source: branches/hpc33/src/STMath.cpp@ 2541

Last change on this file since 2541 was 2540, checked in by Takeshi Nakazato, 12 years ago

New Development: No

JIRA Issue: No

Ready for Test: Yes

Interface Changes: No

What Interface Changed: Please list interface changes

Test Programs: List test programs

Put in Release Notes: Yes/No

Module(s): Module Names change impacts.

Description: Describe your changes here...

Use STIdxIterExAcc instead of TableIterator.


  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 184.1 KB
RevLine 
[805]1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
[38]12
[2177]13#include <sstream>
14
[330]15#include <casa/iomanip.h>
[805]16#include <casa/Arrays/MaskArrLogi.h>
17#include <casa/Arrays/MaskArrMath.h>
18#include <casa/Arrays/ArrayLogical.h>
[81]19#include <casa/Arrays/ArrayMath.h>
[1066]20#include <casa/Arrays/Slice.h>
21#include <casa/Arrays/Slicer.h>
[2177]22#include <casa/BasicSL/String.h>
23#include <casa/Containers/Block.h>
[805]24#include <casa/Containers/RecordField.h>
[2177]25#include <casa/Exceptions/Error.h>
26#include <casa/Logging/LogIO.h>
[2]27
[917]28#include <coordinates/Coordinates/CoordinateSystem.h>
29#include <coordinates/Coordinates/CoordinateUtil.h>
30#include <coordinates/Coordinates/FrequencyAligner.h>
[2177]31#include <coordinates/Coordinates/SpectralCoordinate.h>
[917]32
[2177]33#include <lattices/Lattices/LatticeUtilities.h>
34
35#include <scimath/Functionals/Polynomial.h>
36#include <scimath/Mathematics/Convolver.h>
[177]37#include <scimath/Mathematics/VectorKernel.h>
38
[2177]39#include <tables/Tables/ExprNode.h>
40#include <tables/Tables/ReadAsciiTable.h>
41#include <tables/Tables/TableCopy.h>
42#include <tables/Tables/TableIter.h>
43#include <tables/Tables/TableParse.h>
44#include <tables/Tables/TableRecord.h>
45#include <tables/Tables/TableRow.h>
46#include <tables/Tables/TableVector.h>
47#include <tables/Tables/TabVecMath.h>
48
[1819]49#include <atnf/PKSIO/SrcType.h>
50
[805]51#include "RowAccumulator.h"
[878]52#include "STAttr.h"
[2177]53#include "STMath.h"
[1391]54#include "STSelector.h"
[2458]55#include "Accelerator.h"
[2519]56#include "STIdxIter.h"
[2]57
[805]58using namespace casa;
[83]59using namespace asap;
[2]60
[2449]61
[2432]62// 2012/02/17 TN
63// Since STGrid is implemented, average doesn't consider direction
64// when accumulating
[1819]65// tolerance for direction comparison (rad)
[2432]66// #define TOL_OTF 1.0e-15
67// #define TOL_POINT 2.9088821e-4 // 1 arcmin
[1819]68
[805]69STMath::STMath(bool insitu) :
70 insitu_(insitu)
[716]71{
72}
[170]73
74
[805]75STMath::~STMath()
[170]76{
77}
78
[805]79CountedPtr<Scantable>
[977]80STMath::average( const std::vector<CountedPtr<Scantable> >& in,
[858]81 const std::vector<bool>& mask,
[805]82 const std::string& weight,
[977]83 const std::string& avmode)
[262]84{
[2540]85// double t0, t1 ;
86// t0 = mathutil::gettimeofday_sec() ;
[2539]87
[1819]88 LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
[977]89 if ( avmode == "SCAN" && in.size() != 1 )
[1066]90 throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
91 "Use merge first."));
[805]92 WeightType wtype = stringToWeight(weight);
[926]93
[2432]94 // 2012/02/17 TN
95 // Since STGrid is implemented, average doesn't consider direction
96 // when accumulating
[1819]97 // check if OTF observation
[2432]98// String obstype = in[0]->getHeader().obstype ;
99// Double tol = 0.0 ;
100// if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
101// tol = TOL_OTF ;
102// }
103// else {
104// tol = TOL_POINT ;
105// }
[1819]106
[805]107 // output
108 // clone as this is non insitu
109 bool insitu = insitu_;
110 setInsitu(false);
[977]111 CountedPtr< Scantable > out = getScantable(in[0], true);
[805]112 setInsitu(insitu);
[977]113 std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
[862]114 ++stit;
[977]115 while ( stit != in.end() ) {
[862]116 out->appendToHistoryTable((*stit)->history());
117 ++stit;
118 }
[294]119
[805]120 Table& tout = out->table();
[701]121
[805]122 /// @todo check if all scantables are conformant
[294]123
[805]124 ArrayColumn<Float> specColOut(tout,"SPECTRA");
125 ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
126 ArrayColumn<Float> tsysColOut(tout,"TSYS");
127 ScalarColumn<Double> mjdColOut(tout,"TIME");
128 ScalarColumn<Double> intColOut(tout,"INTERVAL");
[1008]129 ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
[1145]130 ScalarColumn<uInt> scanColOut(tout,"SCANNO");
[262]131
[805]132 // set up the output table rows. These are based on the structure of the
[862]133 // FIRST scantable in the vector
[977]134 const Table& baset = in[0]->table();
[262]135
[2539]136 RowAccumulator acc(wtype);
137 Vector<Bool> cmask(mask);
138 acc.setUserMask(cmask);
[2540]139// ROTableRow row(tout);
[2539]140 ROArrayColumn<Float> specCol, tsysCol;
141 ROArrayColumn<uChar> flagCol;
142 ROScalarColumn<Double> mjdCol, intCol;
143 ROScalarColumn<Int> scanIDCol;
144
145 Vector<uInt> rowstodelete;
146
[2540]147// Block<String> cols(3);
148 vector<string> cols(3) ;
[805]149 cols[0] = String("BEAMNO");
150 cols[1] = String("IFNO");
151 cols[2] = String("POLNO");
152 if ( avmode == "SOURCE" ) {
153 cols.resize(4);
154 cols[3] = String("SRCNAME");
[488]155 }
[977]156 if ( avmode == "SCAN" && in.size() == 1) {
[1819]157 //cols.resize(4);
158 //cols[3] = String("SCANNO");
159 cols.resize(5);
160 cols[3] = String("SRCNAME");
161 cols[4] = String("SCANNO");
[2]162 }
[805]163 uInt outrowCount = 0;
[2540]164 // use STIdxIterExAcc instead of TableIterator
165 STIdxIterExAcc iter( in[0], cols ) ;
166// TableIterator iter(baset, cols);
[1819]167// int count = 0 ;
[805]168 while (!iter.pastEnd()) {
[2540]169 Vector<uInt> rows = iter.getRows( SHARE ) ;
170 if ( rows.nelements() == 0 ) {
171 iter.next() ;
172 continue ;
173 }
174 Vector<uInt> current = iter.current() ;
175 String srcname = iter.getSrcName() ;
176 //Table subt = iter.table();
[2432]177 // copy the first row of this selection into the new table
178 tout.addRow();
[2540]179 //TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
180 TableCopy::copyRows(tout, baset, outrowCount, rows[0], 1);
[2432]181 // re-index to 0
182 if ( avmode != "SCAN" && avmode != "SOURCE" ) {
183 scanColOut.put(outrowCount, uInt(0));
184 }
[2540]185
[2432]186 // 2012/02/17 TN
187 // Since STGrid is implemented, average doesn't consider direction
188 // when accumulating
189// MDirection::ScalarColumn dircol ;
190// dircol.attach( subt, "DIRECTION" ) ;
191// Int length = subt.nrow() ;
192// vector< Vector<Double> > dirs ;
193// vector<int> indexes ;
194// for ( Int i = 0 ; i < length ; i++ ) {
195// Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
196// //os << << count++ << ": " ;
197// //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
198// bool adddir = true ;
199// for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
200// //if ( allTrue( t == dirs[j] ) ) {
201// Double dx = t[0] - dirs[j][0] ;
202// Double dy = t[1] - dirs[j][1] ;
203// Double dd = sqrt( dx * dx + dy * dy ) ;
204// //if ( allNearAbs( t, dirs[j], tol ) ) {
205// if ( dd <= tol ) {
206// adddir = false ;
207// break ;
208// }
209// }
210// if ( adddir ) {
211// dirs.push_back( t ) ;
212// indexes.push_back( i ) ;
213// }
[1819]214// }
[2432]215// uInt rowNum = dirs.size() ;
216// tout.addRow( rowNum ) ;
217// for ( uInt i = 0 ; i < rowNum ; i++ ) {
218// TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
219// // re-index to 0
220// if ( avmode != "SCAN" && avmode != "SOURCE" ) {
221// scanColOut.put(outrowCount+i, uInt(0));
222// }
223// }
224// outrowCount += rowNum ;
[144]225
[2539]226// merge loop
227 uInt i = outrowCount ;
228// for (uInt i=0; i < tout.nrow(); ++i) {
229
230 // in[0] is already selected by TableItertor
[2540]231// specCol.attach(subt,"SPECTRA");
232// flagCol.attach(subt,"FLAGTRA");
233// tsysCol.attach(subt,"TSYS");
234// intCol.attach(subt,"INTERVAL");
235// mjdCol.attach(subt,"TIME");
236 specCol.attach(baset,"SPECTRA");
237 flagCol.attach(baset,"FLAGTRA");
238 tsysCol.attach(baset,"TSYS");
239 intCol.attach(baset,"INTERVAL");
240 mjdCol.attach(baset,"TIME");
[2539]241 Vector<Float> spec,tsys;
242 Vector<uChar> flag;
243 Double inter,time;
[2540]244// for (uInt k = 0; k < subt.nrow(); ++k ) {
245 for (uInt l = 0; l < rows.nelements(); ++l ) {
246 uInt k = rows[l] ;
[2539]247 flagCol.get(k, flag);
248 Vector<Bool> bflag(flag.shape());
249 convertArray(bflag, flag);
250 /*
251 if ( allEQ(bflag, True) ) {
252 continue;//don't accumulate
253 }
254 */
255 specCol.get(k, spec);
256 tsysCol.get(k, tsys);
257 intCol.get(k, inter);
258 mjdCol.get(k, time);
259 // spectrum has to be added last to enable weighting by the other values
260 acc.add(spec, !bflag, tsys, inter, time);
261 }
262
263 // If there exists a channel at which all the input spectra are masked,
264 // spec has 'nan' values for that channel and it may affect the following
265 // processes. To avoid this, replacing 'nan' values in spec with
266 // weighted-mean of all spectra in the following line.
267 // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
268 acc.replaceNaN();
269
[2540]270 // in[0] is already selected by TableIterator so that index is
271 // started from 1
[2539]272 //for ( int j=0; j < int(in.size()); ++j ) {
273 for ( int j=1; j < int(in.size()); ++j ) {
[977]274 const Table& tin = in[j]->table();
[2540]275 //const TableRecord& rec = row.get(i);
[805]276 ROScalarColumn<Double> tmp(tin, "TIME");
277 Double td;tmp.get(0,td);
[2449]278
279#if 1
[2460]280 static char const*const colNames1[] = { "IFNO", "BEAMNO", "POLNO" };
[2540]281 //uInt const values1[] = { rec.asuInt("IFNO"), rec.asuInt("BEAMNO"), rec.asuInt("POLNO") };
282 uInt const values1[] = { current[1], current[0], current[2] };
[2458]283 SingleTypeEqPredicate<uInt, 3> myPred(tin, colNames1, values1);
[2470]284 CustomTableExprNodeRep myNodeRep(tin, myPred);
285 myNodeRep.link(); // to avoid automatic delete when myExpr is destructed.
286 CustomTableExprNode myExpr(myNodeRep);
[2449]287 Table basesubt = tin(myExpr);
288#else
[2540]289// Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
290// && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
291// && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
292 Table basesubt = tin( tin.col("BEAMNO") == current[0]
293 && tin.col("IFNO") == current[1]
294 && tin.col("POLNO") == current[2] );
[2449]295#endif
[2540]296 Table subt;
[805]297 if ( avmode == "SOURCE") {
[2540]298// subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
299 subt = basesubt( basesubt.col("SRCNAME") == srcname );
300
[805]301 } else if (avmode == "SCAN") {
[2540]302// subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
303// && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
304 subt = basesubt( basesubt.col("SRCNAME") == srcname
305 && basesubt.col("SCANNO") == current[4] );
[805]306 } else {
307 subt = basesubt;
308 }
[1819]309
[2432]310 // 2012/02/17 TN
311 // Since STGrid is implemented, average doesn't consider direction
312 // when accumulating
313// vector<uInt> removeRows ;
314// uInt nrsubt = subt.nrow() ;
315// for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
316// //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
317// Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
318// Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
319// double dx = x0[0] - x1[0];
320// double dy = x0[1] - x1[1];
321// Double dd = sqrt( dx * dx + dy * dy ) ;
322// //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
323// if ( dd > tol ) {
324// removeRows.push_back( irow ) ;
325// }
326// }
327// if ( removeRows.size() != 0 ) {
328// subt.removeRow( removeRows ) ;
329// }
[1819]330
[2432]331// if ( nrsubt == removeRows.size() )
332// throw(AipsError("Averaging data is empty.")) ;
[1819]333
[805]334 specCol.attach(subt,"SPECTRA");
335 flagCol.attach(subt,"FLAGTRA");
336 tsysCol.attach(subt,"TSYS");
337 intCol.attach(subt,"INTERVAL");
338 mjdCol.attach(subt,"TIME");
[2540]339// Vector<Float> spec,tsys;
340// Vector<uChar> flag;
341// Double inter,time;
[805]342 for (uInt k = 0; k < subt.nrow(); ++k ) {
343 flagCol.get(k, flag);
344 Vector<Bool> bflag(flag.shape());
345 convertArray(bflag, flag);
[1314]346 /*
[805]347 if ( allEQ(bflag, True) ) {
[1314]348 continue;//don't accumulate
[144]349 }
[1314]350 */
[805]351 specCol.get(k, spec);
352 tsysCol.get(k, tsys);
353 intCol.get(k, inter);
354 mjdCol.get(k, time);
355 // spectrum has to be added last to enable weighting by the other values
356 acc.add(spec, !bflag, tsys, inter, time);
357 }
[2125]358
359 // If there exists a channel at which all the input spectra are masked,
360 // spec has 'nan' values for that channel and it may affect the following
361 // processes. To avoid this, replacing 'nan' values in spec with
362 // weighted-mean of all spectra in the following line.
363 // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
364 acc.replaceNaN();
[805]365 }
[1333]366 const Vector<Bool>& msk = acc.getMask();
367 if ( allEQ(msk, False) ) {
368 uint n = rowstodelete.nelements();
369 rowstodelete.resize(n+1, True);
370 rowstodelete[n] = i;
371 continue;
372 }
[805]373 //write out
[1819]374 if (acc.state()) {
375 Vector<uChar> flg(msk.shape());
376 convertArray(flg, !msk);
[2125]377 for (uInt k = 0; k < flg.nelements(); ++k) {
378 uChar userFlag = 1 << 7;
379 if (msk[k]==True) userFlag = 0 << 7;
380 flg(k) = userFlag;
381 }
382
[1819]383 flagColOut.put(i, flg);
384 specColOut.put(i, acc.getSpectrum());
385 tsysColOut.put(i, acc.getTsys());
386 intColOut.put(i, acc.getInterval());
387 mjdColOut.put(i, acc.getTime());
388 // we should only have one cycle now -> reset it to be 0
389 // frequency switched data has different CYCLENO for different IFNO
390 // which requires resetting this value
391 cycColOut.put(i, uInt(0));
392 } else {
393 ostringstream oss;
394 oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
395 pushLog(String(oss));
396 }
[805]397 acc.reset();
[2539]398
399 // merge with while loop for preparing out table
400 ++outrowCount;
[2540]401// ++iter ;
402 iter.next() ;
[144]403 }
[2135]404
[1333]405 if (rowstodelete.nelements() > 0) {
[1819]406 os << rowstodelete << LogIO::POST ;
[1333]407 tout.removeRow(rowstodelete);
408 if (tout.nrow() == 0) {
409 throw(AipsError("Can't average fully flagged data."));
410 }
411 }
[2539]412
[2540]413// t1 = mathutil::gettimeofday_sec() ;
414// cout << "elapsed time for average(): " << t1-t0 << " sec" << endl ;
[2539]415
[805]416 return out;
[2]417}
[9]418
[1069]419CountedPtr< Scantable >
[2163]420STMath::averageChannel( const CountedPtr < Scantable > & in,
[1078]421 const std::string & mode,
422 const std::string& avmode )
[1069]423{
[2163]424 (void) mode; // currently unused
[2432]425 // 2012/02/17 TN
426 // Since STGrid is implemented, average doesn't consider direction
427 // when accumulating
[1819]428 // check if OTF observation
[2432]429// String obstype = in->getHeader().obstype ;
430// Double tol = 0.0 ;
431// if ( obstype.find( "OTF" ) != String::npos ) {
432// tol = TOL_OTF ;
433// }
434// else {
435// tol = TOL_POINT ;
436// }
[1819]437
[1069]438 // clone as this is non insitu
439 bool insitu = insitu_;
440 setInsitu(false);
441 CountedPtr< Scantable > out = getScantable(in, true);
442 setInsitu(insitu);
443 Table& tout = out->table();
444 ArrayColumn<Float> specColOut(tout,"SPECTRA");
445 ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
446 ArrayColumn<Float> tsysColOut(tout,"TSYS");
[1140]447 ScalarColumn<uInt> scanColOut(tout,"SCANNO");
[1232]448 ScalarColumn<Double> intColOut(tout, "INTERVAL");
[1140]449 Table tmp = in->table().sort("BEAMNO");
[1069]450 Block<String> cols(3);
451 cols[0] = String("BEAMNO");
452 cols[1] = String("IFNO");
453 cols[2] = String("POLNO");
[1078]454 if ( avmode == "SCAN") {
455 cols.resize(4);
456 cols[3] = String("SCANNO");
457 }
[1069]458 uInt outrowCount = 0;
459 uChar userflag = 1 << 7;
[1140]460 TableIterator iter(tmp, cols);
[1069]461 while (!iter.pastEnd()) {
462 Table subt = iter.table();
463 ROArrayColumn<Float> specCol, tsysCol;
464 ROArrayColumn<uChar> flagCol;
[1232]465 ROScalarColumn<Double> intCol(subt, "INTERVAL");
[1069]466 specCol.attach(subt,"SPECTRA");
467 flagCol.attach(subt,"FLAGTRA");
468 tsysCol.attach(subt,"TSYS");
[2432]469
470 tout.addRow();
471 TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
472 if ( avmode != "SCAN") {
473 scanColOut.put(outrowCount, uInt(0));
474 }
475 Vector<Float> tmp;
476 specCol.get(0, tmp);
477 uInt nchan = tmp.nelements();
478 // have to do channel by channel here as MaskedArrMath
479 // doesn't have partialMedians
480 Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
481 Vector<Float> outspec(nchan);
482 Vector<uChar> outflag(nchan,0);
483 Vector<Float> outtsys(1);/// @fixme when tsys is channel based
484 for (uInt i=0; i<nchan; ++i) {
485 Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
486 MaskedArray<Float> ma = maskedArray(specs,flags);
487 outspec[i] = median(ma);
488 if ( allEQ(ma.getMask(), False) )
489 outflag[i] = userflag;// flag data
490 }
491 outtsys[0] = median(tsysCol.getColumn());
492 specColOut.put(outrowCount, outspec);
493 flagColOut.put(outrowCount, outflag);
494 tsysColOut.put(outrowCount, outtsys);
495 Double intsum = sum(intCol.getColumn());
496 intColOut.put(outrowCount, intsum);
497 ++outrowCount;
498 ++iter;
499
500 // 2012/02/17 TN
501 // Since STGrid is implemented, average doesn't consider direction
502 // when accumulating
503// MDirection::ScalarColumn dircol ;
504// dircol.attach( subt, "DIRECTION" ) ;
505// Int length = subt.nrow() ;
506// vector< Vector<Double> > dirs ;
507// vector<int> indexes ;
508// // Handle MX mode averaging
509// if (in->nbeam() > 1 ) {
510// length = 1;
[1819]511// }
[2432]512// for ( Int i = 0 ; i < length ; i++ ) {
513// Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
514// bool adddir = true ;
515// for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
516// //if ( allTrue( t == dirs[j] ) ) {
517// Double dx = t[0] - dirs[j][0] ;
518// Double dy = t[1] - dirs[j][1] ;
519// Double dd = sqrt( dx * dx + dy * dy ) ;
520// //if ( allNearAbs( t, dirs[j], tol ) ) {
521// if ( dd <= tol ) {
522// adddir = false ;
523// break ;
524// }
525// }
526// if ( adddir ) {
527// dirs.push_back( t ) ;
528// indexes.push_back( i ) ;
529// }
[1819]530// }
[2432]531// uInt rowNum = dirs.size() ;
532// tout.addRow( rowNum );
533// for ( uInt i = 0 ; i < rowNum ; i++ ) {
534// TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
535// // Handle MX mode averaging
536// if ( avmode != "SCAN") {
537// scanColOut.put(outrowCount+i, uInt(0));
538// }
539// }
540// MDirection::ScalarColumn dircolOut ;
541// dircolOut.attach( tout, "DIRECTION" ) ;
542// for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
543// Vector<Double> t = \
544// dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
545// Vector<Float> tmp;
546// specCol.get(0, tmp);
547// uInt nchan = tmp.nelements();
548// // have to do channel by channel here as MaskedArrMath
549// // doesn't have partialMedians
550// Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
551// // mask spectra for different DIRECTION
552// for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
553// Vector<Double> direction = \
554// dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
555// //if ( t[0] != direction[0] || t[1] != direction[1] ) {
556// Double dx = t[0] - direction[0];
557// Double dy = t[1] - direction[1];
558// Double dd = sqrt(dx*dx + dy*dy);
559// //if ( !allNearAbs( t, direction, tol ) ) {
560// if ( dd > tol && in->nbeam() < 2 ) {
561// flags[jrow] = userflag ;
562// }
563// }
564// Vector<Float> outspec(nchan);
565// Vector<uChar> outflag(nchan,0);
566// Vector<Float> outtsys(1);/// @fixme when tsys is channel based
567// for (uInt i=0; i<nchan; ++i) {
568// Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
569// MaskedArray<Float> ma = maskedArray(specs,flags);
570// outspec[i] = median(ma);
571// if ( allEQ(ma.getMask(), False) )
572// outflag[i] = userflag;// flag data
573// }
574// outtsys[0] = median(tsysCol.getColumn());
575// specColOut.put(outrowCount+irow, outspec);
576// flagColOut.put(outrowCount+irow, outflag);
577// tsysColOut.put(outrowCount+irow, outtsys);
578// Vector<Double> integ = intCol.getColumn() ;
579// MaskedArray<Double> mi = maskedArray( integ, flags ) ;
580// Double intsum = sum(mi);
581// intColOut.put(outrowCount+irow, intsum);
582// }
583// outrowCount += rowNum ;
[1819]584// ++iter;
[1069]585 }
586 return out;
587}
588
[805]589CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
590 bool droprows)
[185]591{
[1505]592 if (insitu_) {
593 return in;
594 }
[805]595 else {
596 // clone
[1505]597 return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
[234]598 }
[805]599}
[234]600
[805]601CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
602 float val,
603 const std::string& mode,
604 bool tsys )
605{
606 CountedPtr< Scantable > out = getScantable(in, false);
607 Table& tab = out->table();
608 ArrayColumn<Float> specCol(tab,"SPECTRA");
609 ArrayColumn<Float> tsysCol(tab,"TSYS");
[2143]610 if (mode=="DIV") val = 1.0/val ;
611 else if (mode=="SUB") val *= -1.0 ;
[805]612 for (uInt i=0; i<tab.nrow(); ++i) {
613 Vector<Float> spec;
614 Vector<Float> ts;
615 specCol.get(i, spec);
616 tsysCol.get(i, ts);
[1308]617 if (mode == "MUL" || mode == "DIV") {
[2143]618 //if (mode == "DIV") val = 1.0/val;
[805]619 spec *= val;
620 specCol.put(i, spec);
621 if ( tsys ) {
622 ts *= val;
623 tsysCol.put(i, ts);
624 }
[1308]625 } else if ( mode == "ADD" || mode == "SUB") {
[2143]626 //if (mode == "SUB") val *= -1.0;
[805]627 spec += val;
628 specCol.put(i, spec);
629 if ( tsys ) {
630 ts += val;
631 tsysCol.put(i, ts);
632 }
633 }
[234]634 }
[805]635 return out;
636}
[234]637
[1819]638CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
639 const std::vector<float> val,
640 const std::string& mode,
641 const std::string& opmode,
642 bool tsys )
643{
644 CountedPtr< Scantable > out ;
645 if ( opmode == "channel" ) {
646 out = arrayOperateChannel( in, val, mode, tsys ) ;
647 }
648 else if ( opmode == "row" ) {
649 out = arrayOperateRow( in, val, mode, tsys ) ;
650 }
651 else {
652 throw( AipsError( "Unknown array operation mode." ) ) ;
653 }
654 return out ;
655}
656
657CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
658 const std::vector<float> val,
659 const std::string& mode,
660 bool tsys )
661{
662 if ( val.size() == 1 ){
663 return unaryOperate( in, val[0], mode, tsys ) ;
664 }
665
666 // conformity of SPECTRA and TSYS
667 if ( tsys ) {
668 TableIterator titer(in->table(), "IFNO");
669 while ( !titer.pastEnd() ) {
670 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
671 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
672 Array<Float> spec = specCol.getColumn() ;
673 Array<Float> ts = tsysCol.getColumn() ;
674 if ( !spec.conform( ts ) ) {
675 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
676 }
677 titer.next() ;
678 }
679 }
680
681 // check if all spectra in the scantable have the same number of channel
682 vector<uInt> nchans;
683 vector<uInt> ifnos = in->getIFNos() ;
684 for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
685 nchans.push_back( in->nchan( ifnos[i] ) ) ;
686 }
687 Vector<uInt> mchans( nchans ) ;
688 if ( anyNE( mchans, mchans[0] ) ) {
689 throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
690 }
691
692 // check if vector size is equal to nchan
693 Vector<Float> fact( val ) ;
694 if ( fact.nelements() != mchans[0] ) {
695 throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
696 }
697
698 // check divided by zero
699 if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
700 throw( AipsError("Divided by zero is not recommended." ) ) ;
701 }
702
703 CountedPtr< Scantable > out = getScantable(in, false);
704 Table& tab = out->table();
705 ArrayColumn<Float> specCol(tab,"SPECTRA");
706 ArrayColumn<Float> tsysCol(tab,"TSYS");
[2143]707 if (mode == "DIV") fact = (float)1.0 / fact;
708 else if (mode == "SUB") fact *= (float)-1.0 ;
[1819]709 for (uInt i=0; i<tab.nrow(); ++i) {
710 Vector<Float> spec;
711 Vector<Float> ts;
712 specCol.get(i, spec);
713 tsysCol.get(i, ts);
714 if (mode == "MUL" || mode == "DIV") {
[2143]715 //if (mode == "DIV") fact = (float)1.0 / fact;
[1819]716 spec *= fact;
717 specCol.put(i, spec);
718 if ( tsys ) {
719 ts *= fact;
720 tsysCol.put(i, ts);
721 }
722 } else if ( mode == "ADD" || mode == "SUB") {
[2143]723 //if (mode == "SUB") fact *= (float)-1.0 ;
[1819]724 spec += fact;
725 specCol.put(i, spec);
726 if ( tsys ) {
727 ts += fact;
728 tsysCol.put(i, ts);
729 }
730 }
731 }
732 return out;
733}
734
735CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
736 const std::vector<float> val,
737 const std::string& mode,
738 bool tsys )
739{
740 if ( val.size() == 1 ) {
741 return unaryOperate( in, val[0], mode, tsys ) ;
742 }
743
744 // conformity of SPECTRA and TSYS
745 if ( tsys ) {
746 TableIterator titer(in->table(), "IFNO");
747 while ( !titer.pastEnd() ) {
748 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
749 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
750 Array<Float> spec = specCol.getColumn() ;
751 Array<Float> ts = tsysCol.getColumn() ;
752 if ( !spec.conform( ts ) ) {
753 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
754 }
755 titer.next() ;
756 }
757 }
758
759 // check if vector size is equal to nrow
760 Vector<Float> fact( val ) ;
[2125]761 if (fact.nelements() != uInt(in->nrow())) {
[1819]762 throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
763 }
764
765 // check divided by zero
766 if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
767 throw( AipsError("Divided by zero is not recommended." ) ) ;
768 }
769
770 CountedPtr< Scantable > out = getScantable(in, false);
771 Table& tab = out->table();
772 ArrayColumn<Float> specCol(tab,"SPECTRA");
773 ArrayColumn<Float> tsysCol(tab,"TSYS");
774 if (mode == "DIV") fact = (float)1.0 / fact;
775 if (mode == "SUB") fact *= (float)-1.0 ;
776 for (uInt i=0; i<tab.nrow(); ++i) {
777 Vector<Float> spec;
778 Vector<Float> ts;
779 specCol.get(i, spec);
780 tsysCol.get(i, ts);
781 if (mode == "MUL" || mode == "DIV") {
782 spec *= fact[i];
783 specCol.put(i, spec);
784 if ( tsys ) {
785 ts *= fact[i];
786 tsysCol.put(i, ts);
787 }
788 } else if ( mode == "ADD" || mode == "SUB") {
789 spec += fact[i];
790 specCol.put(i, spec);
791 if ( tsys ) {
792 ts += fact[i];
793 tsysCol.put(i, ts);
794 }
795 }
796 }
797 return out;
798}
799
800CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
801 const std::vector< std::vector<float> > val,
802 const std::string& mode,
803 bool tsys )
804{
805 // conformity of SPECTRA and TSYS
806 if ( tsys ) {
807 TableIterator titer(in->table(), "IFNO");
808 while ( !titer.pastEnd() ) {
809 ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
810 ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
811 Array<Float> spec = specCol.getColumn() ;
812 Array<Float> ts = tsysCol.getColumn() ;
813 if ( !spec.conform( ts ) ) {
814 throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
815 }
816 titer.next() ;
817 }
818 }
819
820 // some checks
821 vector<uInt> nchans;
[2125]822 for (Int i = 0 ; i < in->nrow() ; i++) {
823 nchans.push_back((in->getSpectrum(i)).size());
[1819]824 }
825 //Vector<uInt> mchans( nchans ) ;
826 vector< Vector<Float> > facts ;
827 for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
828 Vector<Float> tmp( val[i] ) ;
829 // check divided by zero
830 if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
831 throw( AipsError("Divided by zero is not recommended." ) ) ;
832 }
833 // conformity check
834 if ( tmp.nelements() != nchans[i] ) {
835 stringstream ss ;
836 ss << "Row " << i << ": Vector size must be same as number of channel." ;
837 throw( AipsError( ss.str() ) ) ;
838 }
839 facts.push_back( tmp ) ;
840 }
841
842
843 CountedPtr< Scantable > out = getScantable(in, false);
844 Table& tab = out->table();
845 ArrayColumn<Float> specCol(tab,"SPECTRA");
846 ArrayColumn<Float> tsysCol(tab,"TSYS");
847 for (uInt i=0; i<tab.nrow(); ++i) {
848 Vector<Float> fact = facts[i] ;
849 Vector<Float> spec;
850 Vector<Float> ts;
851 specCol.get(i, spec);
852 tsysCol.get(i, ts);
853 if (mode == "MUL" || mode == "DIV") {
854 if (mode == "DIV") fact = (float)1.0 / fact;
855 spec *= fact;
856 specCol.put(i, spec);
857 if ( tsys ) {
858 ts *= fact;
859 tsysCol.put(i, ts);
860 }
861 } else if ( mode == "ADD" || mode == "SUB") {
862 if (mode == "SUB") fact *= (float)-1.0 ;
863 spec += fact;
864 specCol.put(i, spec);
865 if ( tsys ) {
866 ts += fact;
867 tsysCol.put(i, ts);
868 }
869 }
870 }
871 return out;
872}
873
[1569]874CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
875 const CountedPtr<Scantable>& right,
[1308]876 const std::string& mode)
877{
878 bool insitu = insitu_;
879 if ( ! left->conformant(*right) ) {
880 throw(AipsError("'left' and 'right' scantables are not conformant."));
881 }
882 setInsitu(false);
883 CountedPtr< Scantable > out = getScantable(left, false);
884 setInsitu(insitu);
885 Table& tout = out->table();
886 Block<String> coln(5);
887 coln[0] = "SCANNO"; coln[1] = "CYCLENO"; coln[2] = "BEAMNO";
888 coln[3] = "IFNO"; coln[4] = "POLNO";
889 Table tmpl = tout.sort(coln);
890 Table tmpr = right->table().sort(coln);
891 ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
892 ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
893 ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
894 ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
895
896 for (uInt i=0; i<tout.nrow(); ++i) {
897 Vector<Float> lspecvec, rspecvec;
898 Vector<uChar> lflagvec, rflagvec;
899 lspecvec = lspecCol(i); rspecvec = rspecCol(i);
900 lflagvec = lflagCol(i); rflagvec = rflagCol(i);
901 MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
902 MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
903 if (mode == "ADD") {
904 mleft += mright;
905 } else if ( mode == "SUB") {
906 mleft -= mright;
907 } else if ( mode == "MUL") {
908 mleft *= mright;
909 } else if ( mode == "DIV") {
910 mleft /= mright;
911 } else {
912 throw(AipsError("Illegal binary operator"));
913 }
914 lspecCol.put(i, mleft.getArray());
915 }
916 return out;
917}
918
919
920
[805]921MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
922 const Vector<uChar>& f)
923{
924 Vector<Bool> mask;
925 mask.resize(f.shape());
926 convertArray(mask, f);
927 return MaskedArray<Float>(s,!mask);
928}
[248]929
[1819]930MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
931 const Vector<uChar>& f)
932{
933 Vector<Bool> mask;
934 mask.resize(f.shape());
935 convertArray(mask, f);
936 return MaskedArray<Double>(s,!mask);
937}
938
[805]939Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
940{
941 const Vector<Bool>& m = ma.getMask();
942 Vector<uChar> flags(m.shape());
943 convertArray(flags, !m);
944 return flags;
945}
[234]946
[1066]947CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
948 const std::string & mode,
949 bool preserve )
[805]950{
951 /// @todo make other modes available
952 /// modes should be "nearest", "pair"
953 // make this operation non insitu
[2163]954 (void) mode; //currently unused
[805]955 const Table& tin = in->table();
[1819]956 Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
957 Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
[805]958 if ( offs.nrow() == 0 )
959 throw(AipsError("No 'off' scans present."));
960 // put all "on" scans into output table
[701]961
[805]962 bool insitu = insitu_;
963 setInsitu(false);
964 CountedPtr< Scantable > out = getScantable(in, true);
965 setInsitu(insitu);
966 Table& tout = out->table();
[248]967
[805]968 TableCopy::copyRows(tout, ons);
969 TableRow row(tout);
970 ROScalarColumn<Double> offtimeCol(offs, "TIME");
971 ArrayColumn<Float> outspecCol(tout, "SPECTRA");
972 ROArrayColumn<Float> outtsysCol(tout, "TSYS");
973 ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
974 for (uInt i=0; i < tout.nrow(); ++i) {
975 const TableRecord& rec = row.get(i);
976 Double ontime = rec.asDouble("TIME");
[1321]977 Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
978 && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
979 && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
980 ROScalarColumn<Double> offtimeCol(presel, "TIME");
981
[805]982 Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
[1259]983 // Timestamp may vary within a cycle ???!!!
[1321]984 // increase this by 0.01 sec in case of rounding errors...
[1259]985 // There might be a better way to do this.
[1321]986 // fix to this fix. TIME is MJD, so 1.0d not 1.0s
987 mindeltat += 0.01/24./60./60.;
988 Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
[780]989
[1259]990 if ( sel.nrow() < 1 ) {
991 throw(AipsError("No closest in time found... This could be a rounding "
992 "issue. Try quotient instead."));
993 }
[805]994 TableRow offrow(sel);
995 const TableRecord& offrec = offrow.get(0);//should only be one row
996 RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
997 RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
998 RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
999 /// @fixme this assumes tsys is a scalar not vector
1000 Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1001 Vector<Float> specon, tsyson;
1002 outtsysCol.get(i, tsyson);
1003 outspecCol.get(i, specon);
1004 Vector<uChar> flagon;
1005 outflagCol.get(i, flagon);
1006 MaskedArray<Float> mon = maskedArray(specon, flagon);
1007 MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1008 MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1009 if (preserve) {
1010 quot -= tsysoffscalar;
1011 } else {
1012 quot -= tsyson[0];
[701]1013 }
[805]1014 outspecCol.put(i, quot.getArray());
1015 outflagCol.put(i, flagsFromMA(quot));
1016 }
[926]1017 // renumber scanno
1018 TableIterator it(tout, "SCANNO");
1019 uInt i = 0;
1020 while ( !it.pastEnd() ) {
1021 Table t = it.table();
1022 TableVector<uInt> vec(t, "SCANNO");
1023 vec = i;
1024 ++i;
1025 ++it;
1026 }
[805]1027 return out;
1028}
[234]1029
[1066]1030
1031CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
1032 const CountedPtr< Scantable > & off,
1033 bool preserve )
1034{
1035 bool insitu = insitu_;
[1069]1036 if ( ! on->conformant(*off) ) {
1037 throw(AipsError("'on' and 'off' scantables are not conformant."));
1038 }
[1066]1039 setInsitu(false);
1040 CountedPtr< Scantable > out = getScantable(on, false);
1041 setInsitu(insitu);
1042 Table& tout = out->table();
1043 const Table& toff = off->table();
1044 TableIterator sit(tout, "SCANNO");
1045 TableIterator s2it(toff, "SCANNO");
1046 while ( !sit.pastEnd() ) {
1047 Table ton = sit.table();
1048 TableRow row(ton);
1049 Table t = s2it.table();
1050 ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1051 ROArrayColumn<Float> outtsysCol(ton, "TSYS");
1052 ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1053 for (uInt i=0; i < ton.nrow(); ++i) {
1054 const TableRecord& rec = row.get(i);
1055 Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1056 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
1057 && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
[1145]1058 if ( offsel.nrow() == 0 )
1059 throw AipsError("STMath::quotient: no matching off");
[1066]1060 TableRow offrow(offsel);
1061 const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
1062 RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
1063 RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
1064 RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
1065 Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
1066 Vector<Float> specon, tsyson;
1067 outtsysCol.get(i, tsyson);
1068 outspecCol.get(i, specon);
1069 Vector<uChar> flagon;
1070 outflagCol.get(i, flagon);
1071 MaskedArray<Float> mon = maskedArray(specon, flagon);
1072 MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
1073 MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
1074 if (preserve) {
1075 quot -= tsysoffscalar;
1076 } else {
1077 quot -= tsyson[0];
1078 }
1079 outspecCol.put(i, quot.getArray());
1080 outflagCol.put(i, flagsFromMA(quot));
1081 }
1082 ++sit;
1083 ++s2it;
1084 // take the first off for each on scan which doesn't have a
1085 // matching off scan
1086 // non <= noff: matching pairs, non > noff matching pairs then first off
1087 if ( s2it.pastEnd() ) s2it.reset();
1088 }
1089 return out;
1090}
1091
[1391]1092// dototalpower (migration of GBTIDL procedure dototalpower.pro)
1093// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
1094// do it for each cycles in a specific scan.
1095CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
1096 const CountedPtr< Scantable >& caloff, Float tcal )
1097{
[2289]1098 if ( ! calon->conformant(*caloff) ) {
[1391]1099 throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
1100 }
1101 setInsitu(false);
1102 CountedPtr< Scantable > out = getScantable(caloff, false);
1103 Table& tout = out->table();
1104 const Table& tcon = calon->table();
1105 Vector<Float> tcalout;
[1066]1106
[2289]1107 std::map<uInt,uInt> tcalIdToRecNoMap;
1108 const Table& calOffTcalTable = caloff->tcal().table();
1109 {
1110 ROScalarColumn<uInt> calOffTcalTable_IDcol(calOffTcalTable, "ID");
1111 const Vector<uInt> tcalIds(calOffTcalTable_IDcol.getColumn());
1112 size_t tcalIdsEnd = tcalIds.nelements();
1113 for (uInt i = 0; i < tcalIdsEnd; i++) {
1114 tcalIdToRecNoMap[tcalIds[i]] = i;
1115 }
1116 }
1117 ROArrayColumn<Float> calOffTcalTable_TCALcol(calOffTcalTable, "TCAL");
1118
[1391]1119 if ( tout.nrow() != tcon.nrow() ) {
1120 throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
1121 }
1122 // iteration by scanno or cycle no.
1123 TableIterator sit(tout, "SCANNO");
1124 TableIterator s2it(tcon, "SCANNO");
1125 while ( !sit.pastEnd() ) {
1126 Table toff = sit.table();
1127 TableRow row(toff);
1128 Table t = s2it.table();
1129 ScalarColumn<Double> outintCol(toff, "INTERVAL");
1130 ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1131 ArrayColumn<Float> outtsysCol(toff, "TSYS");
1132 ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1133 ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1134 ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1135 ROScalarColumn<Double> onintCol(t, "INTERVAL");
1136 ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1137 ROArrayColumn<Float> ontsysCol(t, "TSYS");
1138 ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1139 //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1140
1141 for (uInt i=0; i < toff.nrow(); ++i) {
1142 //skip these checks -> assumes the data order are the same between the cal on off pairs
1143 //
1144 Vector<Float> specCalon, specCaloff;
1145 // to store scalar (mean) tsys
1146 Vector<Float> tsysout(1);
1147 uInt tcalId, polno;
1148 Double offint, onint;
1149 outpolCol.get(i, polno);
1150 outspecCol.get(i, specCaloff);
1151 onspecCol.get(i, specCalon);
1152 Vector<uChar> flagCaloff, flagCalon;
1153 outflagCol.get(i, flagCaloff);
1154 onflagCol.get(i, flagCalon);
1155 outtcalIdCol.get(i, tcalId);
1156 outintCol.get(i, offint);
1157 onintCol.get(i, onint);
1158 // caluculate mean Tsys
1159 uInt nchan = specCaloff.nelements();
1160 // percentage of edge cut off
1161 uInt pc = 10;
1162 uInt bchan = nchan/pc;
1163 uInt echan = nchan-bchan;
1164
1165 Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1166 Vector<Float> testsubsp = specCaloff(chansl);
1167 MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1168 MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1169 MaskedArray<Float> spdiff = spon-spoff;
1170 uInt noff = spoff.nelementsValid();
1171 //uInt non = spon.nelementsValid();
1172 uInt ndiff = spdiff.nelementsValid();
1173 Float meantsys;
1174
1175/**
1176 Double subspec, subdiff;
1177 uInt usednchan;
1178 subspec = 0;
1179 subdiff = 0;
1180 usednchan = 0;
1181 for(uInt k=(bchan-1); k<echan; k++) {
1182 subspec += specCaloff[k];
1183 subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1184 ++usednchan;
1185 }
1186**/
1187 // get tcal if input tcal <= 0
1188 Float tcalUsed;
1189 tcalUsed = tcal;
1190 if ( tcal <= 0.0 ) {
[2289]1191 uInt tcalRecNo = tcalIdToRecNoMap[tcalId];
1192 calOffTcalTable_TCALcol.get(tcalRecNo, tcalout);
[2004]1193// if (polno<=3) {
1194// tcalUsed = tcalout[polno];
1195// }
1196// else {
1197// tcalUsed = tcalout[0];
1198// }
1199 if ( tcalout.size() == 1 )
1200 tcalUsed = tcalout[0] ;
1201 else if ( tcalout.size() == nchan )
1202 tcalUsed = mean(tcalout) ;
[1391]1203 else {
[2004]1204 uInt ipol = polno ;
1205 if ( ipol > 3 ) ipol = 0 ;
1206 tcalUsed = tcalout[ipol] ;
[1391]1207 }
1208 }
1209
1210 Float meanoff;
1211 Float meandiff;
1212 if (noff && ndiff) {
1213 //Debug
1214 //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
[1819]1215 //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1216 //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
[1391]1217 meanoff = sum(spoff)/noff;
1218 meandiff = sum(spdiff)/ndiff;
1219 meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1220 }
1221 else {
1222 meantsys=1;
1223 }
1224
1225 tsysout[0] = Float(meantsys);
1226 MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1227 MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1228 MaskedArray<Float> sig = Float(0.5) * (mcaloff + mcalon);
1229 //uInt ncaloff = mcaloff.nelementsValid();
1230 //uInt ncalon = mcalon.nelementsValid();
1231
1232 outintCol.put(i, offint+onint);
1233 outspecCol.put(i, sig.getArray());
1234 outflagCol.put(i, flagsFromMA(sig));
1235 outtsysCol.put(i, tsysout);
1236 }
1237 ++sit;
1238 ++s2it;
1239 }
1240 return out;
1241}
1242
1243//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1244// observatiions.
1245// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1246// no smoothing).
1247// output: resultant scantable [= (sig-ref/ref)*tsys]
1248CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1249 const CountedPtr < Scantable >& ref,
1250 int smoothref,
1251 casa::Float tsysv,
1252 casa::Float tau )
1253{
1254if ( ! ref->conformant(*sig) ) {
1255 throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1256 }
1257 setInsitu(false);
1258 CountedPtr< Scantable > out = getScantable(sig, false);
1259 CountedPtr< Scantable > smref;
1260 if ( smoothref > 1 ) {
1261 float fsmoothref = static_cast<float>(smoothref);
1262 std::string inkernel = "boxcar";
1263 smref = smooth(ref, inkernel, fsmoothref );
1264 ostringstream oss;
1265 oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1266 pushLog(String(oss));
1267 }
1268 else {
1269 smref = ref;
1270 }
1271 Table& tout = out->table();
1272 const Table& tref = smref->table();
1273 if ( tout.nrow() != tref.nrow() ) {
1274 throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1275 }
1276 // iteration by scanno? or cycle no.
1277 TableIterator sit(tout, "SCANNO");
1278 TableIterator s2it(tref, "SCANNO");
1279 while ( !sit.pastEnd() ) {
1280 Table ton = sit.table();
1281 Table t = s2it.table();
1282 ScalarColumn<Double> outintCol(ton, "INTERVAL");
1283 ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1284 ArrayColumn<Float> outtsysCol(ton, "TSYS");
1285 ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1286 ArrayColumn<Float> refspecCol(t, "SPECTRA");
1287 ROScalarColumn<Double> refintCol(t, "INTERVAL");
1288 ROArrayColumn<Float> reftsysCol(t, "TSYS");
1289 ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1290 ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1291 for (uInt i=0; i < ton.nrow(); ++i) {
1292
1293 Double onint, refint;
1294 Vector<Float> specon, specref;
1295 // to store scalar (mean) tsys
1296 Vector<Float> tsysref;
1297 outintCol.get(i, onint);
1298 refintCol.get(i, refint);
1299 outspecCol.get(i, specon);
1300 refspecCol.get(i, specref);
1301 Vector<uChar> flagref, flagon;
1302 outflagCol.get(i, flagon);
1303 refflagCol.get(i, flagref);
1304 reftsysCol.get(i, tsysref);
1305
1306 Float tsysrefscalar;
1307 if ( tsysv > 0.0 ) {
1308 ostringstream oss;
1309 Float elev;
1310 refelevCol.get(i, elev);
1311 oss << "user specified Tsys = " << tsysv;
1312 // do recalc elevation if EL = 0
1313 if ( elev == 0 ) {
1314 throw(AipsError("EL=0, elevation data is missing."));
1315 } else {
1316 if ( tau <= 0.0 ) {
1317 throw(AipsError("Valid tau is not supplied."));
1318 } else {
1319 tsysrefscalar = tsysv * exp(tau/elev);
1320 }
1321 }
1322 oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1323 pushLog(String(oss));
1324 }
1325 else {
1326 tsysrefscalar = tsysref[0];
1327 }
1328 //get quotient spectrum
1329 MaskedArray<Float> mref = maskedArray(specref, flagref);
1330 MaskedArray<Float> mon = maskedArray(specon, flagon);
1331 MaskedArray<Float> specres = tsysrefscalar*((mon - mref)/mref);
1332 Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1333
1334 //Debug
1335 //cerr<<"Tsys used="<<tsysrefscalar<<endl;
[1819]1336 //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1337 //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
[1391]1338 // fill the result, replay signal tsys by reference tsys
1339 outintCol.put(i, resint);
1340 outspecCol.put(i, specres.getArray());
1341 outflagCol.put(i, flagsFromMA(specres));
1342 outtsysCol.put(i, tsysref);
1343 }
1344 ++sit;
1345 ++s2it;
1346 }
1347 return out;
1348}
1349
1350CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1351 const std::vector<int>& scans,
1352 int smoothref,
1353 casa::Float tsysv,
1354 casa::Float tau,
1355 casa::Float tcal )
1356
1357{
1358 setInsitu(false);
1359 STSelector sel;
[1819]1360 std::vector<int> scan1, scan2, beams, types;
[1391]1361 std::vector< vector<int> > scanpair;
[1819]1362 //std::vector<string> calstate;
1363 std::vector<int> calstate;
[1391]1364 String msg;
1365
1366 CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1367 CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1368
1369 std::vector< CountedPtr< Scantable > > sctables;
1370 sctables.push_back(s1b1on);
1371 sctables.push_back(s1b1off);
1372 sctables.push_back(s1b2on);
1373 sctables.push_back(s1b2off);
1374 sctables.push_back(s2b1on);
1375 sctables.push_back(s2b1off);
1376 sctables.push_back(s2b2on);
1377 sctables.push_back(s2b2off);
1378
1379 //check scanlist
1380 int n=s->checkScanInfo(scans);
1381 if (n==1) {
1382 throw(AipsError("Incorrect scan pairs. "));
1383 }
1384
1385 // Assume scans contain only a pair of consecutive scan numbers.
1386 // It is assumed that first beam, b1, is on target.
1387 // There is no check if the first beam is on or not.
1388 if ( scans.size()==1 ) {
1389 scan1.push_back(scans[0]);
1390 scan2.push_back(scans[0]+1);
1391 } else if ( scans.size()==2 ) {
1392 scan1.push_back(scans[0]);
1393 scan2.push_back(scans[1]);
1394 } else {
1395 if ( scans.size()%2 == 0 ) {
1396 for (uInt i=0; i<scans.size(); i++) {
1397 if (i%2 == 0) {
1398 scan1.push_back(scans[i]);
1399 }
1400 else {
1401 scan2.push_back(scans[i]);
1402 }
1403 }
1404 } else {
1405 throw(AipsError("Odd numbers of scans, cannot form pairs."));
1406 }
1407 }
1408 scanpair.push_back(scan1);
1409 scanpair.push_back(scan2);
[1819]1410 //calstate.push_back("*calon");
1411 //calstate.push_back("*[^calon]");
1412 calstate.push_back(SrcType::NODCAL);
1413 calstate.push_back(SrcType::NOD);
[1391]1414 CountedPtr< Scantable > ws = getScantable(s, false);
1415 uInt l=0;
1416 while ( l < sctables.size() ) {
1417 for (uInt i=0; i < 2; i++) {
1418 for (uInt j=0; j < 2; j++) {
1419 for (uInt k=0; k < 2; k++) {
1420 sel.reset();
1421 sel.setScans(scanpair[i]);
[1819]1422 //sel.setName(calstate[k]);
1423 types.clear();
1424 types.push_back(calstate[k]);
1425 sel.setTypes(types);
[1391]1426 beams.clear();
1427 beams.push_back(j);
1428 sel.setBeams(beams);
1429 ws->setSelection(sel);
1430 sctables[l]= getScantable(ws, false);
1431 l++;
1432 }
1433 }
1434 }
1435 }
1436
1437 // replace here by splitData or getData functionality
1438 CountedPtr< Scantable > sig1;
1439 CountedPtr< Scantable > ref1;
1440 CountedPtr< Scantable > sig2;
1441 CountedPtr< Scantable > ref2;
1442 CountedPtr< Scantable > calb1;
1443 CountedPtr< Scantable > calb2;
1444
1445 msg=String("Processing dototalpower for subset of the data");
1446 ostringstream oss1;
1447 oss1 << msg << endl;
1448 pushLog(String(oss1));
1449 // Debug for IRC CS data
1450 //float tcal1=7.0;
1451 //float tcal2=4.0;
1452 sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1453 ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1454 ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1455 sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1456
1457 // correction of user-specified tsys for elevation here
1458
1459 // dosigref calibration
1460 msg=String("Processing dosigref for subset of the data");
1461 ostringstream oss2;
1462 oss2 << msg << endl;
1463 pushLog(String(oss2));
1464 calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1465 calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1466
1467 // iteration by scanno or cycle no.
1468 Table& tcalb1 = calb1->table();
1469 Table& tcalb2 = calb2->table();
1470 TableIterator sit(tcalb1, "SCANNO");
1471 TableIterator s2it(tcalb2, "SCANNO");
1472 while ( !sit.pastEnd() ) {
1473 Table t1 = sit.table();
1474 Table t2= s2it.table();
1475 ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1476 ArrayColumn<Float> outtsysCol(t1, "TSYS");
1477 ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1478 ScalarColumn<Double> outintCol(t1, "INTERVAL");
1479 ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1480 ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1481 ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1482 ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1483 for (uInt i=0; i < t1.nrow(); ++i) {
1484 Vector<Float> spec1, spec2;
1485 // to store scalar (mean) tsys
1486 Vector<Float> tsys1, tsys2;
1487 Vector<uChar> flag1, flag2;
1488 Double tint1, tint2;
1489 outspecCol.get(i, spec1);
1490 t2specCol.get(i, spec2);
1491 outflagCol.get(i, flag1);
1492 t2flagCol.get(i, flag2);
1493 outtsysCol.get(i, tsys1);
1494 t2tsysCol.get(i, tsys2);
1495 outintCol.get(i, tint1);
1496 t2intCol.get(i, tint2);
1497 // average
1498 // assume scalar tsys for weights
1499 Float wt1, wt2, tsyssq1, tsyssq2;
1500 tsyssq1 = tsys1[0]*tsys1[0];
1501 tsyssq2 = tsys2[0]*tsys2[0];
1502 wt1 = Float(tint1)/tsyssq1;
1503 wt2 = Float(tint2)/tsyssq2;
1504 Float invsumwt=1/(wt1+wt2);
1505 MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1506 MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1507 MaskedArray<Float> avspec = invsumwt * (wt1*mspec1 + wt2*mspec2);
1508 //Array<Float> avtsys = Float(0.5) * (tsys1 + tsys2);
1509 // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
[1819]1510 // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1511 // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
[1391]1512 tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1513 Array<Float> avtsys = tsys1;
1514
1515 outspecCol.put(i, avspec.getArray());
1516 outflagCol.put(i, flagsFromMA(avspec));
1517 outtsysCol.put(i, avtsys);
1518 }
1519 ++sit;
1520 ++s2it;
1521 }
1522 return calb1;
1523}
1524
1525//GBTIDL version of frequency switched data calibration
1526CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1527 const std::vector<int>& scans,
1528 int smoothref,
1529 casa::Float tsysv,
1530 casa::Float tau,
1531 casa::Float tcal )
1532{
1533
1534
[2163]1535 (void) scans; //currently unused
[1391]1536 STSelector sel;
1537 CountedPtr< Scantable > ws = getScantable(s, false);
1538 CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
[1819]1539 CountedPtr< Scantable > calsig, calref, out, out1, out2;
1540 Bool nofold=False;
1541 vector<int> types ;
[1391]1542
1543 //split the data
[1819]1544 //sel.setName("*_fs");
1545 types.push_back( SrcType::FSON ) ;
1546 sel.setTypes( types ) ;
[1391]1547 ws->setSelection(sel);
1548 sig = getScantable(ws,false);
1549 sel.reset();
[1819]1550 types.clear() ;
1551 //sel.setName("*_fs_calon");
1552 types.push_back( SrcType::FONCAL ) ;
1553 sel.setTypes( types ) ;
[1391]1554 ws->setSelection(sel);
1555 sigwcal = getScantable(ws,false);
1556 sel.reset();
[1819]1557 types.clear() ;
1558 //sel.setName("*_fsr");
1559 types.push_back( SrcType::FSOFF ) ;
1560 sel.setTypes( types ) ;
[1391]1561 ws->setSelection(sel);
1562 ref = getScantable(ws,false);
1563 sel.reset();
[1819]1564 types.clear() ;
1565 //sel.setName("*_fsr_calon");
1566 types.push_back( SrcType::FOFFCAL ) ;
1567 sel.setTypes( types ) ;
[1391]1568 ws->setSelection(sel);
1569 refwcal = getScantable(ws,false);
[1819]1570 sel.reset() ;
1571 types.clear() ;
[1391]1572
1573 calsig = dototalpower(sigwcal, sig, tcal=tcal);
1574 calref = dototalpower(refwcal, ref, tcal=tcal);
1575
[1819]1576 out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1577 out2=dosigref(calref,calsig,smoothref,tsysv,tau);
[1391]1578
[1819]1579 Table& tabout1=out1->table();
1580 Table& tabout2=out2->table();
1581 ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1582 ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1583 ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1584 Vector<Float> spec; specCol.get(0, spec);
1585 uInt nchan = spec.nelements();
1586 uInt freqid1; freqidCol1.get(0,freqid1);
1587 uInt freqid2; freqidCol2.get(0,freqid2);
1588 Double rp1, rp2, rv1, rv2, inc1, inc2;
1589 out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1590 out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1591 //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1592 //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1593 //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1594 if (rp1==rp2) {
1595 Double foffset = rv1 - rv2;
1596 uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1597 if (choffset >= nchan) {
1598 //cerr<<"out-band frequency switching, no folding"<<endl;
1599 LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1600 os<<"out-band frequency switching, no folding"<<LogIO::POST;
1601 nofold = True;
1602 }
1603 }
1604
1605 if (nofold) {
1606 std::vector< CountedPtr< Scantable > > tabs;
1607 tabs.push_back(out1);
1608 tabs.push_back(out2);
1609 out = merge(tabs);
1610 }
1611 else {
1612 //out = out1;
1613 Double choffset = ( rv1 - rv2 ) / inc2 ;
1614 out = dofold( out1, out2, choffset ) ;
1615 }
1616
[1391]1617 return out;
1618}
1619
[1819]1620CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1621 const CountedPtr<Scantable> &ref,
1622 Double choffset,
1623 Double choffset2 )
1624{
1625 LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1626 os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
[1391]1627
[1819]1628 // output scantable
1629 CountedPtr<Scantable> out = getScantable( sig, false ) ;
1630
1631 // separate choffset to integer part and decimal part
1632 Int ioffset = (Int)choffset ;
1633 Double doffset = choffset - ioffset ;
1634 Int ioffset2 = (Int)choffset2 ;
1635 Double doffset2 = choffset2 - ioffset2 ;
1636 os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1637 os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ;
1638
1639 // get column
1640 ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1641 ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1642 ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1643 ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1644 ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1645 ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1646 ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1647 ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1648 ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1649 ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1650
1651 // check
1652 if ( ioffset == 0 ) {
1653 LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1654 os << "channel offset is zero, no folding" << LogIO::POST ;
1655 return out ;
1656 }
1657 int nchan = ref->nchan() ;
1658 if ( abs(ioffset) >= nchan ) {
1659 LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1660 os << "out-band frequency switching, no folding" << LogIO::POST ;
1661 return out ;
1662 }
1663
1664 // attach column for output scantable
1665 ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1666 ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1667 ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1668 ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1669 ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1670 ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1671
1672 // for each row
1673 // assume that the data order are same between sig and ref
1674 RowAccumulator acc( asap::W_TINTSYS ) ;
1675 for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1676 // get values
1677 Vector<Float> spsig ;
1678 specCol1.get( i, spsig ) ;
1679 Vector<Float> spref ;
1680 specCol2.get( i, spref ) ;
1681 Vector<Float> tsyssig ;
1682 tsysCol1.get( i, tsyssig ) ;
1683 Vector<Float> tsysref ;
1684 tsysCol2.get( i, tsysref ) ;
1685 Vector<uChar> flagsig ;
1686 flagCol1.get( i, flagsig ) ;
1687 Vector<uChar> flagref ;
1688 flagCol2.get( i, flagref ) ;
1689 Double timesig ;
1690 mjdCol1.get( i, timesig ) ;
1691 Double timeref ;
1692 mjdCol2.get( i, timeref ) ;
1693 Double intsig ;
1694 intervalCol1.get( i, intsig ) ;
1695 Double intref ;
1696 intervalCol2.get( i, intref ) ;
1697
1698 // shift reference spectra
1699 int refchan = spref.nelements() ;
1700 Vector<Float> sspref( spref.nelements() ) ;
1701 Vector<Float> stsysref( tsysref.nelements() ) ;
1702 Vector<uChar> sflagref( flagref.nelements() ) ;
1703 if ( ioffset > 0 ) {
1704 // SPECTRA and FLAGTRA
1705 for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1706 sspref[j] = spref[j+ioffset] ;
1707 sflagref[j] = flagref[j+ioffset] ;
1708 }
1709 for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1710 sspref[j] = spref[j-refchan+ioffset] ;
1711 sflagref[j] = flagref[j-refchan+ioffset] ;
1712 }
1713 spref = sspref.copy() ;
1714 flagref = sflagref.copy() ;
1715 for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1716 sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1717 sflagref[j] = flagref[j+1] + flagref[j] ;
1718 }
1719 sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1720 sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1721
1722 // TSYS
1723 if ( spref.nelements() == tsysref.nelements() ) {
1724 for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1725 stsysref[j] = tsysref[j+ioffset] ;
1726 }
1727 for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1728 stsysref[j] = tsysref[j-refchan+ioffset] ;
1729 }
1730 tsysref = stsysref.copy() ;
1731 for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1732 stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1733 }
1734 stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1735 }
1736 }
1737 else {
1738 // SPECTRA and FLAGTRA
1739 for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1740 sspref[j] = spref[refchan+ioffset+j] ;
1741 sflagref[j] = flagref[refchan+ioffset+j] ;
1742 }
1743 for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1744 sspref[j] = spref[j+ioffset] ;
1745 sflagref[j] = flagref[j+ioffset] ;
1746 }
1747 spref = sspref.copy() ;
1748 flagref = sflagref.copy() ;
1749 sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1750 sflagref[0] = flagref[0] + flagref[refchan-1] ;
1751 for ( int j = 1 ; j < refchan ; j++ ) {
1752 sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1753 sflagref[j] = flagref[j-1] + flagref[j] ;
1754 }
1755 // TSYS
1756 if ( spref.nelements() == tsysref.nelements() ) {
1757 for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1758 stsysref[j] = tsysref[refchan+ioffset+j] ;
1759 }
1760 for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1761 stsysref[j] = tsysref[j+ioffset] ;
1762 }
1763 tsysref = stsysref.copy() ;
1764 stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1765 for ( int j = 1 ; j < refchan ; j++ ) {
1766 stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1767 }
1768 }
1769 }
1770
1771 // shift signal spectra if necessary (only for APEX?)
1772 if ( choffset2 != 0.0 ) {
1773 int sigchan = spsig.nelements() ;
1774 Vector<Float> sspsig( spsig.nelements() ) ;
1775 Vector<Float> stsyssig( tsyssig.nelements() ) ;
1776 Vector<uChar> sflagsig( flagsig.nelements() ) ;
1777 if ( ioffset2 > 0 ) {
1778 // SPECTRA and FLAGTRA
1779 for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1780 sspsig[j] = spsig[j+ioffset2] ;
1781 sflagsig[j] = flagsig[j+ioffset2] ;
1782 }
1783 for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1784 sspsig[j] = spsig[j-sigchan+ioffset2] ;
1785 sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1786 }
1787 spsig = sspsig.copy() ;
1788 flagsig = sflagsig.copy() ;
1789 for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1790 sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1791 sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1792 }
1793 sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1794 sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1795 // TSTS
1796 if ( spsig.nelements() == tsyssig.nelements() ) {
1797 for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1798 stsyssig[j] = tsyssig[j+ioffset2] ;
1799 }
1800 for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1801 stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1802 }
1803 tsyssig = stsyssig.copy() ;
1804 for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1805 stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1806 }
1807 stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1808 }
1809 }
1810 else {
1811 // SPECTRA and FLAGTRA
1812 for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1813 sspsig[j] = spsig[sigchan+ioffset2+j] ;
1814 sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1815 }
1816 for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1817 sspsig[j] = spsig[j+ioffset2] ;
1818 sflagsig[j] = flagsig[j+ioffset2] ;
1819 }
1820 spsig = sspsig.copy() ;
1821 flagsig = sflagsig.copy() ;
1822 sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1823 sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1824 for ( int j = 1 ; j < sigchan ; j++ ) {
1825 sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1826 sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1827 }
1828 // TSYS
1829 if ( spsig.nelements() == tsyssig.nelements() ) {
1830 for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1831 stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1832 }
1833 for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1834 stsyssig[j] = tsyssig[j+ioffset2] ;
1835 }
1836 tsyssig = stsyssig.copy() ;
1837 stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1838 for ( int j = 1 ; j < sigchan ; j++ ) {
1839 stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1840 }
1841 }
1842 }
1843 }
1844
1845 // folding
1846 acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1847 acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1848
1849 // put result
1850 specColOut.put( i, acc.getSpectrum() ) ;
1851 const Vector<Bool> &msk = acc.getMask() ;
1852 Vector<uChar> flg( msk.shape() ) ;
1853 convertArray( flg, !msk ) ;
1854 flagColOut.put( i, flg ) ;
1855 tsysColOut.put( i, acc.getTsys() ) ;
1856 intervalColOut.put( i, acc.getInterval() ) ;
1857 mjdColOut.put( i, acc.getTime() ) ;
1858 // change FREQ_ID to unshifted IF setting (only for APEX?)
1859 if ( choffset2 != 0.0 ) {
1860 uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1861 double refpix, refval, increment ;
1862 out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1863 refval -= choffset * increment ;
1864 uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1865 Vector<uInt> freqids = fidColOut.getColumn() ;
1866 for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1867 if ( freqids[j] == freqid )
1868 freqids[j] = newfreqid ;
1869 }
1870 fidColOut.putColumn( freqids ) ;
1871 }
1872
1873 acc.reset() ;
1874 }
1875
1876 return out ;
1877}
1878
1879
[805]1880CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1881{
1882 // make copy or reference
1883 CountedPtr< Scantable > out = getScantable(in, false);
1884 Table& tout = out->table();
[1008]1885 Block<String> cols(4);
[805]1886 cols[0] = String("SCANNO");
[1008]1887 cols[1] = String("CYCLENO");
1888 cols[2] = String("BEAMNO");
1889 cols[3] = String("POLNO");
[805]1890 TableIterator iter(tout, cols);
1891 while (!iter.pastEnd()) {
1892 Table subt = iter.table();
1893 // this should leave us with two rows for the two IFs....if not ignore
1894 if (subt.nrow() != 2 ) {
1895 continue;
[701]1896 }
[1008]1897 ArrayColumn<Float> specCol(subt, "SPECTRA");
1898 ArrayColumn<Float> tsysCol(subt, "TSYS");
1899 ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
[805]1900 Vector<Float> onspec,offspec, ontsys, offtsys;
1901 Vector<uChar> onflag, offflag;
1902 tsysCol.get(0, ontsys); tsysCol.get(1, offtsys);
1903 specCol.get(0, onspec); specCol.get(1, offspec);
1904 flagCol.get(0, onflag); flagCol.get(1, offflag);
1905 MaskedArray<Float> on = maskedArray(onspec, onflag);
1906 MaskedArray<Float> off = maskedArray(offspec, offflag);
1907 MaskedArray<Float> oncopy = on.copy();
[248]1908
[805]1909 on /= off; on -= 1.0f;
1910 on *= ontsys[0];
1911 off /= oncopy; off -= 1.0f;
1912 off *= offtsys[0];
1913 specCol.put(0, on.getArray());
1914 const Vector<Bool>& m0 = on.getMask();
1915 Vector<uChar> flags0(m0.shape());
1916 convertArray(flags0, !m0);
1917 flagCol.put(0, flags0);
[234]1918
[805]1919 specCol.put(1, off.getArray());
1920 const Vector<Bool>& m1 = off.getMask();
1921 Vector<uChar> flags1(m1.shape());
1922 convertArray(flags1, !m1);
1923 flagCol.put(1, flags1);
[867]1924 ++iter;
[130]1925 }
[780]1926
[805]1927 return out;
[9]1928}
[48]1929
[805]1930std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1931 const std::vector< bool > & mask,
1932 const std::string& which )
[130]1933{
1934
[805]1935 Vector<Bool> m(mask);
1936 const Table& tab = in->table();
1937 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1938 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1939 std::vector<float> out;
1940 for (uInt i=0; i < tab.nrow(); ++i ) {
1941 Vector<Float> spec; specCol.get(i, spec);
[867]1942 Vector<uChar> flag; flagCol.get(i, flag);
1943 MaskedArray<Float> ma = maskedArray(spec, flag);
1944 float outstat = 0.0;
[805]1945 if ( spec.nelements() == m.nelements() ) {
1946 outstat = mathutil::statistics(which, ma(m));
1947 } else {
1948 outstat = mathutil::statistics(which, ma);
1949 }
1950 out.push_back(outstat);
[234]1951 }
[805]1952 return out;
[130]1953}
1954
[1907]1955std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1956 const std::vector< bool > & mask,
1957 const std::string& which,
1958 int row )
1959{
1960
1961 Vector<Bool> m(mask);
1962 const Table& tab = in->table();
1963 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1964 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1965 std::vector<float> out;
1966
1967 Vector<Float> spec; specCol.get(row, spec);
1968 Vector<uChar> flag; flagCol.get(row, flag);
1969 MaskedArray<Float> ma = maskedArray(spec, flag);
1970 float outstat = 0.0;
1971 if ( spec.nelements() == m.nelements() ) {
1972 outstat = mathutil::statistics(which, ma(m));
1973 } else {
1974 outstat = mathutil::statistics(which, ma);
1975 }
1976 out.push_back(outstat);
1977
1978 return out;
1979}
1980
[1819]1981std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1982 const std::vector< bool > & mask,
1983 const std::string& which )
1984{
1985
1986 Vector<Bool> m(mask);
1987 const Table& tab = in->table();
1988 ROArrayColumn<Float> specCol(tab, "SPECTRA");
1989 ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1990 std::vector<int> out;
1991 for (uInt i=0; i < tab.nrow(); ++i ) {
1992 Vector<Float> spec; specCol.get(i, spec);
1993 Vector<uChar> flag; flagCol.get(i, flag);
1994 MaskedArray<Float> ma = maskedArray(spec, flag);
1995 if (ma.ndim() != 1) {
1996 throw (ArrayError(
1997 "std::vector<int> STMath::minMaxChan("
1998 "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1999 " std::string &which)"
2000 " - MaskedArray is not 1D"));
2001 }
2002 IPosition outpos(1,0);
2003 if ( spec.nelements() == m.nelements() ) {
2004 outpos = mathutil::minMaxPos(which, ma(m));
2005 } else {
2006 outpos = mathutil::minMaxPos(which, ma);
2007 }
2008 out.push_back(outpos[0]);
2009 }
2010 return out;
2011}
2012
[805]2013CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
2014 int width )
[144]2015{
[841]2016 if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
[805]2017 CountedPtr< Scantable > out = getScantable(in, false);
2018 Table& tout = out->table();
2019 out->frequencies().rescale(width, "BIN");
2020 ArrayColumn<Float> specCol(tout, "SPECTRA");
2021 ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
2022 for (uInt i=0; i < tout.nrow(); ++i ) {
2023 MaskedArray<Float> main = maskedArray(specCol(i), flagCol(i));
2024 MaskedArray<Float> maout;
2025 LatticeUtilities::bin(maout, main, 0, Int(width));
2026 /// @todo implement channel based tsys binning
2027 specCol.put(i, maout.getArray());
2028 flagCol.put(i, flagsFromMA(maout));
2029 // take only the first binned spectrum's length for the deprecated
2030 // global header item nChan
2031 if (i==0) tout.rwKeywordSet().define(String("nChan"),
2032 Int(maout.getArray().nelements()));
[169]2033 }
[805]2034 return out;
[146]2035}
2036
[805]2037CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
2038 const std::string& method,
2039 float width )
[299]2040//
2041// Should add the possibility of width being specified in km/s. This means
[780]2042// that for each freqID (SpectralCoordinate) we will need to convert to an
2043// average channel width (say at the reference pixel). Then we would need
2044// to be careful to make sure each spectrum (of different freqID)
[299]2045// is the same length.
2046//
2047{
[996]2048 //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
[805]2049 Int interpMethod(stringToIMethod(method));
[299]2050
[805]2051 CountedPtr< Scantable > out = getScantable(in, false);
2052 Table& tout = out->table();
[299]2053
2054// Resample SpectralCoordinates (one per freqID)
[805]2055 out->frequencies().rescale(width, "RESAMPLE");
2056 TableIterator iter(tout, "IFNO");
2057 TableRow row(tout);
2058 while ( !iter.pastEnd() ) {
2059 Table tab = iter.table();
2060 ArrayColumn<Float> specCol(tab, "SPECTRA");
2061 //ArrayColumn<Float> tsysCol(tout, "TSYS");
2062 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2063 Vector<Float> spec;
2064 Vector<uChar> flag;
2065 specCol.get(0,spec); // the number of channels should be constant per IF
2066 uInt nChanIn = spec.nelements();
2067 Vector<Float> xIn(nChanIn); indgen(xIn);
2068 Int fac = Int(nChanIn/width);
2069 Vector<Float> xOut(fac+10); // 10 to be safe - resize later
2070 uInt k = 0;
2071 Float x = 0.0;
2072 while (x < Float(nChanIn) ) {
2073 xOut(k) = x;
2074 k++;
2075 x += width;
2076 }
2077 uInt nChanOut = k;
2078 xOut.resize(nChanOut, True);
2079 // process all rows for this IFNO
2080 Vector<Float> specOut;
2081 Vector<Bool> maskOut;
2082 Vector<uChar> flagOut;
2083 for (uInt i=0; i < tab.nrow(); ++i) {
2084 specCol.get(i, spec);
2085 flagCol.get(i, flag);
2086 Vector<Bool> mask(flag.nelements());
2087 convertArray(mask, flag);
[299]2088
[805]2089 IPosition shapeIn(spec.shape());
2090 //sh.nchan = nChanOut;
2091 InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
2092 xIn, spec, mask,
2093 interpMethod, True, True);
2094 /// @todo do the same for channel based Tsys
2095 flagOut.resize(maskOut.nelements());
2096 convertArray(flagOut, maskOut);
2097 specCol.put(i, specOut);
2098 flagCol.put(i, flagOut);
2099 }
2100 ++iter;
[299]2101 }
2102
[805]2103 return out;
2104}
[299]2105
[805]2106STMath::imethod STMath::stringToIMethod(const std::string& in)
2107{
2108 static STMath::imap lookup;
[299]2109
[805]2110 // initialize the lookup table if necessary
2111 if ( lookup.empty() ) {
[926]2112 lookup["nearest"] = InterpolateArray1D<Double,Float>::nearestNeighbour;
2113 lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
2114 lookup["cubic"] = InterpolateArray1D<Double,Float>::cubic;
2115 lookup["spline"] = InterpolateArray1D<Double,Float>::spline;
[299]2116 }
2117
[805]2118 STMath::imap::const_iterator iter = lookup.find(in);
[299]2119
[805]2120 if ( lookup.end() == iter ) {
2121 std::string message = in;
2122 message += " is not a valid interpolation mode";
2123 throw(AipsError(message));
[299]2124 }
[805]2125 return iter->second;
[299]2126}
2127
[805]2128WeightType STMath::stringToWeight(const std::string& in)
[146]2129{
[805]2130 static std::map<std::string, WeightType> lookup;
[434]2131
[805]2132 // initialize the lookup table if necessary
2133 if ( lookup.empty() ) {
[1569]2134 lookup["NONE"] = asap::W_NONE;
2135 lookup["TINT"] = asap::W_TINT;
2136 lookup["TINTSYS"] = asap::W_TINTSYS;
2137 lookup["TSYS"] = asap::W_TSYS;
2138 lookup["VAR"] = asap::W_VAR;
[805]2139 }
[434]2140
[805]2141 std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
[294]2142
[805]2143 if ( lookup.end() == iter ) {
2144 std::string message = in;
2145 message += " is not a valid weighting mode";
2146 throw(AipsError(message));
2147 }
2148 return iter->second;
[146]2149}
2150
[805]2151CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
[867]2152 const vector< float > & coeff,
[805]2153 const std::string & filename,
2154 const std::string& method)
[165]2155{
[805]2156 // Get elevation data from Scantable and convert to degrees
2157 CountedPtr< Scantable > out = getScantable(in, false);
[926]2158 Table& tab = out->table();
[805]2159 ROScalarColumn<Float> elev(tab, "ELEVATION");
2160 Vector<Float> x = elev.getColumn();
2161 x *= Float(180 / C::pi); // Degrees
[165]2162
[867]2163 Vector<Float> coeffs(coeff);
[805]2164 const uInt nc = coeffs.nelements();
2165 if ( filename.length() > 0 && nc > 0 ) {
2166 throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
[315]2167 }
[165]2168
[805]2169 // Correct
2170 if ( nc > 0 || filename.length() == 0 ) {
2171 // Find instrument
2172 Bool throwit = True;
2173 Instrument inst =
[878]2174 STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
[805]2175 throwit);
[165]2176
[805]2177 // Set polynomial
2178 Polynomial<Float>* ppoly = 0;
2179 Vector<Float> coeff;
2180 String msg;
2181 if ( nc > 0 ) {
[1618]2182 ppoly = new Polynomial<Float>(nc-1);
[805]2183 coeff = coeffs;
2184 msg = String("user");
2185 } else {
[878]2186 STAttr sdAttr;
[805]2187 coeff = sdAttr.gainElevationPoly(inst);
[1618]2188 ppoly = new Polynomial<Float>(coeff.nelements()-1);
[805]2189 msg = String("built in");
2190 }
[532]2191
[805]2192 if ( coeff.nelements() > 0 ) {
2193 ppoly->setCoefficients(coeff);
2194 } else {
2195 delete ppoly;
2196 throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2197 }
2198 ostringstream oss;
2199 oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2200 oss << " " << coeff;
2201 pushLog(String(oss));
2202 const uInt nrow = tab.nrow();
2203 Vector<Float> factor(nrow);
2204 for ( uInt i=0; i < nrow; ++i ) {
2205 factor[i] = 1.0 / (*ppoly)(x[i]);
2206 }
2207 delete ppoly;
2208 scaleByVector(tab, factor, true);
[532]2209
[805]2210 } else {
2211 // Read and correct
2212 pushLog("Making correction from ascii Table");
2213 scaleFromAsciiTable(tab, filename, method, x, true);
[532]2214 }
[805]2215 return out;
2216}
[165]2217
[805]2218void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2219 const std::string& method,
2220 const Vector<Float>& xout, bool dotsys)
2221{
[165]2222
[805]2223// Read gain-elevation ascii file data into a Table.
[165]2224
[805]2225 String formatString;
2226 Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2227 scaleFromTable(in, tbl, method, xout, dotsys);
2228}
[165]2229
[805]2230void STMath::scaleFromTable(Table& in,
2231 const Table& table,
2232 const std::string& method,
2233 const Vector<Float>& xout, bool dotsys)
2234{
[780]2235
[805]2236 ROScalarColumn<Float> geElCol(table, "ELEVATION");
2237 ROScalarColumn<Float> geFacCol(table, "FACTOR");
2238 Vector<Float> xin = geElCol.getColumn();
2239 Vector<Float> yin = geFacCol.getColumn();
2240 Vector<Bool> maskin(xin.nelements(),True);
[165]2241
[805]2242 // Interpolate (and extrapolate) with desired method
[532]2243
[996]2244 InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
[165]2245
[805]2246 Vector<Float> yout;
2247 Vector<Bool> maskout;
2248 InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
[996]2249 xin, yin, maskin, interp,
[805]2250 True, True);
[165]2251
[805]2252 scaleByVector(in, Float(1.0)/yout, dotsys);
[165]2253}
[167]2254
[805]2255void STMath::scaleByVector( Table& in,
2256 const Vector< Float >& factor,
2257 bool dotsys )
[177]2258{
[805]2259 uInt nrow = in.nrow();
2260 if ( factor.nelements() != nrow ) {
2261 throw(AipsError("factors.nelements() != table.nelements()"));
2262 }
2263 ArrayColumn<Float> specCol(in, "SPECTRA");
2264 ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2265 ArrayColumn<Float> tsysCol(in, "TSYS");
2266 for (uInt i=0; i < nrow; ++i) {
2267 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2268 ma *= factor[i];
2269 specCol.put(i, ma.getArray());
2270 flagCol.put(i, flagsFromMA(ma));
2271 if ( dotsys ) {
[926]2272 Vector<Float> tsys = tsysCol(i);
[805]2273 tsys *= factor[i];
[926]2274 tsysCol.put(i,tsys);
[805]2275 }
2276 }
[177]2277}
2278
[805]2279CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2280 float d, float etaap,
2281 float jyperk )
[221]2282{
[805]2283 CountedPtr< Scantable > out = getScantable(in, false);
2284 Table& tab = in->table();
2285 Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
[221]2286 Unit K(String("K"));
2287 Unit JY(String("Jy"));
[701]2288
[805]2289 bool tokelvin = true;
2290 Double cfac = 1.0;
[716]2291
[805]2292 if ( fluxUnit == JY ) {
[716]2293 pushLog("Converting to K");
[701]2294 Quantum<Double> t(1.0,fluxUnit);
2295 Quantum<Double> t2 = t.get(JY);
[805]2296 cfac = (t2 / t).getValue(); // value to Jy
[780]2297
[805]2298 tokelvin = true;
2299 out->setFluxUnit("K");
2300 } else if ( fluxUnit == K ) {
[716]2301 pushLog("Converting to Jy");
[701]2302 Quantum<Double> t(1.0,fluxUnit);
2303 Quantum<Double> t2 = t.get(K);
[805]2304 cfac = (t2 / t).getValue(); // value to K
[780]2305
[805]2306 tokelvin = false;
2307 out->setFluxUnit("Jy");
[221]2308 } else {
[701]2309 throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
[221]2310 }
[701]2311 // Make sure input values are converted to either Jy or K first...
[805]2312 Float factor = cfac;
[221]2313
[701]2314 // Select method
[805]2315 if (jyperk > 0.0) {
2316 factor *= jyperk;
2317 if ( tokelvin ) factor = 1.0 / jyperk;
[716]2318 ostringstream oss;
[805]2319 oss << "Jy/K = " << jyperk;
[716]2320 pushLog(String(oss));
[805]2321 Vector<Float> factors(tab.nrow(), factor);
2322 scaleByVector(tab,factors, false);
2323 } else if ( etaap > 0.0) {
[1319]2324 if (d < 0) {
2325 Instrument inst =
[1570]2326 STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
[1319]2327 True);
2328 STAttr sda;
2329 d = sda.diameter(inst);
2330 }
[996]2331 jyperk = STAttr::findJyPerK(etaap, d);
[716]2332 ostringstream oss;
[805]2333 oss << "Jy/K = " << jyperk;
[716]2334 pushLog(String(oss));
[805]2335 factor *= jyperk;
2336 if ( tokelvin ) {
[701]2337 factor = 1.0 / factor;
2338 }
[805]2339 Vector<Float> factors(tab.nrow(), factor);
2340 scaleByVector(tab, factors, False);
[354]2341 } else {
[780]2342
[701]2343 // OK now we must deal with automatic look up of values.
2344 // We must also deal with the fact that the factors need
2345 // to be computed per IF and may be different and may
2346 // change per integration.
[780]2347
[716]2348 pushLog("Looking up conversion factors");
[805]2349 convertBrightnessUnits(out, tokelvin, cfac);
[701]2350 }
[805]2351
2352 return out;
[221]2353}
2354
[805]2355void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2356 bool tokelvin, float cfac )
[227]2357{
[805]2358 Table& table = in->table();
2359 Instrument inst =
[878]2360 STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
[805]2361 TableIterator iter(table, "FREQ_ID");
2362 STFrequencies stfreqs = in->frequencies();
[878]2363 STAttr sdAtt;
[805]2364 while (!iter.pastEnd()) {
2365 Table tab = iter.table();
2366 ArrayColumn<Float> specCol(tab, "SPECTRA");
2367 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2368 ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2369 MEpoch::ROScalarColumn timeCol(tab, "TIME");
[234]2370
[805]2371 uInt freqid; freqidCol.get(0, freqid);
2372 Vector<Float> tmpspec; specCol.get(0, tmpspec);
[878]2373 // STAttr.JyPerK has a Vector interface... change sometime.
[805]2374 Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2375 for ( uInt i=0; i<tab.nrow(); ++i) {
2376 Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2377 Float factor = cfac * jyperk;
2378 if ( tokelvin ) factor = Float(1.0) / factor;
2379 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2380 ma *= factor;
2381 specCol.put(i, ma.getArray());
2382 flagCol.put(i, flagsFromMA(ma));
2383 }
[867]2384 ++iter;
[234]2385 }
[230]2386}
[227]2387
[805]2388CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
[1689]2389 const std::vector<float>& tau )
[234]2390{
[805]2391 CountedPtr< Scantable > out = getScantable(in, false);
[926]2392
[1689]2393 Table outtab = out->table();
2394
[2125]2395 const Int ntau = uInt(tau.size());
[1689]2396 std::vector<float>::const_iterator tauit = tau.begin();
2397 AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2398 AipsError);
2399 TableIterator iiter(outtab, "IFNO");
2400 while ( !iiter.pastEnd() ) {
2401 Table itab = iiter.table();
[2278]2402 TableIterator piter(itab, "POLNO");
[1689]2403 while ( !piter.pastEnd() ) {
2404 Table tab = piter.table();
2405 ROScalarColumn<Float> elev(tab, "ELEVATION");
2406 ArrayColumn<Float> specCol(tab, "SPECTRA");
2407 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2408 ArrayColumn<Float> tsysCol(tab, "TSYS");
2409 for ( uInt i=0; i<tab.nrow(); ++i) {
2410 Float zdist = Float(C::pi_2) - elev(i);
2411 Float factor = exp(*tauit/cos(zdist));
2412 MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2413 ma *= factor;
2414 specCol.put(i, ma.getArray());
2415 flagCol.put(i, flagsFromMA(ma));
2416 Vector<Float> tsys;
2417 tsysCol.get(i, tsys);
2418 tsys *= factor;
2419 tsysCol.put(i, tsys);
2420 }
2421 if (ntau == in->nif()*in->npol() ) {
2422 tauit++;
2423 }
2424 piter++;
2425 }
2426 if (ntau >= in->nif() ) {
2427 tauit++;
2428 }
2429 iiter++;
[234]2430 }
[805]2431 return out;
[234]2432}
2433
[1373]2434CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2435 const std::string& kernel,
[1570]2436 float width, int order)
[1373]2437{
2438 CountedPtr< Scantable > out = getScantable(in, false);
[2125]2439 Table table = out->table();
2440
2441 TableIterator iter(table, "IFNO");
2442 while (!iter.pastEnd()) {
2443 Table tab = iter.table();
2444 ArrayColumn<Float> specCol(tab, "SPECTRA");
2445 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2446 Vector<Float> spec;
2447 Vector<uChar> flag;
2448 for (uInt i = 0; i < tab.nrow(); ++i) {
2449 specCol.get(i, spec);
2450 flagCol.get(i, flag);
2451 Vector<Bool> mask(flag.nelements());
2452 convertArray(mask, flag);
2453 Vector<Float> specout;
2454 Vector<Bool> maskout;
2455 if (kernel == "hanning") {
2456 mathutil::hanning(specout, maskout, spec, !mask);
2457 convertArray(flag, !maskout);
2458 } else if (kernel == "rmedian") {
2459 mathutil::runningMedian(specout, maskout, spec , mask, width);
2460 convertArray(flag, maskout);
2461 } else if (kernel == "poly") {
2462 mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2463 convertArray(flag, !maskout);
2464 }
2465
2466 for (uInt j = 0; j < flag.nelements(); ++j) {
2467 uChar userFlag = 1 << 7;
2468 if (maskout[j]==True) userFlag = 0 << 7;
2469 flag(j) = userFlag;
2470 }
2471
2472 flagCol.put(i, flag);
2473 specCol.put(i, specout);
[1373]2474 }
[2125]2475 ++iter;
[1373]2476 }
2477 return out;
2478}
2479
[805]2480CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
[1571]2481 const std::string& kernel, float width,
2482 int order)
[457]2483{
[1571]2484 if (kernel == "rmedian" || kernel == "hanning" || kernel == "poly") {
2485 return smoothOther(in, kernel, width, order);
[1373]2486 }
[805]2487 CountedPtr< Scantable > out = getScantable(in, false);
[1033]2488 Table& table = out->table();
[805]2489 VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2490 // same IFNO should have same no of channels
2491 // this saves overhead
2492 TableIterator iter(table, "IFNO");
2493 while (!iter.pastEnd()) {
2494 Table tab = iter.table();
2495 ArrayColumn<Float> specCol(tab, "SPECTRA");
2496 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2497 Vector<Float> tmpspec; specCol.get(0, tmpspec);
2498 uInt nchan = tmpspec.nelements();
2499 Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2500 Convolver<Float> conv(kvec, IPosition(1,nchan));
2501 Vector<Float> spec;
2502 Vector<uChar> flag;
2503 for ( uInt i=0; i<tab.nrow(); ++i) {
2504 specCol.get(i, spec);
2505 flagCol.get(i, flag);
2506 Vector<Bool> mask(flag.nelements());
2507 convertArray(mask, flag);
2508 Vector<Float> specout;
[1373]2509 mathutil::replaceMaskByZero(specout, mask);
2510 conv.linearConv(specout, spec);
2511 specCol.put(i, specout);
[805]2512 }
[867]2513 ++iter;
[701]2514 }
[805]2515 return out;
[701]2516}
[841]2517
2518CountedPtr< Scantable >
2519 STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2520{
2521 if ( in.size() < 2 ) {
[862]2522 throw(AipsError("Need at least two scantables to perform a merge."));
[841]2523 }
2524 std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2525 bool insitu = insitu_;
2526 setInsitu(false);
[862]2527 CountedPtr< Scantable > out = getScantable(*it, false);
[841]2528 setInsitu(insitu);
2529 Table& tout = out->table();
2530 ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
[917]2531 ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2532 // Renumber SCANNO to be 0-based
[926]2533 Vector<uInt> scannos = scannocol.getColumn();
2534 uInt offset = min(scannos);
[917]2535 scannos -= offset;
[926]2536 scannocol.putColumn(scannos);
2537 uInt newscanno = max(scannos)+1;
[862]2538 ++it;
[841]2539 while ( it != in.end() ){
2540 if ( ! (*it)->conformant(*out) ) {
[1439]2541 // non conformant.
[1819]2542 //pushLog(String("Warning: Can't merge scantables as header info differs."));
2543 LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2544 os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
[841]2545 }
[862]2546 out->appendToHistoryTable((*it)->history());
[841]2547 const Table& tab = (*it)->table();
[2289]2548
2549 Block<String> cols(3);
2550 cols[0] = String("FREQ_ID");
2551 cols[1] = String("MOLECULE_ID");
2552 cols[2] = String("FOCUS_ID");
2553
[841]2554 TableIterator scanit(tab, "SCANNO");
2555 while (!scanit.pastEnd()) {
[2289]2556 ScalarColumn<uInt> thescannocol(scanit.table(),"SCANNO");
2557 Vector<uInt> thescannos(thescannocol.nrow(),newscanno);
2558 thescannocol.putColumn(thescannos);
2559 TableIterator subit(scanit.table(), cols);
2560 while ( !subit.pastEnd() ) {
[841]2561 uInt nrow = tout.nrow();
[2289]2562 Table thetab = subit.table();
2563 ROTableRow row(thetab);
2564 Vector<uInt> thecolvals(thetab.nrow());
2565 ScalarColumn<uInt> thefreqidcol(thetab,"FREQ_ID");
2566 ScalarColumn<uInt> themolidcol(thetab, "MOLECULE_ID");
2567 ScalarColumn<uInt> thefocusidcol(thetab,"FOCUS_ID");
2568 // The selected subset of table should have
2569 // the equal FREQ_ID, MOLECULE_ID, and FOCUS_ID values.
2570 const TableRecord& rec = row.get(0);
2571 // Set the proper FREQ_ID
2572 Double rv,rp,inc;
2573 (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2574 uInt id;
2575 id = out->frequencies().addEntry(rp, rv, inc);
2576 thecolvals = id;
2577 thefreqidcol.putColumn(thecolvals);
2578 // Set the proper MOLECULE_ID
2579 Vector<String> name,fname;Vector<Double> rf;
2580 (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2581 id = out->molecules().addEntry(rf, name, fname);
2582 thecolvals = id;
2583 themolidcol.putColumn(thecolvals);
2584 // Set the proper FOCUS_ID
2585 Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2586 (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2587 fxy, fxyp, rec.asuInt("FOCUS_ID"));
2588 id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser,
2589 fxy, fxyp);
2590 thecolvals = id;
2591 thefocusidcol.putColumn(thecolvals);
2592
[1505]2593 tout.addRow(thetab.nrow());
[841]2594 TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
[2289]2595
2596 ++subit;
[841]2597 }
2598 ++newscanno;
2599 ++scanit;
2600 }
2601 ++it;
2602 }
2603 return out;
2604}
[896]2605
2606CountedPtr< Scantable >
2607 STMath::invertPhase( const CountedPtr < Scantable >& in )
2608{
[996]2609 return applyToPol(in, &STPol::invertPhase, Float(0.0));
[896]2610}
2611
2612CountedPtr< Scantable >
2613 STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2614{
2615 return applyToPol(in, &STPol::rotatePhase, Float(phase));
2616}
2617
2618CountedPtr< Scantable >
2619 STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2620{
2621 return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2622}
2623
2624CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2625 STPol::polOperation fptr,
2626 Float phase )
2627{
2628 CountedPtr< Scantable > out = getScantable(in, false);
2629 Table& tout = out->table();
2630 Block<String> cols(4);
2631 cols[0] = String("SCANNO");
2632 cols[1] = String("BEAMNO");
2633 cols[2] = String("IFNO");
2634 cols[3] = String("CYCLENO");
2635 TableIterator iter(tout, cols);
[1569]2636 CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
[1384]2637 out->getPolType() );
[896]2638 while (!iter.pastEnd()) {
2639 Table t = iter.table();
2640 ArrayColumn<Float> speccol(t, "SPECTRA");
[1015]2641 ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
[1384]2642 Matrix<Float> pols(speccol.getColumn());
[896]2643 try {
2644 stpol->setSpectra(pols);
[1586]2645 Float fang,fhand;
2646 fang = in->focusTable_.getTotalAngle(focidcol(0));
[1015]2647 fhand = in->focusTable_.getFeedHand(focidcol(0));
[1586]2648 stpol->setPhaseCorrections(fang, fhand);
[1384]2649 // use a member function pointer in STPol. This only works on
2650 // the STPol pointer itself, not the Counted Pointer so
2651 // derefernce it.
2652 (&(*(stpol))->*fptr)(phase);
[896]2653 speccol.putColumn(stpol->getSpectra());
2654 } catch (AipsError& e) {
[1384]2655 //delete stpol;stpol=0;
[896]2656 throw(e);
2657 }
2658 ++iter;
2659 }
[1384]2660 //delete stpol;stpol=0;
[896]2661 return out;
2662}
2663
2664CountedPtr< Scantable >
2665 STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2666{
2667 CountedPtr< Scantable > out = getScantable(in, false);
2668 Table& tout = out->table();
2669 Table t0 = tout(tout.col("POLNO") == 0);
2670 Table t1 = tout(tout.col("POLNO") == 1);
2671 if ( t0.nrow() != t1.nrow() )
2672 throw(AipsError("Inconsistent number of polarisations"));
2673 ArrayColumn<Float> speccol0(t0, "SPECTRA");
2674 ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2675 ArrayColumn<Float> speccol1(t1, "SPECTRA");
2676 ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2677 Matrix<Float> s0 = speccol0.getColumn();
2678 Matrix<uChar> f0 = flagcol0.getColumn();
2679 speccol0.putColumn(speccol1.getColumn());
2680 flagcol0.putColumn(flagcol1.getColumn());
2681 speccol1.putColumn(s0);
2682 flagcol1.putColumn(f0);
2683 return out;
2684}
[917]2685
2686CountedPtr< Scantable >
[940]2687 STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2688 const std::vector<bool>& mask,
2689 const std::string& weight )
2690{
[1232]2691 if (in->npol() < 2 )
2692 throw(AipsError("averagePolarisations can only be applied to two or more"
2693 "polarisations"));
[1010]2694 bool insitu = insitu_;
2695 setInsitu(false);
[1232]2696 CountedPtr< Scantable > pols = getScantable(in, true);
[1010]2697 setInsitu(insitu);
2698 Table& tout = pols->table();
[1232]2699 std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2700 Table tab = tableCommand(taql, in->table());
2701 if (tab.nrow() == 0 )
2702 throw(AipsError("Could not find any rows with POLNO==0 and POLNO==1"));
2703 TableCopy::copyRows(tout, tab);
[1145]2704 TableVector<uInt> vec(tout, "POLNO");
[940]2705 vec = 0;
[1145]2706 pols->table_.rwKeywordSet().define("nPol", Int(1));
[2102]2707 pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2708 //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
[1010]2709 std::vector<CountedPtr<Scantable> > vpols;
2710 vpols.push_back(pols);
[1232]2711 CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
[940]2712 return out;
2713}
2714
[1145]2715CountedPtr< Scantable >
2716 STMath::averageBeams( const CountedPtr< Scantable > & in,
2717 const std::vector<bool>& mask,
2718 const std::string& weight )
2719{
2720 bool insitu = insitu_;
2721 setInsitu(false);
2722 CountedPtr< Scantable > beams = getScantable(in, false);
2723 setInsitu(insitu);
2724 Table& tout = beams->table();
2725 // give all rows the same BEAMNO
2726 TableVector<uInt> vec(tout, "BEAMNO");
2727 vec = 0;
2728 beams->table_.rwKeywordSet().define("nBeam", Int(1));
2729 std::vector<CountedPtr<Scantable> > vbeams;
2730 vbeams.push_back(beams);
[1232]2731 CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
[1145]2732 return out;
2733}
[940]2734
[1145]2735
[940]2736CountedPtr< Scantable >
[917]2737 asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2738 const std::string & refTime,
[926]2739 const std::string & method)
[917]2740{
[940]2741 // clone as this is not working insitu
2742 bool insitu = insitu_;
2743 setInsitu(false);
[917]2744 CountedPtr< Scantable > out = getScantable(in, false);
[940]2745 setInsitu(insitu);
[917]2746 Table& tout = out->table();
2747 // Get reference Epoch to time of first row or given String
2748 Unit DAY(String("d"));
2749 MEpoch::Ref epochRef(in->getTimeReference());
2750 MEpoch refEpoch;
2751 if (refTime.length()>0) {
2752 Quantum<Double> qt;
2753 if (MVTime::read(qt,refTime)) {
2754 MVEpoch mv(qt);
2755 refEpoch = MEpoch(mv, epochRef);
2756 } else {
2757 throw(AipsError("Invalid format for Epoch string"));
2758 }
2759 } else {
2760 refEpoch = in->timeCol_(0);
2761 }
2762 MPosition refPos = in->getAntennaPosition();
[940]2763
[996]2764 InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
[1475]2765 /*
2766 // Comment from MV.
2767 // the following code has been commented out because different FREQ_IDs have to be aligned together even
2768 // if the frame doesn't change. So far, lack of this check didn't cause any problems.
[917]2769 // test if user frame is different to base frame
2770 if ( in->frequencies().getFrameString(true)
2771 == in->frequencies().getFrameString(false) ) {
[985]2772 throw(AipsError("Can't convert as no output frame has been set"
2773 " (use set_freqframe) or it is aligned already."));
[917]2774 }
[1475]2775 */
[917]2776 MFrequency::Types system = in->frequencies().getFrame();
[940]2777 MVTime mvt(refEpoch.getValue());
2778 String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2779 ostringstream oss;
2780 oss << "Aligned at reference Epoch " << epochout
2781 << " in frame " << MFrequency::showType(system);
2782 pushLog(String(oss));
[917]2783 // set up the iterator
[926]2784 Block<String> cols(4);
2785 // select by constant direction
[917]2786 cols[0] = String("SRCNAME");
2787 cols[1] = String("BEAMNO");
2788 // select by IF ( no of channels varies over this )
2789 cols[2] = String("IFNO");
[926]2790 // select by restfrequency
2791 cols[3] = String("MOLECULE_ID");
[917]2792 TableIterator iter(tout, cols);
[926]2793 while ( !iter.pastEnd() ) {
[917]2794 Table t = iter.table();
2795 MDirection::ROScalarColumn dirCol(t, "DIRECTION");
[926]2796 TableIterator fiter(t, "FREQ_ID");
[917]2797 // determine nchan from the first row. This should work as
[926]2798 // we are iterating over BEAMNO and IFNO // we should have constant direction
2799
[917]2800 ROArrayColumn<Float> sCol(t, "SPECTRA");
[1475]2801 const MDirection direction = dirCol(0);
2802 const uInt nchan = sCol(0).nelements();
2803
2804 // skip operations if there is nothing to align
2805 if (fiter.pastEnd()) {
2806 continue;
2807 }
2808
2809 Table ftab = fiter.table();
2810 // align all frequency ids with respect to the first encountered id
2811 ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2812 // get the SpectralCoordinate for the freqid, which we are iterating over
2813 SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2814 FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2815 direction, refPos, system );
2816 // realign the SpectralCoordinate and put into the output Scantable
2817 Vector<String> units(1);
2818 units = String("Hz");
2819 Bool linear=True;
2820 SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2821 sc2.setWorldAxisUnits(units);
2822 const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2823 sc2.referenceValue()[0],
2824 sc2.increment()[0]);
[926]2825 while ( !fiter.pastEnd() ) {
[1475]2826 ftab = fiter.table();
2827 // spectral coordinate for the current FREQ_ID
2828 ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2829 sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
[926]2830 // create the "global" abcissa for alignment with same FREQ_ID
2831 Vector<Double> abc(nchan);
[917]2832 for (uInt i=0; i<nchan; i++) {
[1475]2833 Double w;
2834 sC.toWorld(w,Double(i));
2835 abc[i] = w;
[917]2836 }
[1475]2837 TableVector<uInt> tvec(ftab, "FREQ_ID");
2838 // assign new frequency id to all rows
2839 tvec = id;
[926]2840 // cache abcissa for same time stamps, so iterate over those
2841 TableIterator timeiter(ftab, "TIME");
2842 while ( !timeiter.pastEnd() ) {
2843 Table tab = timeiter.table();
2844 ArrayColumn<Float> specCol(tab, "SPECTRA");
2845 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2846 MEpoch::ROScalarColumn timeCol(tab, "TIME");
2847 // use align abcissa cache after the first row
[1475]2848 // these rows should be just be POLNO
[926]2849 bool first = true;
[996]2850 for (int i=0; i<int(tab.nrow()); ++i) {
[926]2851 // input values
2852 Vector<uChar> flag = flagCol(i);
2853 Vector<Bool> mask(flag.shape());
2854 Vector<Float> specOut, spec;
2855 spec = specCol(i);
2856 Vector<Bool> maskOut;Vector<uChar> flagOut;
2857 convertArray(mask, flag);
2858 // alignment
2859 Bool ok = fa.align(specOut, maskOut, abc, spec,
2860 mask, timeCol(i), !first,
2861 interp, False);
[2163]2862 (void) ok; // unused stop compiler nagging
[926]2863 // back into scantable
2864 flagOut.resize(maskOut.nelements());
2865 convertArray(flagOut, maskOut);
2866 flagCol.put(i, flagOut);
2867 specCol.put(i, specOut);
2868 // start abcissa caching
2869 first = false;
[917]2870 }
[926]2871 // next timestamp
2872 ++timeiter;
[917]2873 }
[940]2874 // next FREQ_ID
[926]2875 ++fiter;
[917]2876 }
2877 // next aligner
2878 ++iter;
2879 }
[940]2880 // set this afterwards to ensure we are doing insitu correctly.
2881 out->frequencies().setFrame(system, true);
[917]2882 return out;
2883}
[992]2884
2885CountedPtr<Scantable>
2886 asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2887 const std::string & newtype )
2888{
2889 if (in->npol() != 2 && in->npol() != 4)
2890 throw(AipsError("Can only convert two or four polarisations."));
2891 if ( in->getPolType() == newtype )
2892 throw(AipsError("No need to convert."));
[1000]2893 if ( ! in->selector_.empty() )
2894 throw(AipsError("Can only convert whole scantable. Unset the selection."));
[992]2895 bool insitu = insitu_;
2896 setInsitu(false);
2897 CountedPtr< Scantable > out = getScantable(in, true);
2898 setInsitu(insitu);
2899 Table& tout = out->table();
2900 tout.rwKeywordSet().define("POLTYPE", String(newtype));
2901
2902 Block<String> cols(4);
2903 cols[0] = "SCANNO";
2904 cols[1] = "CYCLENO";
2905 cols[2] = "BEAMNO";
2906 cols[3] = "IFNO";
2907 TableIterator it(in->originalTable_, cols);
2908 String basetype = in->getPolType();
2909 STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2910 try {
2911 while ( !it.pastEnd() ) {
2912 Table tab = it.table();
2913 uInt row = tab.rowNumbers()[0];
2914 stpol->setSpectra(in->getPolMatrix(row));
[1586]2915 Float fang,fhand;
2916 fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
[992]2917 fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
[1586]2918 stpol->setPhaseCorrections(fang, fhand);
[992]2919 Int npolout = 0;
2920 for (uInt i=0; i<tab.nrow(); ++i) {
2921 Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2922 if ( outvec.nelements() > 0 ) {
2923 tout.addRow();
2924 TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2925 ArrayColumn<Float> sCol(tout,"SPECTRA");
2926 ScalarColumn<uInt> pCol(tout,"POLNO");
2927 sCol.put(tout.nrow()-1 ,outvec);
2928 pCol.put(tout.nrow()-1 ,uInt(npolout));
2929 npolout++;
2930 }
2931 }
2932 tout.rwKeywordSet().define("nPol", npolout);
2933 ++it;
2934 }
2935 } catch (AipsError& e) {
2936 delete stpol;
2937 throw(e);
2938 }
2939 delete stpol;
2940 return out;
2941}
[1066]2942
[1143]2943CountedPtr< Scantable >
[1140]2944 asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2945 const std::string & scantype )
2946{
2947 bool insitu = insitu_;
2948 setInsitu(false);
2949 CountedPtr< Scantable > out = getScantable(in, true);
2950 setInsitu(insitu);
2951 Table& tout = out->table();
2952 std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2953 if (scantype == "on") {
2954 taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2955 }
2956 Table tab = tableCommand(taql, in->table());
2957 TableCopy::copyRows(tout, tab);
2958 if (scantype == "on") {
[1143]2959 // re-index SCANNO to 0
[1140]2960 TableVector<uInt> vec(tout, "SCANNO");
2961 vec = 0;
2962 }
2963 return out;
2964}
[1192]2965
[2177]2966std::vector<float>
2967 asap::STMath::fft( const casa::CountedPtr< Scantable > & in,
2968 const std::vector<int>& whichrow,
2969 bool getRealImag )
2970{
2971 std::vector<float> res;
2972 Table tab = in->table();
[2186]2973 std::vector<bool> mask;
[2177]2974
2975 if (whichrow.size() < 1) { // for all rows (by default)
2976 int nrow = int(tab.nrow());
2977 for (int i = 0; i < nrow; ++i) {
[2186]2978 res = in->execFFT(i, mask, getRealImag);
[2177]2979 }
2980 } else { // for specified rows
2981 for (uInt i = 0; i < whichrow.size(); ++i) {
[2186]2982 res = in->execFFT(i, mask, getRealImag);
[2177]2983 }
2984 }
2985
2986 return res;
2987}
2988
2989
2990CountedPtr<Scantable>
2991 asap::STMath::lagFlag( const CountedPtr<Scantable>& in,
[1579]2992 double start, double end,
[2177]2993 const std::string& mode )
[1192]2994{
[2177]2995 CountedPtr<Scantable> out = getScantable(in, false);
[1192]2996 Table& tout = out->table();
2997 TableIterator iter(tout, "FREQ_ID");
2998 FFTServer<Float,Complex> ffts;
[2177]2999
[1192]3000 while ( !iter.pastEnd() ) {
3001 Table tab = iter.table();
3002 Double rp,rv,inc;
3003 ROTableRow row(tab);
3004 const TableRecord& rec = row.get(0);
3005 uInt freqid = rec.asuInt("FREQ_ID");
3006 out->frequencies().getEntry(rp, rv, inc, freqid);
3007 ArrayColumn<Float> specCol(tab, "SPECTRA");
3008 ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
[2177]3009
[1192]3010 for (int i=0; i<int(tab.nrow()); ++i) {
3011 Vector<Float> spec = specCol(i);
3012 Vector<uChar> flag = flagCol(i);
[2186]3013 std::vector<bool> mask;
3014 for (uInt j = 0; j < flag.nelements(); ++j) {
3015 mask.push_back(!(flag[j]>0));
3016 }
3017 mathutil::doZeroOrderInterpolation(spec, mask);
[2177]3018
[1192]3019 Vector<Complex> lags;
[1203]3020 ffts.fft0(lags, spec);
[2177]3021
[1579]3022 Int lag0(start+0.5);
3023 Int lag1(end+0.5);
3024 if (mode == "frequency") {
3025 lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
3026 lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
3027 }
3028 Int lstart = max(0, lag0);
[2177]3029 Int lend = min(Int(lags.nelements()-1), lag1);
[1579]3030 if (lstart == lend) {
3031 lags[lstart] = Complex(0.0);
[1192]3032 } else {
[1579]3033 if (lstart > lend) {
3034 Int tmp = lend;
3035 lend = lstart;
3036 lstart = tmp;
3037 }
3038 for (int j=lstart; j <=lend ;++j) {
[1192]3039 lags[j] = Complex(0.0);
3040 }
3041 }
[2177]3042
[1203]3043 ffts.fft0(spec, lags);
[2177]3044
[1192]3045 specCol.put(i, spec);
3046 }
3047 ++iter;
3048 }
3049 return out;
3050}
[1819]3051
3052// Averaging spectra with different channel/resolution
3053CountedPtr<Scantable>
3054STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
3055 const bool& compel,
3056 const std::vector<bool>& mask,
3057 const std::string& weight,
3058 const std::string& avmode )
3059 throw ( casa::AipsError )
3060{
3061 LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
3062 if ( avmode == "SCAN" && in.size() != 1 )
3063 throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
3064 "Use merge first."));
3065
[2432]3066 // 2012/02/17 TN
3067 // Since STGrid is implemented, average doesn't consider direction
3068 // when accumulating
[1819]3069 // check if OTF observation
[2432]3070// String obstype = in[0]->getHeader().obstype ;
3071// Double tol = 0.0 ;
3072// if ( obstype.find( "OTF" ) != String::npos ) {
3073// tol = TOL_OTF ;
3074// }
3075// else {
3076// tol = TOL_POINT ;
3077// }
[1819]3078
3079 CountedPtr<Scantable> out ; // processed result
3080 if ( compel ) {
3081 std::vector< CountedPtr<Scantable> > newin ; // input for average process
3082 uInt insize = in.size() ; // number of input scantables
3083
3084 // TEST: do normal average in each table before IF grouping
3085 os << "Do preliminary averaging" << LogIO::POST ;
3086 vector< CountedPtr<Scantable> > tmpin( insize ) ;
3087 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3088 vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
3089 tmpin[itable] = average( v, mask, weight, avmode ) ;
3090 }
3091
3092 // warning
3093 os << "Average spectra with different spectral resolution" << LogIO::POST ;
3094
3095 // temporarily set coordinfo
3096 vector<string> oldinfo( insize ) ;
3097 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3098 vector<string> coordinfo = in[itable]->getCoordInfo() ;
3099 oldinfo[itable] = coordinfo[0] ;
3100 coordinfo[0] = "Hz" ;
3101 tmpin[itable]->setCoordInfo( coordinfo ) ;
3102 }
3103
3104 // columns
3105 ScalarColumn<uInt> freqIDCol ;
3106 ScalarColumn<uInt> ifnoCol ;
3107 ScalarColumn<uInt> scannoCol ;
3108
3109
3110 // check IF frequency coverage
3111 // freqid: list of FREQ_ID, which is used, in each table
3112 // iffreq: list of minimum and maximum frequency for each FREQ_ID in
3113 // each table
3114 // freqid[insize][numIF]
3115 // freqid: [[id00, id01, ...],
3116 // [id10, id11, ...],
3117 // ...
3118 // [idn0, idn1, ...]]
3119 // iffreq[insize][numIF*2]
3120 // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
3121 // [min_id10, max_id10, min_id11, max_id11, ...],
3122 // ...
3123 // [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
3124 //os << "Check IF settings in each table" << LogIO::POST ;
3125 vector< vector<uInt> > freqid( insize );
3126 vector< vector<double> > iffreq( insize ) ;
3127 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3128 uInt rows = tmpin[itable]->nrow() ;
3129 uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
3130 for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3131 if ( freqid[itable].size() == freqnrows ) {
3132 break ;
3133 }
3134 else {
3135 freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
3136 ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
3137 uInt id = freqIDCol( irow ) ;
3138 if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
3139 //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
3140 vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
3141 freqid[itable].push_back( id ) ;
3142 iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3143 iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
3144 }
3145 }
3146 }
3147 }
3148
3149 // debug
3150 //os << "IF settings summary:" << endl ;
3151 //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
3152 //os << " Table" << i << endl ;
3153 //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
3154 //os << " id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
3155 //}
3156 //}
3157 //os << endl ;
3158 //os.post() ;
3159
3160 // IF grouping based on their frequency coverage
3161 // ifgrp: list of table index and FREQ_ID for all members in each IF group
3162 // ifgfreq: list of minimum and maximum frequency in each IF group
3163 // ifgrp[numgrp][nummember*2]
3164 // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3165 // [table10, freqrow10, table11, freqrow11, ...],
3166 // ...
3167 // [tablen0, freqrown0, tablen1, freqrown1, ...]]
3168 // ifgfreq[numgrp*2]
3169 // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3170 //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3171 vector< vector<uInt> > ifgrp ;
3172 vector<double> ifgfreq ;
3173
3174 // parameter for IF grouping
3175 // groupmode = OR retrieve all region
3176 // AND only retrieve overlaped region
3177 //string groupmode = "AND" ;
3178 string groupmode = "OR" ;
3179 uInt sizecr = 0 ;
3180 if ( groupmode == "AND" )
3181 sizecr = 2 ;
3182 else if ( groupmode == "OR" )
3183 sizecr = 0 ;
3184
3185 vector<double> sortedfreq ;
3186 for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3187 for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3188 if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3189 sortedfreq.push_back( iffreq[i][j] ) ;
3190 }
3191 }
3192 sort( sortedfreq.begin(), sortedfreq.end() ) ;
3193 for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3194 ifgfreq.push_back( *i ) ;
3195 ifgfreq.push_back( *(i+1) ) ;
3196 }
3197 ifgrp.resize( ifgfreq.size()/2 ) ;
3198 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3199 for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3200 double range0 = iffreq[itable][2*iif] ;
3201 double range1 = iffreq[itable][2*iif+1] ;
3202 for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3203 double fmin = max( range0, ifgfreq[2*j] ) ;
3204 double fmax = min( range1, ifgfreq[2*j+1] ) ;
3205 if ( fmin < fmax ) {
3206 ifgrp[j].push_back( itable ) ;
3207 ifgrp[j].push_back( freqid[itable][iif] ) ;
3208 }
3209 }
3210 }
3211 }
3212 vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3213 vector<double>::iterator giter = ifgfreq.begin() ;
3214 while( fiter != ifgrp.end() ) {
3215 if ( fiter->size() <= sizecr ) {
3216 fiter = ifgrp.erase( fiter ) ;
3217 giter = ifgfreq.erase( giter ) ;
3218 giter = ifgfreq.erase( giter ) ;
3219 }
3220 else {
3221 fiter++ ;
3222 advance( giter, 2 ) ;
3223 }
3224 }
3225
3226 // Grouping continuous IF groups (without frequency gap)
3227 // freqgrp: list of IF group indexes in each frequency group
3228 // freqrange: list of minimum and maximum frequency in each frequency group
3229 // freqgrp[numgrp][nummember]
3230 // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3231 // [ifgrp10, ifgrp11, ifgrp12, ...],
3232 // ...
3233 // [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3234 // freqrange[numgrp*2]
3235 // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3236 vector< vector<uInt> > freqgrp ;
3237 double freqrange = 0.0 ;
3238 uInt grpnum = 0 ;
3239 for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3240 // Assumed that ifgfreq was sorted
3241 if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3242 freqgrp[grpnum-1].push_back( i ) ;
3243 }
3244 else {
3245 vector<uInt> grp0( 1, i ) ;
3246 freqgrp.push_back( grp0 ) ;
3247 grpnum++ ;
3248 }
3249 freqrange = ifgfreq[2*i+1] ;
3250 }
3251
3252
3253 // print IF groups
3254 ostringstream oss ;
3255 oss << "IF Group summary: " << endl ;
3256 oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3257 for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3258 oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3259 for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3260 oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3261 }
3262 oss << endl ;
3263 }
3264 oss << endl ;
3265 os << oss.str() << LogIO::POST ;
3266
3267 // print frequency group
3268 oss.str("") ;
3269 oss << "Frequency Group summary: " << endl ;
3270 oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3271 for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3272 oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3273 for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3274 oss << freqgrp[i][j] << " " ;
3275 }
3276 oss << endl ;
3277 }
3278 oss << endl ;
3279 os << oss.str() << LogIO::POST ;
3280
3281 // membership check
3282 // groups: list of IF group indexes whose frequency range overlaps with
3283 // that of each table and IF
3284 // groups[numtable][numIF][nummembership]
3285 // groups: [[[grp, grp,...], [grp, grp,...],...],
3286 // [[grp, grp,...], [grp, grp,...],...],
3287 // ...
3288 // [[grp, grp,...], [grp, grp,...],...]]
3289 vector< vector< vector<uInt> > > groups( insize ) ;
3290 for ( uInt i = 0 ; i < insize ; i++ ) {
3291 groups[i].resize( freqid[i].size() ) ;
3292 }
3293 for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3294 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3295 uInt tableid = ifgrp[igrp][2*imem] ;
3296 vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3297 if ( iter != freqid[tableid].end() ) {
3298 uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3299 groups[tableid][rowid].push_back( igrp ) ;
3300 }
3301 }
3302 }
3303
3304 // print membership
3305 //oss.str("") ;
3306 //for ( uInt i = 0 ; i < insize ; i++ ) {
3307 //oss << "Table " << i << endl ;
3308 //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3309 //oss << " FREQ_ID " << setw( 2 ) << freqid[i][j] << ": " ;
3310 //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3311 //oss << setw( 2 ) << groups[i][j][k] << " " ;
3312 //}
3313 //oss << endl ;
3314 //}
3315 //}
3316 //os << oss.str() << LogIO::POST ;
3317
3318 // set back coordinfo
3319 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3320 vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3321 coordinfo[0] = oldinfo[itable] ;
3322 tmpin[itable]->setCoordInfo( coordinfo ) ;
3323 }
3324
3325 // Create additional table if needed
3326 bool oldInsitu = insitu_ ;
3327 setInsitu( false ) ;
3328 vector< vector<uInt> > addrow( insize ) ;
3329 vector<uInt> addtable( insize, 0 ) ;
3330 vector<uInt> newtableids( insize ) ;
3331 vector<uInt> newifids( insize, 0 ) ;
3332 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3333 //os << "Table " << itable << ": " ;
3334 for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3335 addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3336 //os << addrow[itable][ifrow] << " " ;
3337 }
3338 addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3339 //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3340 }
3341 newin.resize( insize ) ;
3342 copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3343 for ( uInt i = 0 ; i < insize ; i++ ) {
3344 newtableids[i] = i ;
3345 }
3346 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3347 for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3348 CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3349 vector<int> freqidlist ;
3350 for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3351 if ( groups[itable][i].size() > iadd + 1 ) {
3352 freqidlist.push_back( freqid[itable][i] ) ;
3353 }
3354 }
3355 stringstream taqlstream ;
3356 taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3357 for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
[2133]3358 taqlstream << freqidlist[i] ;
[1819]3359 if ( i < freqidlist.size() - 1 )
3360 taqlstream << "," ;
3361 else
3362 taqlstream << "]" ;
3363 }
3364 string taql = taqlstream.str() ;
3365 //os << "taql = " << taql << LogIO::POST ;
3366 STSelector selector = STSelector() ;
3367 selector.setTaQL( taql ) ;
3368 add->setSelection( selector ) ;
3369 newin.push_back( add ) ;
3370 newtableids.push_back( itable ) ;
3371 newifids.push_back( iadd + 1 ) ;
3372 }
3373 }
3374
3375 // udpate ifgrp
3376 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3377 for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3378 for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3379 if ( groups[itable][ifrow].size() > iadd + 1 ) {
3380 uInt igrp = groups[itable][ifrow][iadd+1] ;
3381 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3382 if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3383 ifgrp[igrp][2*imem] = insize + iadd ;
3384 }
3385 }
3386 }
3387 }
3388 }
3389 }
3390
3391 // print IF groups again for debug
3392 //oss.str( "" ) ;
3393 //oss << "IF Group summary: " << endl ;
3394 //oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3395 //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3396 //oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3397 //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3398 //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3399 //}
3400 //oss << endl ;
3401 //}
3402 //oss << endl ;
3403 //os << oss.str() << LogIO::POST ;
3404
3405 // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3406 os << "All scan number is set to 0" << LogIO::POST ;
3407 //os << "All IF number is set to IF group index" << LogIO::POST ;
3408 insize = newin.size() ;
3409 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3410 uInt rows = newin[itable]->nrow() ;
3411 Table &tmpt = newin[itable]->table() ;
3412 freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3413 scannoCol.attach( tmpt, "SCANNO" ) ;
3414 ifnoCol.attach( tmpt, "IFNO" ) ;
3415 for ( uInt irow=0 ; irow < rows ; irow++ ) {
3416 scannoCol.put( irow, 0 ) ;
3417 uInt freqID = freqIDCol( irow ) ;
3418 vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3419 if ( iter != freqid[newtableids[itable]].end() ) {
3420 uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3421 ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3422 }
3423 else {
3424 throw(AipsError("IF grouping was wrong in additional tables.")) ;
3425 }
3426 }
3427 }
3428 oldinfo.resize( insize ) ;
3429 setInsitu( oldInsitu ) ;
3430
3431 // temporarily set coordinfo
3432 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3433 vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3434 oldinfo[itable] = coordinfo[0] ;
3435 coordinfo[0] = "Hz" ;
3436 newin[itable]->setCoordInfo( coordinfo ) ;
3437 }
3438
3439 // save column values in the vector
3440 vector< vector<uInt> > freqTableIdVec( insize ) ;
3441 vector< vector<uInt> > freqIdVec( insize ) ;
3442 vector< vector<uInt> > ifNoVec( insize ) ;
3443 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3444 ScalarColumn<uInt> freqIDs ;
3445 freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3446 ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3447 freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3448 for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3449 freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3450 }
3451 for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3452 freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3453 ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3454 }
3455 }
3456
3457 // reset spectra and flagtra: pick up common part of frequency coverage
3458 //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3459 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3460 uInt rows = newin[itable]->nrow() ;
3461 int nminchan = -1 ;
3462 int nmaxchan = -1 ;
3463 vector<uInt> freqIdUpdate ;
3464 for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3465 uInt ifno = ifNoVec[itable][irow] ; // IFNO is reset by group index
3466 double minfreq = ifgfreq[2*ifno] ;
3467 double maxfreq = ifgfreq[2*ifno+1] ;
3468 //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3469 vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3470 int nchan = abcissa.size() ;
3471 double resol = abcissa[1] - abcissa[0] ;
3472 //os << "abcissa range : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3473 if ( minfreq <= abcissa[0] )
3474 nminchan = 0 ;
3475 else {
3476 //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3477 double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3478 nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3479 }
3480 if ( maxfreq >= abcissa[abcissa.size()-1] )
3481 nmaxchan = abcissa.size() - 1 ;
3482 else {
3483 //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3484 double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3485 nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3486 }
3487 //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3488 if ( nmaxchan > nminchan ) {
3489 newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3490 int newchan = nmaxchan - nminchan + 1 ;
3491 if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3492 freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3493 }
3494 else {
3495 throw(AipsError("Failed to pick up common part of frequency range.")) ;
3496 }
3497 }
3498 for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3499 uInt freqId = freqIdUpdate[i] ;
3500 Double refpix ;
3501 Double refval ;
3502 Double increment ;
3503
3504 // update row
3505 newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3506 refval = refval - ( refpix - nminchan ) * increment ;
3507 refpix = 0 ;
3508 newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3509 }
3510 }
3511
3512
3513 // reset spectra and flagtra: align spectral resolution
3514 //os << "Align spectral resolution" << LogIO::POST ;
3515 // gmaxdnu: the coarsest frequency resolution in the frequency group
3516 // gmemid: member index that have a resolution equal to gmaxdnu
3517 // gmaxdnu[numfreqgrp]
3518 // gmaxdnu: [dnu0, dnu1, ...]
3519 // gmemid[numfreqgrp]
3520 // gmemid: [id0, id1, ...]
3521 vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3522 vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3523 for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3524 double maxdnu = 0.0 ; // maximum (coarsest) frequency resolution
3525 int minchan = INT_MAX ; // minimum channel number
3526 Double refpixref = -1 ; // reference of 'reference pixel'
3527 Double refvalref = -1 ; // reference of 'reference frequency'
3528 Double refinc = -1 ; // reference frequency resolution
3529 uInt refreqid ;
3530 uInt reftable = INT_MAX;
3531 // process only if group member > 1
3532 if ( ifgrp[igrp].size() > 2 ) {
3533 // find minchan and maxdnu in each group
3534 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3535 uInt tableid = ifgrp[igrp][2*imem] ;
3536 uInt rowid = ifgrp[igrp][2*imem+1] ;
3537 vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3538 if ( iter != freqIdVec[tableid].end() ) {
3539 uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3540 vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3541 int nchan = abcissa.size() ;
3542 double dnu = abcissa[1] - abcissa[0] ;
3543 //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3544 if ( nchan < minchan ) {
3545 minchan = nchan ;
3546 maxdnu = dnu ;
3547 newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3548 refreqid = rowid ;
3549 reftable = tableid ;
3550 }
3551 }
3552 }
3553 // regrid spectra in each group
3554 os << "GROUP " << igrp << endl ;
3555 os << " Channel number is adjusted to " << minchan << endl ;
3556 os << " Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3557 for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3558 uInt tableid = ifgrp[igrp][2*imem] ;
3559 uInt rowid = ifgrp[igrp][2*imem+1] ;
3560 freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3561 //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3562 //os << " regridChannel applied to " ;
[2133]3563 //if ( tableid != reftable )
3564 refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
[1819]3565 for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3566 uInt tfreqid = freqIdVec[tableid][irow] ;
3567 if ( tfreqid == rowid ) {
3568 //os << irow << " " ;
3569 newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3570 freqIDCol.put( irow, refreqid ) ;
3571 freqIdVec[tableid][irow] = refreqid ;
3572 }
3573 }
3574 //os << LogIO::POST ;
3575 }
3576 }
3577 else {
3578 uInt tableid = ifgrp[igrp][0] ;
3579 uInt rowid = ifgrp[igrp][1] ;
3580 vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3581 if ( iter != freqIdVec[tableid].end() ) {
3582 uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3583 vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3584 minchan = abcissa.size() ;
3585 maxdnu = abcissa[1] - abcissa[0] ;
3586 }
3587 }
3588 for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3589 if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3590 if ( maxdnu > gmaxdnu[i] ) {
3591 gmaxdnu[i] = maxdnu ;
3592 gmemid[i] = igrp ;
3593 }
3594 break ;
3595 }
3596 }
3597 }
3598
3599 // set back coordinfo
3600 for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3601 vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3602 coordinfo[0] = oldinfo[itable] ;
3603 newin[itable]->setCoordInfo( coordinfo ) ;
3604 }
3605
3606 // accumulate all rows into the first table
3607 // NOTE: assumed in.size() = 1
3608 vector< CountedPtr<Scantable> > tmp( 1 ) ;
3609 if ( newin.size() == 1 )
3610 tmp[0] = newin[0] ;
3611 else
3612 tmp[0] = merge( newin ) ;
3613
3614 //return tmp[0] ;
3615
3616 // average
3617 CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3618
3619 //return tmpout ;
3620
3621 // combine frequency group
3622 os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3623 os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3624 vector<string> coordinfo = tmpout->getCoordInfo() ;
3625 oldinfo[0] = coordinfo[0] ;
3626 coordinfo[0] = "Hz" ;
3627 tmpout->setCoordInfo( coordinfo ) ;
3628 // create proformas of output table
3629 stringstream taqlstream ;
3630 taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3631 for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3632 taqlstream << gmemid[i] ;
3633 if ( i < gmemid.size() - 1 )
3634 taqlstream << "," ;
3635 else
3636 taqlstream << "]" ;
3637 }
3638 string taql = taqlstream.str() ;
3639 //os << "taql = " << taql << LogIO::POST ;
3640 STSelector selector = STSelector() ;
3641 selector.setTaQL( taql ) ;
3642 oldInsitu = insitu_ ;
3643 setInsitu( false ) ;
3644 out = getScantable( tmpout, false ) ;
3645 setInsitu( oldInsitu ) ;
3646 out->setSelection( selector ) ;
3647 // regrid rows
3648 ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3649 for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3650 uInt ifno = ifnoCol( irow ) ;
3651 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3652 if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3653 vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3654 double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3655 int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3656 tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3657 break ;
3658 }
3659 }
3660 }
3661 // combine spectra
3662 ArrayColumn<Float> specColOut ;
3663 specColOut.attach( out->table(), "SPECTRA" ) ;
3664 ArrayColumn<uChar> flagColOut ;
3665 flagColOut.attach( out->table(), "FLAGTRA" ) ;
3666 ScalarColumn<uInt> ifnoColOut ;
3667 ifnoColOut.attach( out->table(), "IFNO" ) ;
3668 ScalarColumn<uInt> polnoColOut ;
3669 polnoColOut.attach( out->table(), "POLNO" ) ;
3670 ScalarColumn<uInt> freqidColOut ;
3671 freqidColOut.attach( out->table(), "FREQ_ID" ) ;
[2432]3672// MDirection::ScalarColumn dirColOut ;
3673// dirColOut.attach( out->table(), "DIRECTION" ) ;
[1819]3674 Table &tab = tmpout->table() ;
3675 Block<String> cols(1);
3676 cols[0] = String("POLNO") ;
3677 TableIterator iter( tab, cols ) ;
3678 bool done = false ;
3679 vector< vector<uInt> > sizes( freqgrp.size() ) ;
3680 while( !iter.pastEnd() ) {
3681 vector< vector<Float> > specout( freqgrp.size() ) ;
3682 vector< vector<uChar> > flagout( freqgrp.size() ) ;
3683 ArrayColumn<Float> specCols ;
3684 specCols.attach( iter.table(), "SPECTRA" ) ;
3685 ArrayColumn<uChar> flagCols ;
3686 flagCols.attach( iter.table(), "FLAGTRA" ) ;
3687 ifnoCol.attach( iter.table(), "IFNO" ) ;
3688 ScalarColumn<uInt> polnos ;
3689 polnos.attach( iter.table(), "POLNO" ) ;
[2432]3690// MDirection::ScalarColumn dircol ;
3691// dircol.attach( iter.table(), "DIRECTION" ) ;
[1819]3692 uInt polno = polnos( 0 ) ;
3693 //os << "POLNO iteration: " << polno << LogIO::POST ;
3694// for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3695// sizes[igrp].resize( freqgrp[igrp].size() ) ;
3696// for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3697// for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3698// uInt ifno = ifnoCol( irow ) ;
3699// if ( ifno == freqgrp[igrp][imem] ) {
3700// Vector<Float> spec = specCols( irow ) ;
3701// Vector<uChar> flag = flagCols( irow ) ;
3702// vector<Float> svec ;
3703// spec.tovector( svec ) ;
3704// vector<uChar> fvec ;
3705// flag.tovector( fvec ) ;
3706// //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3707// specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3708// flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3709// //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3710// sizes[igrp][imem] = spec.nelements() ;
3711// }
3712// }
3713// }
3714// for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3715// uInt ifout = ifnoColOut( irow ) ;
3716// uInt polout = polnoColOut( irow ) ;
3717// if ( ifout == gmemid[igrp] && polout == polno ) {
3718// // set SPECTRA and FRAGTRA
3719// Vector<Float> newspec( specout[igrp] ) ;
3720// Vector<uChar> newflag( flagout[igrp] ) ;
3721// specColOut.put( irow, newspec ) ;
3722// flagColOut.put( irow, newflag ) ;
3723// // IFNO renumbering
3724// ifnoColOut.put( irow, igrp ) ;
3725// }
3726// }
3727// }
3728 // get a list of number of channels for each frequency group member
3729 if ( !done ) {
3730 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3731 sizes[igrp].resize( freqgrp[igrp].size() ) ;
3732 for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3733 for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3734 uInt ifno = ifnoCol( irow ) ;
3735 if ( ifno == freqgrp[igrp][imem] ) {
3736 Vector<Float> spec = specCols( irow ) ;
3737 sizes[igrp][imem] = spec.nelements() ;
3738 break ;
3739 }
3740 }
3741 }
3742 }
3743 done = true ;
3744 }
3745 // combine spectra
3746 for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3747 uInt polout = polnoColOut( irow ) ;
3748 if ( polout == polno ) {
3749 uInt ifout = ifnoColOut( irow ) ;
[2432]3750// Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
[1819]3751 uInt igrp ;
3752 for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3753 if ( ifout == gmemid[jgrp] ) {
3754 igrp = jgrp ;
3755 break ;
3756 }
3757 }
3758 for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3759 for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3760 uInt ifno = ifnoCol( jrow ) ;
[2432]3761 // 2012/02/17 TN
3762 // Since STGrid is implemented, average doesn't consider direction
3763 // when accumulating
3764// Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3765// //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction ) ) {
3766// Double dx = tdir[0] - direction[0] ;
3767// Double dy = tdir[1] - direction[1] ;
3768// Double dd = sqrt( dx * dx + dy * dy ) ;
[1819]3769 //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
[2432]3770// if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3771 if ( ifno == freqgrp[igrp][imem] ) {
[1819]3772 Vector<Float> spec = specCols( jrow ) ;
3773 Vector<uChar> flag = flagCols( jrow ) ;
3774 vector<Float> svec ;
3775 spec.tovector( svec ) ;
3776 vector<uChar> fvec ;
3777 flag.tovector( fvec ) ;
3778 //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3779 specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3780 flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3781 //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3782 }
3783 }
3784 }
3785 // set SPECTRA and FRAGTRA
3786 Vector<Float> newspec( specout[igrp] ) ;
3787 Vector<uChar> newflag( flagout[igrp] ) ;
3788 specColOut.put( irow, newspec ) ;
3789 flagColOut.put( irow, newflag ) ;
3790 // IFNO renumbering
3791 ifnoColOut.put( irow, igrp ) ;
3792 }
3793 }
3794 iter++ ;
3795 }
3796 // update FREQUENCIES subtable
3797 vector<bool> updated( freqgrp.size(), false ) ;
3798 for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3799 uInt index = 0 ;
3800 uInt pixShift = 0 ;
3801 while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3802 pixShift += sizes[igrp][index++] ;
3803 }
3804 for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3805 if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3806 uInt freqidOut = freqidColOut( irow ) ;
3807 //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3808 double refpix ;
3809 double refval ;
3810 double increm ;
3811 out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3812 refpix += pixShift ;
3813 out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3814 updated[igrp] = true ;
3815 }
3816 }
3817 }
3818
3819 //out = tmpout ;
3820
3821 coordinfo = tmpout->getCoordInfo() ;
3822 coordinfo[0] = oldinfo[0] ;
3823 tmpout->setCoordInfo( coordinfo ) ;
3824 }
3825 else {
3826 // simple average
3827 out = average( in, mask, weight, avmode ) ;
3828 }
3829
[2345]3830 return out;
[1819]3831}
3832
3833CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3834 const String calmode,
3835 const String antname )
3836{
3837 // frequency switch
3838 if ( calmode == "fs" ) {
3839 return cwcalfs( s, antname ) ;
3840 }
3841 else {
3842 vector<bool> masks = s->getMask( 0 ) ;
3843 vector<int> types ;
3844
3845 // sky scan
3846 STSelector sel = STSelector() ;
3847 types.push_back( SrcType::SKY ) ;
3848 sel.setTypes( types ) ;
3849 s->setSelection( sel ) ;
3850 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3851 CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3852 s->unsetSelection() ;
3853 sel.reset() ;
3854 types.clear() ;
3855
3856 // hot scan
3857 types.push_back( SrcType::HOT ) ;
3858 sel.setTypes( types ) ;
3859 s->setSelection( sel ) ;
3860 tmp.clear() ;
3861 tmp.push_back( getScantable( s, false ) ) ;
3862 CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3863 s->unsetSelection() ;
3864 sel.reset() ;
3865 types.clear() ;
3866
3867 // cold scan
3868 CountedPtr<Scantable> acold ;
3869// types.push_back( SrcType::COLD ) ;
3870// sel.setTypes( types ) ;
3871// s->setSelection( sel ) ;
3872// tmp.clear() ;
3873// tmp.push_back( getScantable( s, false ) ) ;
3874// CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3875// s->unsetSelection() ;
3876// sel.reset() ;
3877// types.clear() ;
3878
3879 // off scan
3880 types.push_back( SrcType::PSOFF ) ;
3881 sel.setTypes( types ) ;
3882 s->setSelection( sel ) ;
3883 tmp.clear() ;
3884 tmp.push_back( getScantable( s, false ) ) ;
3885 CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3886 s->unsetSelection() ;
3887 sel.reset() ;
3888 types.clear() ;
3889
3890 // on scan
3891 bool insitu = insitu_ ;
3892 insitu_ = false ;
3893 CountedPtr<Scantable> out = getScantable( s, true ) ;
3894 insitu_ = insitu ;
3895 types.push_back( SrcType::PSON ) ;
3896 sel.setTypes( types ) ;
3897 s->setSelection( sel ) ;
3898 TableCopy::copyRows( out->table(), s->table() ) ;
3899 s->unsetSelection() ;
3900 sel.reset() ;
3901 types.clear() ;
3902
3903 // process each on scan
3904 ArrayColumn<Float> tsysCol ;
3905 tsysCol.attach( out->table(), "TSYS" ) ;
3906 for ( int i = 0 ; i < out->nrow() ; i++ ) {
3907 vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3908 out->setSpectrum( sp, i ) ;
3909 string reftime = out->getTime( i ) ;
3910 vector<int> ii( 1, out->getIF( i ) ) ;
3911 vector<int> ib( 1, out->getBeam( i ) ) ;
3912 vector<int> ip( 1, out->getPol( i ) ) ;
3913 sel.setIFs( ii ) ;
3914 sel.setBeams( ib ) ;
3915 sel.setPolarizations( ip ) ;
3916 asky->setSelection( sel ) ;
3917 vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3918 const Vector<Float> Vtsys( sptsys ) ;
3919 tsysCol.put( i, Vtsys ) ;
3920 asky->unsetSelection() ;
3921 sel.reset() ;
3922 }
3923
3924 // flux unit
3925 out->setFluxUnit( "K" ) ;
3926
3927 return out ;
3928 }
3929}
3930
3931CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3932 const String calmode )
3933{
3934 // frequency switch
3935 if ( calmode == "fs" ) {
3936 return almacalfs( s ) ;
3937 }
3938 else {
[2539]3939 // double t0, t1 ;
3940 // t0 = mathutil::gettimeofday_sec() ;
[1819]3941 vector<bool> masks = s->getMask( 0 ) ;
3942
3943 // off scan
3944 STSelector sel = STSelector() ;
[2519]3945 vector<int> types( 1, SrcType::PSOFF ) ;
3946 //types.push_back( SrcType::PSOFF ) ;
[1819]3947 sel.setTypes( types ) ;
3948 s->setSelection( sel ) ;
3949 // TODO 2010/01/08 TN
3950 // Grouping by time should be needed before averaging.
3951 // Each group must have own unique SCANNO (should be renumbered).
3952 // See PIPELINE/SDCalibration.py
3953 CountedPtr<Scantable> soff = getScantable( s, false ) ;
3954 Table ttab = soff->table() ;
[2519]3955// String tmpname = File::newUniqueName( "./", "temp" ).baseName() ;
3956// Table ttab = s->table().copyToMemoryTable( tmpname, False ) ;
3957 ROScalarColumn<Double> *timeCol = new ROScalarColumn<Double>( ttab, "TIME" ) ;
3958 uInt nrow = timeCol->nrow() ;
3959 Vector<Double> timeSep = timeCol->getColumn() ;
3960 delete timeCol ;
3961 for ( uInt i = nrow-2 ; i > 0 ; i-- ) {
3962 timeSep[i] -= timeSep[i-1] ;
[1819]3963 }
[2519]3964 Vector<Double> interval = soff->integrCol_.getColumn() ;
[1819]3965 interval /= 86400.0 ;
[2519]3966 Block<uInt> gaplist( 100 ) ;
3967 uInt glidx = 0 ;
3968 uInt glsize = gaplist.size() ;
[1819]3969 for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
[2519]3970 double gap = 2.0 * timeSep[i+1] / ( interval[i] + interval[i+1] ) ;
[1819]3971 //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3972 if ( gap > 1.1 ) {
[2519]3973// cout << "detected gap between " << i << " and " << i+1 << endl ;
3974 gaplist[glidx] = i ;
3975 glidx++ ;
[1819]3976 }
[2519]3977 if ( glidx >= glsize ) {
3978// cout << "resize gaplist" << endl ;
3979 glsize += 100 ;
3980 gaplist.resize( glsize ) ;
3981 }
[1819]3982 }
[2524]3983 gaplist[glidx] = nrow - 1 ;
3984 glidx++ ;
3985// cout << "gaplist = " << Vector<uInt>(IPosition(1,glidx),gaplist.storage()) << endl ;
[1819]3986 uInt newid = 0 ;
[2524]3987 Vector<uInt> newscanno( nrow, 0 ) ;
3988 uInt *p = newscanno.data() ;
3989 IPosition pos( 1 ) ;
3990 for ( uInt i = 1 ; i < glidx ; i++ ) {
3991 pos[0] = gaplist[i] - gaplist[i-1] ;
3992 Vector<uInt> scnslice( pos, p+gaplist[i-1]+1, SHARE ) ;
3993 scnslice = i ;
[1819]3994 }
[2524]3995 soff->scanCol_.putColumn( newscanno ) ;
3996// cout << "new scancol = " << soff->scanCol_.getColumn() << endl ;
[2539]3997// double t2 = mathutil::gettimeofday_sec() ;
[1819]3998 vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3999 CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
[2539]4000 // double t3 = mathutil::gettimeofday_sec() ;
[1819]4001 //cout << "aoff.nrow = " << aoff->nrow() << endl ;
4002 s->unsetSelection() ;
4003 sel.reset() ;
[2539]4004 // t1 = mathutil::gettimeofday_sec() ;
4005 // cout << "elapsed time for off averaging: " << t1-t0 << " sec" << endl ;
4006 // cout << " elapsed time for average(): " << t3-t2 << " sec" << endl ;
[1819]4007
4008 // on scan
[2539]4009 // t0 = mathutil::gettimeofday_sec() ;
[1819]4010 bool insitu = insitu_ ;
4011 insitu_ = false ;
4012 CountedPtr<Scantable> out = getScantable( s, true ) ;
4013 insitu_ = insitu ;
[2519]4014 types[0] = SrcType::PSON ;
[1819]4015 sel.setTypes( types ) ;
4016 s->setSelection( sel ) ;
4017 TableCopy::copyRows( out->table(), s->table() ) ;
4018 s->unsetSelection() ;
4019 sel.reset() ;
[2539]4020 // t1 = mathutil::gettimeofday_sec() ;
4021 // cout << "elapsed time for preparing output table: " << t1-t0 << " sec" << endl ;
[2519]4022
[1819]4023 // process each on scan
[2539]4024 // t0 = mathutil::gettimeofday_sec() ;
[2502]4025// for ( int i = 0 ; i < out->nrow() ; i++ ) {
4026// vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
4027// out->setSpectrum( sp, i ) ;
4028// }
4029
[2519]4030 // using STIdxIterAcc
4031 vector<string> cols( 3 ) ;
4032 cols[0] = "BEAMNO" ;
4033 cols[1] = "POLNO" ;
4034 cols[2] = "IFNO" ;
4035 STIdxIter *iter = new STIdxIterAcc( out, cols ) ;
4036 while ( !iter->pastEnd() ) {
4037 Vector<uInt> ids = iter->current() ;
4038 stringstream ss ;
4039 ss << "SELECT FROM $1 WHERE "
4040 << "BEAMNO==" << ids[0] << "&&"
4041 << "POLNO==" << ids[1] << "&&"
4042 << "IFNO==" << ids[2] ;
4043 sel.setTaQL( ss.str() ) ;
4044 aoff->setSelection( sel ) ;
[2524]4045 Vector<uInt> rows = iter->getRows( SHARE ) ;
[2519]4046 calibrateALMA( out, aoff, rows ) ;
4047 aoff->unsetSelection() ;
4048 sel.reset() ;
4049 iter->next() ;
4050 }
4051 delete iter ;
[2502]4052
[2539]4053 // t1 = mathutil::gettimeofday_sec() ;
4054 // cout << "elapsed time for calibration: " << t1-t0 << " sec" << endl ;
[2502]4055
[1819]4056 // flux unit
4057 out->setFluxUnit( "K" ) ;
4058
4059 return out ;
4060 }
4061}
4062
4063CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
4064 const String antname )
4065{
4066 vector<int> types ;
4067
4068 // APEX calibration mode
4069 int apexcalmode = 1 ;
4070
4071 if ( antname.find( "APEX" ) != string::npos ) {
4072 // check if off scan exists or not
4073 STSelector sel = STSelector() ;
4074 //sel.setName( offstr1 ) ;
4075 types.push_back( SrcType::FLOOFF ) ;
4076 sel.setTypes( types ) ;
4077 try {
4078 s->setSelection( sel ) ;
4079 }
4080 catch ( AipsError &e ) {
4081 apexcalmode = 0 ;
4082 }
4083 sel.reset() ;
4084 }
4085 s->unsetSelection() ;
4086 types.clear() ;
4087
4088 vector<bool> masks = s->getMask( 0 ) ;
4089 CountedPtr<Scantable> ssig, sref ;
4090 CountedPtr<Scantable> out ;
4091
4092 if ( antname.find( "APEX" ) != string::npos ) {
4093 // APEX calibration
4094 // sky scan
4095 STSelector sel = STSelector() ;
4096 types.push_back( SrcType::FLOSKY ) ;
4097 sel.setTypes( types ) ;
4098 s->setSelection( sel ) ;
4099 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4100 CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
4101 s->unsetSelection() ;
4102 sel.reset() ;
4103 types.clear() ;
4104 types.push_back( SrcType::FHISKY ) ;
4105 sel.setTypes( types ) ;
4106 s->setSelection( sel ) ;
4107 tmp.clear() ;
4108 tmp.push_back( getScantable( s, false ) ) ;
4109 CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
4110 s->unsetSelection() ;
4111 sel.reset() ;
4112 types.clear() ;
4113
4114 // hot scan
4115 types.push_back( SrcType::FLOHOT ) ;
4116 sel.setTypes( types ) ;
4117 s->setSelection( sel ) ;
4118 tmp.clear() ;
4119 tmp.push_back( getScantable( s, false ) ) ;
4120 CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
4121 s->unsetSelection() ;
4122 sel.reset() ;
4123 types.clear() ;
4124 types.push_back( SrcType::FHIHOT ) ;
4125 sel.setTypes( types ) ;
4126 s->setSelection( sel ) ;
4127 tmp.clear() ;
4128 tmp.push_back( getScantable( s, false ) ) ;
4129 CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
4130 s->unsetSelection() ;
4131 sel.reset() ;
4132 types.clear() ;
4133
4134 // cold scan
4135 CountedPtr<Scantable> acoldlo, acoldhi ;
4136// types.push_back( SrcType::FLOCOLD ) ;
4137// sel.setTypes( types ) ;
4138// s->setSelection( sel ) ;
4139// tmp.clear() ;
4140// tmp.push_back( getScantable( s, false ) ) ;
4141// CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
4142// s->unsetSelection() ;
4143// sel.reset() ;
4144// types.clear() ;
4145// types.push_back( SrcType::FHICOLD ) ;
4146// sel.setTypes( types ) ;
4147// s->setSelection( sel ) ;
4148// tmp.clear() ;
4149// tmp.push_back( getScantable( s, false ) ) ;
4150// CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
4151// s->unsetSelection() ;
4152// sel.reset() ;
4153// types.clear() ;
4154
4155 // ref scan
4156 bool insitu = insitu_ ;
4157 insitu_ = false ;
4158 sref = getScantable( s, true ) ;
4159 insitu_ = insitu ;
4160 types.push_back( SrcType::FSLO ) ;
4161 sel.setTypes( types ) ;
4162 s->setSelection( sel ) ;
4163 TableCopy::copyRows( sref->table(), s->table() ) ;
4164 s->unsetSelection() ;
4165 sel.reset() ;
4166 types.clear() ;
4167
4168 // sig scan
4169 insitu_ = false ;
4170 ssig = getScantable( s, true ) ;
4171 insitu_ = insitu ;
4172 types.push_back( SrcType::FSHI ) ;
4173 sel.setTypes( types ) ;
4174 s->setSelection( sel ) ;
4175 TableCopy::copyRows( ssig->table(), s->table() ) ;
4176 s->unsetSelection() ;
4177 sel.reset() ;
4178 types.clear() ;
4179
4180 if ( apexcalmode == 0 ) {
4181 // APEX fs data without off scan
4182 // process each sig and ref scan
4183 ArrayColumn<Float> tsysCollo ;
4184 tsysCollo.attach( ssig->table(), "TSYS" ) ;
4185 ArrayColumn<Float> tsysColhi ;
4186 tsysColhi.attach( sref->table(), "TSYS" ) ;
4187 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4188 vector< CountedPtr<Scantable> > sky( 2 ) ;
4189 sky[0] = askylo ;
4190 sky[1] = askyhi ;
4191 vector< CountedPtr<Scantable> > hot( 2 ) ;
4192 hot[0] = ahotlo ;
4193 hot[1] = ahothi ;
4194 vector< CountedPtr<Scantable> > cold( 2 ) ;
4195 //cold[0] = acoldlo ;
4196 //cold[1] = acoldhi ;
4197 vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
4198 ssig->setSpectrum( sp, i ) ;
4199 string reftime = ssig->getTime( i ) ;
4200 vector<int> ii( 1, ssig->getIF( i ) ) ;
4201 vector<int> ib( 1, ssig->getBeam( i ) ) ;
4202 vector<int> ip( 1, ssig->getPol( i ) ) ;
4203 sel.setIFs( ii ) ;
4204 sel.setBeams( ib ) ;
4205 sel.setPolarizations( ip ) ;
4206 askylo->setSelection( sel ) ;
4207 vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4208 const Vector<Float> Vtsyslo( sptsys ) ;
4209 tsysCollo.put( i, Vtsyslo ) ;
4210 askylo->unsetSelection() ;
4211 sel.reset() ;
4212 sky[0] = askyhi ;
4213 sky[1] = askylo ;
4214 hot[0] = ahothi ;
4215 hot[1] = ahotlo ;
4216 cold[0] = acoldhi ;
4217 cold[1] = acoldlo ;
4218 sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4219 sref->setSpectrum( sp, i ) ;
4220 reftime = sref->getTime( i ) ;
4221 ii[0] = sref->getIF( i ) ;
4222 ib[0] = sref->getBeam( i ) ;
4223 ip[0] = sref->getPol( i ) ;
4224 sel.setIFs( ii ) ;
4225 sel.setBeams( ib ) ;
4226 sel.setPolarizations( ip ) ;
4227 askyhi->setSelection( sel ) ;
4228 sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4229 const Vector<Float> Vtsyshi( sptsys ) ;
4230 tsysColhi.put( i, Vtsyshi ) ;
4231 askyhi->unsetSelection() ;
4232 sel.reset() ;
4233 }
4234 }
4235 else if ( apexcalmode == 1 ) {
4236 // APEX fs data with off scan
4237 // off scan
4238 types.push_back( SrcType::FLOOFF ) ;
4239 sel.setTypes( types ) ;
4240 s->setSelection( sel ) ;
4241 tmp.clear() ;
4242 tmp.push_back( getScantable( s, false ) ) ;
4243 CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4244 s->unsetSelection() ;
4245 sel.reset() ;
4246 types.clear() ;
4247 types.push_back( SrcType::FHIOFF ) ;
4248 sel.setTypes( types ) ;
4249 s->setSelection( sel ) ;
4250 tmp.clear() ;
4251 tmp.push_back( getScantable( s, false ) ) ;
4252 CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4253 s->unsetSelection() ;
4254 sel.reset() ;
4255 types.clear() ;
4256
4257 // process each sig and ref scan
4258 ArrayColumn<Float> tsysCollo ;
4259 tsysCollo.attach( ssig->table(), "TSYS" ) ;
4260 ArrayColumn<Float> tsysColhi ;
4261 tsysColhi.attach( sref->table(), "TSYS" ) ;
4262 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4263 vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4264 ssig->setSpectrum( sp, i ) ;
4265 sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4266 string reftime = ssig->getTime( i ) ;
4267 vector<int> ii( 1, ssig->getIF( i ) ) ;
4268 vector<int> ib( 1, ssig->getBeam( i ) ) ;
4269 vector<int> ip( 1, ssig->getPol( i ) ) ;
4270 sel.setIFs( ii ) ;
4271 sel.setBeams( ib ) ;
4272 sel.setPolarizations( ip ) ;
4273 askylo->setSelection( sel ) ;
4274 vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4275 const Vector<Float> Vtsyslo( sptsys ) ;
4276 tsysCollo.put( i, Vtsyslo ) ;
4277 askylo->unsetSelection() ;
4278 sel.reset() ;
4279 sref->setSpectrum( sp, i ) ;
4280 reftime = sref->getTime( i ) ;
4281 ii[0] = sref->getIF( i ) ;
4282 ib[0] = sref->getBeam( i ) ;
4283 ip[0] = sref->getPol( i ) ;
4284 sel.setIFs( ii ) ;
4285 sel.setBeams( ib ) ;
4286 sel.setPolarizations( ip ) ;
4287 askyhi->setSelection( sel ) ;
4288 sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4289 const Vector<Float> Vtsyshi( sptsys ) ;
4290 tsysColhi.put( i, Vtsyshi ) ;
4291 askyhi->unsetSelection() ;
4292 sel.reset() ;
4293 }
4294 }
4295 }
4296 else {
4297 // non-APEX fs data
4298 // sky scan
4299 STSelector sel = STSelector() ;
4300 types.push_back( SrcType::SKY ) ;
4301 sel.setTypes( types ) ;
4302 s->setSelection( sel ) ;
4303 vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4304 CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4305 s->unsetSelection() ;
4306 sel.reset() ;
4307 types.clear() ;
4308
4309 // hot scan
4310 types.push_back( SrcType::HOT ) ;
4311 sel.setTypes( types ) ;
4312 s->setSelection( sel ) ;
4313 tmp.clear() ;
4314 tmp.push_back( getScantable( s, false ) ) ;
4315 CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4316 s->unsetSelection() ;
4317 sel.reset() ;
4318 types.clear() ;
4319
4320 // cold scan
4321 CountedPtr<Scantable> acold ;
4322// types.push_back( SrcType::COLD ) ;
4323// sel.setTypes( types ) ;
4324// s->setSelection( sel ) ;
4325// tmp.clear() ;
4326// tmp.push_back( getScantable( s, false ) ) ;
4327// CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4328// s->unsetSelection() ;
4329// sel.reset() ;
4330// types.clear() ;
4331
4332 // ref scan
4333 bool insitu = insitu_ ;
4334 insitu_ = false ;
4335 sref = getScantable( s, true ) ;
4336 insitu_ = insitu ;
4337 types.push_back( SrcType::FSOFF ) ;
4338 sel.setTypes( types ) ;
4339 s->setSelection( sel ) ;
4340 TableCopy::copyRows( sref->table(), s->table() ) ;
4341 s->unsetSelection() ;
4342 sel.reset() ;
4343 types.clear() ;
4344
4345 // sig scan
4346 insitu_ = false ;
4347 ssig = getScantable( s, true ) ;
4348 insitu_ = insitu ;
4349 types.push_back( SrcType::FSON ) ;
4350 sel.setTypes( types ) ;
4351 s->setSelection( sel ) ;
4352 TableCopy::copyRows( ssig->table(), s->table() ) ;
4353 s->unsetSelection() ;
4354 sel.reset() ;
4355 types.clear() ;
4356
4357 // process each sig and ref scan
4358 ArrayColumn<Float> tsysColsig ;
4359 tsysColsig.attach( ssig->table(), "TSYS" ) ;
4360 ArrayColumn<Float> tsysColref ;
4361 tsysColref.attach( ssig->table(), "TSYS" ) ;
4362 for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4363 vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4364 ssig->setSpectrum( sp, i ) ;
4365 string reftime = ssig->getTime( i ) ;
4366 vector<int> ii( 1, ssig->getIF( i ) ) ;
4367 vector<int> ib( 1, ssig->getBeam( i ) ) ;
4368 vector<int> ip( 1, ssig->getPol( i ) ) ;
4369 sel.setIFs( ii ) ;
4370 sel.setBeams( ib ) ;
4371 sel.setPolarizations( ip ) ;
4372 asky->setSelection( sel ) ;
4373 vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4374 const Vector<Float> Vtsys( sptsys ) ;
4375 tsysColsig.put( i, Vtsys ) ;
4376 asky->unsetSelection() ;
4377 sel.reset() ;
4378 sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4379 sref->setSpectrum( sp, i ) ;
4380 tsysColref.put( i, Vtsys ) ;
4381 }
4382 }
4383
4384 // do folding if necessary
4385 Table sigtab = ssig->table() ;
4386 Table reftab = sref->table() ;
4387 ScalarColumn<uInt> sigifnoCol ;
4388 ScalarColumn<uInt> refifnoCol ;
4389 ScalarColumn<uInt> sigfidCol ;
4390 ScalarColumn<uInt> reffidCol ;
4391 Int nchan = (Int)ssig->nchan() ;
4392 sigifnoCol.attach( sigtab, "IFNO" ) ;
4393 refifnoCol.attach( reftab, "IFNO" ) ;
4394 sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4395 reffidCol.attach( reftab, "FREQ_ID" ) ;
4396 Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4397 Vector<uInt> rfids( reffidCol.getColumn() ) ;
4398 vector<uInt> sfids_unique ;
4399 vector<uInt> rfids_unique ;
4400 vector<uInt> sifno_unique ;
4401 vector<uInt> rifno_unique ;
4402 for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4403 if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4404 sfids_unique.push_back( sfids[i] ) ;
4405 sifno_unique.push_back( ssig->getIF( i ) ) ;
4406 }
4407 if ( count( rfids_unique.begin(), rfids_unique.end(), rfids[i] ) == 0 ) {
4408 rfids_unique.push_back( rfids[i] ) ;
4409 rifno_unique.push_back( sref->getIF( i ) ) ;
4410 }
4411 }
4412 double refpix_sig, refval_sig, increment_sig ;
4413 double refpix_ref, refval_ref, increment_ref ;
4414 vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4415 for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4416 ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4417 sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4418 if ( refpix_sig == refpix_ref ) {
4419 double foffset = refval_ref - refval_sig ;
4420 int choffset = static_cast<int>(foffset/increment_sig) ;
4421 double doffset = foffset / increment_sig ;
4422 if ( abs(choffset) >= nchan ) {
4423 LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4424 os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4425 os << "Just return signal data" << LogIO::POST ;
4426 //std::vector< CountedPtr<Scantable> > tabs ;
4427 //tabs.push_back( ssig ) ;
4428 //tabs.push_back( sref ) ;
4429 //out = merge( tabs ) ;
4430 tmp[i] = ssig ;
4431 }
4432 else {
4433 STSelector sel = STSelector() ;
4434 vector<int> v( 1, sifno_unique[i] ) ;
4435 sel.setIFs( v ) ;
4436 ssig->setSelection( sel ) ;
4437 sel.reset() ;
4438 v[0] = rifno_unique[i] ;
4439 sel.setIFs( v ) ;
4440 sref->setSelection( sel ) ;
4441 sel.reset() ;
4442 if ( antname.find( "APEX" ) != string::npos ) {
4443 tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4444 //tmp[i] = dofold( ssig, sref, doffset ) ;
4445 }
4446 else {
4447 tmp[i] = dofold( ssig, sref, doffset ) ;
4448 }
4449 ssig->unsetSelection() ;
4450 sref->unsetSelection() ;
4451 }
4452 }
4453 }
4454
4455 if ( tmp.size() > 1 ) {
4456 out = merge( tmp ) ;
4457 }
4458 else {
4459 out = tmp[0] ;
4460 }
4461
4462 // flux unit
4463 out->setFluxUnit( "K" ) ;
4464
4465 return out ;
4466}
4467
4468CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4469{
[2163]4470 (void) s; //currently unused
[1819]4471 CountedPtr<Scantable> out ;
4472
4473 return out ;
4474}
4475
4476vector<float> STMath::getSpectrumFromTime( string reftime,
4477 CountedPtr<Scantable>& s,
4478 string mode )
4479{
4480 LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4481 vector<float> sp ;
4482
4483 if ( s->nrow() == 0 ) {
4484 os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4485 return sp ;
4486 }
4487 else if ( s->nrow() == 1 ) {
4488 //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4489 return s->getSpectrum( 0 ) ;
4490 }
4491 else {
4492 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4493 if ( mode == "before" ) {
4494 int id = -1 ;
4495 if ( idx[0] != -1 ) {
4496 id = idx[0] ;
4497 }
4498 else if ( idx[1] != -1 ) {
4499 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4500 id = idx[1] ;
4501 }
4502 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4503 sp = s->getSpectrum( id ) ;
4504 }
4505 else if ( mode == "after" ) {
4506 int id = -1 ;
4507 if ( idx[1] != -1 ) {
4508 id = idx[1] ;
4509 }
4510 else if ( idx[0] != -1 ) {
4511 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4512 id = idx[1] ;
4513 }
4514 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4515 sp = s->getSpectrum( id ) ;
4516 }
4517 else if ( mode == "nearest" ) {
4518 int id = -1 ;
4519 if ( idx[0] == -1 ) {
4520 id = idx[1] ;
4521 }
4522 else if ( idx[1] == -1 ) {
4523 id = idx[0] ;
4524 }
4525 else if ( idx[0] == idx[1] ) {
4526 id = idx[0] ;
4527 }
4528 else {
[1967]4529 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4530 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4531 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4532 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]4533 double tref = getMJD( reftime ) ;
4534 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4535 id = idx[1] ;
4536 }
4537 else {
4538 id = idx[0] ;
4539 }
4540 }
4541 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4542 sp = s->getSpectrum( id ) ;
4543 }
4544 else if ( mode == "linear" ) {
4545 if ( idx[0] == -1 ) {
4546 // use after
4547 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4548 int id = idx[1] ;
4549 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4550 sp = s->getSpectrum( id ) ;
4551 }
4552 else if ( idx[1] == -1 ) {
4553 // use before
4554 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4555 int id = idx[0] ;
4556 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4557 sp = s->getSpectrum( id ) ;
4558 }
4559 else if ( idx[0] == idx[1] ) {
4560 // use before
4561 //os << "No need to interporate." << LogIO::POST ;
4562 int id = idx[0] ;
4563 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4564 sp = s->getSpectrum( id ) ;
4565 }
4566 else {
4567 // do interpolation
4568 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
[1967]4569 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4570 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4571 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4572 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]4573 double tref = getMJD( reftime ) ;
4574 vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4575 vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4576 for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4577 float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4578 sp.push_back( v ) ;
4579 }
4580 }
4581 }
4582 else {
4583 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4584 }
4585 return sp ;
4586 }
4587}
4588
[2532]4589vector<float> STMath::getSpectrumFromTime( double reftime,
4590 Vector<Double> &timeVec,
[2443]4591 CountedPtr<Scantable>& s,
4592 string mode )
4593{
4594 LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4595 vector<float> sp ;
4596
4597 if ( s->nrow() == 0 ) {
4598 os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4599 return sp ;
4600 }
4601 else if ( s->nrow() == 1 ) {
4602 //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4603 return s->getSpectrum( 0 ) ;
4604 }
4605 else {
[2532]4606 //ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4607 //Vector<Double> timeVec = timeCol.getColumn() ;
[2443]4608 vector<int> idx = getRowIdFromTime( reftime, timeVec ) ;
4609 if ( mode == "before" ) {
4610 int id = -1 ;
4611 if ( idx[0] != -1 ) {
4612 id = idx[0] ;
4613 }
4614 else if ( idx[1] != -1 ) {
4615 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4616 id = idx[1] ;
4617 }
4618 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4619 sp = s->getSpectrum( id ) ;
4620 }
4621 else if ( mode == "after" ) {
4622 int id = -1 ;
4623 if ( idx[1] != -1 ) {
4624 id = idx[1] ;
4625 }
4626 else if ( idx[0] != -1 ) {
4627 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4628 id = idx[1] ;
4629 }
4630 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4631 sp = s->getSpectrum( id ) ;
4632 }
4633 else if ( mode == "nearest" ) {
4634 int id = -1 ;
4635 if ( idx[0] == -1 ) {
4636 id = idx[1] ;
4637 }
4638 else if ( idx[1] == -1 ) {
4639 id = idx[0] ;
4640 }
4641 else if ( idx[0] == idx[1] ) {
4642 id = idx[0] ;
4643 }
4644 else {
4645 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4646 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4647// double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4648// double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4649 double t0 = timeVec[idx[0]] ;
4650 double t1 = timeVec[idx[1]] ;
4651// cout << "t0-t0c=" << t0-t0c << endl ;
4652// cout << "t1-t1c=" << t1-t1c << endl ;
4653// double tref = getMJD( reftime ) ;
4654 double tref = reftime ;
4655 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4656 id = idx[1] ;
4657 }
4658 else {
4659 id = idx[0] ;
4660 }
4661 }
4662 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4663 sp = s->getSpectrum( id ) ;
4664 }
4665 else if ( mode == "linear" ) {
4666 if ( idx[0] == -1 ) {
4667 // use after
4668 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4669 int id = idx[1] ;
4670 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4671 sp = s->getSpectrum( id ) ;
4672 }
4673 else if ( idx[1] == -1 ) {
4674 // use before
4675 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4676 int id = idx[0] ;
4677 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4678 sp = s->getSpectrum( id ) ;
4679 }
4680 else if ( idx[0] == idx[1] ) {
4681 // use before
4682 //os << "No need to interporate." << LogIO::POST ;
4683 int id = idx[0] ;
4684 //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4685 sp = s->getSpectrum( id ) ;
4686 }
4687 else {
4688 // do interpolation
4689 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4690 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4691 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4692// double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4693// double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4694 double t0 = timeVec[idx[0]] ;
4695 double t1 = timeVec[idx[1]] ;
4696// cout << "t0-t0c=" << t0-t0c << endl ;
4697// cout << "t1-t1c=" << t1-t1c << endl ;
4698// double tref = getMJD( reftime ) ;
4699 double tref = reftime ;
[2524]4700 sp = s->getSpectrum( idx[0] ) ;
[2443]4701 vector<float> sp1 = s->getSpectrum( idx[1] ) ;
[2524]4702 double tfactor = ( tref - t0 ) / ( t1 - t0 ) ;
4703 for ( unsigned int i = 0 ; i < sp.size() ; i++ ) {
4704 sp[i] = ( sp1[i] - sp[i] ) * tfactor + sp[i] ;
[2443]4705 }
4706 }
4707 }
4708 else {
4709 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4710 }
4711 return sp ;
4712 }
4713}
4714
[1819]4715double STMath::getMJD( string strtime )
4716{
4717 if ( strtime.find("/") == string::npos ) {
4718 // MJD time string
4719 return atof( strtime.c_str() ) ;
4720 }
4721 else {
4722 // string in YYYY/MM/DD/HH:MM:SS format
4723 uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4724 uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4725 uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4726 uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4727 uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4728 uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4729 Time t( year, month, day, hour, minute, sec ) ;
4730 return t.modifiedJulianDay() ;
4731 }
4732}
4733
4734vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4735{
4736 double reft = getMJD( reftime ) ;
4737 double dtmin = 1.0e100 ;
4738 double dtmax = -1.0e100 ;
4739 vector<double> dt ;
4740 int just_before = -1 ;
4741 int just_after = -1 ;
4742 for ( int i = 0 ; i < s->nrow() ; i++ ) {
4743 dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4744 }
4745 for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4746 if ( dt[i] > 0.0 ) {
4747 // after reftime
4748 if ( dt[i] < dtmin ) {
4749 just_after = i ;
4750 dtmin = dt[i] ;
4751 }
4752 }
4753 else if ( dt[i] < 0.0 ) {
4754 // before reftime
4755 if ( dt[i] > dtmax ) {
4756 just_before = i ;
4757 dtmax = dt[i] ;
4758 }
4759 }
4760 else {
4761 // just a reftime
4762 just_before = i ;
4763 just_after = i ;
4764 dtmax = 0 ;
4765 dtmin = 0 ;
4766 break ;
4767 }
4768 }
4769
4770 vector<int> v ;
4771 v.push_back( just_before ) ;
4772 v.push_back( just_after ) ;
4773
4774 return v ;
4775}
4776
[2443]4777vector<int> STMath::getRowIdFromTime( double reftime, Vector<Double> &t )
4778{
4779// double reft = reftime ;
4780 double dtmin = 1.0e100 ;
4781 double dtmax = -1.0e100 ;
4782// vector<double> dt ;
4783 int just_before = -1 ;
4784 int just_after = -1 ;
4785 //cout << setprecision(24) << reft << endl ;
4786// ROScalarColumn<Double> timeCol( s->table(), "TIME" ) ;
4787// for ( int i = 0 ; i < s->nrow() ; i++ ) {
4788// cout << setprecision(24) << timeCol(i) << endl ;
4789// //dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4790// dt.push_back( timeCol(i) - reft ) ;
4791// }
4792 Vector<Double> dt = t - reftime ;
4793 for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4794 if ( dt[i] > 0.0 ) {
4795 // after reftime
4796 if ( dt[i] < dtmin ) {
4797 just_after = i ;
4798 dtmin = dt[i] ;
4799 }
4800 }
4801 else if ( dt[i] < 0.0 ) {
4802 // before reftime
4803 if ( dt[i] > dtmax ) {
4804 just_before = i ;
4805 dtmax = dt[i] ;
4806 }
4807 }
4808 else {
4809 // just a reftime
4810 just_before = i ;
4811 just_after = i ;
4812 dtmax = 0 ;
4813 dtmin = 0 ;
4814 break ;
4815 }
4816 }
4817
4818 vector<int> v(2) ;
4819 v[0] = just_before ;
4820 v[1] = just_after ;
4821
4822 return v ;
4823}
4824
[1819]4825vector<float> STMath::getTcalFromTime( string reftime,
4826 CountedPtr<Scantable>& s,
4827 string mode )
4828{
4829 LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4830 vector<float> tcal ;
4831 STTcal tcalTable = s->tcal() ;
4832 String time ;
4833 Vector<Float> tcalval ;
4834 if ( s->nrow() == 0 ) {
4835 os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4836 return tcal ;
4837 }
4838 else if ( s->nrow() == 1 ) {
4839 uInt tcalid = s->getTcalId( 0 ) ;
4840 //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4841 tcalTable.getEntry( time, tcalval, tcalid ) ;
4842 tcalval.tovector( tcal ) ;
4843 return tcal ;
4844 }
4845 else {
4846 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4847 if ( mode == "before" ) {
4848 int id = -1 ;
4849 if ( idx[0] != -1 ) {
4850 id = idx[0] ;
4851 }
4852 else if ( idx[1] != -1 ) {
4853 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4854 id = idx[1] ;
4855 }
4856 uInt tcalid = s->getTcalId( id ) ;
4857 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4858 tcalTable.getEntry( time, tcalval, tcalid ) ;
4859 tcalval.tovector( tcal ) ;
4860 }
4861 else if ( mode == "after" ) {
4862 int id = -1 ;
4863 if ( idx[1] != -1 ) {
4864 id = idx[1] ;
4865 }
4866 else if ( idx[0] != -1 ) {
4867 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4868 id = idx[1] ;
4869 }
4870 uInt tcalid = s->getTcalId( id ) ;
4871 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4872 tcalTable.getEntry( time, tcalval, tcalid ) ;
4873 tcalval.tovector( tcal ) ;
4874 }
4875 else if ( mode == "nearest" ) {
4876 int id = -1 ;
4877 if ( idx[0] == -1 ) {
4878 id = idx[1] ;
4879 }
4880 else if ( idx[1] == -1 ) {
4881 id = idx[0] ;
4882 }
4883 else if ( idx[0] == idx[1] ) {
4884 id = idx[0] ;
4885 }
4886 else {
[1967]4887 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4888 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4889 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4890 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]4891 double tref = getMJD( reftime ) ;
4892 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4893 id = idx[1] ;
4894 }
4895 else {
4896 id = idx[0] ;
4897 }
4898 }
4899 uInt tcalid = s->getTcalId( id ) ;
4900 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4901 tcalTable.getEntry( time, tcalval, tcalid ) ;
4902 tcalval.tovector( tcal ) ;
4903 }
4904 else if ( mode == "linear" ) {
4905 if ( idx[0] == -1 ) {
4906 // use after
4907 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4908 int id = idx[1] ;
4909 uInt tcalid = s->getTcalId( id ) ;
4910 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4911 tcalTable.getEntry( time, tcalval, tcalid ) ;
4912 tcalval.tovector( tcal ) ;
4913 }
4914 else if ( idx[1] == -1 ) {
4915 // use before
4916 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4917 int id = idx[0] ;
4918 uInt tcalid = s->getTcalId( id ) ;
4919 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4920 tcalTable.getEntry( time, tcalval, tcalid ) ;
4921 tcalval.tovector( tcal ) ;
4922 }
4923 else if ( idx[0] == idx[1] ) {
4924 // use before
4925 //os << "No need to interporate." << LogIO::POST ;
4926 int id = idx[0] ;
4927 uInt tcalid = s->getTcalId( id ) ;
4928 //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4929 tcalTable.getEntry( time, tcalval, tcalid ) ;
4930 tcalval.tovector( tcal ) ;
4931 }
4932 else {
4933 // do interpolation
4934 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
[1967]4935 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4936 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4937 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4938 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]4939 double tref = getMJD( reftime ) ;
4940 vector<float> tcal0 ;
4941 vector<float> tcal1 ;
4942 uInt tcalid0 = s->getTcalId( idx[0] ) ;
4943 uInt tcalid1 = s->getTcalId( idx[1] ) ;
4944 tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4945 tcalval.tovector( tcal0 ) ;
4946 tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4947 tcalval.tovector( tcal1 ) ;
4948 for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4949 float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4950 tcal.push_back( v ) ;
4951 }
4952 }
4953 }
4954 else {
4955 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4956 }
4957 return tcal ;
4958 }
4959}
4960
4961vector<float> STMath::getTsysFromTime( string reftime,
4962 CountedPtr<Scantable>& s,
4963 string mode )
4964{
4965 LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4966 ArrayColumn<Float> tsysCol ;
4967 tsysCol.attach( s->table(), "TSYS" ) ;
4968 vector<float> tsys ;
4969 String time ;
4970 Vector<Float> tsysval ;
4971 if ( s->nrow() == 0 ) {
4972 os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4973 return tsys ;
4974 }
4975 else if ( s->nrow() == 1 ) {
4976 //os << "use row " << 0 << LogIO::POST ;
4977 tsysval = tsysCol( 0 ) ;
4978 tsysval.tovector( tsys ) ;
4979 return tsys ;
4980 }
4981 else {
4982 vector<int> idx = getRowIdFromTime( reftime, s ) ;
4983 if ( mode == "before" ) {
4984 int id = -1 ;
4985 if ( idx[0] != -1 ) {
4986 id = idx[0] ;
4987 }
4988 else if ( idx[1] != -1 ) {
4989 os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4990 id = idx[1] ;
4991 }
4992 //os << "use row " << id << LogIO::POST ;
4993 tsysval = tsysCol( id ) ;
4994 tsysval.tovector( tsys ) ;
4995 }
4996 else if ( mode == "after" ) {
4997 int id = -1 ;
4998 if ( idx[1] != -1 ) {
4999 id = idx[1] ;
5000 }
5001 else if ( idx[0] != -1 ) {
5002 os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
5003 id = idx[1] ;
5004 }
5005 //os << "use row " << id << LogIO::POST ;
5006 tsysval = tsysCol( id ) ;
5007 tsysval.tovector( tsys ) ;
5008 }
5009 else if ( mode == "nearest" ) {
5010 int id = -1 ;
5011 if ( idx[0] == -1 ) {
5012 id = idx[1] ;
5013 }
5014 else if ( idx[1] == -1 ) {
5015 id = idx[0] ;
5016 }
5017 else if ( idx[0] == idx[1] ) {
5018 id = idx[0] ;
5019 }
5020 else {
[1967]5021 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
5022 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5023 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5024 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]5025 double tref = getMJD( reftime ) ;
5026 if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
5027 id = idx[1] ;
5028 }
5029 else {
5030 id = idx[0] ;
5031 }
5032 }
5033 //os << "use row " << id << LogIO::POST ;
5034 tsysval = tsysCol( id ) ;
5035 tsysval.tovector( tsys ) ;
5036 }
5037 else if ( mode == "linear" ) {
5038 if ( idx[0] == -1 ) {
5039 // use after
5040 os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
5041 int id = idx[1] ;
5042 //os << "use row " << id << LogIO::POST ;
5043 tsysval = tsysCol( id ) ;
5044 tsysval.tovector( tsys ) ;
5045 }
5046 else if ( idx[1] == -1 ) {
5047 // use before
5048 os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
5049 int id = idx[0] ;
5050 //os << "use row " << id << LogIO::POST ;
5051 tsysval = tsysCol( id ) ;
5052 tsysval.tovector( tsys ) ;
5053 }
5054 else if ( idx[0] == idx[1] ) {
5055 // use before
5056 //os << "No need to interporate." << LogIO::POST ;
5057 int id = idx[0] ;
5058 //os << "use row " << id << LogIO::POST ;
5059 tsysval = tsysCol( id ) ;
5060 tsysval.tovector( tsys ) ;
5061 }
5062 else {
5063 // do interpolation
5064 //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
[1967]5065 //double t0 = getMJD( s->getTime( idx[0] ) ) ;
5066 //double t1 = getMJD( s->getTime( idx[1] ) ) ;
5067 double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
5068 double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
[1819]5069 double tref = getMJD( reftime ) ;
5070 vector<float> tsys0 ;
5071 vector<float> tsys1 ;
5072 tsysval = tsysCol( idx[0] ) ;
5073 tsysval.tovector( tsys0 ) ;
5074 tsysval = tsysCol( idx[1] ) ;
5075 tsysval.tovector( tsys1 ) ;
5076 for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
5077 float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
5078 tsys.push_back( v ) ;
5079 }
5080 }
5081 }
5082 else {
5083 os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
5084 }
5085 return tsys ;
5086 }
5087}
5088
5089vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5090 CountedPtr<Scantable>& off,
5091 CountedPtr<Scantable>& sky,
5092 CountedPtr<Scantable>& hot,
5093 CountedPtr<Scantable>& cold,
5094 int index,
5095 string antname )
5096{
[2163]5097 (void) cold; //currently unused
[1819]5098 string reftime = on->getTime( index ) ;
5099 vector<int> ii( 1, on->getIF( index ) ) ;
5100 vector<int> ib( 1, on->getBeam( index ) ) ;
5101 vector<int> ip( 1, on->getPol( index ) ) ;
5102 STSelector sel = STSelector() ;
5103 sel.setIFs( ii ) ;
5104 sel.setBeams( ib ) ;
5105 sel.setPolarizations( ip ) ;
5106 sky->setSelection( sel ) ;
5107 hot->setSelection( sel ) ;
5108 //cold->setSelection( sel ) ;
5109 off->setSelection( sel ) ;
5110 vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5111 vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5112 //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5113 vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
5114 vector<float> spec = on->getSpectrum( index ) ;
5115 vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5116 vector<float> sp( tcal.size() ) ;
5117 if ( antname.find( "APEX" ) != string::npos ) {
5118 // using gain array
5119 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5120 float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
5121 * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
5122 sp[j] = v ;
5123 }
5124 }
5125 else {
5126 // Chopper-Wheel calibration (Ulich & Haas 1976)
5127 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5128 float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
5129 sp[j] = v ;
5130 }
5131 }
5132 sel.reset() ;
5133 sky->unsetSelection() ;
5134 hot->unsetSelection() ;
5135 //cold->unsetSelection() ;
5136 off->unsetSelection() ;
5137
5138 return sp ;
5139}
5140
5141vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
5142 CountedPtr<Scantable>& off,
5143 int index )
5144{
[2443]5145// string reftime = on->getTime( index ) ;
[2532]5146 ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5147 Vector<Double> timeVec = timeCol.getColumn() ;
5148 //ROTableColumn timeCol( on->table(), "TIME" ) ;
5149 timeCol.attach( on->table(), "TIME" ) ;
[2443]5150 double reftime = timeCol.asdouble(index) ;
[1819]5151 vector<int> ii( 1, on->getIF( index ) ) ;
5152 vector<int> ib( 1, on->getBeam( index ) ) ;
5153 vector<int> ip( 1, on->getPol( index ) ) ;
5154 STSelector sel = STSelector() ;
5155 sel.setIFs( ii ) ;
5156 sel.setBeams( ib ) ;
5157 sel.setPolarizations( ip ) ;
5158 off->setSelection( sel ) ;
[2532]5159 vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
[1819]5160 vector<float> spec = on->getSpectrum( index ) ;
5161 //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5162 //vector<float> tsys = on->getTsysVec( index ) ;
5163 ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5164 Vector<Float> tsys = tsysCol( index ) ;
5165 vector<float> sp( spec.size() ) ;
5166 // ALMA Calibration
5167 //
5168 // Ta* = Tsys * ( ON - OFF ) / OFF
5169 //
5170 // 2010/01/07 Takeshi Nakazato
5171 unsigned int tsyssize = tsys.nelements() ;
5172 unsigned int spsize = sp.size() ;
5173 for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5174 float tscale = 0.0 ;
5175 if ( tsyssize == spsize )
5176 tscale = tsys[j] ;
5177 else
5178 tscale = tsys[0] ;
5179 float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5180 sp[j] = v ;
5181 }
5182 sel.reset() ;
5183 off->unsetSelection() ;
5184
5185 return sp ;
5186}
5187
[2502]5188void STMath::calibrateALMA( CountedPtr<Scantable>& on,
[2519]5189 CountedPtr<Scantable>& off )
[2502]5190{
[2534]5191 if ( on->nrow() == 0 )
5192 return ;
[2519]5193 // string reftime = on->getTime( index ) ;
[2532]5194 ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5195 Vector<Double> timeVec = timeCol.getColumn() ;
5196 //ROTableColumn timeCol( on->table(), "TIME" ) ;
5197 timeCol.attach( on->table(), "TIME" ) ;
[2502]5198 ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5199 vector<float> sp( on->nchan( on->getIF(0) ) ) ;
5200 unsigned int spsize = sp.size() ;
5201 for ( int index = 0 ; index < on->nrow() ; index++ ) {
5202 double reftime = timeCol.asdouble(index) ;
[2532]5203 vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
[2502]5204 vector<float> spec = on->getSpectrum( index ) ;
5205 Vector<Float> tsys = tsysCol( index ) ;
5206 // ALMA Calibration
5207 //
5208 // Ta* = Tsys * ( ON - OFF ) / OFF
5209 //
5210 // 2010/01/07 Takeshi Nakazato
5211 unsigned int tsyssize = tsys.nelements() ;
5212 for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5213 float tscale = 0.0 ;
5214 if ( tsyssize == spsize )
5215 tscale = tsys[j] ;
5216 else
5217 tscale = tsys[0] ;
5218 float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5219 sp[j] = v ;
5220 }
5221 on->setSpectrum( sp, index ) ;
5222 }
5223}
5224
[2519]5225void STMath::calibrateALMA( CountedPtr<Scantable>& on,
5226 CountedPtr<Scantable>& off,
5227 Vector<uInt>& rows )
5228{
[2534]5229 // if rows is empty, just return
5230 if ( rows.nelements() == 0 )
5231 return ;
[2519]5232// string reftime = on->getTime( index ) ;
[2532]5233 ROScalarColumn<Double> timeCol( off->table(), "TIME" ) ;
5234 Vector<Double> timeVec = timeCol.getColumn() ;
5235 //ROTableColumn timeCol( on->table(), "TIME" ) ;
5236 timeCol.attach( on->table(), "TIME" ) ;
[2519]5237 ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
5238 vector<float> sp( on->nchan( on->getIF(rows[0]) ) ) ;
5239 unsigned int spsize = sp.size() ;
5240 // I know that the data is contiguous
5241 const uInt *p = rows.data() ;
5242 for ( int irow = 0 ; irow < rows.nelements() ; irow++ ) {
5243 //int index = rows[irow] ;
5244 //double reftime = timeCol.asdouble(index) ;
5245 double reftime = timeCol.asdouble(*p) ;
[2532]5246 vector<float> spoff = getSpectrumFromTime( reftime, timeVec, off, "linear" ) ;
[2519]5247 //vector<float> spec = on->getSpectrum( index ) ;
5248 //Vector<Float> tsys = tsysCol( index ) ;
5249 vector<float> spec = on->getSpectrum( *p ) ;
5250 Vector<Float> tsys = tsysCol( *p ) ;
5251 // ALMA Calibration
5252 //
5253 // Ta* = Tsys * ( ON - OFF ) / OFF
5254 //
5255 // 2010/01/07 Takeshi Nakazato
5256 unsigned int tsyssize = tsys.nelements() ;
5257 for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
5258 float tscale = 0.0 ;
5259 if ( tsyssize == spsize )
5260 tscale = tsys[j] ;
5261 else
5262 tscale = tsys[0] ;
5263 float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
5264 sp[j] = v ;
5265 }
5266 //on->setSpectrum( sp, index ) ;
5267 on->setSpectrum( sp, *p ) ;
5268 p++ ;
5269 }
5270}
5271
[1819]5272vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5273 CountedPtr<Scantable>& ref,
5274 CountedPtr<Scantable>& sky,
5275 CountedPtr<Scantable>& hot,
5276 CountedPtr<Scantable>& cold,
5277 int index )
5278{
[2163]5279 (void) cold; //currently unused
[1819]5280 string reftime = sig->getTime( index ) ;
5281 vector<int> ii( 1, sig->getIF( index ) ) ;
5282 vector<int> ib( 1, sig->getBeam( index ) ) ;
5283 vector<int> ip( 1, sig->getPol( index ) ) ;
5284 vector<int> ic( 1, sig->getScan( index ) ) ;
5285 STSelector sel = STSelector() ;
5286 sel.setIFs( ii ) ;
5287 sel.setBeams( ib ) ;
5288 sel.setPolarizations( ip ) ;
5289 sky->setSelection( sel ) ;
5290 hot->setSelection( sel ) ;
5291 //cold->setSelection( sel ) ;
5292 vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
5293 vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
5294 //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
5295 vector<float> spref = ref->getSpectrum( index ) ;
5296 vector<float> spsig = sig->getSpectrum( index ) ;
5297 vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
5298 vector<float> sp( tcal.size() ) ;
5299 for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
5300 float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
5301 sp[j] = v ;
5302 }
5303 sel.reset() ;
5304 sky->unsetSelection() ;
5305 hot->unsetSelection() ;
5306 //cold->unsetSelection() ;
5307
5308 return sp ;
5309}
5310
5311vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
5312 CountedPtr<Scantable>& ref,
5313 vector< CountedPtr<Scantable> >& sky,
5314 vector< CountedPtr<Scantable> >& hot,
5315 vector< CountedPtr<Scantable> >& cold,
5316 int index )
5317{
[2163]5318 (void) cold; //currently unused
[1819]5319 string reftime = sig->getTime( index ) ;
5320 vector<int> ii( 1, sig->getIF( index ) ) ;
5321 vector<int> ib( 1, sig->getBeam( index ) ) ;
5322 vector<int> ip( 1, sig->getPol( index ) ) ;
5323 vector<int> ic( 1, sig->getScan( index ) ) ;
5324 STSelector sel = STSelector() ;
5325 sel.setIFs( ii ) ;
5326 sel.setBeams( ib ) ;
5327 sel.setPolarizations( ip ) ;
5328 sky[0]->setSelection( sel ) ;
5329 hot[0]->setSelection( sel ) ;
5330 //cold[0]->setSelection( sel ) ;
5331 vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
5332 vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
5333 //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
5334 vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
5335 sel.reset() ;
5336 ii[0] = ref->getIF( index ) ;
5337 sel.setIFs( ii ) ;
5338 sel.setBeams( ib ) ;
5339 sel.setPolarizations( ip ) ;
5340 sky[1]->setSelection( sel ) ;
5341 hot[1]->setSelection( sel ) ;
5342 //cold[1]->setSelection( sel ) ;
5343 vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
5344 vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
5345 //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
5346 vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ;
5347 vector<float> spref = ref->getSpectrum( index ) ;
5348 vector<float> spsig = sig->getSpectrum( index ) ;
5349 vector<float> sp( tcals.size() ) ;
5350 for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
5351 float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
5352 sp[j] = v ;
5353 }
5354 sel.reset() ;
5355 sky[0]->unsetSelection() ;
5356 hot[0]->unsetSelection() ;
5357 //cold[0]->unsetSelection() ;
5358 sky[1]->unsetSelection() ;
5359 hot[1]->unsetSelection() ;
5360 //cold[1]->unsetSelection() ;
5361
5362 return sp ;
5363}
Note: See TracBrowser for help on using the repository browser.