[91] | 1 | //#---------------------------------------------------------------------------
|
---|
[890] | 2 | //# Fitter.cc: A Fitter class for spectra
|
---|
[91] | 3 | //#--------------------------------------------------------------------------
|
---|
| 4 | //# Copyright (C) 2004
|
---|
[125] | 5 | //# ATNF
|
---|
[91] | 6 | //#
|
---|
| 7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
| 8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
| 9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
| 10 | //# any later version.
|
---|
| 11 | //#
|
---|
| 12 | //# This program is distributed in the hope that it will be useful, but
|
---|
| 13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
| 15 | //# Public License for more details.
|
---|
| 16 | //#
|
---|
| 17 | //# You should have received a copy of the GNU General Public License along
|
---|
| 18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
| 19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
| 20 | //#
|
---|
| 21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
| 22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
| 23 | //# Postal address: Malte Marquarding,
|
---|
| 24 | //# Australia Telescope National Facility,
|
---|
| 25 | //# P.O. Box 76,
|
---|
| 26 | //# Epping, NSW, 2121,
|
---|
| 27 | //# AUSTRALIA
|
---|
| 28 | //#
|
---|
[891] | 29 | //# $Id: STFitter.cpp 2570 2012-06-14 05:22:52Z TakeshiNakazato $
|
---|
[91] | 30 | //#---------------------------------------------------------------------------
|
---|
[125] | 31 | #include <casa/aips.h>
|
---|
[91] | 32 | #include <casa/Arrays/ArrayMath.h>
|
---|
| 33 | #include <casa/Arrays/ArrayLogical.h>
|
---|
[1819] | 34 | #include <casa/Logging/LogIO.h>
|
---|
[91] | 35 | #include <scimath/Fitting.h>
|
---|
| 36 | #include <scimath/Fitting/LinearFit.h>
|
---|
| 37 | #include <scimath/Functionals/CompiledFunction.h>
|
---|
| 38 | #include <scimath/Functionals/CompoundFunction.h>
|
---|
| 39 | #include <scimath/Functionals/Gaussian1D.h>
|
---|
[1819] | 40 | #include "Lorentzian1D.h"
|
---|
[2047] | 41 | #include <scimath/Functionals/Sinusoid1D.h>
|
---|
[91] | 42 | #include <scimath/Functionals/Polynomial.h>
|
---|
| 43 | #include <scimath/Mathematics/AutoDiff.h>
|
---|
| 44 | #include <scimath/Mathematics/AutoDiffMath.h>
|
---|
| 45 | #include <scimath/Fitting/NonLinearFitLM.h>
|
---|
| 46 | #include <components/SpectralComponents/SpectralEstimate.h>
|
---|
| 47 |
|
---|
[894] | 48 | #include "STFitter.h"
|
---|
| 49 |
|
---|
[91] | 50 | using namespace asap;
|
---|
[125] | 51 | using namespace casa;
|
---|
[91] | 52 |
|
---|
[890] | 53 | Fitter::Fitter()
|
---|
[91] | 54 | {
|
---|
| 55 | }
|
---|
| 56 |
|
---|
[890] | 57 | Fitter::~Fitter()
|
---|
[91] | 58 | {
|
---|
[517] | 59 | reset();
|
---|
[91] | 60 | }
|
---|
| 61 |
|
---|
[890] | 62 | void Fitter::clear()
|
---|
[91] | 63 | {
|
---|
[517] | 64 | for (uInt i=0;i< funcs_.nelements();++i) {
|
---|
| 65 | delete funcs_[i]; funcs_[i] = 0;
|
---|
| 66 | }
|
---|
[612] | 67 | funcs_.resize(0,True);
|
---|
[517] | 68 | parameters_.resize();
|
---|
[1232] | 69 | fixedpar_.resize();
|
---|
[517] | 70 | error_.resize();
|
---|
| 71 | thefit_.resize();
|
---|
| 72 | estimate_.resize();
|
---|
| 73 | chisquared_ = 0.0;
|
---|
[91] | 74 | }
|
---|
[517] | 75 |
|
---|
[890] | 76 | void Fitter::reset()
|
---|
[91] | 77 | {
|
---|
[517] | 78 | clear();
|
---|
| 79 | x_.resize();
|
---|
| 80 | y_.resize();
|
---|
| 81 | m_.resize();
|
---|
[91] | 82 | }
|
---|
| 83 |
|
---|
| 84 |
|
---|
[890] | 85 | bool Fitter::computeEstimate() {
|
---|
[517] | 86 | if (x_.nelements() == 0 || y_.nelements() == 0)
|
---|
| 87 | throw (AipsError("No x/y data specified."));
|
---|
[91] | 88 |
|
---|
[517] | 89 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) == 0)
|
---|
| 90 | return false;
|
---|
| 91 | uInt n = funcs_.nelements();
|
---|
| 92 | SpectralEstimate estimator(n);
|
---|
| 93 | estimator.setQ(5);
|
---|
| 94 | Int mn,mx;
|
---|
| 95 | mn = 0;
|
---|
| 96 | mx = m_.nelements()-1;
|
---|
| 97 | for (uInt i=0; i<m_.nelements();++i) {
|
---|
| 98 | if (m_[i]) {
|
---|
| 99 | mn = i;
|
---|
| 100 | break;
|
---|
[108] | 101 | }
|
---|
[517] | 102 | }
|
---|
[2163] | 103 | // use Int to suppress compiler warning
|
---|
| 104 | for (Int j=m_.nelements()-1; j>=0;--j) {
|
---|
[517] | 105 | if (m_[j]) {
|
---|
| 106 | mx = j;
|
---|
| 107 | break;
|
---|
[108] | 108 | }
|
---|
[517] | 109 | }
|
---|
[1067] | 110 | //mn = 0+x_.nelements()/10;
|
---|
| 111 | //mx = x_.nelements()-x_.nelements()/10;
|
---|
[517] | 112 | estimator.setRegion(mn,mx);
|
---|
| 113 | //estimator.setWindowing(True);
|
---|
| 114 | SpectralList listGauss = estimator.estimate(x_, y_);
|
---|
| 115 | parameters_.resize(n*3);
|
---|
| 116 | Gaussian1D<Float>* g = 0;
|
---|
| 117 | for (uInt i=0; i<n;i++) {
|
---|
| 118 | g = dynamic_cast<Gaussian1D<Float>* >(funcs_[i]);
|
---|
| 119 | if (g) {
|
---|
[2394] | 120 | const GaussianSpectralElement *gauss = dynamic_cast<const GaussianSpectralElement *>(listGauss[i]) ;
|
---|
| 121 | (*g)[0] = gauss->getAmpl();
|
---|
| 122 | (*g)[1] = gauss->getCenter();
|
---|
| 123 | (*g)[2] = gauss->getFWHM();
|
---|
| 124 | // (*g)[0] = listGauss[i].getAmpl();
|
---|
| 125 | // (*g)[1] = listGauss[i].getCenter();
|
---|
| 126 | // (*g)[2] = listGauss[i].getFWHM();
|
---|
[91] | 127 | }
|
---|
[517] | 128 | }
|
---|
| 129 | estimate_.resize();
|
---|
| 130 | listGauss.evaluate(estimate_,x_);
|
---|
| 131 | return true;
|
---|
[91] | 132 | }
|
---|
| 133 |
|
---|
[890] | 134 | std::vector<float> Fitter::getEstimate() const
|
---|
[91] | 135 | {
|
---|
[517] | 136 | if (estimate_.nelements() == 0)
|
---|
| 137 | throw (AipsError("No estimate set."));
|
---|
| 138 | std::vector<float> stlout;
|
---|
| 139 | estimate_.tovector(stlout);
|
---|
| 140 | return stlout;
|
---|
[91] | 141 | }
|
---|
| 142 |
|
---|
| 143 |
|
---|
[890] | 144 | bool Fitter::setExpression(const std::string& expr, int ncomp)
|
---|
[91] | 145 | {
|
---|
[517] | 146 | clear();
|
---|
| 147 | if (expr == "gauss") {
|
---|
| 148 | if (ncomp < 1) throw (AipsError("Need at least one gaussian to fit."));
|
---|
| 149 | funcs_.resize(ncomp);
|
---|
[1932] | 150 | funcnames_.clear();
|
---|
| 151 | funccomponents_.clear();
|
---|
[517] | 152 | for (Int k=0; k<ncomp; ++k) {
|
---|
| 153 | funcs_[k] = new Gaussian1D<Float>();
|
---|
[1932] | 154 | funcnames_.push_back(expr);
|
---|
| 155 | funccomponents_.push_back(3);
|
---|
[517] | 156 | }
|
---|
[1819] | 157 | } else if (expr == "lorentz") {
|
---|
| 158 | if (ncomp < 1) throw (AipsError("Need at least one lorentzian to fit."));
|
---|
| 159 | funcs_.resize(ncomp);
|
---|
[1932] | 160 | funcnames_.clear();
|
---|
| 161 | funccomponents_.clear();
|
---|
[1819] | 162 | for (Int k=0; k<ncomp; ++k) {
|
---|
| 163 | funcs_[k] = new Lorentzian1D<Float>();
|
---|
[1932] | 164 | funcnames_.push_back(expr);
|
---|
| 165 | funccomponents_.push_back(3);
|
---|
[1819] | 166 | }
|
---|
[2047] | 167 | } else if (expr == "sinusoid") {
|
---|
| 168 | if (ncomp < 1) throw (AipsError("Need at least one sinusoid to fit."));
|
---|
| 169 | funcs_.resize(ncomp);
|
---|
| 170 | funcnames_.clear();
|
---|
| 171 | funccomponents_.clear();
|
---|
| 172 | for (Int k=0; k<ncomp; ++k) {
|
---|
| 173 | funcs_[k] = new Sinusoid1D<Float>();
|
---|
| 174 | funcnames_.push_back(expr);
|
---|
| 175 | funccomponents_.push_back(3);
|
---|
| 176 | }
|
---|
| 177 | } else if (expr == "poly") {
|
---|
| 178 | funcs_.resize(1);
|
---|
| 179 | funcnames_.clear();
|
---|
| 180 | funccomponents_.clear();
|
---|
| 181 | funcs_[0] = new Polynomial<Float>(ncomp);
|
---|
| 182 | funcnames_.push_back(expr);
|
---|
| 183 | funccomponents_.push_back(ncomp);
|
---|
[517] | 184 | } else {
|
---|
[1819] | 185 | LogIO os( LogOrigin( "Fitter", "setExpression()", WHERE ) ) ;
|
---|
| 186 | os << LogIO::WARN << " compiled functions not yet implemented" << LogIO::POST;
|
---|
[517] | 187 | //funcs_.resize(1);
|
---|
| 188 | //funcs_[0] = new CompiledFunction<Float>();
|
---|
| 189 | //funcs_[0]->setFunction(String(expr));
|
---|
| 190 | return false;
|
---|
| 191 | }
|
---|
| 192 | return true;
|
---|
[91] | 193 | }
|
---|
| 194 |
|
---|
[890] | 195 | bool Fitter::setData(std::vector<float> absc, std::vector<float> spec,
|
---|
[91] | 196 | std::vector<bool> mask)
|
---|
| 197 | {
|
---|
| 198 | x_.resize();
|
---|
| 199 | y_.resize();
|
---|
| 200 | m_.resize();
|
---|
| 201 | // convert std::vector to casa Vector
|
---|
| 202 | Vector<Float> tmpx(absc);
|
---|
| 203 | Vector<Float> tmpy(spec);
|
---|
| 204 | Vector<Bool> tmpm(mask);
|
---|
| 205 | AlwaysAssert(tmpx.nelements() == tmpy.nelements(), AipsError);
|
---|
| 206 | x_ = tmpx;
|
---|
| 207 | y_ = tmpy;
|
---|
| 208 | m_ = tmpm;
|
---|
| 209 | return true;
|
---|
| 210 | }
|
---|
| 211 |
|
---|
[890] | 212 | std::vector<float> Fitter::getResidual() const
|
---|
[91] | 213 | {
|
---|
| 214 | if (residual_.nelements() == 0)
|
---|
| 215 | throw (AipsError("Function not yet fitted."));
|
---|
| 216 | std::vector<float> stlout;
|
---|
| 217 | residual_.tovector(stlout);
|
---|
| 218 | return stlout;
|
---|
| 219 | }
|
---|
| 220 |
|
---|
[890] | 221 | std::vector<float> Fitter::getFit() const
|
---|
[91] | 222 | {
|
---|
| 223 | Vector<Float> out = thefit_;
|
---|
| 224 | std::vector<float> stlout;
|
---|
| 225 | out.tovector(stlout);
|
---|
| 226 | return stlout;
|
---|
| 227 |
|
---|
| 228 | }
|
---|
| 229 |
|
---|
[890] | 230 | std::vector<float> Fitter::getErrors() const
|
---|
[91] | 231 | {
|
---|
| 232 | Vector<Float> out = error_;
|
---|
| 233 | std::vector<float> stlout;
|
---|
| 234 | out.tovector(stlout);
|
---|
| 235 | return stlout;
|
---|
| 236 | }
|
---|
| 237 |
|
---|
[890] | 238 | bool Fitter::setParameters(std::vector<float> params)
|
---|
[91] | 239 | {
|
---|
| 240 | Vector<Float> tmppar(params);
|
---|
| 241 | if (funcs_.nelements() == 0)
|
---|
| 242 | throw (AipsError("Function not yet set."));
|
---|
| 243 | if (parameters_.nelements() > 0 && tmppar.nelements() != parameters_.nelements())
|
---|
| 244 | throw (AipsError("Number of parameters inconsistent with function."));
|
---|
[1232] | 245 | if (parameters_.nelements() == 0) {
|
---|
[91] | 246 | parameters_.resize(tmppar.nelements());
|
---|
[1232] | 247 | if (tmppar.nelements() != fixedpar_.nelements()) {
|
---|
| 248 | fixedpar_.resize(tmppar.nelements());
|
---|
| 249 | fixedpar_ = False;
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
[91] | 252 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 253 | uInt count = 0;
|
---|
| 254 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 255 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 256 | (funcs_[j]->parameters())[i] = tmppar[count];
|
---|
| 257 | parameters_[count] = tmppar[count];
|
---|
| 258 | ++count;
|
---|
| 259 | }
|
---|
| 260 | }
|
---|
[1819] | 261 | } else if (dynamic_cast<Lorentzian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 262 | uInt count = 0;
|
---|
| 263 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 264 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 265 | (funcs_[j]->parameters())[i] = tmppar[count];
|
---|
| 266 | parameters_[count] = tmppar[count];
|
---|
| 267 | ++count;
|
---|
| 268 | }
|
---|
| 269 | }
|
---|
[2047] | 270 | } else if (dynamic_cast<Sinusoid1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 271 | uInt count = 0;
|
---|
| 272 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 273 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 274 | (funcs_[j]->parameters())[i] = tmppar[count];
|
---|
| 275 | parameters_[count] = tmppar[count];
|
---|
| 276 | ++count;
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 280 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
---|
| 281 | parameters_[i] = tmppar[i];
|
---|
| 282 | (funcs_[0]->parameters())[i] = tmppar[i];
|
---|
| 283 | }
|
---|
[91] | 284 | }
|
---|
[1232] | 285 | // reset
|
---|
| 286 | if (params.size() == 0) {
|
---|
| 287 | parameters_.resize();
|
---|
| 288 | fixedpar_.resize();
|
---|
| 289 | }
|
---|
[91] | 290 | return true;
|
---|
| 291 | }
|
---|
| 292 |
|
---|
[890] | 293 | bool Fitter::setFixedParameters(std::vector<bool> fixed)
|
---|
[91] | 294 | {
|
---|
| 295 | if (funcs_.nelements() == 0)
|
---|
| 296 | throw (AipsError("Function not yet set."));
|
---|
[1232] | 297 | if (fixedpar_.nelements() > 0 && fixed.size() != fixedpar_.nelements())
|
---|
[91] | 298 | throw (AipsError("Number of mask elements inconsistent with function."));
|
---|
[1232] | 299 | if (fixedpar_.nelements() == 0) {
|
---|
| 300 | fixedpar_.resize(parameters_.nelements());
|
---|
| 301 | fixedpar_ = False;
|
---|
| 302 | }
|
---|
[91] | 303 | if (dynamic_cast<Gaussian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 304 | uInt count = 0;
|
---|
| 305 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 306 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
[1232] | 307 | funcs_[j]->mask(i) = !fixed[count];
|
---|
| 308 | fixedpar_[count] = fixed[count];
|
---|
[91] | 309 | ++count;
|
---|
| 310 | }
|
---|
| 311 | }
|
---|
[1819] | 312 | } else if (dynamic_cast<Lorentzian1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 313 | uInt count = 0;
|
---|
| 314 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 315 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 316 | funcs_[j]->mask(i) = !fixed[count];
|
---|
| 317 | fixedpar_[count] = fixed[count];
|
---|
| 318 | ++count;
|
---|
| 319 | }
|
---|
| 320 | }
|
---|
[2047] | 321 | } else if (dynamic_cast<Sinusoid1D<Float>* >(funcs_[0]) != 0) {
|
---|
| 322 | uInt count = 0;
|
---|
| 323 | for (uInt j=0; j < funcs_.nelements(); ++j) {
|
---|
| 324 | for (uInt i=0; i < funcs_[j]->nparameters(); ++i) {
|
---|
| 325 | funcs_[j]->mask(i) = !fixed[count];
|
---|
| 326 | fixedpar_[count] = fixed[count];
|
---|
| 327 | ++count;
|
---|
| 328 | }
|
---|
| 329 | }
|
---|
| 330 | } else if (dynamic_cast<Polynomial<Float>* >(funcs_[0]) != 0) {
|
---|
| 331 | for (uInt i=0; i < funcs_[0]->nparameters(); ++i) {
|
---|
| 332 | fixedpar_[i] = fixed[i];
|
---|
| 333 | funcs_[0]->mask(i) = !fixed[i];
|
---|
| 334 | }
|
---|
[91] | 335 | }
|
---|
| 336 | return true;
|
---|
| 337 | }
|
---|
| 338 |
|
---|
[890] | 339 | std::vector<float> Fitter::getParameters() const {
|
---|
[91] | 340 | Vector<Float> out = parameters_;
|
---|
| 341 | std::vector<float> stlout;
|
---|
| 342 | out.tovector(stlout);
|
---|
| 343 | return stlout;
|
---|
| 344 | }
|
---|
| 345 |
|
---|
[890] | 346 | std::vector<bool> Fitter::getFixedParameters() const {
|
---|
[108] | 347 | Vector<Bool> out(parameters_.nelements());
|
---|
| 348 | if (fixedpar_.nelements() == 0) {
|
---|
[1232] | 349 | return std::vector<bool>();
|
---|
[108] | 350 | //throw (AipsError("No parameter mask set."));
|
---|
| 351 | } else {
|
---|
| 352 | out = fixedpar_;
|
---|
| 353 | }
|
---|
| 354 | std::vector<bool> stlout;
|
---|
| 355 | out.tovector(stlout);
|
---|
| 356 | return stlout;
|
---|
[91] | 357 | }
|
---|
| 358 |
|
---|
[890] | 359 | float Fitter::getChisquared() const {
|
---|
[91] | 360 | return chisquared_;
|
---|
| 361 | }
|
---|
| 362 |
|
---|
[890] | 363 | bool Fitter::fit() {
|
---|
[517] | 364 | NonLinearFitLM<Float> fitter;
|
---|
| 365 | CompoundFunction<Float> func;
|
---|
[612] | 366 |
|
---|
| 367 | uInt n = funcs_.nelements();
|
---|
[517] | 368 | for (uInt i=0; i<n; ++i) {
|
---|
| 369 | func.addFunction(*funcs_[i]);
|
---|
| 370 | }
|
---|
[612] | 371 |
|
---|
[517] | 372 | fitter.setFunction(func);
|
---|
| 373 | fitter.setMaxIter(50+n*10);
|
---|
| 374 | // Convergence criterium
|
---|
| 375 | fitter.setCriteria(0.001);
|
---|
[612] | 376 |
|
---|
[517] | 377 | // Fit
|
---|
[2569] | 378 | // Vector<Float> sigma(x_.nelements());
|
---|
| 379 | // sigma = 1.0;
|
---|
[890] | 380 |
|
---|
[517] | 381 | parameters_.resize();
|
---|
[2569] | 382 | // parameters_ = fitter.fit(x_, y_, sigma, &m_);
|
---|
| 383 | parameters_ = fitter.fit(x_, y_, &m_);
|
---|
[1067] | 384 | if ( !fitter.converged() ) {
|
---|
| 385 | return false;
|
---|
| 386 | }
|
---|
[517] | 387 | std::vector<float> ps;
|
---|
| 388 | parameters_.tovector(ps);
|
---|
| 389 | setParameters(ps);
|
---|
[612] | 390 |
|
---|
[517] | 391 | error_.resize();
|
---|
| 392 | error_ = fitter.errors();
|
---|
[612] | 393 |
|
---|
[517] | 394 | chisquared_ = fitter.getChi2();
|
---|
[890] | 395 |
|
---|
[2570] | 396 | // residual_.resize();
|
---|
| 397 | // residual_ = y_;
|
---|
| 398 | // fitter.residual(residual_,x_);
|
---|
[517] | 399 | // use fitter.residual(model=True) to get the model
|
---|
| 400 | thefit_.resize(x_.nelements());
|
---|
[2570] | 401 | fitter.residual(thefit_,x_,True);
|
---|
| 402 | // residual = data - model
|
---|
| 403 | residual_.resize(x_.nelements());
|
---|
| 404 | residual_ = y_ - thefit_ ;
|
---|
[517] | 405 | return true;
|
---|
| 406 | }
|
---|
[483] | 407 |
|
---|
[1391] | 408 | bool Fitter::lfit() {
|
---|
| 409 | LinearFit<Float> fitter;
|
---|
| 410 | CompoundFunction<Float> func;
|
---|
[483] | 411 |
|
---|
[1391] | 412 | uInt n = funcs_.nelements();
|
---|
| 413 | for (uInt i=0; i<n; ++i) {
|
---|
| 414 | func.addFunction(*funcs_[i]);
|
---|
| 415 | }
|
---|
| 416 |
|
---|
| 417 | fitter.setFunction(func);
|
---|
| 418 | //fitter.setMaxIter(50+n*10);
|
---|
| 419 | // Convergence criterium
|
---|
| 420 | //fitter.setCriteria(0.001);
|
---|
| 421 |
|
---|
| 422 | // Fit
|
---|
[2569] | 423 | // Vector<Float> sigma(x_.nelements());
|
---|
| 424 | // sigma = 1.0;
|
---|
[1391] | 425 |
|
---|
| 426 | parameters_.resize();
|
---|
[2569] | 427 | // parameters_ = fitter.fit(x_, y_, sigma, &m_);
|
---|
| 428 | parameters_ = fitter.fit(x_, y_, &m_);
|
---|
[1391] | 429 | std::vector<float> ps;
|
---|
| 430 | parameters_.tovector(ps);
|
---|
| 431 | setParameters(ps);
|
---|
| 432 |
|
---|
| 433 | error_.resize();
|
---|
| 434 | error_ = fitter.errors();
|
---|
| 435 |
|
---|
| 436 | chisquared_ = fitter.getChi2();
|
---|
| 437 |
|
---|
[2570] | 438 | // residual_.resize();
|
---|
| 439 | // residual_ = y_;
|
---|
| 440 | // fitter.residual(residual_,x_);
|
---|
[1391] | 441 | // use fitter.residual(model=True) to get the model
|
---|
| 442 | thefit_.resize(x_.nelements());
|
---|
[2570] | 443 | fitter.residual(thefit_,x_,True);
|
---|
| 444 | // residual = data - model
|
---|
| 445 | residual_.resize(x_.nelements());
|
---|
| 446 | residual_ = y_ - thefit_ ;
|
---|
[1391] | 447 | return true;
|
---|
| 448 | }
|
---|
| 449 |
|
---|
[890] | 450 | std::vector<float> Fitter::evaluate(int whichComp) const
|
---|
| 451 | {
|
---|
[517] | 452 | std::vector<float> stlout;
|
---|
[890] | 453 | uInt idx = uInt(whichComp);
|
---|
[517] | 454 | Float y;
|
---|
| 455 | if ( idx < funcs_.nelements() ) {
|
---|
| 456 | for (uInt i=0; i<x_.nelements(); ++i) {
|
---|
| 457 | y = (*funcs_[idx])(x_[i]);
|
---|
| 458 | stlout.push_back(float(y));
|
---|
| 459 | }
|
---|
| 460 | }
|
---|
| 461 | return stlout;
|
---|
| 462 | }
|
---|
[483] | 463 |
|
---|
[1932] | 464 | STFitEntry Fitter::getFitEntry() const
|
---|
| 465 | {
|
---|
| 466 | STFitEntry fit;
|
---|
| 467 | fit.setParameters(getParameters());
|
---|
| 468 | fit.setErrors(getErrors());
|
---|
| 469 | fit.setComponents(funccomponents_);
|
---|
| 470 | fit.setFunctions(funcnames_);
|
---|
| 471 | fit.setParmasks(getFixedParameters());
|
---|
| 472 | return fit;
|
---|
| 473 | }
|
---|