//#---------------------------------------------------------------------------
//# PKSMS2reader.cc: Class to read Parkes Multibeam data from a v2 MS.
//#---------------------------------------------------------------------------
//# livedata - processing pipeline for single-dish, multibeam spectral data.
//# Copyright (C) 2000-2009, Australia Telescope National Facility, CSIRO
//#
//# This file is part of livedata.
//#
//# livedata is free software: you can redistribute it and/or modify it under
//# the terms of the GNU General Public License as published by the Free
//# Software Foundation, either version 3 of the License, or (at your option)
//# any later version.
//#
//# livedata is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
//# more details.
//#
//# You should have received a copy of the GNU General Public License along
//# with livedata. If not, see .
//#
//# Correspondence concerning livedata may be directed to:
//# Internet email: mcalabre@atnf.csiro.au
//# Postal address: Dr. Mark Calabretta
//# Australia Telescope National Facility, CSIRO
//# PO Box 76
//# Epping NSW 1710
//# AUSTRALIA
//#
//# http://www.atnf.csiro.au/computing/software/livedata.html
//# $Id: PKSMS2reader.cc,v 19.23 2009-09-29 07:33:38 cal103 Exp $
//#---------------------------------------------------------------------------
//# Original: 2000/08/03, Mark Calabretta, ATNF
//#---------------------------------------------------------------------------
// AIPS++ includes.
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
// Parkes includes.
#include
#include
#include
//------------------------------------------------- PKSMS2reader::PKSMS2reader
// Default constructor.
PKSMS2reader::PKSMS2reader()
{
cMSopen = False;
}
//------------------------------------------------ PKSMS2reader::~PKSMS2reader
PKSMS2reader::~PKSMS2reader()
{
close();
}
//--------------------------------------------------------- PKSMS2reader::open
// Open the MS for reading.
Int PKSMS2reader::open(
const String msName,
const String antenna,
Vector &beams,
Vector &IFs,
Vector &nChan,
Vector &nPol,
Vector &haveXPol,
Bool &haveBase,
Bool &haveSpectra)
{
// Check that MS is readable.
if (!MS::isReadable(msName)) {
return 1;
}
if (cMSopen) {
close();
}
cPKSMS = MeasurementSet(msName);
// data selection by antenna
if ( antenna.length() == 0 ) {
cAntId.resize( 1 ) ;
//cAntId[0] = 0 ;
ROScalarColumn ant1Col( cPKSMS, "ANTENNA1" ) ;
cAntId[0] = ant1Col(0) ;
}
else {
setupAntennaList( antenna ) ;
if ( cAntId.size() > 1 ) {
LogIO os( LogOrigin( "PKSMS2reader", "open()", WHERE ) ) ;
os << LogIO::WARN << "PKSMS2reader is not ready for multiple antenna selection. Use first antenna id " << cAntId[0] << "."<< LogIO::POST ;
Int tmp = cAntId[0] ;
cAntId.resize( 1 ) ;
cAntId[0] = tmp ;
}
stringstream ss ;
ss << "SELECT FROM $1 WHERE ANTENNA1 == ANTENNA2 && ANTENNA1 IN [" ;
for ( uInt i = 0 ; i < cAntId.size() ; i++ ) {
ss << cAntId[i] ;
if ( i == cAntId.size()-1 ) {
ss << "]" ;
}
else {
ss << "," ;
}
}
string taql = ss.str() ;
//cerr << "taql = " << taql << endl ;
cPKSMS = MeasurementSet( tableCommand( taql, cPKSMS ) ) ;
}
// taql access to the syscal table
cHaveSysCal = False;
if (cHaveSysCal=Table::isReadable(cPKSMS.sysCalTableName())) {
cSysCalTab = Table(cPKSMS.sysCalTableName());
}
// Lock the table for read access.
cPKSMS.lock(False);
cIdx = 0;
lastmjd = 0.0;
cNRow = cPKSMS.nrow();
cMSopen = True;
// Main MS table and subtable column access.
ROMSMainColumns msCols(cPKSMS);
ROMSDataDescColumns dataDescCols(cPKSMS.dataDescription());
ROMSFeedColumns feedCols(cPKSMS.feed());
ROMSFieldColumns fieldCols(cPKSMS.field());
ROMSPointingColumns pointingCols(cPKSMS.pointing());
ROMSPolarizationColumns polarizationCols(cPKSMS.polarization());
ROMSSourceColumns sourceCols(cPKSMS.source());
ROMSSpWindowColumns spWinCols(cPKSMS.spectralWindow());
ROMSStateColumns stateCols(cPKSMS.state());
ROMSSysCalColumns sysCalCols(cPKSMS.sysCal());
ROMSWeatherColumns weatherCols(cPKSMS.weather());
ROMSAntennaColumns antennaCols(cPKSMS.antenna());
// Column accessors for required columns.
cScanNoCol.reference(msCols.scanNumber());
cTimeCol.reference(msCols.time());
cIntervalCol.reference(msCols.interval());
cFieldIdCol.reference(msCols.fieldId());
cFieldNameCol.reference(fieldCols.name());
cFieldDelayDirCol.reference(fieldCols.delayDir());
cSrcIdCol.reference(fieldCols.sourceId());
cSrcId2Col.reference(sourceCols.sourceId());
cSrcNameCol.reference(sourceCols.name());
cSrcDirCol.reference(sourceCols.direction());
cSrcPMCol.reference(sourceCols.properMotion());
cSrcRestFrqCol.reference(sourceCols.restFrequency());
cStateIdCol.reference(msCols.stateId());
cObsModeCol.reference(stateCols.obsMode());
cCalCol.reference(stateCols.cal());
cSigStateCol.reference(stateCols.sig());
cRefStateCol.reference(stateCols.ref());
cDataDescIdCol.reference(msCols.dataDescId());
cSpWinIdCol.reference(dataDescCols.spectralWindowId());
cChanFreqCol.reference(spWinCols.chanFreq());
cTotBWCol.reference(spWinCols.totalBandwidth());
cWeatherTimeCol.reference(weatherCols.time());
cTemperatureCol.reference(weatherCols.temperature());
cPressureCol.reference(weatherCols.pressure());
cHumidityCol.reference(weatherCols.relHumidity());
cBeamNoCol.reference(msCols.feed1());
cPointingCol.reference(pointingCols.direction());
cPointingTimeCol.reference(pointingCols.time());
cSigmaCol.reference(msCols.sigma());
cNumReceptorCol.reference(feedCols.numReceptors());
// Optional columns.
cHaveTsys = False;
cHaveTcal = False;
if ((cHaveSrcVel = cPKSMS.source().tableDesc().isColumn("SYSVEL"))) {
cSrcVelCol.attach(cPKSMS.source(), "SYSVEL");
}
if (cHaveSysCal && (cHaveTsys = cPKSMS.sysCal().tableDesc().isColumn("TSYS"))) {
cTsysCol.attach(cPKSMS.sysCal(), "TSYS");
}
if (cHaveSysCal && (cHaveTcal = cPKSMS.sysCal().tableDesc().isColumn("TCAL"))) {
cTcalCol.attach(cPKSMS.sysCal(), "TCAL");
}
if ((cHaveCalFctr = cPKSMS.tableDesc().isColumn("CALFCTR"))) {
cCalFctrCol.attach(cPKSMS, "CALFCTR");
}
if ((cHaveBaseLin = cPKSMS.tableDesc().isColumn("BASELIN"))) {
cBaseLinCol.attach(cPKSMS, "BASELIN");
cBaseSubCol.attach(cPKSMS, "BASESUB");
}
// Spectral data should always be present.
haveSpectra = True;
cHaveDataCol = False;
cHaveCorrectedDataCol = False;
ROMSObservationColumns observationCols(cPKSMS.observation());
//String telName = observationCols.telescopeName()(0);
cTelName = observationCols.telescopeName()(0);
//cATF = cTelName.contains("ATF");
//cOSF = cTelName.contains("OSF");
//cALMA = cTelName.contains("ALMA");
cALMA = cTelName.contains("ATF")||cTelName.contains("OSF")||
cTelName.contains("ALMA");
if (cHaveDataCol = cPKSMS.isColumn(MSMainEnums::DATA)) {
if (cALMA) {
//try to read a single baseline interferometeric data
//and treat it as single dish data
//maybe extended for ALMA commissioning later
cDataCol.reference(msCols.data());
if (cHaveCorrectedDataCol = cPKSMS.isColumn(MSMainEnums::CORRECTED_DATA)) {
//cerr<<"Do have CORRECTED_DATA column"< beamNos = cBeamNoCol.getColumn();
Int maxBeamNo = max(beamNos) + 1;
beams.resize(maxBeamNo);
beams = False;
for (uInt irow = 0; irow < beamNos.nelements(); irow++) {
beams(beamNos(irow)) = True;
}
// Number of IFs.
//uInt nIF = dataDescCols.nrow();
uInt nIF =spWinCols.nrow();
Vector spWinIds = cSpWinIdCol.getColumn() ;
IFs.resize(nIF);
IFs = True;
for ( Int ispw = 0 ; ispw < nIF ; ispw++ ) {
if ( allNE( ispw, spWinIds ) ) {
IFs(ispw) = False ;
}
}
// Number of polarizations and channels in each IF.
ROScalarColumn numChanCol(spWinCols.numChan());
ROScalarColumn polIdCol(dataDescCols.polarizationId());
ROScalarColumn numPolCol(polarizationCols.numCorr());
nChan.resize(nIF);
nPol.resize(nIF);
for (uInt iIF = 0; iIF < nIF; iIF++) {
if ( IFs(iIF) ) {
nChan(iIF) = numChanCol(cSpWinIdCol(iIF)) ;
nPol(iIF) = numPolCol(polIdCol(iIF)) ;
}
else {
nChan(iIF) = 0 ;
nPol(iIF) = 0 ;
}
}
// Cross-polarization data present?
haveXPol.resize(nIF);
haveXPol = False;
if (cGetXPol && !(cALMA)) {
for (Int irow = 0; irow < cNRow; irow++) {
if (cDataCol.isDefined(irow)) {
Int iIF = cDataDescIdCol(irow);
haveXPol(iIF) = True;
}
}
}
// Initialize member data.
cBeams.assign(beams);
cIFs.assign(IFs);
cNChan.assign(nChan);
cNPol.assign(nPol);
cHaveXPol.assign(haveXPol);
// Default channel range selection.
cStartChan.resize(nIF);
cEndChan.resize(nIF);
cRefChan.resize(nIF);
for (uInt iIF = 0; iIF < nIF; iIF++) {
cStartChan(iIF) = 1;
cEndChan(iIF) = cNChan(iIF);
cRefChan(iIF) = cNChan(iIF)/2 + 1;
}
Slice all;
cDataSel.resize(nIF);
cDataSel = Slicer(all, all);
cScanNo = 0;
cCycleNo = 1;
cTime = cTimeCol(0);
return 0;
}
//---------------------------------------------------- PKSMS2reader::getHeader
// Get parameters describing the data.
Int PKSMS2reader::getHeader(
String &observer,
String &project,
String &antName,
Vector &antPosition,
// before merge...
//String &obsMode,
String &obsType,
String &bunit,
Float &equinox,
String &dopplerFrame,
Double &mjd,
Double &refFreq,
Double &bandwidth)
{
if (!cMSopen) {
return 1;
}
// Observer and project.
ROMSObservationColumns observationCols(cPKSMS.observation());
observer = observationCols.observer()(0);
project = observationCols.project()(0);
// Antenna name and ITRF coordinates.
ROMSAntennaColumns antennaCols(cPKSMS.antenna());
//antName = antennaCols.name()(0);
antName = antennaCols.name()(cAntId[0]);
if (cALMA) {
antName = cTelName + "-" + antName;
}
//antPosition = antennaCols.position()(0);
antPosition = antennaCols.position()(cAntId[0]);
// Observation type.
if (cObsModeCol.nrow()) {
obsType = cObsModeCol(0);
if (obsType == "\0") obsType = "RF";
} else {
obsType = "RF";
}
bunit = "";
if (cHaveDataCol) {
const TableRecord& keywordSet2
= cDataCol.columnDesc().keywordSet();
if(keywordSet2.isDefined("UNIT")) {
bunit = keywordSet2.asString("UNIT");
}
} else {
const TableRecord& keywordSet
= cFloatDataCol.columnDesc().keywordSet();
if(keywordSet.isDefined("UNIT")) {
bunit = keywordSet.asString("UNIT");
}
}
/***
const TableRecord& keywordSet
= cFloatDataCol.columnDesc().keywordSet();
if(keywordSet.isDefined("UNIT")) {
fluxunit = keywordSet.asString("UNIT");
}
***/
// Coordinate equinox.
ROMSPointingColumns pointingCols(cPKSMS.pointing());
String dirref = pointingCols.direction().keywordSet().asRecord("MEASINFO").
asString("Ref");
cDirRef = dirref;
if (dirref =="AZELGEO" || dirref == "AZEL") {
dirref = "J2000";
}
sscanf(dirref.chars()+1, "%f", &equinox);
// Frequency/velocity reference frame.
ROMSSpWindowColumns spWinCols(cPKSMS.spectralWindow());
dopplerFrame = MFrequency::showType(spWinCols.measFreqRef()(0));
// Translate to FITS standard names.
if (dopplerFrame == "TOPO") {
dopplerFrame = "TOPOCENT";
} else if (dopplerFrame == "GEO") {
dopplerFrame = "GEOCENTR";
} else if (dopplerFrame == "BARY") {
dopplerFrame = "BARYCENT";
} else if (dopplerFrame == "GALACTO") {
dopplerFrame = "GALACTOC";
} else if (dopplerFrame == "LGROUP") {
dopplerFrame = "LOCALGRP";
} else if (dopplerFrame == "CMB") {
dopplerFrame = "CMBDIPOL";
} else if (dopplerFrame == "REST") {
dopplerFrame = "SOURCE";
}
// MJD at start of observation.
mjd = cTimeCol(0)/86400.0;
// Reference frequency and bandwidth.
refFreq = spWinCols.refFrequency()(0);
bandwidth = spWinCols.totalBandwidth()(0);
return 0;
}
//-------------------------------------------------- PKSMS2reader::getFreqInfo
// Get frequency parameters for each IF.
Int PKSMS2reader::getFreqInfo(
Vector &startFreq,
Vector &endFreq)
{
uInt nIF = cIFs.nelements();
startFreq.resize(nIF);
endFreq.resize(nIF);
for (uInt iIF = 0; iIF < nIF; iIF++) {
Vector chanFreq = cChanFreqCol(iIF);
Int nChan = chanFreq.nelements();
startFreq(iIF) = chanFreq(0);
endFreq(iIF) = chanFreq(nChan-1);
}
return 0;
}
//------------------------------------------------------- PKSMS2reader::select
// Set data selection by beam number and channel.
uInt PKSMS2reader::select(
const Vector beamSel,
const Vector IFsel,
const Vector startChan,
const Vector endChan,
const Vector refChan,
const Bool getSpectra,
const Bool getXPol,
const Bool getFeedPos,
const Bool getPointing,
const Int coordSys)
{
if (!cMSopen) {
return 1;
}
// Beam selection.
uInt nBeam = cBeams.nelements();
uInt nBeamSel = beamSel.nelements();
for (uInt ibeam = 0; ibeam < nBeam; ibeam++) {
if (ibeam < nBeamSel) {
cBeams(ibeam) = beamSel(ibeam);
} else {
cBeams(ibeam) = False;
}
}
uInt nIF = cIFs.nelements();
uInt maxNChan = 0;
for (uInt iIF = 0; iIF < nIF; iIF++) {
// IF selection.
if (iIF < IFsel.nelements()) {
cIFs(iIF) = IFsel(iIF);
} else {
cIFs(iIF) = False;
}
if (!cIFs(iIF)) continue;
// Channel selection.
if (iIF < startChan.nelements()) {
cStartChan(iIF) = startChan(iIF);
if (cStartChan(iIF) <= 0) {
cStartChan(iIF) += cNChan(iIF);
} else if (cStartChan(iIF) > Int(cNChan(iIF))) {
cStartChan(iIF) = cNChan(iIF);
}
}
if (iIF < endChan.nelements()) {
cEndChan(iIF) = endChan(iIF);
if (cEndChan(iIF) <= 0) {
cEndChan(iIF) += cNChan(iIF);
} else if (cEndChan(iIF) > Int(cNChan(iIF))) {
cEndChan(iIF) = cNChan(iIF);
}
}
if (iIF < refChan.nelements()) {
cRefChan(iIF) = refChan(iIF);
} else {
cRefChan(iIF) = cStartChan(iIF);
if (cStartChan(iIF) <= cEndChan(iIF)) {
cRefChan(iIF) += (cEndChan(iIF) - cStartChan(iIF) + 1)/2;
} else {
cRefChan(iIF) -= (cStartChan(iIF) - cEndChan(iIF) + 1)/2;
}
}
uInt nChan = abs(cEndChan(iIF) - cStartChan(iIF)) + 1;
if (maxNChan < nChan) {
maxNChan = nChan;
}
// Inverted Slices are not allowed.
Slice outPols;
Slice outChans(min(cStartChan(iIF),cEndChan(iIF))-1, nChan);
cDataSel(iIF) = Slicer(outPols, outChans);
}
// Get spectral data?
cGetSpectra = getSpectra;
// Get cross-polarization data?
cGetXPol = cGetXPol && getXPol;
// Get feed positions? (Not available.)
cGetFeedPos = False;
// Get Pointing data (for MS)
cGetPointing = getPointing;
// Coordinate system? (Only equatorial available.)
cCoordSys = 0;
return maxNChan;
}
//---------------------------------------------------- PKSMS2reader::findRange
// Find the range of the data in time and position.
Int PKSMS2reader::findRange(
Int &nRow,
Int &nSel,
Vector &timeSpan,
Matrix &positions)
{
if (!cMSopen) {
return 1;
}
nRow = cNRow;
// Find the number of rows selected.
nSel = 0;
Vector sel(nRow);
for (Int irow = 0; irow < nRow; irow++) {
if ((sel(irow) = cBeams(cBeamNoCol(irow)) &&
cIFs(cDataDescIdCol(irow)))) {
nSel++;
}
}
// Find the time range (s).
timeSpan.resize(2);
timeSpan(0) = cTimeCol(0);
timeSpan(1) = cTimeCol(nRow-1);
// Retrieve positions for selected data.
Int isel = 0;
positions.resize(2,nSel);
for (Int irow = 0; irow < nRow; irow++) {
if (sel(irow)) {
Matrix pointingDir = cPointingCol(cFieldIdCol(irow));
positions.column(isel++) = pointingDir.column(0);
}
}
return 0;
}
//--------------------------------------------------------- PKSMS2reader::read
// Read the next data record.
/**
Int PKSMS2reader::read(
Int &scanNo,
Int &cycleNo,
Double &mjd,
Double &interval,
String &fieldName,
String &srcName,
Vector &srcDir,
Vector &srcPM,
Double &srcVel,
String &obsMode,
Int &IFno,
Double &refFreq,
Double &bandwidth,
Double &freqInc,
Vector &restFreq,
Vector &tcal,
String &tcalTime,
Float &azimuth,
Float &elevation,
Float &parAngle,
Float &focusAxi,
Float &focusTan,
Float &focusRot,
Float &temperature,
Float &pressure,
Float &humidity,
Float &windSpeed,
Float &windAz,
Int &refBeam,
Int &beamNo,
Vector &direction,
Vector &scanRate,
Vector &tsys,
Vector &sigma,
Vector &calFctr,
Matrix &baseLin,
Matrix &baseSub,
Matrix &spectra,
Matrix &flagged,
uInt &flagrow,
Complex &xCalFctr,
Vector &xPol)
**/
Int PKSMS2reader::read(PKSrecord &pksrec)
{
LogIO os( LogOrigin( "PKSMS2reader", "read()", WHERE ) ) ;
if (!cMSopen) {
return 1;
}
// Check for EOF.
if (cIdx >= cNRow) {
return -1;
}
// Find the next selected beam and IF.
Int ibeam;
Int iIF;
Int iDataDesc;
while (True) {
ibeam = cBeamNoCol(cIdx);
iDataDesc = cDataDescIdCol(cIdx);
iIF =cSpWinIdCol(iDataDesc);
if (cBeams(ibeam) && cIFs(iIF)) {
break;
}
// Check for EOF.
if (++cIdx >= cNRow) {
return -1;
}
}
// Renumerate scan no. Here still is 1-based
//scanNo = cScanNoCol(cIdx) - cScanNoCol(0) + 1;
//scanNo = cScanNoCol(cIdx);
pksrec.scanNo = cScanNoCol(cIdx);
if (pksrec.scanNo != cScanNo) {
// Start of new scan.
cScanNo = pksrec.scanNo;
cCycleNo = 1;
cTime = cTimeCol(cIdx);
}
Double time = cTimeCol(cIdx);
pksrec.mjd = time/86400.0;
pksrec.interval = cIntervalCol(cIdx);
// Reconstruct the integration cycle number; due to small latencies the
// integration time is usually slightly less than the time between cycles,
// resetting cTime will prevent the difference from accumulating.
cCycleNo += nint((time - cTime)/pksrec.interval);
pksrec.cycleNo = cCycleNo;
cTime = time;
Int fieldId = cFieldIdCol(cIdx);
pksrec.fieldName = cFieldNameCol(fieldId);
Int srcId = cSrcIdCol(fieldId);
//For source with multiple spectral window setting, this is not
// correct. Source name of srcId may not be at 'srcId'th row of SrcNameCol
//srcName = cSrcNameCol(srcId);
for (uInt irow = 0; irow < cSrcId2Col.nrow(); irow++) {
if (cSrcId2Col(irow) == srcId) {
//srcName = cSrcNameCol(irow);
pksrec.srcName = cSrcNameCol(irow);
}
}
pksrec.srcDir = cSrcDirCol(srcId);
pksrec.srcPM = cSrcPMCol(srcId);
// Systemic velocity.
if (!cHaveSrcVel || cALMA) {
pksrec.srcVel = 0.0f;
} else {
pksrec.srcVel = cSrcVelCol(srcId)(IPosition(1,0));
}
ROMSAntennaColumns antennaCols(cPKSMS.antenna());
//String telescope = antennaCols.name()(0);
String telescope = antennaCols.name()(cAntId[0]);
Bool cGBT = telescope.contains("GBT");
//Bool cPM = telescope.contains("PM"); // ACA TP antenna
//Bool cDV = telescope.contains("DV"); // VERTEX
//Bool cCM = telescope.contains("CM"); // ACA 7m antenna
//Bool cALMA = cPM || cDV || cCM ;
// Observation type.
// check if State Table exist
//Bool cHaveStateTab=Table::isReadable(cPKSMS.stateTableName());
Int stateId = 0;
Int StateNRow = 0;
StateNRow=cObsModeCol.nrow();
if (Table::isReadable(cPKSMS.stateTableName())) {
pksrec.obsType = " ";
if (StateNRow > 0) {
stateId = cStateIdCol(cIdx);
if (stateId == -1) {
//pksrec.obsType = " ";
} else {
pksrec.obsType = cObsModeCol(stateId);
Bool sigState =cSigStateCol(stateId);
Bool refState =cRefStateCol(stateId);
//DEBUG
//cerr <<"stateid="< 0 && !pksrec.srcName.contains("_calon")) {
//pksrec.srcName.append("_calon");
if ( pksrec.srcType == SrcType::NOD )
pksrec.srcType = SrcType::NODCAL ;
else if ( pksrec.srcType == SrcType::PSON )
pksrec.srcType = SrcType::PONCAL ;
else if ( pksrec.srcType == SrcType::PSOFF )
pksrec.srcType = SrcType::POFFCAL ;
else if ( pksrec.srcType == SrcType::FSON )
pksrec.srcType = SrcType::FONCAL ;
else if ( pksrec.srcType == SrcType::FSOFF )
pksrec.srcType = SrcType::FOFFCAL ;
else
pksrec.srcName.append("_calon");
}
}
pksrec.IFno = iIF + 1;
Int nChan = abs(cEndChan(iIF) - cStartChan(iIF)) + 1;
// Minimal handling on continuum data.
Vector chanFreq = cChanFreqCol(iIF);
if (nChan == 1) {
//pksrec.freqInc = chanFreq(0);
pksrec.freqInc = cTotBWCol(iIF);
pksrec.refFreq = chanFreq(0);
pksrec.restFreq.resize(1);
pksrec.restFreq[0] = 0.0f;
} else {
if (cStartChan(iIF) <= cEndChan(iIF)) {
pksrec.freqInc = chanFreq(1) - chanFreq(0);
} else {
pksrec.freqInc = chanFreq(0) - chanFreq(1);
}
pksrec.refFreq = chanFreq(cRefChan(iIF)-1);
Bool HaveSrcRestFreq= cSrcRestFrqCol.isDefined(srcId);
if (HaveSrcRestFreq) {
//restFreq = cSrcRestFrqCol(srcId)(IPosition(1,0));
//restFreq = cSrcRestFrqCol(srcId);
pksrec.restFreq = cSrcRestFrqCol(srcId);
} else {
pksrec.restFreq.resize(1);
pksrec.restFreq[0] = 0.0f;
}
}
//pksrec.bandwidth = abs(pksrec.freqInc * nChan);
pksrec.bandwidth = abs(cTotBWCol(0));
pksrec.tcal.resize(cNPol(iIF));
pksrec.tcal = 0.0f;
pksrec.tcalTime = "";
// pksrec.azimuth = 0.0f;
// pksrec.elevation = 0.0f;
pksrec.parAngle = 0.0f;
pksrec.focusAxi = 0.0f;
pksrec.focusTan = 0.0f;
pksrec.focusRot = 0.0f;
// Find the appropriate entry in the WEATHER subtable.
//Bool cHaveStateTab=Table::isReadable(cPKSMS.stateTableName());
Bool cHaveWeatherTab = Table::isReadable(cPKSMS.weatherTableName());
Int weatherIdx=-1;
if (cHaveWeatherTab) {
Vector wTimes = cWeatherTimeCol.getColumn();
for (weatherIdx = wTimes.nelements()-1; weatherIdx >= 0; weatherIdx--) {
if (cWeatherTimeCol(weatherIdx) <= time) {
break;
}
}
}
if (weatherIdx < 0 || !cHaveWeatherTab) {
// No appropriate WEATHER entry.
pksrec.temperature = 0.0f;
pksrec.pressure = 0.0f;
pksrec.humidity = 0.0f;
} else {
pksrec.temperature = cTemperatureCol(weatherIdx);
pksrec.pressure = cPressureCol(weatherIdx);
pksrec.humidity = cHumidityCol(weatherIdx);
}
pksrec.windSpeed = 0.0f;
pksrec.windAz = 0.0f;
pksrec.refBeam = 0;
pksrec.beamNo = ibeam + 1;
//pointing/azel
MVPosition mvpos(antennaCols.position()(cAntId[0]));
MPosition mp(mvpos);
Quantum qt(time,"s");
MVEpoch mvt(qt);
MEpoch me(mvt);
MeasFrame frame(mp, me);
MDirection md;
pksrec.pCode = 0;
pksrec.rateAge = 0.0f;
pksrec.paRate = 0.0f;
if (cGetPointing) {
//cerr << "get pointing data ...." << endl;
ROScalarColumn pAntIdCol ;
ROScalarColumn psTimeCol ;
Table ptTable = cPKSMS.pointing() ;
MSPointing selPtTab( ptTable( ptTable.col("ANTENNA_ID") == cAntId[0] ) ) ;
pAntIdCol.attach( selPtTab, "ANTENNA_ID" ) ;
Vector antIds = pAntIdCol.getColumn() ;
psTimeCol.attach( selPtTab, "TIME" ) ;
Vector pTimes = psTimeCol.getColumn();
Bool doInterp = False ;
Int PtIdx=-1;
for (PtIdx = pTimes.nelements()-1; PtIdx >= 0; PtIdx--) {
if ( pTimes[PtIdx] == time ) {
break ;
}
else if ( pTimes[PtIdx] < time ) {
if ( PtIdx != pTimes.nelements()-1 ) {
doInterp = True ;
}
break ;
}
}
if ( PtIdx == -1 ) {
PtIdx = 0 ;
}
//cerr << "got index=" << PtIdx << endl;
Matrix pointingDir = cPointingCol(PtIdx);
ROMSPointingColumns PtCols( selPtTab ) ;
Vector pointingDirVec ;
if ( doInterp ) {
Double dt1 = time - pTimes[PtIdx] ;
Double dt2 = pTimes[PtIdx+1] - time ;
Vector dirVec1 = pointingDir.column(0) ;
Matrix pointingDir2 = cPointingCol(PtIdx+1) ;
Vector dirVec2 = pointingDir2.column(0) ;
pointingDirVec = (dt1*dirVec2+dt2*dirVec1)/(dt1+dt2) ;
Vector vmd1(1) ;
Vector vmd2(1) ;
PtCols.directionMeasCol().get(PtIdx,vmd1) ;
Vector angle1 = vmd1(0).getAngle().getValue("rad") ;
PtCols.directionMeasCol().get(PtIdx+1,vmd2) ;
Vector angle2 = vmd2(0).getAngle().getValue("rad") ;
Vector angle = (dt1*angle2+dt2*angle1)/(dt1+dt2) ;
Quantum< Vector > qangle( angle, "rad" ) ;
String typeStr = vmd1(0).getRefString() ;
//cerr << "vmd1.getRefString()=" << typeStr << endl ;
MDirection::Types mdType ;
MDirection::getType( mdType, typeStr ) ;
//cerr << "mdType=" << mdType << endl ;
md = MDirection( qangle, mdType ) ;
//cerr << "md=" << md.getAngle().getValue("rad") << endl ;
}
else {
pointingDirVec = pointingDir.column(0) ;
Vector vmd(1);
PtCols.directionMeasCol().get(PtIdx,vmd);
md = vmd[0];
}
// put J2000 coordinates in "direction"
if (cDirRef =="J2000") {
pksrec.direction = pointingDirVec ;
}
else {
pksrec.direction =
MDirection::Convert(md, MDirection::Ref(MDirection::J2000,
frame)
)().getAngle("rad").getValue();
}
uInt ncols = pointingDir.ncolumn();
pksrec.scanRate.resize(2);
if (ncols == 1) {
pksrec.scanRate = 0.0f;
} else {
pksrec.scanRate(0) = pointingDir.column(1)(0);
pksrec.scanRate(1) = pointingDir.column(1)(1);
}
}
else {
// Get direction from FIELD table
// here, assume direction to be the field direction not pointing
Matrix delayDir = cFieldDelayDirCol(fieldId);
pksrec.direction = delayDir.column(0);
uInt ncols = delayDir.ncolumn();
pksrec.scanRate.resize(2);
if (ncols == 1) {
pksrec.scanRate = 0.0f;
} else {
pksrec.scanRate(0) = delayDir.column(1)(0);
pksrec.scanRate(1) = delayDir.column(1)(1);
}
}
// caluculate azimuth and elevation
// first, get the reference frame
/**
MVPosition mvpos(antennaCols.position()(0));
MPosition mp(mvpos);
Quantum qt(time,"s");
MVEpoch mvt(qt);
MEpoch me(mvt);
MeasFrame frame(mp, me);
**/
//
ROMSFieldColumns fldCols(cPKSMS.field());
Vector vmd(1);
//MDirection md;
fldCols.delayDirMeasCol().get(fieldId,vmd);
md = vmd[0];
//Vector dircheck = md.getAngle("rad").getValue();
//cerr<<"dircheck="< azel =
MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
frame)
)().getAngle("rad").getValue();
//cerr<<"azel="< 0) {
// find tcal match with the data with the data time stamp
Double mjds = pksrec.mjd*(24*3600);
Double dtcalTime;
if ( pksrec.mjd > lastmjd || cIdx==0 ) {
//Table tmptab = cSysCalTab(near(cSysCalTab.col("TIME"),mjds));
tmptab = cSysCalTab(near(cSysCalTab.col("TIME"),mjds), nrws);
//DEBUG
//if (cIdx == 0) {
// cerr<<"inital table retrieved"< tcalTimeCol(tmptab2, "TIME");
if (syscalrow==0) {
os << LogIO::NORMAL
<<"Cannot find any matching Tcal at/near the data timestamp."
<< " Set Tcal=0.0" << LogIO::POST ;
} else {
tcalCol.get(0, pksrec.tcal);
tcalTimeCol.get(0,dtcalTime);
pksrec.tcalTime = MVTime(dtcalTime/(24*3600)).string(MVTime::YMD);
//DEBUG
//cerr<<"cIdx:"<= cStartChan(iIF)) {
// Simple transposition.
for (Int ipol = 0; ipol < nPol; ipol++) {
for (Int ichan = 0; ichan < nChan; ichan++) {
pksrec.spectra(ichan,ipol) = tmpData(ipol,ichan);
pksrec.flagged(ichan,ipol) = tmpFlag(ipol,ichan);
}
}
} else {
// Transpose with inversion.
Int jchan = nChan - 1;
for (Int ipol = 0; ipol < nPol; ipol++) {
for (Int ichan = 0; ichan < nChan; ichan++, jchan--) {
pksrec.spectra(ichan,ipol) = tmpData(ipol,jchan);
pksrec.flagged(ichan,ipol) = tmpFlag(ipol,jchan);
}
}
}
// Row-based flagging info. (True:1, False:0)
pksrec.flagrow = (cFlagRowCol(cIdx) ? 1 : 0);
}
// Get cross-polarization data.
if (cGetXPol) {
//cerr<<"cGetXPol="< &tsys,
Vector &calFctr,
Matrix &baseLin,
Matrix &baseSub,
Matrix &spectra,
Matrix &flagged)
{
if (!cMSopen) {
return 1;
}
// Check for EOF.
if (cIdx >= cNRow) {
return -1;
}
// Find the next selected beam and IF.
Int ibeam;
Int iIF;
Int iDataDesc;
while (True) {
ibeam = cBeamNoCol(cIdx);
//iIF = cDataDescIdCol(cIdx);
iDataDesc = cDataDescIdCol(cIdx);
iIF = cSpWinIdCol(iDataDesc);
if (cBeams(ibeam) && cIFs(iIF)) {
break;
}
// Check for EOF.
if (++cIdx >= cNRow) {
return -1;
}
}
IFno = iIF + 1;
// Get Tsys assuming that entries in the SYSCAL table match the main table.
cTsysCol.get(cIdx, tsys, True);
// Calibration factors (if available).
if (cHaveCalFctr) {
cCalFctrCol.get(cIdx, calFctr, True);
} else {
calFctr.resize(cNPol(iIF));
calFctr = 0.0f;
}
// Baseline parameters (if available).
if (cHaveBaseLin) {
baseLin.resize(2,cNPol(iIF));
cBaseLinCol.get(cIdx, baseLin);
baseSub.resize(24,cNPol(iIF));
cBaseSubCol.get(cIdx, baseSub);
} else {
baseLin.resize(0,0);
baseSub.resize(0,0);
}
if (cGetSpectra) {
// Get spectral data.
Matrix tmpData;
Matrix tmpFlag;
if (cHaveDataCol) {
Matrix tmpCmplxData;
cDataCol.getSlice(cIdx, cDataSel(iIF), tmpCmplxData, True);
tmpData = real(tmpCmplxData);
} else {
cFloatDataCol.getSlice(cIdx, cDataSel(iIF), tmpData, True);
}
cFlagCol.getSlice(cIdx, cDataSel(iIF), tmpFlag, True);
// Transpose spectra.
Int nChan = tmpData.ncolumn();
Int nPol = tmpData.nrow();
spectra.resize(nChan, nPol);
flagged.resize(nChan, nPol);
if (cEndChan(iIF) >= cStartChan(iIF)) {
// Simple transposition.
for (Int ipol = 0; ipol < nPol; ipol++) {
for (Int ichan = 0; ichan < nChan; ichan++) {
spectra(ichan,ipol) = tmpData(ipol,ichan);
flagged(ichan,ipol) = tmpFlag(ipol,ichan);
}
}
} else {
// Transpose with inversion.
Int jchan = nChan - 1;
for (Int ipol = 0; ipol < nPol; ipol++) {
for (Int ichan = 0; ichan < nChan; ichan++, jchan--) {
spectra(ichan,ipol) = tmpData(ipol,jchan);
flagged(ichan,ipol) = tmpFlag(ipol,jchan);
}
}
}
}
cIdx++;
return 0;
}
//-------------------------------------------------------- PKSMS2reader::close
// Close the MS.
void PKSMS2reader::close()
{
cPKSMS = MeasurementSet();
cMSopen = False;
}
//-------------------------------------------------------- PKSMS2reader::splitAntenanSelectionString
// split antenna selection string
// delimiter is ','
Vector PKSMS2reader::splitAntennaSelectionString( const String s )
{
Char delim = ',' ;
Int n = s.freq( delim ) + 1 ;
Vector antlist ;
string *sl = new string[n] ;
Int numSubstr = split( s, sl, n, "," );
antlist.resize( numSubstr ) ;
for ( Int i = 0 ; i < numSubstr ; i++ ) {
antlist[i] = String( sl[i] ) ;
antlist[i].trim() ;
}
//cerr << "antlist = " << antlist << endl ;
delete [] sl;
return antlist ;
}
//-------------------------------------------------------- PKSMS2reader::setupAntennaList
// Fill cAntenna and cAntId
void PKSMS2reader::setupAntennaList( const String s )
{
LogIO os( LogOrigin( "PKSMS2reader", "setupAntennaList()", WHERE ) ) ;
//cerr << "antenna specification: " << s << endl ;
ROMSAntennaColumns antennaCols(cPKSMS.antenna());
ROScalarColumn antNames = antennaCols.name();
Int nrow = antNames.nrow() ;
Vector antlist = splitAntennaSelectionString( s ) ;
Int len = antlist.size() ;
Vector AntId( len ) ;
Regex re( "[0-9]+" ) ;
for ( Int i = 0 ; i < len ; i++ ) {
if ( antlist[i].matches( re ) ) {
AntId[i] = atoi( antlist[i].c_str() ) ;
if ( AntId[i] >= nrow ) {
os << LogIO::SEVERE << "Antenna index out of range: " << AntId[i] << LogIO::EXCEPTION ;
}
}
else {
AntId[i] = -1 ;
for ( uInt j = 0 ; j < antNames.nrow() ; j++ ) {
if ( antlist[i] == antNames(j) ) {
AntId[i] = j ;
break ;
}
}
if ( AntId[i] == -1 ) {
os << LogIO::SEVERE << "Specified antenna name not found: " << antlist[i] << LogIO::EXCEPTION ;
}
}
}
//cerr << "AntId = " << AntId << endl ;
vector uniqId ;
uniqId.push_back( AntId(0) ) ;
for ( uInt i = 1 ; i < AntId.size() ; i++ ) {
if ( count(uniqId.begin(),uniqId.end(),AntId[i]) == 0 ) {
uniqId.push_back( AntId[i] ) ;
}
}
Vector newAntId( uniqId ) ;
cAntId.assign( newAntId ) ;
//cerr << "cAntId = " << cAntId << endl ;
}