[newtableids[itable]].end() ) {
3415 uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3416 ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3417 }
3418 else {
3419 throw(AipsError("IF grouping was wrong in additional tables.")) ;
3420 }
3421 }
3422 }
3423 oldinfo.resize( insize ) ;
3424 setInsitu( oldInsitu ) ;
3425
3426 // temporarily set coordinfo
3427 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3428 vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3429 oldinfo[itable] = coordinfo[0] ;
3430 coordinfo[0] = "Hz" ;
3431 newin[itable]->setCoordInfo( coordinfo ) ;
3432 }
3433
3434 // save column values in the vector
3435 vector< vector<uInt> > freqTableIdVec( insize ) ;
3436 vector< vector<uInt> > freqIdVec( insize ) ;
3437 vector< vector<uInt> > ifNoVec( insize ) ;
3438 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3439 ScalarColumn<uInt> freqIDs ;
3440 freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3441 ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3442 freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3443 for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3444 freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3445 }
3446 for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3447 freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3448 ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3449 }
3450 }
3451
3452 // reset spectra and flagtra: pick up common part of frequency coverage
3453 //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3454 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3455 uInt rows = newin[itable]->nrow() ;
3456 int nminchan = -1 ;
3457 int nmaxchan = -1 ;
3458 vector<uInt> freqIdUpdate ;
3459 for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3460 uInt ifno = ifNoVec[itable][irow] ; // IFNO is reset by group index
3461 double minfreq = ifgfreq[2*ifno] ;
3462 double maxfreq = ifgfreq[2*ifno+1] ;
3463 //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3464 vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3465 int nchan = abcissa.size() ;
3466 double resol = abcissa[1] - abcissa[0] ;
3467 //os << "abcissa range : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3468 if ( minfreq <= abcissa[0] )
3469 nminchan = 0 ;
3470 else {
3471 //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3472 double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3473 nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3474 }
3475 if ( maxfreq >= abcissa[abcissa.size()-1] )
3476 nmaxchan = abcissa.size() - 1 ;
3477 else {
3478 //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3479 double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3480 nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3481 }
3482 //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3483 if ( nmaxchan > nminchan ) {
3484 newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3485 int newchan = nmaxchan - nminchan + 1 ;
3486 if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3487 freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3488 }
3489 else {
3490 throw(AipsError("Failed to pick up common part of frequency range.")) ;
3491 }
3492 }
3493 for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3494 uInt freqId = freqIdUpdate[i] ;
3495 Double refpix ;
3496 Double refval ;
3497 Double increment ;
3498
3499 // update row
3500 newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3501 refval = refval - ( refpix - nminchan ) * increment ;
3502 refpix = 0 ;
3503 newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3504 }
3505 }
3506
3507
3508 // reset spectra and flagtra: align spectral resolution
3509 //os << "Align spectral resolution" << LogIO::POST ;
3510 // gmaxdnu: the coarsest frequency resolution in the frequency group
3511 // gmemid: member index that have a resolution equal to gmaxdnu
3512 // gmaxdnu[numfreqgrp]
3513 // gmaxdnu: [dnu0, dnu1, ...]
3514 // gmemid[numfreqgrp]
3515 // gmemid: [id0, id1, ...]
3516 vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3517 vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3518 for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3519 double maxdnu = 0.0 ; // maximum (coarsest) frequency resolution
3520 int minchan = INT_MAX ; // minimum channel number
3521 Double refpixref = -1 ; // reference of 'reference pixel'
3522 Double refvalref = -1 ; // reference of 'reference frequency'
3523 Double refinc = -1 ; // reference frequency resolution
3524 uInt refreqid ;
3525 uInt reftable = INT_MAX;
3526 // process only if group member > 1
3527 if ( ifgrp[igrp].size() > 2 ) {
3528 // find minchan and maxdnu in each group
3529 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3530 uInt tableid = ifgrp[igrp][2*imem] ;
3531 uInt rowid = ifgrp[igrp][2*imem+1] ;
3532 vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3533 if ( iter != freqIdVec[tableid].end() ) {
3534 uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3535 vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3536 int nchan = abcissa.size() ;
3537 double dnu = abcissa[1] - abcissa[0] ;
3538 //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3539 if ( nchan < minchan ) {
3540 minchan = nchan ;
3541 maxdnu = dnu ;
3542 newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3543 refreqid = rowid ;
3544 reftable = tableid ;
3545 }
3546 }
3547 }
3548 // regrid spectra in each group
3549 os << "GROUP " << igrp << endl ;
3550 os << " Channel number is adjusted to " << minchan << endl ;
3551 os << " Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3552 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3553 uInt tableid = ifgrp[igrp][2*imem] ;
3554 uInt rowid = ifgrp[igrp][2*imem+1] ;
3555 freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3556 //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3557 //os << " regridChannel applied to " ;
[2133]3558 //if ( tableid != reftable )
3559 refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
[1819]3560 for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3561 uInt tfreqid = freqIdVec[tableid][irow] ;
3562 if ( tfreqid == rowid ) {
3563 //os << irow << " " ;
3564 newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3565 freqIDCol.put( irow, refreqid ) ;
3566 freqIdVec[tableid][irow] = refreqid ;
3567 }
3568 }
3569 //os << LogIO::POST ;
3570 }
3571 }
3572 else {
3573 uInt tableid = ifgrp[igrp][0] ;
3574 uInt rowid = ifgrp[igrp][1] ;
3575 vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3576 if ( iter != freqIdVec[tableid].end() ) {
3577 uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3578 vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3579 minchan = abcissa.size() ;
3580 maxdnu = abcissa[1] - abcissa[0] ;
3581 }
3582 }
3583 for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3584 if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3585 if ( maxdnu > gmaxdnu[i] ) {
3586 gmaxdnu[i] = maxdnu ;
3587 gmemid[i] = igrp ;
3588 }
3589 break ;
3590 }
3591 }
3592 }
3593
3594 // set back coordinfo
3595 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3596 vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3597 coordinfo[0] = oldinfo[itable] ;
3598 newin[itable]->setCoordInfo( coordinfo ) ;
3599 }
3600
3601 // accumulate all rows into the first table
3602 // NOTE: assumed in.size() = 1
3603 vector< CountedPtr<Scantable> > tmp( 1 ) ;
3604 if ( newin.size() == 1 )
3605 tmp[0] = newin[0] ;
3606 else
3607 tmp[0] = merge( newin ) ;
3608
3609 //return tmp[0] ;
3610
3611 // average
3612 CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3613
3614 //return tmpout ;
3615
3616 // combine frequency group
3617 os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3618 os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3619 vector<string> coordinfo = tmpout->getCoordInfo() ;
3620 oldinfo[0] = coordinfo[0] ;
3621 coordinfo[0] = "Hz" ;
3622 tmpout->setCoordInfo( coordinfo ) ;
3623 // create proformas of output table
3624 stringstream taqlstream ;
3625 taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3626 for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3627 taqlstream << gmemid[i] ;
3628 if ( i < gmemid.size() - 1 )
3629 taqlstream << "," ;
3630 else
3631 taqlstream << "]" ;
3632 }
3633 string taql = taqlstream.str() ;
3634 //os << "taql = " << taql << LogIO::POST ;
3635 STSelector selector = STSelector() ;
3636 selector.setTaQL( taql ) ;
3637 oldInsitu = insitu_ ;
3638 setInsitu( false ) ;
3639 out = getScantable( tmpout, false ) ;
3640 setInsitu( oldInsitu ) ;
3641 out->setSelection( selector ) ;
3642 // regrid rows
3643 ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3644 for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3645 uInt ifno = ifnoCol( irow ) ;
3646 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3647 if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3648 vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3649 double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3650 int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3651 tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3652 break ;
3653 }
3654 }
3655 }
3656 // combine spectra
3657 ArrayColumn<Float> specColOut ;
3658 specColOut.attach( out->table(), "SPECTRA" ) ;
3659 ArrayColumn<uChar> flagColOut ;
3660 flagColOut.attach( out->table(), "FLAGTRA" ) ;
3661 ScalarColumn<uInt> ifnoColOut ;
3662 ifnoColOut.attach( out->table(), "IFNO" ) ;
3663 ScalarColumn<uInt> polnoColOut ;
3664 polnoColOut.attach( out->table(), "POLNO" ) ;
3665 ScalarColumn<uInt> freqidColOut ;
3666 freqidColOut.attach( out->table(), "FREQ_ID" ) ;
[2432]3667// MDirection::ScalarColumn dirColOut ;
3668// dirColOut.attach( out->table(), "DIRECTION" ) ;
[1819]3669 Table &tab = tmpout->table() ;
3670 Block<String> cols(1);
3671 cols[0] = String("POLNO") ;
3672 TableIterator iter( tab, cols ) ;
3673 bool done = false ;
3674 vector< vector<uInt> > sizes( freqgrp.size() ) ;
3675 while( !iter.pastEnd() ) {
3676 vector< vector<Float> > specout( freqgrp.size() ) ;
3677 vector< vector<uChar> > flagout( freqgrp.size() ) ;
3678 ArrayColumn<Float> specCols ;
3679 specCols.attach( iter.table(), "SPECTRA" ) ;
3680 ArrayColumn<uChar> flagCols ;
3681 flagCols.attach( iter.table(), "FLAGTRA" ) ;
3682 ifnoCol.attach( iter.table(), "IFNO" ) ;
3683 ScalarColumn<uInt> polnos ;
3684 polnos.attach( iter.table(), "POLNO" ) ;
[2432]3685// MDirection::ScalarColumn dircol ;
3686// dircol.attach( iter.table(), "DIRECTION" ) ;
[1819]3687 uInt polno = polnos( 0 ) ;
3688 //os << "POLNO iteration: " << polno << LogIO::POST ;
3689// for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3690// sizes[igrp].resize( freqgrp[igrp].size() ) ;
3691// for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3692// for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3693// uInt ifno = ifnoCol( irow ) ;
3694// if ( ifno == freqgrp[igrp][imem] ) {
3695// Vector<Float> spec = specCols( irow ) ;
3696// Vector<uChar> flag = flagCols( irow ) ;
3697// vector<Float> svec ;
3698// spec.tovector( svec ) ;
3699// vector<uChar> fvec ;
3700// flag.tovector( fvec ) ;
3701// //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3702// specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3703// flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3704// //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3705// sizes[igrp][imem] = spec.nelements() ;
3706// }
3707// }
3708// }
3709// for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3710// uInt ifout = ifnoColOut( irow ) ;
3711// uInt polout = polnoColOut( irow ) ;
3712// if ( ifout == gmemid[igrp] && polout == polno ) {
3713// // set SPECTRA and FRAGTRA
3714// Vector<Float> newspec( specout[igrp] ) ;
3715// Vector<uChar> newflag( flagout[igrp] ) ;
3716// specColOut.put( irow, newspec ) ;
3717// flagColOut.put( irow, newflag ) ;
3718// // IFNO renumbering
3719// ifnoColOut.put( irow, igrp ) ;
3720// }
3721// }
3722// }
3723 // get a list of number of channels for each frequency group member
3724 if ( !done ) {
3725 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3726 sizes[igrp].resize( freqgrp[igrp].size() ) ;
3727 for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3728 for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3729 uInt ifno = ifnoCol( irow ) ;
3730 if ( ifno == freqgrp[igrp][imem] ) {
3731 Vector<Float> spec = specCols( irow ) ;
3732 sizes[igrp][imem] = spec.nelements() ;
3733 break ;
3734 }
3735 }
3736 }
3737 }
3738 done = true ;
3739 }
3740 // combine spectra
3741 for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3742 uInt polout = polnoColOut( irow ) ;
3743 if ( polout == polno ) {
3744 uInt ifout = ifnoColOut( irow ) ;
[2432]3745// Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
[1819]3746 uInt igrp ;
3747 for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3748 if ( ifout == gmemid[jgrp] ) {
3749 igrp = jgrp ;
3750 break ;
3751 }
3752 }
3753 for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3754 for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3755 uInt ifno = ifnoCol( jrow ) ;
[2432]3756 // 2012/02/17 TN
3757 // Since STGrid is implemented, average doesn't consider direction
3758 // when accumulating
3759// Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3760// //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction ) ) {
3761// Double dx = tdir[0] - direction[0] ;
3762// Double dy = tdir[1] - direction[1] ;
3763// Double dd = sqrt( dx * dx + dy * dy ) ;
[1819]3764 //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
[2432]3765// if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3766 if ( ifno == freqgrp[igrp][imem] ) {
[1819]3767 Vector<Float> spec = specCols( jrow ) ;
3768 Vector<uChar> flag = flagCols( jrow ) ;
3769 vector<Float> svec ;
3770 spec.tovector( svec ) ;
3771 vector<uChar> fvec ;
3772 flag.tovector( fvec ) ;
3773 //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3774 specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3775 flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3776 //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3777 }
3778 }
3779 }
3780 // set SPECTRA and FRAGTRA
3781 Vector<Float> newspec( specout[igrp] ) ;
3782 Vector<uChar> newflag( flagout[igrp] ) ;
3783 specColOut.put( irow, newspec ) ;
3784 flagColOut.put( irow, newflag ) ;
3785 // IFNO renumbering
3786 ifnoColOut.put( irow, igrp ) ;
3787 }
3788 }
3789 iter++ ;
3790 }
3791 // update FREQUENCIES subtable
3792 vector<bool> updated( freqgrp.size(), false ) ;
3793 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3794 uInt index = 0 ;
3795 uInt pixShift = 0 ;
3796 while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3797 pixShift += sizes[igrp][index++] ;
3798 }
3799 for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3800 if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3801 uInt freqidOut = freqidColOut( irow ) ;
3802 //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3803 double refpix ;
3804 double refval ;
3805 double increm ;
3806 out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3807 refpix += pixShift ;
3808 out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3809 updated[igrp] = true ;
3810 }
3811 }
3812 }
3813
3814 //out = tmpout ;
3815
3816 coordinfo = tmpout->getCoordInfo() ;
3817 coordinfo[0] = oldinfo[0] ;
3818 tmpout->setCoordInfo( coordinfo ) ;
3819 }
3820 else {
3821 // simple average
3822 out = average( in, mask, weight, avmode ) ;
3823 }
3824
[2345]3825 return out;
[1819]3826}
3827
3828CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3829 const String calmode,
3830 const String antname )
3831{
3832 // frequency switch
3833 if ( calmode == "fs" ) {
3834 return cwcalfs( s, antname ) ;
3835 }
3836 else {
3837 vector<bool> masks = s->getMask( 0 ) ;
3838 vector<int> types ;
3839
3840 // sky scan
3841 STSelector sel = STSelector() ;
3842 types.push_back( SrcType::SKY ) ;
3843 sel.setTypes( types ) ;
3844 s->setSelection( sel ) ;
3845 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3846 CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3847 s->unsetSelection() ;
3848 sel.reset() ;
3849 types.clear() ;
3850
3851 // hot scan
3852 types.push_back( SrcType::HOT ) ;
3853 sel.setTypes( types ) ;
3854 s->setSelection( sel ) ;
3855 tmp.clear() ;
3856 tmp.push_back( getScantable( s, false ) ) ;
3857 CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3858 s->unsetSelection() ;
3859 sel.reset() ;
3860 types.clear() ;
3861
3862 // cold scan
3863 CountedPtr<Scantable> acold ;
3864// types.push_back( SrcType::COLD ) ;
3865// sel.setTypes( types ) ;
3866// s->setSelection( sel ) ;
3867// tmp.clear() ;
3868// tmp.push_back( getScantable( s, false ) ) ;
3869// CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3870// s->unsetSelection() ;
3871// sel.reset() ;
3872// types.clear() ;
3873
3874 // off scan
3875 types.push_back( SrcType::PSOFF ) ;
3876 sel.setTypes( types ) ;
3877 s->setSelection( sel ) ;
3878 tmp.clear() ;
3879 tmp.push_back( getScantable( s, false ) ) ;
3880 CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3881 s->unsetSelection() ;
3882 sel.reset() ;
3883 types.clear() ;
3884
3885 // on scan
3886 bool insitu = insitu_ ;
3887 insitu_ = false ;
3888 CountedPtr<Scantable> out = getScantable( s, true ) ;
3889 insitu_ = insitu ;
3890 types.push_back( SrcType::PSON ) ;
3891 sel.setTypes( types ) ;
3892 s->setSelection( sel ) ;
3893 TableCopy::copyRows( out->table(), s->table() ) ;
3894 s->unsetSelection() ;
3895 sel.reset() ;
3896 types.clear() ;
3897
3898 // process each on scan
3899 ArrayColumn<Float> tsysCol ;
3900 tsysCol.attach( out->table(), "TSYS" ) ;
3901 for ( int i = 0 ; i < out->nrow() ; i++ ) {
3902 vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3903 out->setSpectrum( sp, i ) ;
3904 string reftime = out->getTime( i ) ;
3905 vector<int> ii( 1, out->getIF( i ) ) ;
3906 vector<int> ib( 1, out->getBeam( i ) ) ;
3907 vector<int> ip( 1, out->getPol( i ) ) ;
3908 sel.setIFs( ii ) ;
3909 sel.setBeams( ib ) ;
3910 sel.setPolarizations( ip ) ;
3911 asky->setSelection( sel ) ;
3912 vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3913 const Vector<Float> Vtsys( sptsys ) ;
3914 tsysCol.put( i, Vtsys ) ;
3915 asky->unsetSelection() ;
3916 sel.reset() ;
3917 }
3918
3919 // flux unit
3920 out->setFluxUnit( "K" ) ;
3921
3922 return out ;
3923 }
3924}
3925
3926CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3927 const String calmode )
3928{
3929 // frequency switch
3930 if ( calmode == "fs" ) {
3931 return almacalfs( s ) ;
3932 }
3933 else {
[2539]3934 // double t0, t1 ;
3935 // t0 = mathutil::gettimeofday_sec() ;
[1819]3936 vector<bool> masks = s->getMask( 0 ) ;
3937
3938 // off scan
3939 STSelector sel = STSelector() ;
[2519]3940 vector<int> types( 1, SrcType::PSOFF ) ;
3941 //types.push_back( SrcType::PSOFF ) ;
[1819]3942 sel.setTypes( types ) ;
3943 s->setSelection( sel ) ;
3944 // TODO 2010/01/08 TN
3945 // Grouping by time should be needed before averaging.
3946 // Each group must have own unique SCANNO (should be renumbered).
3947 // See PIPELINE/SDCalibration.py
3948 CountedPtr<Scantable> soff = getScantable( s, false ) ;
3949 Table ttab = soff->table() ;
[2519]3950// String tmpname = File::newUniqueName( "./", "temp" ).baseName() ;
3951// Table ttab = s->table().copyToMemoryTable( tmpname, False ) ;
3952 ROScalarColumn<Double> *timeCol = new ROScalarColumn<Double>( ttab, "TIME" ) ;
3953 uInt nrow = timeCol->nrow() ;
3954 Vector<Double> timeSep = timeCol->getColumn() ;
3955 delete timeCol ;
3956 for ( uInt i = nrow-2 ; i > 0 ; i-- ) {
3957 timeSep[i] -= timeSep[i-1] ;
[1819]3958 }
[2519]3959 Vector<Double> interval = soff->integrCol_.getColumn() ;
[1819]3960 interval /= 86400.0 ;
[2519]3961 Block<uInt> gaplist( 100 ) ;
3962 uInt glidx = 0 ;
3963 uInt glsize = gaplist.size() ;
[1819]3964 for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
[2519]3965 double gap = 2.0 * timeSep[i+1] / ( interval[i] + interval[i+1] ) ;
[1819]3966 //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3967 if ( gap > 1.1 ) {
[2519]3968// cout << "detected gap between " << i << " and " << i+1 << endl ;
3969 gaplist[glidx] = i ;
3970 glidx++ ;
[1819]3971 }
[2519]3972 if ( glidx >= glsize ) {
3973// cout << "resize gaplist" << endl ;
3974 glsize += 100 ;
3975 gaplist.resize( glsize ) ;
3976 }
[1819]3977 }
[2524]3978 gaplist[glidx] = nrow - 1 ;
3979 glidx++ ;
3980// cout << "gaplist = " << Vector<uInt>(IPosition(1,glidx),gaplist.storage()) << endl ;
[1819]3981 uInt newid = 0 ;
[2524]3982 Vector<uInt> newscanno( nrow, 0 ) ;
3983 uInt *p = newscanno.data() ;
3984 IPosition pos( 1 ) ;
3985 for ( uInt i = 1 ; i < glidx ; i++ ) {
3986 pos[0] = gaplist[i] - gaplist[i-1] ;
3987 Vector<uInt> scnslice( pos, p+gaplist[i-1]+1, SHARE ) ;
3988 scnslice = i ;
[1819]3989 }
[2524]3990 soff->scanCol_.putColumn( newscanno ) ;
3991// cout << "new scancol = " << soff->scanCol_.getColumn() << endl ;
[2539]3992// double t2 = mathutil::gettimeofday_sec() ;
[1819]3993 vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3994 CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
[2539]3995 // double t3 = mathutil::gettimeofday_sec() ;
[1819]3996 //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3997 s->unsetSelection() ;
3998 sel.reset() ;
[2539]3999 // t1 = mathutil::gettimeofday_sec() ;
4000 // cout << "elapsed time for off averaging: " << t1-t0 << " sec" << endl ;
4001 // cout << " elapsed time for average(): " << t3-t2 << " sec" << endl ;
[1819]4002
4003 // on scan
[2539]4004 // t0 = mathutil::gettimeofday_sec() ;
[1819]4005 bool insitu = insitu_ ;
4006 insitu_ = false ;
4007 CountedPtr<Scantable> out = getScantable( s, true ) ;
4008 insitu_ = insitu ;
[2519]4009 types[0] = SrcType::PSON ;
[1819]4010 sel.setTypes( types ) ;
4011 s->setSelection( sel ) ;
4012 TableCopy::copyRows( out->table(), s->table() ) ;
4013 s->unsetSelection() ;
4014 sel.reset() ;
[2539]4015 // t1 = mathutil::gettimeofday_sec() ;
4016 // cout << "elapsed time for preparing output table: " << t1-t0 << " sec" << endl ;
[2519]4017
[1819]4018 // process each on scan
[2539]4019 // t0 = mathutil::gettimeofday_sec() ;
[2502]4020// for ( int i = 0 ; i < out->nrow() ; i++ ) {
4021// vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
4022// out->setSpectrum( sp, i ) ;
4023// }
4024
[2519]4025 // using STIdxIterAcc
4026 vector<string> cols( 3 ) ;
4027 cols[0] = "BEAMNO" ;
4028 cols[1] = "POLNO" ;
4029 cols[2] = "IFNO" ;
4030 STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
4031 while ( !iter->pastEnd() ) {
4032 Vector<uInt> ids = iter->current() ;
4033 stringstream ss ;
4034 ss << "SELECT FROM $1 WHERE "
4035 << "BEAMNO==" << ids[0] << "&&"
4036 << "POLNO==" << ids[1] << "&&"
4037 << "IFNO==" << ids[2] ;
4038 sel.setTaQL( ss.str() ) ;
4039 aoff->setSelection( sel ) ;
[2524]4040 Vector<uInt> rows = iter->getRows( SHARE ) ;
[2519]4041 calibrateALMA( out, aoff, rows ) ;
4042 aoff->unsetSelection() ;
4043 sel.reset() ;
4044 iter->next() ;
4045 }
4046 delete iter ;
[2502]4047
[2539]4048 // t1 = mathutil::gettimeofday_sec() ;
4049 // cout << "elapsed time for calibration: " << t1-t0 << " sec" << endl ;
[2502]4050
[1819]4051 // flux unit
4052 out->setFluxUnit( "K" ) ;
4053
4054 return out ;
4055 }
4056}
4057
4058CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
4059 const String antname )
4060{
4061 vector<int> types ;
4062
4063 // APEX calibration mode
4064 int apexcalmode = 1 ;
4065
4066 if ( antname.find( "APEX" ) != string::npos ) {
4067 // check if off scan exists or not
4068 STSelector sel = STSelector() ;
4069 //sel.setName( offstr1 ) ;
4070 types.push_back( SrcType::FLOOFF ) ;
4071 sel.setTypes( types ) ;
4072 try {
4073 s->setSelection( sel ) ;
4074 }
4075 catch ( AipsError &e ) {
4076 apexcalmode = 0 ;
4077 }
4078 sel.reset() ;
4079 }
4080 s->unsetSelection() ;
4081 types.clear() ;
4082
4083 vector<bool> masks = s->getMask( 0 ) ;
4084 CountedPtr<Scantable> ssig, sref ;
4085 CountedPtr<Scantable> out ;
4086
4087 if ( antname.find( "APEX" ) != string::npos ) {
4088 // APEX calibration
4089 // sky scan
4090 STSelector sel = STSelector() ;
4091 types.push_back( SrcType::FLOSKY ) ;
4092 sel.setTypes( types ) ;
4093 s->setSelection( sel ) ;
4094 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4095 CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
4096 s->unsetSelection() ;
4097 sel.reset() ;
4098 types.clear() ;
4099 types.push_back( SrcType::FHISKY ) ;
4100 sel.setTypes( types ) ;
4101 s->setSelection( sel ) ;
4102 tmp.clear() ;
4103 tmp.push_back( getScantable( s, false ) ) ;
4104 CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
4105 s->unsetSelection() ;
4106 sel.reset() ;
4107 types.clear() ;
4108
4109 // hot scan
4110 types.push_back( SrcType::FLOHOT ) ;
4111 sel.setTypes( types ) ;
4112 s->setSelection( sel ) ;
4113 tmp.clear() ;
4114 tmp.push_back( getScantable( s, false ) ) ;
4115 CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
4116 s->unsetSelection() ;
4117 sel.reset() ;
4118 types.clear() ;
4119 types.push_back( SrcType::FHIHOT ) ;
4120 sel.setTypes( types ) ;
4121 s->setSelection( sel ) ;
4122 tmp.clear() ;
4123 tmp.push_back( getScantable( s, false ) ) ;
4124 CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
4125 s->unsetSelection() ;
4126 sel.reset() ;
4127 types.clear() ;
4128
4129 // cold scan
4130 CountedPtr<Scantable> acoldlo, acoldhi ;
4131// types.push_back( SrcType::FLOCOLD ) ;
4132// sel.setTypes( types ) ;
4133// s->setSelection( sel ) ;
4134// tmp.clear() ;
4135// tmp.push_back( getScantable( s, false ) ) ;
4136// CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
4137// s->unsetSelection() ;
4138// sel.reset() ;
4139// types.clear() ;
4140// types.push_back( SrcType::FHICOLD ) ;
4141// sel.setTypes( types ) ;
4142// s->setSelection( sel ) ;
4143// tmp.clear() ;
4144// tmp.push_back( getScantable( s, false ) ) ;
4145// CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
4146// s->unsetSelection() ;
4147// sel.reset() ;
4148// types.clear() ;
4149
4150 // ref scan
4151 bool insitu = insitu_ ;
4152 insitu_ = false ;
4153 sref = getScantable( s, true ) ;
4154 insitu_ = insitu ;
4155 types.push_back( SrcType::FSLO ) ;
4156 sel.setTypes( types ) ;
4157 s->setSelection( sel ) ;
4158 TableCopy::copyRows( sref->table(), s->table() ) ;
4159 s->unsetSelection() ;
4160 sel.reset() ;
4161 types.clear() ;
4162
4163 // sig scan
4164 insitu_ = false ;
4165 ssig = getScantable( s, true ) ;
4166 insitu_ = insitu ;
4167 types.push_back( SrcType::FSHI ) ;
4168 sel.setTypes( types ) ;
4169 s->setSelection( sel ) ;
4170 TableCopy::copyRows( ssig->table(), s->table() ) ;
4171 s->unsetSelection() ;
4172 sel.reset() ;
4173 types.clear() ;
4174
4175 if ( apexcalmode == 0 ) {
4176 // APEX fs data without off scan
4177 // process each sig and ref scan
4178 ArrayColumn<Float> tsysCollo ;
4179 tsysCollo.attach( ssig->table(), "TSYS" ) ;
4180 ArrayColumn<Float> tsysColhi ;
4181 tsysColhi.attach( sref->table(), "TSYS" ) ;
4182 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4183 vector< CountedPtr<Scantable> > sky( 2 ) ;
4184 sky[0] = askylo ;
4185 sky[1] = askyhi ;
4186 vector< CountedPtr<Scantable> > hot( 2 ) ;
4187 hot[0] = ahotlo ;
4188 hot[1] = ahothi ;
4189 vector< CountedPtr<Scantable> > cold( 2 ) ;
4190 //cold[0] = acoldlo ;
4191 //cold[1] = acoldhi ;
4192 vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4193 ssig->setSpectrum( sp, i ) ;
4194 string reftime = ssig->getTime( i ) ;
4195 vector<int> ii( 1, ssig->getIF( i ) ) ;
4196 vector<int> ib( 1, ssig->getBeam( i ) ) ;
4197 vector<int> ip( 1, ssig->getPol( i ) ) ;
4198 sel.setIFs( ii ) ;
4199 sel.setBeams( ib ) ;
4200 sel.setPolarizations( ip ) ;
4201 askylo->setSelection( sel ) ;
4202 vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4203 const Vector<Float> Vtsyslo( sptsys ) ;
4204 tsysCollo.put( i, Vtsyslo ) ;
4205 askylo->unsetSelection() ;
4206 sel.reset() ;
4207 sky[0] = askyhi ;
4208 sky[1] = askylo ;
4209 hot[0] = ahothi ;
4210 hot[1] = ahotlo ;
4211 cold[0] = acoldhi ;
4212 cold[1] = acoldlo ;
4213 sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4214 sref->setSpectrum( sp, i ) ;
4215 reftime = sref->getTime( i ) ;
4216 ii[0] = sref->getIF( i ) ;
4217 ib[0] = sref->getBeam( i ) ;
4218 ip[0] = sref->getPol( i ) ;
4219 sel.setIFs( ii ) ;
4220 sel.setBeams( ib ) ;
4221 sel.setPolarizations( ip ) ;
4222 askyhi->setSelection( sel ) ;
4223 sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4224 const Vector<Float> Vtsyshi( sptsys ) ;
4225 tsysColhi.put( i, Vtsyshi ) ;
4226 askyhi->unsetSelection() ;
4227 sel.reset() ;
4228 }
4229 }
4230 else if ( apexcalmode == 1 ) {
4231 // APEX fs data with off scan
4232 // off scan
4233 types.push_back( SrcType::FLOOFF ) ;
4234 sel.setTypes( types ) ;
4235 s->setSelection( sel ) ;
4236 tmp.clear() ;
4237 tmp.push_back( getScantable( s, false ) ) ;
4238 CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4239 s->unsetSelection() ;
4240 sel.reset() ;
4241 types.clear() ;
4242 types.push_back( SrcType::FHIOFF ) ;
4243 sel.setTypes( types ) ;
4244 s->setSelection( sel ) ;
4245 tmp.clear() ;
4246 tmp.push_back( getScantable( s, false ) ) ;
4247 CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4248 s->unsetSelection() ;
4249 sel.reset() ;
4250 types.clear() ;
4251
4252 // process each sig and ref scan
4253 ArrayColumn<Float> tsysCollo ;
4254 tsysCollo.attach( ssig->table(), "TSYS" ) ;
4255 ArrayColumn<Float> tsysColhi ;
4256 tsysColhi.attach( sref->table(), "TSYS" ) ;
4257 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4258 vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4259 ssig->setSpectrum( sp, i ) ;
4260 sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4261 string reftime = ssig->getTime( i ) ;
4262 vector<int> ii( 1, ssig->getIF( i ) ) ;
4263 vector<int> ib( 1, ssig->getBeam( i ) ) ;
4264 vector<int> ip( 1, ssig->getPol( i ) ) ;
4265 sel.setIFs( ii ) ;
4266 sel.setBeams( ib ) ;
4267 sel.setPolarizations( ip ) ;
4268 askylo->setSelection( sel ) ;
4269 vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4270 const Vector<Float> Vtsyslo( sptsys ) ;
4271 tsysCollo.put( i, Vtsyslo ) ;
4272 askylo->unsetSelection() ;
4273 sel.reset() ;
4274 sref->setSpectrum( sp, i ) ;
4275 reftime = sref->getTime( i ) ;
4276 ii[0] = sref->getIF( i ) ;
4277 ib[0] = sref->getBeam( i ) ;
4278 ip[0] = sref->getPol( i ) ;
4279 sel.setIFs( ii ) ;
4280 sel.setBeams( ib ) ;
4281 sel.setPolarizations( ip ) ;
4282 askyhi->setSelection( sel ) ;
4283 sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4284 const Vector<Float> Vtsyshi( sptsys ) ;
4285 tsysColhi.put( i, Vtsyshi ) ;
4286 askyhi->unsetSelection() ;
4287 sel.reset() ;
4288 }
4289 }
4290 }
4291 else {
4292 // non-APEX fs data
4293 // sky scan
4294 STSelector sel = STSelector() ;
4295 types.push_back( SrcType::SKY ) ;
4296 sel.setTypes( types ) ;
4297 s->setSelection( sel ) ;
4298 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4299 CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4300 s->unsetSelection() ;
4301 sel.reset() ;
4302 types.clear() ;
4303
4304 // hot scan
4305 types.push_back( SrcType::HOT ) ;
4306 sel.setTypes( types ) ;
4307 s->setSelection( sel ) ;
4308 tmp.clear() ;
4309 tmp.push_back( getScantable( s, false ) ) ;
4310 CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4311 s->unsetSelection() ;
4312 sel.reset() ;
4313 types.clear() ;
4314
4315 // cold scan
4316 CountedPtr<Scantable> acold ;
4317// types.push_back( SrcType::COLD ) ;
4318// sel.setTypes( types ) ;
4319// s->setSelection( sel ) ;
4320// tmp.clear() ;
4321// tmp.push_back( getScantable( s, false ) ) ;
4322// CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4323// s->unsetSelection() ;
4324// sel.reset() ;
4325// types.clear() ;
4326
4327 // ref scan
4328 bool insitu = insitu_ ;
4329 insitu_ = false ;
4330 sref = getScantable( s, true ) ;
4331 insitu_ = insitu ;
4332 types.push_back( SrcType::FSOFF ) ;
4333 sel.setTypes( types ) ;
4334 s->setSelection( sel ) ;
4335 TableCopy::copyRows( sref->table(), s->table() ) ;
4336 s->unsetSelection() ;
4337 sel.reset() ;
4338 types.clear() ;
4339
4340 // sig scan
4341 insitu_ = false ;
4342 ssig = getScantable( s, true ) ;
4343 insitu_ = insitu ;
4344 types.push_back( SrcType::FSON ) ;
4345 sel.setTypes( types ) ;
4346 s->setSelection( sel ) ;
4347 TableCopy::copyRows( ssig->table(), s->table() ) ;
4348 s->unsetSelection() ;
4349 sel.reset() ;
4350 types.clear() ;
4351
4352 // process each sig and ref scan
4353 ArrayColumn<Float> tsysColsig ;
4354 tsysColsig.attach( ssig->table(), "TSYS" ) ;
4355 ArrayColumn<Float> tsysColref ;
4356 tsysColref.attach( ssig->table(), "TSYS" ) ;
4357 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4358 vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4359 ssig->setSpectrum( sp, i ) ;
4360 string reftime = ssig->getTime( i ) ;
4361 vector<int> ii( 1, ssig->getIF( i ) ) ;
4362 vector<int> ib( 1, ssig->getBeam( i ) ) ;
4363 vector<int> ip( 1, ssig->getPol( i ) ) ;
4364 sel.setIFs( ii ) ;
4365 sel.setBeams( ib ) ;
4366 sel.setPolarizations( ip ) ;
4367 asky->setSelection( sel ) ;
4368 vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4369 const Vector<Float> Vtsys( sptsys ) ;
4370 tsysColsig.put( i, Vtsys ) ;
4371 asky->unsetSelection() ;
4372 sel.reset() ;
4373 sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4374 sref->setSpectrum( sp, i ) ;
4375 tsysColref.put( i, Vtsys ) ;
4376 }
4377 }
4378
4379 // do folding if necessary
4380 Table sigtab = ssig->table() ;
4381 Table reftab = sref->table() ;
4382 ScalarColumn<uInt> sigifnoCol ;
4383 ScalarColumn<uInt> refifnoCol ;
4384 ScalarColumn<uInt> sigfidCol ;
4385 ScalarColumn<uInt> reffidCol ;
4386 Int nchan = (Int)ssig->nchan() ;
4387 sigifnoCol.attach( sigtab, "IFNO" ) ;
4388 refifnoCol.attach( reftab, "IFNO" ) ;
4389 sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4390 reffidCol.attach( reftab, "FREQ_ID" ) ;
4391 Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4392 Vector<uInt> rfids( reffidCol.getColumn() ) ;
4393 vector<uInt> sfids_unique ;
4394 vector<uInt> rfids_unique ;
4395 vector<uInt> sifno_unique ;
4396 vector<uInt> rifno_unique ;
4397 for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4398 if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4399 sfids_unique.push_back( sfids[i] ) ;
4400 sifno_unique.push_back( ssig->getIF( i ) ) ;
4401 }
4402 if ( count( rfids_unique.begin(), rfids_unique.end(), rfids[i] ) == 0 ) {
4403 rfids_unique.push_back( rfids[i] ) ;
4404 rifno_unique.push_back( sref->getIF( i ) ) ;
4405 }
4406 }
4407 double refpix_sig, refval_sig, increment_sig ;
4408 double refpix_ref, refval_ref, increment_ref ;
4409 vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4410 for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4411 ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4412 sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4413 if ( refpix_sig == refpix_ref ) {
4414 double foffset = refval_ref - refval_sig ;
4415 int choffset = static_cast<int>(foffset/increment_sig) ;
4416 double doffset = foffset / increment_sig ;
4417 if ( abs(choffset) >= nchan ) {
4418 LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4419 os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4420 os << "Just return signal data" << LogIO::POST ;
4421 //std::vector< CountedPtr<Scantable> > tabs ;
4422 //tabs.push_back( ssig ) ;
4423 //tabs.push_back( sref ) ;
4424 //out = merge( tabs ) ;
4425 tmp[i] = ssig ;
4426 }
4427 else {
4428 STSelector sel = STSelector() ;
4429 vector<int> v( 1, sifno_unique[i] ) ;
4430 sel.setIFs( v ) ;
4431 ssig->setSelection( sel ) ;
4432 sel.reset() ;
4433 v[0] = rifno_unique[i] ;
4434 sel.setIFs( v ) ;
4435 sref->setSelection( sel ) ;
4436 sel.reset() ;
4437 if ( antname.find( "APEX" ) != string::npos ) {
4438 tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4439 //tmp[i] = dofold( ssig, sref, doffset ) ;
4440 }
4441 else {
4442 tmp[i] = dofold( ssig, sref, doffset ) ;
4443 }
4444 ssig->unsetSelection() ;
4445 sref->unsetSelection() ;
4446 }
4447 }
4448 }
4449
4450 if ( tmp.size() > 1 ) {
4451 out = merge( tmp ) ;
4452 }
4453 else {
4454 out = tmp[0] ;
4455 }
4456
4457 // flux unit
4458 out->setFluxUnit( "K" ) ;
4459
4460 return out ;
4461}
4462
4463CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4464{
[2163]4465 (void) s; //currently unused
[1819]4466 CountedPtr<Scantable> out ;
4467
4468 return out ;
4469}
4470
4471vector<float> STMath::getSpectrumFromTime( string reftime,
4472 CountedPtr<Scantable>& s,
4473 string mode )
4474{
4475 LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4476 vector<float> sp ;
4477
4478 if ( s->nrow() == 0 ) {
4479 os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4480 return sp ;
4481 }
4482 else if ( s->nrow() == 1 ) {
4483 //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4484 return s->getSpectrum( 0 ) ;
4485 }
4486 else {
4487 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4488 if ( mode == "before" ) {
4489 int id = -1 ;
4490 if ( idx[0] != -1 ) {
4491 id = idx[0] ;
4492 }
4493 else if ( idx[1] != -1 ) {
4494 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4495 id = idx[1] ;
4496 }
4497 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4498 sp = s->getSpectrum( id ) ;
4499 }
4500 else if ( mode == "after" ) {
4501 int id = -1 ;
4502 if ( idx[1] != -1 ) {
4503 id = idx[1] ;
4504 }
4505 else if ( idx[0] != -1 ) {
4506 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4507 id = idx[1] ;
4508 }
4509 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4510 sp = s->getSpectrum( id ) ;
4511 }
4512 else if ( mode == "nearest" ) {
4513 int id = -1 ;
4514 if ( idx[0] == -1 ) {
4515 id = idx[1] ;
4516 }
4517 else if ( idx[1] == -1 ) {
4518 id = idx[0] ;
4519 }
4520 else if ( idx[0] == idx[1] ) {
4521 id = idx[0] ;
4522 }
4523 else {
[1967]4524 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4525 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4526 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4527 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]4528 double tref = getMJD( reftime ) ;
4529 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4530 id = idx[1] ;
4531 }
4532 else {
4533 id = idx[0] ;
4534 }
4535 }
4536 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4537 sp = s->getSpectrum( id ) ;
4538 }
4539 else if ( mode == "linear" ) {
4540 if ( idx[0] == -1 ) {
4541 // use after
4542 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4543 int id = idx[1] ;
4544 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4545 sp = s->getSpectrum( id ) ;
4546 }
4547 else if ( idx[1] == -1 ) {
4548 // use before
4549 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4550 int id = idx[0] ;
4551 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4552 sp = s->getSpectrum( id ) ;
4553 }
4554 else if ( idx[0] == idx[1] ) {
4555 // use before
4556 //os << "No need to interporate." << LogIO::POST ;
4557 int id = idx[0] ;
4558 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4559 sp = s->getSpectrum( id ) ;
4560 }
4561 else {
4562 // do interpolation
4563 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
[1967]4564 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4565 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4566 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4567 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]4568 double tref = getMJD( reftime ) ;
4569 vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4570 vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4571 for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4572 float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4573 sp.push_back( v ) ;
4574 }
4575 }
4576 }
4577 else {
4578 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4579 }
4580 return sp ;
4581 }
4582}
4583
[2532]4584vector<float> STMath::getSpectrumFromTime( double reftime,
4585 Vector<Double> &timeVec,
[2443]4586 CountedPtr<Scantable>& s,
4587 string mode )
4588{
4589 LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4590 vector<float> sp ;
4591
4592 if ( s->nrow() == 0 ) {
4593 os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4594 return sp ;
4595 }
4596 else if ( s->nrow() == 1 ) {
4597 //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4598 return s->getSpectrum( 0 ) ;
4599 }
4600 else {
[2532]4601 //ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4602 //Vector<Double> timeVec = timeCol.getColumn() ;
[2443]4603 vector<int> idx = getRowIdFromTime( reftime, timeVec ) ;
4604 if ( mode == "before" ) {
4605 int id = -1 ;
4606 if ( idx[0] != -1 ) {
4607 id = idx[0] ;
4608 }
4609 else if ( idx[1] != -1 ) {
4610 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4611 id = idx[1] ;
4612 }
4613 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4614 sp = s->getSpectrum( id ) ;
4615 }
4616 else if ( mode == "after" ) {
4617 int id = -1 ;
4618 if ( idx[1] != -1 ) {
4619 id = idx[1] ;
4620 }
4621 else if ( idx[0] != -1 ) {
4622 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4623 id = idx[1] ;
4624 }
4625 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4626 sp = s->getSpectrum( id ) ;
4627 }
4628 else if ( mode == "nearest" ) {
4629 int id = -1 ;
4630 if ( idx[0] == -1 ) {
4631 id = idx[1] ;
4632 }
4633 else if ( idx[1] == -1 ) {
4634 id = idx[0] ;
4635 }
4636 else if ( idx[0] == idx[1] ) {
4637 id = idx[0] ;
4638 }
4639 else {
4640 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4641 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4642// double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4643// double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4644 double t0 = timeVec[idx[0]] ;
4645 double t1 = timeVec[idx[1]] ;
4646// cout << "t0-t0c=" << t0-t0c << endl ;
4647// cout << "t1-t1c=" << t1-t1c << endl ;
4648// double tref = getMJD( reftime ) ;
4649 double tref = reftime ;
4650 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4651 id = idx[1] ;
4652 }
4653 else {
4654 id = idx[0] ;
4655 }
4656 }
4657 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4658 sp = s->getSpectrum( id ) ;
4659 }
4660 else if ( mode == "linear" ) {
4661 if ( idx[0] == -1 ) {
4662 // use after
4663 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4664 int id = idx[1] ;
4665 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4666 sp = s->getSpectrum( id ) ;
4667 }
4668 else if ( idx[1] == -1 ) {
4669 // use before
4670 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4671 int id = idx[0] ;
4672 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4673 sp = s->getSpectrum( id ) ;
4674 }
4675 else if ( idx[0] == idx[1] ) {
4676 // use before
4677 //os << "No need to interporate." << LogIO::POST ;
4678 int id = idx[0] ;
4679 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4680 sp = s->getSpectrum( id ) ;
4681 }
4682 else {
4683 // do interpolation
4684 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4685 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4686 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4687// double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4688// double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4689 double t0 = timeVec[idx[0]] ;
4690 double t1 = timeVec[idx[1]] ;
4691// cout << "t0-t0c=" << t0-t0c << endl ;
4692// cout << "t1-t1c=" << t1-t1c << endl ;
4693// double tref = getMJD( reftime ) ;
4694 double tref = reftime ;
[2524]4695 sp = s->getSpectrum( idx[0] ) ;
[2443]4696 vector<float> sp1 = s->getSpectrum( idx[1] ) ;
[2524]4697 double tfactor = ( tref - t0 ) / ( t1 - t0 ) ;
4698 for ( unsigned int i = 0 ; i < sp.size() ; i++ ) {
4699 sp[i] = ( sp1[i] - sp[i] ) * tfactor + sp[i] ;
[2443]4700 }
4701 }
4702 }
4703 else {
4704 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4705 }
4706 return sp ;
4707 }
4708}
4709
[1819]4710double STMath::getMJD( string strtime )
4711{
4712 if ( strtime.find("/") == string::npos ) {
4713 // MJD time string
4714 return atof( strtime.c_str() ) ;
4715 }
4716 else {
4717 // string in YYYY/MM/DD/HH:MM:SS format
4718 uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4719 uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4720 uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4721 uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4722 uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4723 uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4724 Time t( year, month, day, hour, minute, sec ) ;
4725 return t.modifiedJulianDay() ;
4726 }
4727}
4728
4729vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4730{
4731 double reft = getMJD( reftime ) ;
4732 double dtmin = 1.0e100 ;
4733 double dtmax = -1.0e100 ;
4734 vector<double> dt ;
4735 int just_before = -1 ;
4736 int just_after = -1 ;
4737 for ( int i = 0 ; i < s->nrow() ; i++ ) {
4738 dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4739 }
4740 for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4741 if ( dt[i] > 0.0 ) {
4742 // after reftime
4743 if ( dt[i] < dtmin ) {
4744 just_after = i ;
4745 dtmin = dt[i] ;
4746 }
4747 }
4748 else if ( dt[i] < 0.0 ) {
4749 // before reftime
4750 if ( dt[i] > dtmax ) {
4751 just_before = i ;
4752 dtmax = dt[i] ;
4753 }
4754 }
4755 else {
4756 // just a reftime
4757 just_before = i ;
4758 just_after = i ;
4759 dtmax = 0 ;
4760 dtmin = 0 ;
4761 break ;
4762 }
4763 }
4764
4765 vector<int> v ;
4766 v.push_back( just_before ) ;
4767 v.push_back( just_after ) ;
4768
4769 return v ;
4770}
4771
[2443]4772vector<int> STMath::getRowIdFromTime( double reftime, Vector<Double> &t )
4773{
4774// double reft = reftime ;
4775 double dtmin = 1.0e100 ;
4776 double dtmax = -1.0e100 ;
4777// vector<double> dt ;
4778 int just_before = -1 ;
4779 int just_after = -1 ;
4780 //cout << setprecision(24) << reft << endl ;
4781// ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4782// for ( int i = 0 ; i < s->nrow() ; i++ ) {
4783// cout << setprecision(24) << timeCol(i) << endl ;
4784// //dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4785// dt.push_back( timeCol(i) - reft ) ;
4786// }
4787 Vector<Double> dt = t - reftime ;
4788 for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4789 if ( dt[i] > 0.0 ) {
4790 // after reftime
4791 if ( dt[i] < dtmin ) {
4792 just_after = i ;
4793 dtmin = dt[i] ;
4794 }
4795 }
4796 else if ( dt[i] < 0.0 ) {
4797 // before reftime
4798 if ( dt[i] > dtmax ) {
4799 just_before = i ;
4800 dtmax = dt[i] ;
4801 }
4802 }
4803 else {
4804 // just a reftime
4805 just_before = i ;
4806 just_after = i ;
4807 dtmax = 0 ;
4808 dtmin = 0 ;
4809 break ;
4810 }
4811 }
4812
4813 vector<int> v(2) ;
4814 v[0] = just_before ;
4815 v[1] = just_after ;
4816
4817 return v ;
4818}
4819
[1819]4820vector<float> STMath::getTcalFromTime( string reftime,
4821 CountedPtr<Scantable>& s,
4822 string mode )
4823{
4824 LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4825 vector<float> tcal ;
4826 STTcal tcalTable = s->tcal() ;
4827 String time ;
4828 Vector<Float> tcalval ;
4829 if ( s->nrow() == 0 ) {
4830 os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4831 return tcal ;
4832 }
4833 else if ( s->nrow() == 1 ) {
4834 uInt tcalid = s->getTcalId( 0 ) ;
4835 //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4836 tcalTable.getEntry( time, tcalval, tcalid ) ;
4837 tcalval.tovector( tcal ) ;
4838 return tcal ;
4839 }
4840 else {
4841 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4842 if ( mode == "before" ) {
4843 int id = -1 ;
4844 if ( idx[0] != -1 ) {
4845 id = idx[0] ;
4846 }
4847 else if ( idx[1] != -1 ) {
4848 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4849 id = idx[1] ;
4850 }
4851 uInt tcalid = s->getTcalId( id ) ;
4852 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4853 tcalTable.getEntry( time, tcalval, tcalid ) ;
4854 tcalval.tovector( tcal ) ;
4855 }
4856 else if ( mode == "after" ) {
4857 int id = -1 ;
4858 if ( idx[1] != -1 ) {
4859 id = idx[1] ;
4860 }
4861 else if ( idx[0] != -1 ) {
4862 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4863 id = idx[1] ;
4864 }
4865 uInt tcalid = s->getTcalId( id ) ;
4866 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4867 tcalTable.getEntry( time, tcalval, tcalid ) ;
4868 tcalval.tovector( tcal ) ;
4869 }
4870 else if ( mode == "nearest" ) {
4871 int id = -1 ;
4872 if ( idx[0] == -1 ) {
4873 id = idx[1] ;
4874 }
4875 else if ( idx[1] == -1 ) {
4876 id = idx[0] ;
4877 }
4878 else if ( idx[0] == idx[1] ) {
4879 id = idx[0] ;
4880 }
4881 else {
[1967]4882 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4883 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4884 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4885 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]4886 double tref = getMJD( reftime ) ;
4887 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4888 id = idx[1] ;
4889 }
4890 else {
4891 id = idx[0] ;
4892 }
4893 }
4894 uInt tcalid = s->getTcalId( id ) ;
4895 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4896 tcalTable.getEntry( time, tcalval, tcalid ) ;
4897 tcalval.tovector( tcal ) ;
4898 }
4899 else if ( mode == "linear" ) {
4900 if ( idx[0] == -1 ) {
4901 // use after
4902 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4903 int id = idx[1] ;
4904 uInt tcalid = s->getTcalId( id ) ;
4905 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4906 tcalTable.getEntry( time, tcalval, tcalid ) ;
4907 tcalval.tovector( tcal ) ;
4908 }
4909 else if ( idx[1] == -1 ) {
4910 // use before
4911 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4912 int id = idx[0] ;
4913 uInt tcalid = s->getTcalId( id ) ;
4914 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4915 tcalTable.getEntry( time, tcalval, tcalid ) ;
4916 tcalval.tovector( tcal ) ;
4917 }
4918 else if ( idx[0] == idx[1] ) {
4919 // use before
4920 //os << "No need to interporate." << LogIO::POST ;
4921 int id = idx[0] ;
4922 uInt tcalid = s->getTcalId( id ) ;
4923 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4924 tcalTable.getEntry( time, tcalval, tcalid ) ;
4925 tcalval.tovector( tcal ) ;
4926 }
4927 else {
4928 // do interpolation
4929 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
[1967]4930 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4931 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4932 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4933 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]4934 double tref = getMJD( reftime ) ;
4935 vector<float> tcal0 ;
4936 vector<float> tcal1 ;
4937 uInt tcalid0 = s->getTcalId( idx[0] ) ;
4938 uInt tcalid1 = s->getTcalId( idx[1] ) ;
4939 tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4940 tcalval.tovector( tcal0 ) ;
4941 tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4942 tcalval.tovector( tcal1 ) ;
4943 for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4944 float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4945 tcal.push_back( v ) ;
4946 }
4947 }
4948 }
4949 else {
4950 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4951 }
4952 return tcal ;
4953 }
4954}
4955
4956vector<float> STMath::getTsysFromTime( string reftime,
4957 CountedPtr<Scantable>& s,
4958 string mode )
4959{
4960 LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4961 ArrayColumn<Float> tsysCol ;
4962 tsysCol.attach( s->table(), "TSYS" ) ;
4963 vector<float> tsys ;
4964 String time ;
4965 Vector<Float> tsysval ;
4966 if ( s->nrow() == 0 ) {
4967 os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4968 return tsys ;
4969 }
4970 else if ( s->nrow() == 1 ) {
4971 //os << "use row " << 0 << LogIO::POST ;
4972 tsysval = tsysCol( 0 ) ;
4973 tsysval.tovector( tsys ) ;
4974 return tsys ;
4975 }
4976 else {
4977 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4978 if ( mode == "before" ) {
4979 int id = -1 ;
4980 if ( idx[0] != -1 ) {
4981 id = idx[0] ;
4982 }
4983 else if ( idx[1] != -1 ) {
4984 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4985 id = idx[1] ;
4986 }
4987 //os << "use row " << id << LogIO::POST ;
4988 tsysval = tsysCol( id ) ;
4989 tsysval.tovector( tsys ) ;
4990 }
4991 else if ( mode == "after" ) {
4992 int id = -1 ;
4993 if ( idx[1] != -1 ) {
4994 id = idx[1] ;
4995 }
4996 else if ( idx[0] != -1 ) {
4997 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4998 id = idx[1] ;
4999 }
5000 //os << "use row " << id << LogIO::POST ;
5001 tsysval = tsysCol( id ) ;
5002 tsysval.tovector( tsys ) ;
5003 }
5004 else if ( mode == "nearest" ) {
5005 int id = -1 ;
5006 if ( idx[0] == -1 ) {
5007 id = idx[1] ;
5008 }
5009 else if ( idx[1] == -1 ) {
5010 id = idx[0] ;
5011 }
5012 else if ( idx[0] == idx[1] ) {
5013 id = idx[0] ;
5014 }
5015 else {
[1967]5016 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
5017 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5018 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5019 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]5020 double tref = getMJD( reftime ) ;
5021 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
5022 id = idx[1] ;
5023 }
5024 else {
5025 id = idx[0] ;
5026 }
5027 }
5028 //os << "use row " << id << LogIO::POST ;
5029 tsysval = tsysCol( id ) ;
5030 tsysval.tovector( tsys ) ;
5031 }
5032 else if ( mode == "linear" ) {
5033 if ( idx[0] == -1 ) {
5034 // use after
5035 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
5036 int id = idx[1] ;
5037 //os << "use row " << id << LogIO::POST ;
5038 tsysval = tsysCol( id ) ;
5039 tsysval.tovector( tsys ) ;
5040 }
5041 else if ( idx[1] == -1 ) {
5042 // use before
5043 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
5044 int id = idx[0] ;
5045 //os << "use row " << id << LogIO::POST ;
5046 tsysval = tsysCol( id ) ;
5047 tsysval.tovector( tsys ) ;
5048 }
5049 else if ( idx[0] == idx[1] ) {
5050 // use before
5051 //os << "No need to interporate." << LogIO::POST ;
5052 int id = idx[0] ;
5053 //os << "use row " << id << LogIO::POST ;
5054 tsysval = tsysCol( id ) ;
5055 tsysval.tovector( tsys ) ;
5056 }
5057 else {
5058 // do interpolation
5059 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
[1967]5060 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
5061 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5062 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5063 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]5064 double tref = getMJD( reftime ) ;
5065 vector<float> tsys0 ;
5066 vector<float> tsys1 ;
5067 tsysval = tsysCol( idx[0] ) ;
5068 tsysval.tovector( tsys0 ) ;
5069 tsysval = tsysCol( idx[1] ) ;
5070 tsysval.tovector( tsys1 ) ;
5071 for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
5072 float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
5073 tsys.push_back( v ) ;
5074 }
5075 }
5076 }
5077 else {
5078 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
5079 }
5080 return tsys ;
5081 }
5082}
5083
5084vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5085 CountedPtr<Scantable>& off,
5086 CountedPtr<Scantable>& sky,
5087 CountedPtr<Scantable>& hot,
5088 CountedPtr<Scantable>& cold,
5089 int index,
5090 string antname )
5091{
[2163]5092 (void) cold; //currently unused
[1819]5093 string reftime = on->getTime( index ) ;
5094 vector<int> ii( 1, on->getIF( index ) ) ;
5095 vector<int> ib( 1, on->getBeam( index ) ) ;
5096 vector<int> ip( 1, on->getPol( index ) ) ;
5097 STSelector sel = STSelector() ;
5098 sel.setIFs( ii ) ;
5099 sel.setBeams( ib ) ;
5100 sel.setPolarizations( ip ) ;
5101 sky->setSelection( sel ) ;
5102 hot->setSelection( sel ) ;
5103 //cold->setSelection( sel ) ;
5104 off->setSelection( sel ) ;
5105 vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5106 vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5107 //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5108 vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
5109 vector<float> spec = on->getSpectrum( index ) ;
5110 vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5111 vector<float> sp( tcal.size() ) ;
5112 if ( antname.find( "APEX" ) != string::npos ) {
5113 // using gain array
5114 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5115 float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
5116 * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
5117 sp[j] = v ;
5118 }
5119 }
5120 else {
5121 // Chopper-Wheel calibration (Ulich & Haas 1976)
5122 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5123 float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
5124 sp[j] = v ;
5125 }
5126 }
5127 sel.reset() ;
5128 sky->unsetSelection() ;
5129 hot->unsetSelection() ;
5130 //cold->unsetSelection() ;
5131 off->unsetSelection() ;
5132
5133 return sp ;
5134}
5135
5136vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5137 CountedPtr<Scantable>& off,
5138 int index )
5139{
[2443]5140// string reftime = on->getTime( index ) ;
[2532]5141 ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5142 Vector<Double> timeVec = timeCol.getColumn() ;
5143 //ROTableColumn timeCol( on->table(), "TIME" ) ;
5144 timeCol.attach( on->table(), "TIME" ) ;
[2443]5145 double reftime = timeCol.asdouble(index) ;
[1819]5146 vector<int> ii( 1, on->getIF( index ) ) ;
5147 vector<int> ib( 1, on->getBeam( index ) ) ;
5148 vector<int> ip( 1, on->getPol( index ) ) ;
5149 STSelector sel = STSelector() ;
5150 sel.setIFs( ii ) ;
5151 sel.setBeams( ib ) ;
5152 sel.setPolarizations( ip ) ;
5153 off->setSelection( sel ) ;
[2532]5154 vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
[1819]5155 vector<float> spec = on->getSpectrum( index ) ;
5156 //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5157 //vector<float> tsys = on->getTsysVec( index ) ;
5158 ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5159 Vector<Float> tsys = tsysCol( index ) ;
5160 vector<float> sp( spec.size() ) ;
5161 // ALMA Calibration
5162 //
5163 // Ta* = Tsys * ( ON - OFF ) / OFF
5164 //
5165 // 2010/01/07 Takeshi Nakazato
5166 unsigned int tsyssize = tsys.nelements() ;
5167 unsigned int spsize = sp.size() ;
5168 for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5169 float tscale = 0.0 ;
5170 if ( tsyssize == spsize )
5171 tscale = tsys[j] ;
5172 else
5173 tscale = tsys[0] ;
5174 float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5175 sp[j] = v ;
5176 }
5177 sel.reset() ;
5178 off->unsetSelection() ;
5179
5180 return sp ;
5181}
5182
[2502]5183void STMath::calibrateALMA( CountedPtr<Scantable>& on,
[2519]5184 CountedPtr<Scantable>& off )
[2502]5185{
[2534]5186 if ( on->nrow() == 0 )
5187 return ;
[2519]5188 // string reftime = on->getTime( index ) ;
[2532]5189 ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5190 Vector<Double> timeVec = timeCol.getColumn() ;
5191 //ROTableColumn timeCol( on->table(), "TIME" ) ;
5192 timeCol.attach( on->table(), "TIME" ) ;
[2502]5193 ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5194 vector<float> sp( on->nchan( on->getIF(0) ) ) ;
5195 unsigned int spsize = sp.size() ;
5196 for ( int index = 0 ; index < on->nrow() ; index++ ) {
5197 double reftime = timeCol.asdouble(index) ;
[2532]5198 vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
[2502]5199 vector<float> spec = on->getSpectrum( index ) ;
5200 Vector<Float> tsys = tsysCol( index ) ;
5201 // ALMA Calibration
5202 //
5203 // Ta* = Tsys * ( ON - OFF ) / OFF
5204 //
5205 // 2010/01/07 Takeshi Nakazato
5206 unsigned int tsyssize = tsys.nelements() ;
5207 for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5208 float tscale = 0.0 ;
5209 if ( tsyssize == spsize )
5210 tscale = tsys[j] ;
5211 else
5212 tscale = tsys[0] ;
5213 float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5214 sp[j] = v ;
5215 }
5216 on->setSpectrum( sp, index ) ;
5217 }
5218}
5219
[2519]5220void STMath::calibrateALMA( CountedPtr<Scantable>& on,
5221 CountedPtr<Scantable>& off,
5222 Vector<uInt>& rows )
5223{
[2534]5224 // if rows is empty, just return
5225 if ( rows.nelements() == 0 )
5226 return ;
[2519]5227// string reftime = on->getTime( index ) ;
[2532]5228 ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5229 Vector<Double> timeVec = timeCol.getColumn() ;
5230 //ROTableColumn timeCol( on->table(), "TIME" ) ;
5231 timeCol.attach( on->table(), "TIME" ) ;
[2519]5232 ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5233 vector<float> sp( on->nchan( on->getIF(rows[0]) ) ) ;
5234 unsigned int spsize = sp.size() ;
5235 // I know that the data is contiguous
5236 const uInt *p = rows.data() ;
5237 for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
5238 //int index = rows[irow] ;
5239 //double reftime = timeCol.asdouble(index) ;
5240 double reftime = timeCol.asdouble(*p) ;
[2532]5241 vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
[2519]5242 //vector<float> spec = on->getSpectrum( index ) ;
5243 //Vector<Float> tsys = tsysCol( index ) ;
5244 vector<float> spec = on->getSpectrum( *p ) ;
5245 Vector<Float> tsys = tsysCol( *p ) ;
5246 // ALMA Calibration
5247 //
5248 // Ta* = Tsys * ( ON - OFF ) / OFF
5249 //
5250 // 2010/01/07 Takeshi Nakazato
5251 unsigned int tsyssize = tsys.nelements() ;
5252 for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5253 float tscale = 0.0 ;
5254 if ( tsyssize == spsize )
5255 tscale = tsys[j] ;
5256 else
5257 tscale = tsys[0] ;
5258 float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5259 sp[j] = v ;
5260 }
5261 //on->setSpectrum( sp, index ) ;
5262 on->setSpectrum( sp, *p ) ;
5263 p++ ;
5264 }
5265}
5266
[1819]5267vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5268 CountedPtr<Scantable>& ref,
5269 CountedPtr<Scantable>& sky,
5270 CountedPtr<Scantable>& hot,
5271 CountedPtr<Scantable>& cold,
5272 int index )
5273{
[2163]5274 (void) cold; //currently unused
[1819]5275 string reftime = sig->getTime( index ) ;
5276 vector<int> ii( 1, sig->getIF( index ) ) ;
5277 vector<int> ib( 1, sig->getBeam( index ) ) ;
5278 vector<int> ip( 1, sig->getPol( index ) ) ;
5279 vector<int> ic( 1, sig->getScan( index ) ) ;
5280 STSelector sel = STSelector() ;
5281 sel.setIFs( ii ) ;
5282 sel.setBeams( ib ) ;
5283 sel.setPolarizations( ip ) ;
5284 sky->setSelection( sel ) ;
5285 hot->setSelection( sel ) ;
5286 //cold->setSelection( sel ) ;
5287 vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5288 vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5289 //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5290 vector<float> spref = ref->getSpectrum( index ) ;
5291 vector<float> spsig = sig->getSpectrum( index ) ;
5292 vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5293 vector<float> sp( tcal.size() ) ;
5294 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5295 float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
5296 sp[j] = v ;
5297 }
5298 sel.reset() ;
5299 sky->unsetSelection() ;
5300 hot->unsetSelection() ;
5301 //cold->unsetSelection() ;
5302
5303 return sp ;
5304}
5305
5306vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5307 CountedPtr<Scantable>& ref,
5308 vector< CountedPtr<Scantable> >& sky,
5309 vector< CountedPtr<Scantable> >& hot,
5310 vector< CountedPtr<Scantable> >& cold,
5311 int index )
5312{
[2163]5313 (void) cold; //currently unused
[1819]5314 string reftime = sig->getTime( index ) ;
5315 vector<int> ii( 1, sig->getIF( index ) ) ;
5316 vector<int> ib( 1, sig->getBeam( index ) ) ;
5317 vector<int> ip( 1, sig->getPol( index ) ) ;
5318 vector<int> ic( 1, sig->getScan( index ) ) ;
5319 STSelector sel = STSelector() ;
5320 sel.setIFs( ii ) ;
5321 sel.setBeams( ib ) ;
5322 sel.setPolarizations( ip ) ;
5323 sky[0]->setSelection( sel ) ;
5324 hot[0]->setSelection( sel ) ;
5325 //cold[0]->setSelection( sel ) ;
5326 vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
5327 vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
5328 //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
5329 vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
5330 sel.reset() ;
5331 ii[0] = ref->getIF( index ) ;
5332 sel.setIFs( ii ) ;
5333 sel.setBeams( ib ) ;
5334 sel.setPolarizations( ip ) ;
5335 sky[1]->setSelection( sel ) ;
5336 hot[1]->setSelection( sel ) ;
5337 //cold[1]->setSelection( sel ) ;
5338 vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
5339 vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
5340 //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
5341 vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ;
5342 vector<float> spref = ref->getSpectrum( index ) ;
5343 vector<float> spsig = sig->getSpectrum( index ) ;
5344 vector<float> sp( tcals.size() ) ;
5345 for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
5346 float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
5347 sp[j] = v ;
5348 }
5349 sel.reset() ;
5350 sky[0]->unsetSelection() ;
5351 hot[0]->unsetSelection() ;
5352 //cold[0]->unsetSelection() ;
5353 sky[1]->unsetSelection() ;
5354 hot[1]->unsetSelection() ;
5355 //cold[1]->unsetSelection() ;
5356
5357 return sp ;
5358}
Note: See TracBrowser for help on using the repository browser.