[1918] | 1 | from asap.scantable import scantable
|
---|
[1827] | 2 | from asap.parameters import rcParams
|
---|
[1862] | 3 | from asap.logging import asaplog, asaplog_post_dec
|
---|
[1826] | 4 | from asap.selector import selector
|
---|
[2150] | 5 | #from asap import asaplotgui
|
---|
| 6 | from asap.asapplotter import new_asaplot
|
---|
[101] | 7 |
|
---|
[1862] | 8 | @asaplog_post_dec
|
---|
[143] | 9 | def average_time(*args, **kwargs):
|
---|
[101] | 10 | """
|
---|
[113] | 11 | Return the (time) average of a scan or list of scans. [in channels only]
|
---|
[305] | 12 | The cursor of the output scan is set to 0
|
---|
[113] | 13 | Parameters:
|
---|
[1361] | 14 | one scan or comma separated scans or a list of scans
|
---|
[143] | 15 | mask: an optional mask (only used for 'var' and 'tsys' weighting)
|
---|
[558] | 16 | scanav: True averages each scan separately.
|
---|
| 17 | False (default) averages all scans together,
|
---|
[1232] | 18 | weight: Weighting scheme.
|
---|
| 19 | 'none' (mean no weight)
|
---|
| 20 | 'var' (1/var(spec) weighted)
|
---|
| 21 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 22 | 'tint' (integration time weighted)
|
---|
| 23 | 'tintsys' (Tint/Tsys**2)
|
---|
| 24 | 'median' ( median averaging)
|
---|
[930] | 25 | align: align the spectra in velocity before averaging. It takes
|
---|
| 26 | the time of the first spectrum in the first scantable
|
---|
| 27 | as reference time.
|
---|
[113] | 28 | Example:
|
---|
| 29 | # return a time averaged scan from scana and scanb
|
---|
| 30 | # without using a mask
|
---|
[129] | 31 | scanav = average_time(scana,scanb)
|
---|
[1589] | 32 | # or equivalent
|
---|
| 33 | # scanav = average_time([scana, scanb])
|
---|
[113] | 34 | # return the (time) averaged scan, i.e. the average of
|
---|
| 35 | # all correlator cycles
|
---|
[558] | 36 | scanav = average_time(scan, scanav=True)
|
---|
[101] | 37 | """
|
---|
[930] | 38 | scanav = False
|
---|
[143] | 39 | if kwargs.has_key('scanav'):
|
---|
[930] | 40 | scanav = kwargs.get('scanav')
|
---|
[524] | 41 | weight = 'tint'
|
---|
[143] | 42 | if kwargs.has_key('weight'):
|
---|
| 43 | weight = kwargs.get('weight')
|
---|
| 44 | mask = ()
|
---|
| 45 | if kwargs.has_key('mask'):
|
---|
| 46 | mask = kwargs.get('mask')
|
---|
[930] | 47 | align = False
|
---|
| 48 | if kwargs.has_key('align'):
|
---|
| 49 | align = kwargs.get('align')
|
---|
[1819] | 50 | compel = False
|
---|
| 51 | if kwargs.has_key('compel'):
|
---|
| 52 | compel = kwargs.get('compel')
|
---|
[489] | 53 | varlist = vars()
|
---|
[665] | 54 | if isinstance(args[0],list):
|
---|
[981] | 55 | lst = args[0]
|
---|
[665] | 56 | elif isinstance(args[0],tuple):
|
---|
[981] | 57 | lst = list(args[0])
|
---|
[665] | 58 | else:
|
---|
[981] | 59 | lst = list(args)
|
---|
[720] | 60 |
|
---|
[489] | 61 | del varlist["kwargs"]
|
---|
| 62 | varlist["args"] = "%d scantables" % len(lst)
|
---|
[981] | 63 | # need special formatting here for history...
|
---|
[720] | 64 |
|
---|
[876] | 65 | from asap._asap import stmath
|
---|
| 66 | stm = stmath()
|
---|
[113] | 67 | for s in lst:
|
---|
[101] | 68 | if not isinstance(s,scantable):
|
---|
[720] | 69 | msg = "Please give a list of scantables"
|
---|
[1859] | 70 | raise TypeError(msg)
|
---|
[945] | 71 | if scanav: scanav = "SCAN"
|
---|
| 72 | else: scanav = "NONE"
|
---|
[981] | 73 | alignedlst = []
|
---|
| 74 | if align:
|
---|
| 75 | refepoch = lst[0].get_time(0)
|
---|
| 76 | for scan in lst:
|
---|
| 77 | alignedlst.append(scan.freq_align(refepoch,insitu=False))
|
---|
| 78 | else:
|
---|
[1059] | 79 | alignedlst = lst
|
---|
[1232] | 80 | if weight.upper() == 'MEDIAN':
|
---|
| 81 | # median doesn't support list of scantables - merge first
|
---|
| 82 | merged = None
|
---|
| 83 | if len(alignedlst) > 1:
|
---|
| 84 | merged = merge(alignedlst)
|
---|
| 85 | else:
|
---|
| 86 | merged = alignedlst[0]
|
---|
| 87 | s = scantable(stm._averagechannel(merged, 'MEDIAN', scanav))
|
---|
| 88 | del merged
|
---|
| 89 | else:
|
---|
[1819] | 90 | #s = scantable(stm._average(alignedlst, mask, weight.upper(), scanav))
|
---|
| 91 | s = scantable(stm._new_average(alignedlst, compel, mask, weight.upper(), scanav))
|
---|
[489] | 92 | s._add_history("average_time",varlist)
|
---|
[1859] | 93 |
|
---|
[489] | 94 | return s
|
---|
[101] | 95 |
|
---|
[1862] | 96 | @asaplog_post_dec
|
---|
[1074] | 97 | def quotient(source, reference, preserve=True):
|
---|
| 98 | """
|
---|
| 99 | Return the quotient of a 'source' (signal) scan and a 'reference' scan.
|
---|
| 100 | The reference can have just one scan, even if the signal has many. Otherwise
|
---|
| 101 | they must have the same number of scans.
|
---|
| 102 | The cursor of the output scan is set to 0
|
---|
| 103 | Parameters:
|
---|
| 104 | source: the 'on' scan
|
---|
| 105 | reference: the 'off' scan
|
---|
| 106 | preserve: you can preserve (default) the continuum or
|
---|
| 107 | remove it. The equations used are
|
---|
| 108 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 109 | remove: Output = Toff * (on/off) - Ton
|
---|
| 110 | """
|
---|
| 111 | varlist = vars()
|
---|
| 112 | from asap._asap import stmath
|
---|
| 113 | stm = stmath()
|
---|
| 114 | stm._setinsitu(False)
|
---|
| 115 | s = scantable(stm._quotient(source, reference, preserve))
|
---|
| 116 | s._add_history("quotient",varlist)
|
---|
| 117 | return s
|
---|
[101] | 118 |
|
---|
[1862] | 119 | @asaplog_post_dec
|
---|
[1391] | 120 | def dototalpower(calon, caloff, tcalval=0.0):
|
---|
| 121 | """
|
---|
| 122 | Do calibration for CAL on,off signals.
|
---|
| 123 | Adopted from GBTIDL dototalpower
|
---|
| 124 | Parameters:
|
---|
| 125 | calon: the 'cal on' subintegration
|
---|
| 126 | caloff: the 'cal off' subintegration
|
---|
| 127 | tcalval: user supplied Tcal value
|
---|
| 128 | """
|
---|
| 129 | varlist = vars()
|
---|
| 130 | from asap._asap import stmath
|
---|
| 131 | stm = stmath()
|
---|
| 132 | stm._setinsitu(False)
|
---|
| 133 | s = scantable(stm._dototalpower(calon, caloff, tcalval))
|
---|
| 134 | s._add_history("dototalpower",varlist)
|
---|
| 135 | return s
|
---|
| 136 |
|
---|
[1862] | 137 | @asaplog_post_dec
|
---|
[1391] | 138 | def dosigref(sig, ref, smooth, tsysval=0.0, tauval=0.0):
|
---|
| 139 | """
|
---|
| 140 | Calculate a quotient (sig-ref/ref * Tsys)
|
---|
| 141 | Adopted from GBTIDL dosigref
|
---|
| 142 | Parameters:
|
---|
| 143 | sig: on source data
|
---|
| 144 | ref: reference data
|
---|
| 145 | smooth: width of box car smoothing for reference
|
---|
| 146 | tsysval: user specified Tsys (scalar only)
|
---|
| 147 | tauval: user specified Tau (required if tsysval is set)
|
---|
| 148 | """
|
---|
| 149 | varlist = vars()
|
---|
| 150 | from asap._asap import stmath
|
---|
| 151 | stm = stmath()
|
---|
| 152 | stm._setinsitu(False)
|
---|
| 153 | s = scantable(stm._dosigref(sig, ref, smooth, tsysval, tauval))
|
---|
| 154 | s._add_history("dosigref",varlist)
|
---|
| 155 | return s
|
---|
| 156 |
|
---|
[1862] | 157 | @asaplog_post_dec
|
---|
[1819] | 158 | def calps(scantab, scannos, smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
[1391] | 159 | """
|
---|
| 160 | Calibrate GBT position switched data
|
---|
| 161 | Adopted from GBTIDL getps
|
---|
[1920] | 162 | Currently calps identify the scans as position switched data if source
|
---|
| 163 | type enum is pson or psoff. The data must contains 'CAL' signal
|
---|
| 164 | on/off in each integration. To identify 'CAL' on state, the source type
|
---|
| 165 | enum of poncal and poffcal need to be present in the source name field.
|
---|
[1391] | 166 | (GBT MS data reading process to scantable automatically append these
|
---|
| 167 | id names to the source names)
|
---|
| 168 |
|
---|
| 169 | Parameters:
|
---|
| 170 | scantab: scantable
|
---|
| 171 | scannos: list of scan numbers
|
---|
| 172 | smooth: optional box smoothing order for the reference
|
---|
| 173 | (default is 1 = no smoothing)
|
---|
| 174 | tsysval: optional user specified Tsys (default is 0.0,
|
---|
| 175 | use Tsys in the data)
|
---|
| 176 | tauval: optional user specified Tau
|
---|
| 177 | tcalval: optional user specified Tcal (default is 0.0,
|
---|
| 178 | use Tcal value in the data)
|
---|
[1920] | 179 | verify: Verify calibration if true
|
---|
[1391] | 180 | """
|
---|
| 181 | varlist = vars()
|
---|
| 182 | # check for the appropriate data
|
---|
[1819] | 183 | ## s = scantab.get_scan('*_ps*')
|
---|
| 184 | ## if s is None:
|
---|
| 185 | ## msg = "The input data appear to contain no position-switch mode data."
|
---|
[1859] | 186 | ## raise TypeError(msg)
|
---|
[1819] | 187 | s = scantab.copy()
|
---|
| 188 | from asap._asap import srctype
|
---|
| 189 | sel = selector()
|
---|
| 190 | sel.set_types( srctype.pson )
|
---|
| 191 | try:
|
---|
| 192 | scantab.set_selection( sel )
|
---|
| 193 | except Exception, e:
|
---|
[1391] | 194 | msg = "The input data appear to contain no position-switch mode data."
|
---|
[1859] | 195 | raise TypeError(msg)
|
---|
[1819] | 196 | s.set_selection()
|
---|
| 197 | sel.reset()
|
---|
[1391] | 198 | ssub = s.get_scan(scannos)
|
---|
| 199 | if ssub is None:
|
---|
| 200 | msg = "No data was found with given scan numbers!"
|
---|
[1859] | 201 | raise TypeError(msg)
|
---|
[1819] | 202 | #ssubon = ssub.get_scan('*calon')
|
---|
| 203 | #ssuboff = ssub.get_scan('*[^calon]')
|
---|
| 204 | sel.set_types( [srctype.poncal,srctype.poffcal] )
|
---|
| 205 | ssub.set_selection( sel )
|
---|
| 206 | ssubon = ssub.copy()
|
---|
| 207 | ssub.set_selection()
|
---|
| 208 | sel.reset()
|
---|
| 209 | sel.set_types( [srctype.pson,srctype.psoff] )
|
---|
| 210 | ssub.set_selection( sel )
|
---|
| 211 | ssuboff = ssub.copy()
|
---|
| 212 | ssub.set_selection()
|
---|
| 213 | sel.reset()
|
---|
[1391] | 214 | if ssubon.nrow() != ssuboff.nrow():
|
---|
| 215 | msg = "mismatch in numbers of CAL on/off scans. Cannot calibrate. Check the scan numbers."
|
---|
[1859] | 216 | raise TypeError(msg)
|
---|
[1391] | 217 | cals = dototalpower(ssubon, ssuboff, tcalval)
|
---|
[1819] | 218 | #sig = cals.get_scan('*ps')
|
---|
| 219 | #ref = cals.get_scan('*psr')
|
---|
| 220 | sel.set_types( srctype.pson )
|
---|
| 221 | cals.set_selection( sel )
|
---|
| 222 | sig = cals.copy()
|
---|
| 223 | cals.set_selection()
|
---|
| 224 | sel.reset()
|
---|
| 225 | sel.set_types( srctype.psoff )
|
---|
| 226 | cals.set_selection( sel )
|
---|
| 227 | ref = cals.copy()
|
---|
| 228 | cals.set_selection()
|
---|
| 229 | sel.reset()
|
---|
[1391] | 230 | if sig.nscan() != ref.nscan():
|
---|
| 231 | msg = "mismatch in numbers of on/off scans. Cannot calibrate. Check the scan numbers."
|
---|
[1859] | 232 | raise TypeError(msg)
|
---|
[1391] | 233 |
|
---|
| 234 | #for user supplied Tsys
|
---|
| 235 | if tsysval>0.0:
|
---|
| 236 | if tauval<=0.0:
|
---|
| 237 | msg = "Need to supply a valid tau to use the supplied Tsys"
|
---|
[1859] | 238 | raise TypeError(msg)
|
---|
[1391] | 239 | else:
|
---|
| 240 | sig.recalc_azel()
|
---|
| 241 | ref.recalc_azel()
|
---|
| 242 | #msg = "Use of user specified Tsys is not fully implemented yet."
|
---|
[1859] | 243 | #raise TypeError(msg)
|
---|
[1391] | 244 | # use get_elevation to get elevation and
|
---|
| 245 | # calculate a scaling factor using the formula
|
---|
| 246 | # -> tsys use to dosigref
|
---|
| 247 |
|
---|
| 248 | #ress = dosigref(sig, ref, smooth, tsysval)
|
---|
| 249 | ress = dosigref(sig, ref, smooth, tsysval, tauval)
|
---|
[1819] | 250 | ###
|
---|
| 251 | if verify:
|
---|
| 252 | # get data
|
---|
| 253 | import numpy
|
---|
| 254 | precal={}
|
---|
| 255 | postcal=[]
|
---|
| 256 | keys=['ps','ps_calon','psr','psr_calon']
|
---|
| 257 | types=[srctype.pson,srctype.poncal,srctype.psoff,srctype.poffcal]
|
---|
| 258 | ifnos=list(ssub.getifnos())
|
---|
| 259 | polnos=list(ssub.getpolnos())
|
---|
| 260 | sel=selector()
|
---|
| 261 | for i in range(2):
|
---|
| 262 | #ss=ssuboff.get_scan('*'+keys[2*i])
|
---|
| 263 | ll=[]
|
---|
| 264 | for j in range(len(ifnos)):
|
---|
| 265 | for k in range(len(polnos)):
|
---|
| 266 | sel.set_ifs(ifnos[j])
|
---|
| 267 | sel.set_polarizations(polnos[k])
|
---|
| 268 | sel.set_types(types[2*i])
|
---|
| 269 | try:
|
---|
| 270 | #ss.set_selection(sel)
|
---|
| 271 | ssuboff.set_selection(sel)
|
---|
| 272 | except:
|
---|
| 273 | continue
|
---|
| 274 | #ll.append(numpy.array(ss._getspectrum(0)))
|
---|
| 275 | ll.append(numpy.array(ssuboff._getspectrum(0)))
|
---|
| 276 | sel.reset()
|
---|
| 277 | ssuboff.set_selection()
|
---|
| 278 | precal[keys[2*i]]=ll
|
---|
| 279 | #del ss
|
---|
| 280 | #ss=ssubon.get_scan('*'+keys[2*i+1])
|
---|
| 281 | ll=[]
|
---|
| 282 | for j in range(len(ifnos)):
|
---|
| 283 | for k in range(len(polnos)):
|
---|
| 284 | sel.set_ifs(ifnos[j])
|
---|
| 285 | sel.set_polarizations(polnos[k])
|
---|
| 286 | sel.set_types(types[2*i+1])
|
---|
| 287 | try:
|
---|
| 288 | #ss.set_selection(sel)
|
---|
| 289 | ssubon.set_selection(sel)
|
---|
| 290 | except:
|
---|
| 291 | continue
|
---|
| 292 | #ll.append(numpy.array(ss._getspectrum(0)))
|
---|
| 293 | ll.append(numpy.array(ssubon._getspectrum(0)))
|
---|
| 294 | sel.reset()
|
---|
| 295 | ssubon.set_selection()
|
---|
| 296 | precal[keys[2*i+1]]=ll
|
---|
| 297 | #del ss
|
---|
| 298 | for j in range(len(ifnos)):
|
---|
| 299 | for k in range(len(polnos)):
|
---|
| 300 | sel.set_ifs(ifnos[j])
|
---|
| 301 | sel.set_polarizations(polnos[k])
|
---|
| 302 | try:
|
---|
| 303 | ress.set_selection(sel)
|
---|
| 304 | except:
|
---|
| 305 | continue
|
---|
| 306 | postcal.append(numpy.array(ress._getspectrum(0)))
|
---|
| 307 | sel.reset()
|
---|
| 308 | ress.set_selection()
|
---|
| 309 | del sel
|
---|
| 310 | # plot
|
---|
[1861] | 311 | asaplog.post()
|
---|
[1819] | 312 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
[1861] | 313 | asaplog.post('WARN')
|
---|
[2150] | 314 | #p=asaplotgui.asaplotgui()
|
---|
| 315 | p=new_asaplot()
|
---|
[1819] | 316 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
| 317 | nr=len(ifnos)*len(polnos)
|
---|
| 318 | titles=[]
|
---|
| 319 | btics=[]
|
---|
| 320 | if nr<4:
|
---|
| 321 | p.set_panels(rows=nr,cols=2,nplots=2*nr,ganged=False)
|
---|
| 322 | for i in range(2*nr):
|
---|
| 323 | b=False
|
---|
| 324 | if i >= 2*nr-2:
|
---|
| 325 | b=True
|
---|
| 326 | btics.append(b)
|
---|
| 327 | elif nr==4:
|
---|
| 328 | p.set_panels(rows=2,cols=4,nplots=8,ganged=False)
|
---|
| 329 | for i in range(2*nr):
|
---|
| 330 | b=False
|
---|
| 331 | if i >= 2*nr-4:
|
---|
| 332 | b=True
|
---|
| 333 | btics.append(b)
|
---|
| 334 | elif nr<7:
|
---|
| 335 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
| 336 | for i in range(2*nr):
|
---|
| 337 | if i >= 2*nr-4:
|
---|
| 338 | b=True
|
---|
| 339 | btics.append(b)
|
---|
| 340 | else:
|
---|
[1861] | 341 | asaplog.post()
|
---|
[1819] | 342 | asaplog.push('Only first 6 [if,pol] pairs are plotted.')
|
---|
[1861] | 343 | asaplog.post('WARN')
|
---|
[1819] | 344 | nr=6
|
---|
| 345 | for i in range(2*nr):
|
---|
| 346 | b=False
|
---|
| 347 | if i >= 2*nr-4:
|
---|
| 348 | b=True
|
---|
| 349 | btics.append(b)
|
---|
| 350 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
| 351 | for i in range(nr):
|
---|
| 352 | p.subplot(2*i)
|
---|
| 353 | p.color=0
|
---|
| 354 | title='raw data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
| 355 | titles.append(title)
|
---|
| 356 | #p.set_axes('title',title,fontsize=40)
|
---|
| 357 | ymin=1.0e100
|
---|
| 358 | ymax=-1.0e100
|
---|
[2348] | 359 | nchan=s.nchan(ifnos[int(i/len(polnos))])
|
---|
[1819] | 360 | edge=int(nchan*0.01)
|
---|
| 361 | for j in range(4):
|
---|
| 362 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 363 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 364 | ymin=min(ymin,spmin)
|
---|
| 365 | ymax=max(ymax,spmax)
|
---|
| 366 | for j in range(4):
|
---|
| 367 | if i==0:
|
---|
| 368 | p.set_line(label=keys[j])
|
---|
| 369 | else:
|
---|
| 370 | p.legend()
|
---|
| 371 | p.plot(precal[keys[j]][i])
|
---|
| 372 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 373 | if not btics[2*i]:
|
---|
| 374 | p.axes.set_xticks([])
|
---|
| 375 | p.subplot(2*i+1)
|
---|
| 376 | p.color=0
|
---|
| 377 | title='cal data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
| 378 | titles.append(title)
|
---|
| 379 | #p.set_axes('title',title)
|
---|
| 380 | p.legend()
|
---|
| 381 | ymin=postcal[i][edge:nchan-edge].min()
|
---|
| 382 | ymax=postcal[i][edge:nchan-edge].max()
|
---|
| 383 | p.plot(postcal[i])
|
---|
| 384 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 385 | if not btics[2*i+1]:
|
---|
| 386 | p.axes.set_xticks([])
|
---|
| 387 | for i in range(2*nr):
|
---|
| 388 | p.subplot(i)
|
---|
| 389 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
| 390 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
| 391 | if x.upper() == 'N':
|
---|
[2150] | 392 | p.quit()
|
---|
[1819] | 393 | del p
|
---|
| 394 | return scabtab
|
---|
[2150] | 395 | p.quit()
|
---|
[1819] | 396 | del p
|
---|
| 397 | ###
|
---|
[1391] | 398 | ress._add_history("calps", varlist)
|
---|
| 399 | return ress
|
---|
| 400 |
|
---|
[1862] | 401 | @asaplog_post_dec
|
---|
[1819] | 402 | def calnod(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
[1391] | 403 | """
|
---|
| 404 | Do full (but a pair of scans at time) processing of GBT Nod data
|
---|
| 405 | calibration.
|
---|
| 406 | Adopted from GBTIDL's getnod
|
---|
| 407 | Parameters:
|
---|
| 408 | scantab: scantable
|
---|
| 409 | scannos: a pair of scan numbers, or the first scan number of the pair
|
---|
| 410 | smooth: box car smoothing order
|
---|
| 411 | tsysval: optional user specified Tsys value
|
---|
| 412 | tauval: optional user specified tau value (not implemented yet)
|
---|
| 413 | tcalval: optional user specified Tcal value
|
---|
[1920] | 414 | verify: Verify calibration if true
|
---|
[1391] | 415 | """
|
---|
| 416 | varlist = vars()
|
---|
| 417 | from asap._asap import stmath
|
---|
[1819] | 418 | from asap._asap import srctype
|
---|
[1391] | 419 | stm = stmath()
|
---|
| 420 | stm._setinsitu(False)
|
---|
| 421 |
|
---|
| 422 | # check for the appropriate data
|
---|
[1819] | 423 | ## s = scantab.get_scan('*_nod*')
|
---|
| 424 | ## if s is None:
|
---|
| 425 | ## msg = "The input data appear to contain no Nod observing mode data."
|
---|
[1859] | 426 | ## raise TypeError(msg)
|
---|
[1819] | 427 | s = scantab.copy()
|
---|
| 428 | sel = selector()
|
---|
| 429 | sel.set_types( srctype.nod )
|
---|
| 430 | try:
|
---|
| 431 | s.set_selection( sel )
|
---|
| 432 | except Exception, e:
|
---|
[1391] | 433 | msg = "The input data appear to contain no Nod observing mode data."
|
---|
[1859] | 434 | raise TypeError(msg)
|
---|
[1819] | 435 | sel.reset()
|
---|
| 436 | del sel
|
---|
| 437 | del s
|
---|
[1391] | 438 |
|
---|
| 439 | # need check correspondance of each beam with sig-ref ...
|
---|
| 440 | # check for timestamps, scan numbers, subscan id (not available in
|
---|
| 441 | # ASAP data format...). Assume 1st scan of the pair (beam 0 - sig
|
---|
| 442 | # and beam 1 - ref...)
|
---|
| 443 | # First scan number of paired scans or list of pairs of
|
---|
| 444 | # scan numbers (has to have even number of pairs.)
|
---|
| 445 |
|
---|
| 446 | #data splitting
|
---|
| 447 | scan1no = scan2no = 0
|
---|
| 448 |
|
---|
| 449 | if len(scannos)==1:
|
---|
| 450 | scan1no = scannos[0]
|
---|
| 451 | scan2no = scannos[0]+1
|
---|
| 452 | pairScans = [scan1no, scan2no]
|
---|
| 453 | else:
|
---|
| 454 | #if len(scannos)>2:
|
---|
| 455 | # msg = "calnod can only process a pair of nod scans at time."
|
---|
[1859] | 456 | # raise TypeError(msg)
|
---|
[1391] | 457 | #
|
---|
| 458 | #if len(scannos)==2:
|
---|
| 459 | # scan1no = scannos[0]
|
---|
| 460 | # scan2no = scannos[1]
|
---|
| 461 | pairScans = list(scannos)
|
---|
| 462 |
|
---|
| 463 | if tsysval>0.0:
|
---|
| 464 | if tauval<=0.0:
|
---|
| 465 | msg = "Need to supply a valid tau to use the supplied Tsys"
|
---|
[1859] | 466 | raise TypeError(msg)
|
---|
[1391] | 467 | else:
|
---|
| 468 | scantab.recalc_azel()
|
---|
| 469 | resspec = scantable(stm._donod(scantab, pairScans, smooth, tsysval,tauval,tcalval))
|
---|
[1819] | 470 | ###
|
---|
| 471 | if verify:
|
---|
| 472 | # get data
|
---|
| 473 | import numpy
|
---|
| 474 | precal={}
|
---|
| 475 | postcal=[]
|
---|
| 476 | keys=['','_calon']
|
---|
| 477 | types=[srctype.nod,srctype.nodcal]
|
---|
| 478 | ifnos=list(scantab.getifnos())
|
---|
| 479 | polnos=list(scantab.getpolnos())
|
---|
| 480 | sel=selector()
|
---|
| 481 | ss = scantab.copy()
|
---|
| 482 | for i in range(2):
|
---|
| 483 | #ss=scantab.get_scan('*'+keys[i])
|
---|
| 484 | ll=[]
|
---|
| 485 | ll2=[]
|
---|
| 486 | for j in range(len(ifnos)):
|
---|
| 487 | for k in range(len(polnos)):
|
---|
| 488 | sel.set_ifs(ifnos[j])
|
---|
| 489 | sel.set_polarizations(polnos[k])
|
---|
| 490 | sel.set_scans(pairScans[0])
|
---|
| 491 | sel.set_types(types[i])
|
---|
| 492 | try:
|
---|
| 493 | ss.set_selection(sel)
|
---|
| 494 | except:
|
---|
| 495 | continue
|
---|
| 496 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
| 497 | sel.reset()
|
---|
| 498 | ss.set_selection()
|
---|
| 499 | sel.set_ifs(ifnos[j])
|
---|
| 500 | sel.set_polarizations(polnos[k])
|
---|
| 501 | sel.set_scans(pairScans[1])
|
---|
| 502 | sel.set_types(types[i])
|
---|
| 503 | try:
|
---|
| 504 | ss.set_selection(sel)
|
---|
| 505 | except:
|
---|
| 506 | ll.pop()
|
---|
| 507 | continue
|
---|
| 508 | ll2.append(numpy.array(ss._getspectrum(0)))
|
---|
| 509 | sel.reset()
|
---|
| 510 | ss.set_selection()
|
---|
| 511 | key='%s%s' %(pairScans[0],keys[i])
|
---|
| 512 | precal[key]=ll
|
---|
| 513 | key='%s%s' %(pairScans[1],keys[i])
|
---|
| 514 | precal[key]=ll2
|
---|
| 515 | #del ss
|
---|
| 516 | keys=precal.keys()
|
---|
| 517 | for j in range(len(ifnos)):
|
---|
| 518 | for k in range(len(polnos)):
|
---|
| 519 | sel.set_ifs(ifnos[j])
|
---|
| 520 | sel.set_polarizations(polnos[k])
|
---|
| 521 | sel.set_scans(pairScans[0])
|
---|
| 522 | try:
|
---|
| 523 | resspec.set_selection(sel)
|
---|
| 524 | except:
|
---|
| 525 | continue
|
---|
| 526 | postcal.append(numpy.array(resspec._getspectrum(0)))
|
---|
| 527 | sel.reset()
|
---|
| 528 | resspec.set_selection()
|
---|
| 529 | del sel
|
---|
| 530 | # plot
|
---|
[1861] | 531 | asaplog.post()
|
---|
[1819] | 532 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
[1861] | 533 | asaplog.post('WARN')
|
---|
[2150] | 534 | #p=asaplotgui.asaplotgui()
|
---|
| 535 | p=new_asaplot()
|
---|
[1819] | 536 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
| 537 | nr=len(ifnos)*len(polnos)
|
---|
| 538 | titles=[]
|
---|
| 539 | btics=[]
|
---|
| 540 | if nr<4:
|
---|
| 541 | p.set_panels(rows=nr,cols=2,nplots=2*nr,ganged=False)
|
---|
| 542 | for i in range(2*nr):
|
---|
| 543 | b=False
|
---|
| 544 | if i >= 2*nr-2:
|
---|
| 545 | b=True
|
---|
| 546 | btics.append(b)
|
---|
| 547 | elif nr==4:
|
---|
| 548 | p.set_panels(rows=2,cols=4,nplots=8,ganged=False)
|
---|
| 549 | for i in range(2*nr):
|
---|
| 550 | b=False
|
---|
| 551 | if i >= 2*nr-4:
|
---|
| 552 | b=True
|
---|
| 553 | btics.append(b)
|
---|
| 554 | elif nr<7:
|
---|
| 555 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
| 556 | for i in range(2*nr):
|
---|
| 557 | if i >= 2*nr-4:
|
---|
| 558 | b=True
|
---|
| 559 | btics.append(b)
|
---|
| 560 | else:
|
---|
[1861] | 561 | asaplog.post()
|
---|
[1819] | 562 | asaplog.push('Only first 6 [if,pol] pairs are plotted.')
|
---|
[1861] | 563 | asaplog.post('WARN')
|
---|
[1819] | 564 | nr=6
|
---|
| 565 | for i in range(2*nr):
|
---|
| 566 | b=False
|
---|
| 567 | if i >= 2*nr-4:
|
---|
| 568 | b=True
|
---|
| 569 | btics.append(b)
|
---|
| 570 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
| 571 | for i in range(nr):
|
---|
| 572 | p.subplot(2*i)
|
---|
| 573 | p.color=0
|
---|
| 574 | title='raw data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
| 575 | titles.append(title)
|
---|
| 576 | #p.set_axes('title',title,fontsize=40)
|
---|
| 577 | ymin=1.0e100
|
---|
| 578 | ymax=-1.0e100
|
---|
[2348] | 579 | nchan=scantab.nchan(ifnos[int(i/len(polnos))])
|
---|
[1819] | 580 | edge=int(nchan*0.01)
|
---|
| 581 | for j in range(4):
|
---|
| 582 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 583 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 584 | ymin=min(ymin,spmin)
|
---|
| 585 | ymax=max(ymax,spmax)
|
---|
| 586 | for j in range(4):
|
---|
| 587 | if i==0:
|
---|
| 588 | p.set_line(label=keys[j])
|
---|
| 589 | else:
|
---|
| 590 | p.legend()
|
---|
| 591 | p.plot(precal[keys[j]][i])
|
---|
| 592 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 593 | if not btics[2*i]:
|
---|
| 594 | p.axes.set_xticks([])
|
---|
| 595 | p.subplot(2*i+1)
|
---|
| 596 | p.color=0
|
---|
| 597 | title='cal data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
| 598 | titles.append(title)
|
---|
| 599 | #p.set_axes('title',title)
|
---|
| 600 | p.legend()
|
---|
| 601 | ymin=postcal[i][edge:nchan-edge].min()
|
---|
| 602 | ymax=postcal[i][edge:nchan-edge].max()
|
---|
| 603 | p.plot(postcal[i])
|
---|
| 604 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 605 | if not btics[2*i+1]:
|
---|
| 606 | p.axes.set_xticks([])
|
---|
| 607 | for i in range(2*nr):
|
---|
| 608 | p.subplot(i)
|
---|
| 609 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
| 610 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
| 611 | if x.upper() == 'N':
|
---|
[2150] | 612 | p.quit()
|
---|
[1819] | 613 | del p
|
---|
| 614 | return scabtab
|
---|
[2150] | 615 | p.quit()
|
---|
[1819] | 616 | del p
|
---|
| 617 | ###
|
---|
[1391] | 618 | resspec._add_history("calnod",varlist)
|
---|
| 619 | return resspec
|
---|
| 620 |
|
---|
[1862] | 621 | @asaplog_post_dec
|
---|
[1819] | 622 | def calfs(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
[1391] | 623 | """
|
---|
| 624 | Calibrate GBT frequency switched data.
|
---|
| 625 | Adopted from GBTIDL getfs.
|
---|
[1920] | 626 | Currently calfs identify the scans as frequency switched data if source
|
---|
| 627 | type enum is fson and fsoff. The data must contains 'CAL' signal
|
---|
| 628 | on/off in each integration. To identify 'CAL' on state, the source type
|
---|
| 629 | enum of foncal and foffcal need to be present in the source name field.
|
---|
[1391] | 630 | (GBT MS data reading via scantable automatically append these
|
---|
| 631 | id names to the source names)
|
---|
| 632 |
|
---|
| 633 | Parameters:
|
---|
| 634 | scantab: scantable
|
---|
| 635 | scannos: list of scan numbers
|
---|
| 636 | smooth: optional box smoothing order for the reference
|
---|
| 637 | (default is 1 = no smoothing)
|
---|
| 638 | tsysval: optional user specified Tsys (default is 0.0,
|
---|
| 639 | use Tsys in the data)
|
---|
| 640 | tauval: optional user specified Tau
|
---|
[1920] | 641 | verify: Verify calibration if true
|
---|
[1391] | 642 | """
|
---|
| 643 | varlist = vars()
|
---|
| 644 | from asap._asap import stmath
|
---|
[1819] | 645 | from asap._asap import srctype
|
---|
[1391] | 646 | stm = stmath()
|
---|
| 647 | stm._setinsitu(False)
|
---|
| 648 |
|
---|
| 649 | # check = scantab.get_scan('*_fs*')
|
---|
| 650 | # if check is None:
|
---|
| 651 | # msg = "The input data appear to contain no Nod observing mode data."
|
---|
[1859] | 652 | # raise TypeError(msg)
|
---|
[1391] | 653 | s = scantab.get_scan(scannos)
|
---|
| 654 | del scantab
|
---|
| 655 |
|
---|
| 656 | resspec = scantable(stm._dofs(s, scannos, smooth, tsysval,tauval,tcalval))
|
---|
[1819] | 657 | ###
|
---|
| 658 | if verify:
|
---|
| 659 | # get data
|
---|
| 660 | ssub = s.get_scan(scannos)
|
---|
| 661 | #ssubon = ssub.get_scan('*calon')
|
---|
| 662 | #ssuboff = ssub.get_scan('*[^calon]')
|
---|
| 663 | sel = selector()
|
---|
| 664 | sel.set_types( [srctype.foncal,srctype.foffcal] )
|
---|
| 665 | ssub.set_selection( sel )
|
---|
| 666 | ssubon = ssub.copy()
|
---|
| 667 | ssub.set_selection()
|
---|
| 668 | sel.reset()
|
---|
| 669 | sel.set_types( [srctype.fson,srctype.fsoff] )
|
---|
| 670 | ssub.set_selection( sel )
|
---|
| 671 | ssuboff = ssub.copy()
|
---|
| 672 | ssub.set_selection()
|
---|
| 673 | sel.reset()
|
---|
| 674 | import numpy
|
---|
| 675 | precal={}
|
---|
| 676 | postcal=[]
|
---|
| 677 | keys=['fs','fs_calon','fsr','fsr_calon']
|
---|
| 678 | types=[srctype.fson,srctype.foncal,srctype.fsoff,srctype.foffcal]
|
---|
| 679 | ifnos=list(ssub.getifnos())
|
---|
| 680 | polnos=list(ssub.getpolnos())
|
---|
| 681 | for i in range(2):
|
---|
| 682 | #ss=ssuboff.get_scan('*'+keys[2*i])
|
---|
| 683 | ll=[]
|
---|
| 684 | for j in range(len(ifnos)):
|
---|
| 685 | for k in range(len(polnos)):
|
---|
| 686 | sel.set_ifs(ifnos[j])
|
---|
| 687 | sel.set_polarizations(polnos[k])
|
---|
| 688 | sel.set_types(types[2*i])
|
---|
| 689 | try:
|
---|
| 690 | #ss.set_selection(sel)
|
---|
| 691 | ssuboff.set_selection(sel)
|
---|
| 692 | except:
|
---|
| 693 | continue
|
---|
| 694 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
| 695 | sel.reset()
|
---|
| 696 | #ss.set_selection()
|
---|
| 697 | ssuboff.set_selection()
|
---|
| 698 | precal[keys[2*i]]=ll
|
---|
| 699 | #del ss
|
---|
| 700 | #ss=ssubon.get_scan('*'+keys[2*i+1])
|
---|
| 701 | ll=[]
|
---|
| 702 | for j in range(len(ifnos)):
|
---|
| 703 | for k in range(len(polnos)):
|
---|
| 704 | sel.set_ifs(ifnos[j])
|
---|
| 705 | sel.set_polarizations(polnos[k])
|
---|
| 706 | sel.set_types(types[2*i+1])
|
---|
| 707 | try:
|
---|
| 708 | #ss.set_selection(sel)
|
---|
| 709 | ssubon.set_selection(sel)
|
---|
| 710 | except:
|
---|
| 711 | continue
|
---|
| 712 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
| 713 | sel.reset()
|
---|
| 714 | #ss.set_selection()
|
---|
| 715 | ssubon.set_selection()
|
---|
| 716 | precal[keys[2*i+1]]=ll
|
---|
| 717 | #del ss
|
---|
| 718 | #sig=resspec.get_scan('*_fs')
|
---|
| 719 | #ref=resspec.get_scan('*_fsr')
|
---|
| 720 | sel.set_types( srctype.fson )
|
---|
| 721 | resspec.set_selection( sel )
|
---|
| 722 | sig=resspec.copy()
|
---|
| 723 | resspec.set_selection()
|
---|
| 724 | sel.reset()
|
---|
| 725 | sel.set_type( srctype.fsoff )
|
---|
| 726 | resspec.set_selection( sel )
|
---|
| 727 | ref=resspec.copy()
|
---|
| 728 | resspec.set_selection()
|
---|
| 729 | sel.reset()
|
---|
| 730 | for k in range(len(polnos)):
|
---|
| 731 | for j in range(len(ifnos)):
|
---|
| 732 | sel.set_ifs(ifnos[j])
|
---|
| 733 | sel.set_polarizations(polnos[k])
|
---|
| 734 | try:
|
---|
| 735 | sig.set_selection(sel)
|
---|
| 736 | postcal.append(numpy.array(sig._getspectrum(0)))
|
---|
| 737 | except:
|
---|
| 738 | ref.set_selection(sel)
|
---|
| 739 | postcal.append(numpy.array(ref._getspectrum(0)))
|
---|
| 740 | sel.reset()
|
---|
| 741 | resspec.set_selection()
|
---|
| 742 | del sel
|
---|
| 743 | # plot
|
---|
[1861] | 744 | asaplog.post()
|
---|
[1819] | 745 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
[1861] | 746 | asaplog.post('WARN')
|
---|
[2150] | 747 | #p=asaplotgui.asaplotgui()
|
---|
| 748 | p=new_asaplot()
|
---|
[1819] | 749 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
| 750 | nr=len(ifnos)/2*len(polnos)
|
---|
| 751 | titles=[]
|
---|
| 752 | btics=[]
|
---|
| 753 | if nr>3:
|
---|
[1861] | 754 | asaplog.post()
|
---|
[1819] | 755 | asaplog.push('Only first 3 [if,pol] pairs are plotted.')
|
---|
[1861] | 756 | asaplog.post('WARN')
|
---|
[1819] | 757 | nr=3
|
---|
| 758 | p.set_panels(rows=nr,cols=3,nplots=3*nr,ganged=False)
|
---|
| 759 | for i in range(3*nr):
|
---|
| 760 | b=False
|
---|
| 761 | if i >= 3*nr-3:
|
---|
| 762 | b=True
|
---|
| 763 | btics.append(b)
|
---|
| 764 | for i in range(nr):
|
---|
| 765 | p.subplot(3*i)
|
---|
| 766 | p.color=0
|
---|
| 767 | title='raw data IF%s,%s POL%s' % (ifnos[2*int(i/len(polnos))],ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
|
---|
| 768 | titles.append(title)
|
---|
| 769 | #p.set_axes('title',title,fontsize=40)
|
---|
| 770 | ymin=1.0e100
|
---|
| 771 | ymax=-1.0e100
|
---|
[2348] | 772 | nchan=s.nchan(ifnos[2*int(i/len(polnos))])
|
---|
[1819] | 773 | edge=int(nchan*0.01)
|
---|
| 774 | for j in range(4):
|
---|
| 775 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 776 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 777 | ymin=min(ymin,spmin)
|
---|
| 778 | ymax=max(ymax,spmax)
|
---|
| 779 | for j in range(4):
|
---|
| 780 | if i==0:
|
---|
| 781 | p.set_line(label=keys[j])
|
---|
| 782 | else:
|
---|
| 783 | p.legend()
|
---|
| 784 | p.plot(precal[keys[j]][i])
|
---|
| 785 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 786 | if not btics[3*i]:
|
---|
| 787 | p.axes.set_xticks([])
|
---|
| 788 | p.subplot(3*i+1)
|
---|
| 789 | p.color=0
|
---|
| 790 | title='sig data IF%s POL%s' % (ifnos[2*int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
| 791 | titles.append(title)
|
---|
| 792 | #p.set_axes('title',title)
|
---|
| 793 | p.legend()
|
---|
| 794 | ymin=postcal[2*i][edge:nchan-edge].min()
|
---|
| 795 | ymax=postcal[2*i][edge:nchan-edge].max()
|
---|
| 796 | p.plot(postcal[2*i])
|
---|
| 797 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 798 | if not btics[3*i+1]:
|
---|
| 799 | p.axes.set_xticks([])
|
---|
| 800 | p.subplot(3*i+2)
|
---|
| 801 | p.color=0
|
---|
| 802 | title='ref data IF%s POL%s' % (ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
|
---|
| 803 | titles.append(title)
|
---|
| 804 | #p.set_axes('title',title)
|
---|
| 805 | p.legend()
|
---|
| 806 | ymin=postcal[2*i+1][edge:nchan-edge].min()
|
---|
| 807 | ymax=postcal[2*i+1][edge:nchan-edge].max()
|
---|
| 808 | p.plot(postcal[2*i+1])
|
---|
| 809 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 810 | if not btics[3*i+2]:
|
---|
| 811 | p.axes.set_xticks([])
|
---|
| 812 | for i in range(3*nr):
|
---|
| 813 | p.subplot(i)
|
---|
| 814 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
| 815 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
| 816 | if x.upper() == 'N':
|
---|
[2150] | 817 | p.quit()
|
---|
[1819] | 818 | del p
|
---|
| 819 | return scabtab
|
---|
[2150] | 820 | p.quit()
|
---|
[1819] | 821 | del p
|
---|
| 822 | ###
|
---|
[1391] | 823 | resspec._add_history("calfs",varlist)
|
---|
| 824 | return resspec
|
---|
| 825 |
|
---|
[1862] | 826 | @asaplog_post_dec
|
---|
[918] | 827 | def merge(*args):
|
---|
[945] | 828 | """
|
---|
[1362] | 829 | Merge a list of scanatables, or comma-sperated scantables into one
|
---|
| 830 | scnatble.
|
---|
| 831 | Parameters:
|
---|
| 832 | A list [scan1, scan2] or scan1, scan2.
|
---|
| 833 | Example:
|
---|
| 834 | myscans = [scan1, scan2]
|
---|
[1589] | 835 | allscans = merge(myscans)
|
---|
| 836 | # or equivalent
|
---|
| 837 | sameallscans = merge(scan1, scan2)
|
---|
[945] | 838 | """
|
---|
[918] | 839 | varlist = vars()
|
---|
| 840 | if isinstance(args[0],list):
|
---|
| 841 | lst = tuple(args[0])
|
---|
| 842 | elif isinstance(args[0],tuple):
|
---|
| 843 | lst = args[0]
|
---|
| 844 | else:
|
---|
| 845 | lst = tuple(args)
|
---|
| 846 | varlist["args"] = "%d scantables" % len(lst)
|
---|
| 847 | # need special formatting her for history...
|
---|
| 848 | from asap._asap import stmath
|
---|
| 849 | stm = stmath()
|
---|
| 850 | for s in lst:
|
---|
| 851 | if not isinstance(s,scantable):
|
---|
| 852 | msg = "Please give a list of scantables"
|
---|
[1859] | 853 | raise TypeError(msg)
|
---|
[918] | 854 | s = scantable(stm._merge(lst))
|
---|
| 855 | s._add_history("merge", varlist)
|
---|
| 856 | return s
|
---|
[1819] | 857 |
|
---|
[1862] | 858 | @asaplog_post_dec
|
---|
[1819] | 859 | def calibrate( scantab, scannos=[], calmode='none', verify=None ):
|
---|
| 860 | """
|
---|
| 861 | Calibrate data.
|
---|
[1826] | 862 |
|
---|
[1819] | 863 | Parameters:
|
---|
| 864 | scantab: scantable
|
---|
| 865 | scannos: list of scan number
|
---|
| 866 | calmode: calibration mode
|
---|
[1826] | 867 | verify: verify calibration
|
---|
[1819] | 868 | """
|
---|
[2102] | 869 | import re
|
---|
[1819] | 870 | antname = scantab.get_antennaname()
|
---|
| 871 | if ( calmode == 'nod' ):
|
---|
| 872 | asaplog.push( 'Calibrating nod data.' )
|
---|
| 873 | scal = calnod( scantab, scannos=scannos, verify=verify )
|
---|
| 874 | elif ( calmode == 'quotient' ):
|
---|
| 875 | asaplog.push( 'Calibrating using quotient.' )
|
---|
| 876 | scal = scantab.auto_quotient( verify=verify )
|
---|
| 877 | elif ( calmode == 'ps' ):
|
---|
| 878 | asaplog.push( 'Calibrating %s position-switched data.' % antname )
|
---|
| 879 | if ( antname.find( 'APEX' ) != -1 ):
|
---|
| 880 | scal = apexcal( scantab, scannos, calmode, verify )
|
---|
[2102] | 881 | elif ( antname.find( 'ALMA' ) != -1 or antname.find( 'OSF' ) != -1
|
---|
| 882 | or re.match('DV[0-9][0-9]$',antname) is not None
|
---|
| 883 | or re.match('PM[0-9][0-9]$',antname) is not None
|
---|
| 884 | or re.match('CM[0-9][0-9]$',antname) is not None
|
---|
| 885 | or re.match('DA[0-9][0-9]$',antname) is not None ):
|
---|
[1819] | 886 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
| 887 | else:
|
---|
| 888 | scal = calps( scantab, scannos=scannos, verify=verify )
|
---|
| 889 | elif ( calmode == 'fs' or calmode == 'fsotf' ):
|
---|
| 890 | asaplog.push( 'Calibrating %s frequency-switched data.' % antname )
|
---|
| 891 | if ( antname.find( 'APEX' ) != -1 ):
|
---|
| 892 | scal = apexcal( scantab, scannos, calmode, verify )
|
---|
| 893 | elif ( antname.find( 'ALMA' ) != -1 or antname.find( 'OSF' ) != -1 ):
|
---|
| 894 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
| 895 | else:
|
---|
| 896 | scal = calfs( scantab, scannos=scannos, verify=verify )
|
---|
| 897 | elif ( calmode == 'otf' ):
|
---|
| 898 | asaplog.push( 'Calibrating %s On-The-Fly data.' % antname )
|
---|
| 899 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
| 900 | else:
|
---|
| 901 | asaplog.push( 'No calibration.' )
|
---|
| 902 | scal = scantab.copy()
|
---|
| 903 |
|
---|
[1826] | 904 | return scal
|
---|
[1819] | 905 |
|
---|
| 906 | def apexcal( scantab, scannos=[], calmode='none', verify=False ):
|
---|
| 907 | """
|
---|
| 908 | Calibrate APEX data
|
---|
| 909 |
|
---|
| 910 | Parameters:
|
---|
| 911 | scantab: scantable
|
---|
| 912 | scannos: list of scan number
|
---|
| 913 | calmode: calibration mode
|
---|
| 914 |
|
---|
[1826] | 915 | verify: verify calibration
|
---|
[1819] | 916 | """
|
---|
| 917 | from asap._asap import stmath
|
---|
| 918 | stm = stmath()
|
---|
| 919 | antname = scantab.get_antennaname()
|
---|
| 920 | ssub = scantab.get_scan( scannos )
|
---|
| 921 | scal = scantable( stm.cwcal( ssub, calmode, antname ) )
|
---|
| 922 | return scal
|
---|
| 923 |
|
---|
| 924 | def almacal( scantab, scannos=[], calmode='none', verify=False ):
|
---|
| 925 | """
|
---|
| 926 | Calibrate ALMA data
|
---|
| 927 |
|
---|
| 928 | Parameters:
|
---|
| 929 | scantab: scantable
|
---|
| 930 | scannos: list of scan number
|
---|
| 931 | calmode: calibration mode
|
---|
| 932 |
|
---|
[1826] | 933 | verify: verify calibration
|
---|
[1819] | 934 | """
|
---|
| 935 | from asap._asap import stmath
|
---|
| 936 | stm = stmath()
|
---|
[2556] | 937 | selection=selector()
|
---|
| 938 | selection.set_scans(scannos)
|
---|
| 939 | orig = scantab.get_selection()
|
---|
| 940 | scantab.set_selection(orig+selection)
|
---|
| 941 | ## ssub = scantab.get_scan( scannos )
|
---|
| 942 | ## scal = scantable( stm.almacal( ssub, calmode ) )
|
---|
| 943 | scal = scantable( stm.almacal( scantab, calmode ) )
|
---|
| 944 | scantab.set_selection(orig)
|
---|
[1819] | 945 | return scal
|
---|
| 946 |
|
---|
[1862] | 947 | @asaplog_post_dec
|
---|
[1819] | 948 | def splitant(filename, outprefix='',overwrite=False):
|
---|
| 949 | """
|
---|
| 950 | Split Measurement set by antenna name, save data as a scantables,
|
---|
| 951 | and return a list of filename.
|
---|
[1826] | 952 | Notice this method can only be available from CASA.
|
---|
[1819] | 953 | Prameter
|
---|
[1826] | 954 | filename: the name of Measurement set to be read.
|
---|
[1819] | 955 | outprefix: the prefix of output scantable name.
|
---|
| 956 | the names of output scantable will be
|
---|
| 957 | outprefix.antenna1, outprefix.antenna2, ....
|
---|
| 958 | If not specified, outprefix = filename is assumed.
|
---|
| 959 | overwrite If the file should be overwritten if it exists.
|
---|
| 960 | The default False is to return with warning
|
---|
| 961 | without writing the output. USE WITH CARE.
|
---|
[1826] | 962 |
|
---|
[1819] | 963 | """
|
---|
| 964 | # Import the table toolkit from CASA
|
---|
[1859] | 965 | import casac
|
---|
[1918] | 966 | from asap.scantable import is_ms
|
---|
[1859] | 967 | tbtool = casac.homefinder.find_home_by_name('tableHome')
|
---|
| 968 | tb = tbtool.create()
|
---|
[1819] | 969 | # Check the input filename
|
---|
| 970 | if isinstance(filename, str):
|
---|
| 971 | import os.path
|
---|
| 972 | filename = os.path.expandvars(filename)
|
---|
| 973 | filename = os.path.expanduser(filename)
|
---|
| 974 | if not os.path.exists(filename):
|
---|
| 975 | s = "File '%s' not found." % (filename)
|
---|
| 976 | raise IOError(s)
|
---|
| 977 | # check if input file is MS
|
---|
[1883] | 978 | #if not os.path.isdir(filename) \
|
---|
| 979 | # or not os.path.exists(filename+'/ANTENNA') \
|
---|
| 980 | # or not os.path.exists(filename+'/table.f1'):
|
---|
| 981 | if not is_ms(filename):
|
---|
[1819] | 982 | s = "File '%s' is not a Measurement set." % (filename)
|
---|
| 983 | raise IOError(s)
|
---|
| 984 | else:
|
---|
| 985 | s = "The filename should be string. "
|
---|
| 986 | raise TypeError(s)
|
---|
| 987 | # Check out put file name
|
---|
| 988 | outname=''
|
---|
| 989 | if len(outprefix) > 0: prefix=outprefix+'.'
|
---|
| 990 | else:
|
---|
| 991 | prefix=filename.rstrip('/')
|
---|
| 992 | # Now do the actual splitting.
|
---|
| 993 | outfiles=[]
|
---|
[2034] | 994 | tb.open(tablename=filename,nomodify=True)
|
---|
| 995 | ant1=tb.getcol('ANTENNA1',0,-1,1)
|
---|
[2366] | 996 | #anttab=tb.getkeyword('ANTENNA').split()[-1]
|
---|
| 997 | anttab=tb.getkeyword('ANTENNA').lstrip('Table: ')
|
---|
[2034] | 998 | tb.close()
|
---|
| 999 | #tb.open(tablename=filename+'/ANTENNA',nomodify=True)
|
---|
| 1000 | tb.open(tablename=anttab,nomodify=True)
|
---|
[1819] | 1001 | nant=tb.nrows()
|
---|
| 1002 | antnames=tb.getcol('NAME',0,nant,1)
|
---|
| 1003 | tb.close()
|
---|
[1880] | 1004 | tmpname='asapmath.splitant.tmp'
|
---|
[1819] | 1005 | for antid in set(ant1):
|
---|
[1883] | 1006 | tb.open(tablename=filename,nomodify=True)
|
---|
| 1007 | tbsel=tb.query('ANTENNA1 == %s && ANTENNA2 == %s'%(antid,antid),tmpname)
|
---|
[1918] | 1008 | scan=scantable(tmpname,average=False,getpt=True,antenna=int(antid))
|
---|
| 1009 | outname=prefix+antnames[antid]+'.asap'
|
---|
| 1010 | scan.save(outname,format='ASAP',overwrite=overwrite)
|
---|
[1880] | 1011 | tbsel.close()
|
---|
[1883] | 1012 | tb.close()
|
---|
[1880] | 1013 | del tbsel
|
---|
[1819] | 1014 | del scan
|
---|
| 1015 | outfiles.append(outname)
|
---|
[1880] | 1016 | os.system('rm -rf '+tmpname)
|
---|
| 1017 | del tb
|
---|
[1819] | 1018 | return outfiles
|
---|
| 1019 |
|
---|
[1862] | 1020 | @asaplog_post_dec
|
---|
[2320] | 1021 | def _array2dOp( scan, value, mode="ADD", tsys=False, insitu=None):
|
---|
[1819] | 1022 | """
|
---|
| 1023 | This function is workaround on the basic operation of scantable
|
---|
| 1024 | with 2 dimensional float list.
|
---|
| 1025 |
|
---|
| 1026 | scan: scantable operand
|
---|
| 1027 | value: float list operand
|
---|
| 1028 | mode: operation mode (ADD, SUB, MUL, DIV)
|
---|
[1826] | 1029 | tsys: if True, operate tsys as well
|
---|
[2336] | 1030 | insitu: if False, a new scantable is returned.
|
---|
| 1031 | Otherwise, the array operation is done in-sitsu.
|
---|
[1819] | 1032 | """
|
---|
| 1033 | nrow = scan.nrow()
|
---|
| 1034 | s = None
|
---|
[2320] | 1035 | from asap._asap import stmath
|
---|
| 1036 | stm = stmath()
|
---|
| 1037 | stm._setinsitu(insitu)
|
---|
[1819] | 1038 | if len( value ) == 1:
|
---|
[2320] | 1039 | s = scantable( stm._arrayop( scan, value[0], mode, tsys ) )
|
---|
[1819] | 1040 | elif len( value ) != nrow:
|
---|
[1859] | 1041 | raise ValueError( 'len(value) must be 1 or conform to scan.nrow()' )
|
---|
[1819] | 1042 | else:
|
---|
| 1043 | from asap._asap import stmath
|
---|
[2320] | 1044 | if not insitu:
|
---|
| 1045 | s = scan.copy()
|
---|
| 1046 | else:
|
---|
| 1047 | s = scan
|
---|
| 1048 | # insitu must be True as we go row by row on the same data
|
---|
[1819] | 1049 | stm._setinsitu( True )
|
---|
[2320] | 1050 | basesel = s.get_selection()
|
---|
[2341] | 1051 | # generate a new selector object based on basesel
|
---|
| 1052 | sel = selector(basesel)
|
---|
[1819] | 1053 | for irow in range( nrow ):
|
---|
| 1054 | sel.set_rows( irow )
|
---|
| 1055 | s.set_selection( sel )
|
---|
| 1056 | if len( value[irow] ) == 1:
|
---|
| 1057 | stm._unaryop( s, value[irow][0], mode, tsys )
|
---|
| 1058 | else:
|
---|
[2139] | 1059 | #stm._arrayop( s, value[irow], mode, tsys, 'channel' )
|
---|
| 1060 | stm._arrayop( s, value[irow], mode, tsys )
|
---|
[2320] | 1061 | s.set_selection(basesel)
|
---|
[1819] | 1062 | return s
|
---|