source: branches/casa-prerelease/pre-asap/src/Scantable.cpp@ 2106

Last change on this file since 2106 was 2095, checked in by WataruKawasaki, 13 years ago

merged from bug fixes from trunk (r2093)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 87.8 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <fstream>
14
15#include <casa/aips.h>
16#include <casa/iostream.h>
17#include <casa/iomanip.h>
18#include <casa/OS/Path.h>
19#include <casa/OS/File.h>
20#include <casa/Arrays/Array.h>
21#include <casa/Arrays/ArrayMath.h>
22#include <casa/Arrays/MaskArrMath.h>
23#include <casa/Arrays/ArrayLogical.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/Vector.h>
26#include <casa/Arrays/VectorSTLIterator.h>
27#include <casa/Arrays/Slice.h>
28#include <casa/BasicMath/Math.h>
29#include <casa/BasicSL/Constants.h>
30#include <casa/Quanta/MVAngle.h>
31#include <casa/Containers/RecordField.h>
32#include <casa/Utilities/GenSort.h>
33#include <casa/Logging/LogIO.h>
34
35#include <tables/Tables/TableParse.h>
36#include <tables/Tables/TableDesc.h>
37#include <tables/Tables/TableCopy.h>
38#include <tables/Tables/SetupNewTab.h>
39#include <tables/Tables/ScaColDesc.h>
40#include <tables/Tables/ArrColDesc.h>
41#include <tables/Tables/TableRow.h>
42#include <tables/Tables/TableVector.h>
43#include <tables/Tables/TableIter.h>
44
45#include <tables/Tables/ExprNode.h>
46#include <tables/Tables/TableRecord.h>
47#include <casa/Quanta/MVTime.h>
48#include <casa/Quanta/MVAngle.h>
49#include <measures/Measures/MeasRef.h>
50#include <measures/Measures/MeasTable.h>
51// needed to avoid error in .tcc
52#include <measures/Measures/MCDirection.h>
53//
54#include <measures/Measures/MDirection.h>
55#include <measures/Measures/MFrequency.h>
56#include <measures/Measures/MEpoch.h>
57#include <measures/TableMeasures/TableMeasRefDesc.h>
58#include <measures/TableMeasures/TableMeasValueDesc.h>
59#include <measures/TableMeasures/TableMeasDesc.h>
60#include <measures/TableMeasures/ScalarMeasColumn.h>
61#include <coordinates/Coordinates/CoordinateUtil.h>
62
63#include <atnf/PKSIO/SrcType.h>
64#include "Scantable.h"
65#include "STPolLinear.h"
66#include "STPolCircular.h"
67#include "STPolStokes.h"
68#include "STAttr.h"
69#include "STLineFinder.h"
70#include "MathUtils.h"
71
72using namespace casa;
73
74namespace asap {
75
76std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
77
78void Scantable::initFactories() {
79 if ( factories_.empty() ) {
80 Scantable::factories_["linear"] = &STPolLinear::myFactory;
81 Scantable::factories_["circular"] = &STPolCircular::myFactory;
82 Scantable::factories_["stokes"] = &STPolStokes::myFactory;
83 }
84}
85
86Scantable::Scantable(Table::TableType ttype) :
87 type_(ttype)
88{
89 initFactories();
90 setupMainTable();
91 freqTable_ = STFrequencies(*this);
92 table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
93 weatherTable_ = STWeather(*this);
94 table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
95 focusTable_ = STFocus(*this);
96 table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
97 tcalTable_ = STTcal(*this);
98 table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
99 moleculeTable_ = STMolecules(*this);
100 table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
101 historyTable_ = STHistory(*this);
102 table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
103 fitTable_ = STFit(*this);
104 table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
105 table_.tableInfo().setType( "Scantable" ) ;
106 originalTable_ = table_;
107 attach();
108}
109
110Scantable::Scantable(const std::string& name, Table::TableType ttype) :
111 type_(ttype)
112{
113 initFactories();
114
115 Table tab(name, Table::Update);
116 uInt version = tab.keywordSet().asuInt("VERSION");
117 if (version != version_) {
118 throw(AipsError("Unsupported version of ASAP file."));
119 }
120 if ( type_ == Table::Memory ) {
121 table_ = tab.copyToMemoryTable(generateName());
122 } else {
123 table_ = tab;
124 }
125 table_.tableInfo().setType( "Scantable" ) ;
126
127 attachSubtables();
128 originalTable_ = table_;
129 attach();
130}
131/*
132Scantable::Scantable(const std::string& name, Table::TableType ttype) :
133 type_(ttype)
134{
135 initFactories();
136 Table tab(name, Table::Update);
137 uInt version = tab.keywordSet().asuInt("VERSION");
138 if (version != version_) {
139 throw(AipsError("Unsupported version of ASAP file."));
140 }
141 if ( type_ == Table::Memory ) {
142 table_ = tab.copyToMemoryTable(generateName());
143 } else {
144 table_ = tab;
145 }
146
147 attachSubtables();
148 originalTable_ = table_;
149 attach();
150}
151*/
152
153Scantable::Scantable( const Scantable& other, bool clear )
154{
155 // with or without data
156 String newname = String(generateName());
157 type_ = other.table_.tableType();
158 if ( other.table_.tableType() == Table::Memory ) {
159 if ( clear ) {
160 table_ = TableCopy::makeEmptyMemoryTable(newname,
161 other.table_, True);
162 } else
163 table_ = other.table_.copyToMemoryTable(newname);
164 } else {
165 other.table_.deepCopy(newname, Table::New, False,
166 other.table_.endianFormat(),
167 Bool(clear));
168 table_ = Table(newname, Table::Update);
169 table_.markForDelete();
170 }
171 table_.tableInfo().setType( "Scantable" ) ;
172 /// @todo reindex SCANNO, recompute nbeam, nif, npol
173 if ( clear ) copySubtables(other);
174 attachSubtables();
175 originalTable_ = table_;
176 attach();
177}
178
179void Scantable::copySubtables(const Scantable& other) {
180 Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
181 TableCopy::copyRows(t, other.freqTable_.table());
182 t = table_.rwKeywordSet().asTable("FOCUS");
183 TableCopy::copyRows(t, other.focusTable_.table());
184 t = table_.rwKeywordSet().asTable("WEATHER");
185 TableCopy::copyRows(t, other.weatherTable_.table());
186 t = table_.rwKeywordSet().asTable("TCAL");
187 TableCopy::copyRows(t, other.tcalTable_.table());
188 t = table_.rwKeywordSet().asTable("MOLECULES");
189 TableCopy::copyRows(t, other.moleculeTable_.table());
190 t = table_.rwKeywordSet().asTable("HISTORY");
191 TableCopy::copyRows(t, other.historyTable_.table());
192 t = table_.rwKeywordSet().asTable("FIT");
193 TableCopy::copyRows(t, other.fitTable_.table());
194}
195
196void Scantable::attachSubtables()
197{
198 freqTable_ = STFrequencies(table_);
199 focusTable_ = STFocus(table_);
200 weatherTable_ = STWeather(table_);
201 tcalTable_ = STTcal(table_);
202 moleculeTable_ = STMolecules(table_);
203 historyTable_ = STHistory(table_);
204 fitTable_ = STFit(table_);
205}
206
207Scantable::~Scantable()
208{
209 //cout << "~Scantable() " << this << endl;
210}
211
212void Scantable::setupMainTable()
213{
214 TableDesc td("", "1", TableDesc::Scratch);
215 td.comment() = "An ASAP Scantable";
216 td.rwKeywordSet().define("VERSION", uInt(version_));
217
218 // n Cycles
219 td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
220 // new index every nBeam x nIF x nPol
221 td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
222
223 td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
224 td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
225 // linear, circular, stokes
226 td.rwKeywordSet().define("POLTYPE", String("linear"));
227 td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
228
229 td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
230 td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
231
232 ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
233 refbeamnoColumn.setDefault(Int(-1));
234 td.addColumn(refbeamnoColumn);
235
236 ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
237 flagrowColumn.setDefault(uInt(0));
238 td.addColumn(flagrowColumn);
239
240 td.addColumn(ScalarColumnDesc<Double>("TIME"));
241 TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
242 TableMeasValueDesc measVal(td, "TIME");
243 TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
244 mepochCol.write(td);
245
246 td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
247
248 td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
249 // Type of source (on=0, off=1, other=-1)
250 ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
251 stypeColumn.setDefault(Int(-1));
252 td.addColumn(stypeColumn);
253 td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
254
255 //The actual Data Vectors
256 td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
257 td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
258 td.addColumn(ArrayColumnDesc<Float>("TSYS"));
259
260 td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
261 IPosition(1,2),
262 ColumnDesc::Direct));
263 TableMeasRefDesc mdirRef(MDirection::J2000); // default
264 TableMeasValueDesc tmvdMDir(td, "DIRECTION");
265 // the TableMeasDesc gives the column a type
266 TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
267 // a uder set table type e.g. GALCTIC, B1950 ...
268 td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
269 // writing create the measure column
270 mdirCol.write(td);
271 td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
272 td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
273 td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
274
275 td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
276 ScalarColumnDesc<Int> fitColumn("FIT_ID");
277 fitColumn.setDefault(Int(-1));
278 td.addColumn(fitColumn);
279
280 td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
281 td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
282
283 // columns which just get dragged along, as they aren't used in asap
284 td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
285 td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
286 td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
287 td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
288
289 td.rwKeywordSet().define("OBSMODE", String(""));
290
291 // Now create Table SetUp from the description.
292 SetupNewTable aNewTab(generateName(), td, Table::Scratch);
293 table_ = Table(aNewTab, type_, 0);
294 originalTable_ = table_;
295}
296
297void Scantable::attach()
298{
299 timeCol_.attach(table_, "TIME");
300 srcnCol_.attach(table_, "SRCNAME");
301 srctCol_.attach(table_, "SRCTYPE");
302 specCol_.attach(table_, "SPECTRA");
303 flagsCol_.attach(table_, "FLAGTRA");
304 tsysCol_.attach(table_, "TSYS");
305 cycleCol_.attach(table_,"CYCLENO");
306 scanCol_.attach(table_, "SCANNO");
307 beamCol_.attach(table_, "BEAMNO");
308 ifCol_.attach(table_, "IFNO");
309 polCol_.attach(table_, "POLNO");
310 integrCol_.attach(table_, "INTERVAL");
311 azCol_.attach(table_, "AZIMUTH");
312 elCol_.attach(table_, "ELEVATION");
313 dirCol_.attach(table_, "DIRECTION");
314 fldnCol_.attach(table_, "FIELDNAME");
315 rbeamCol_.attach(table_, "REFBEAMNO");
316
317 mweatheridCol_.attach(table_,"WEATHER_ID");
318 mfitidCol_.attach(table_,"FIT_ID");
319 mfreqidCol_.attach(table_, "FREQ_ID");
320 mtcalidCol_.attach(table_, "TCAL_ID");
321 mfocusidCol_.attach(table_, "FOCUS_ID");
322 mmolidCol_.attach(table_, "MOLECULE_ID");
323
324 //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
325 attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
326
327}
328
329template<class T, class T2>
330void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
331 const String& colName,
332 const T2& defValue)
333{
334 try {
335 col.attach(table_, colName);
336 } catch (TableError& err) {
337 String errMesg = err.getMesg();
338 if (errMesg == "Table column " + colName + " is unknown") {
339 table_.addColumn(ScalarColumnDesc<T>(colName));
340 col.attach(table_, colName);
341 col.fillColumn(static_cast<T>(defValue));
342 } else {
343 throw;
344 }
345 } catch (...) {
346 throw;
347 }
348}
349
350template<class T, class T2>
351void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
352 const String& colName,
353 const Array<T2>& defValue)
354{
355 try {
356 col.attach(table_, colName);
357 } catch (TableError& err) {
358 String errMesg = err.getMesg();
359 if (errMesg == "Table column " + colName + " is unknown") {
360 table_.addColumn(ArrayColumnDesc<T>(colName));
361 col.attach(table_, colName);
362
363 int size = 0;
364 ArrayIterator<T2>& it = defValue.begin();
365 while (it != defValue.end()) {
366 ++size;
367 ++it;
368 }
369 IPosition ip(1, size);
370 Array<T>& arr(ip);
371 for (int i = 0; i < size; ++i)
372 arr[i] = static_cast<T>(defValue[i]);
373
374 col.fillColumn(arr);
375 } else {
376 throw;
377 }
378 } catch (...) {
379 throw;
380 }
381}
382
383void Scantable::setHeader(const STHeader& sdh)
384{
385 table_.rwKeywordSet().define("nIF", sdh.nif);
386 table_.rwKeywordSet().define("nBeam", sdh.nbeam);
387 table_.rwKeywordSet().define("nPol", sdh.npol);
388 table_.rwKeywordSet().define("nChan", sdh.nchan);
389 table_.rwKeywordSet().define("Observer", sdh.observer);
390 table_.rwKeywordSet().define("Project", sdh.project);
391 table_.rwKeywordSet().define("Obstype", sdh.obstype);
392 table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
393 table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
394 table_.rwKeywordSet().define("Equinox", sdh.equinox);
395 table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
396 table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
397 table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
398 table_.rwKeywordSet().define("UTC", sdh.utc);
399 table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
400 table_.rwKeywordSet().define("Epoch", sdh.epoch);
401 table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
402}
403
404STHeader Scantable::getHeader() const
405{
406 STHeader sdh;
407 table_.keywordSet().get("nBeam",sdh.nbeam);
408 table_.keywordSet().get("nIF",sdh.nif);
409 table_.keywordSet().get("nPol",sdh.npol);
410 table_.keywordSet().get("nChan",sdh.nchan);
411 table_.keywordSet().get("Observer", sdh.observer);
412 table_.keywordSet().get("Project", sdh.project);
413 table_.keywordSet().get("Obstype", sdh.obstype);
414 table_.keywordSet().get("AntennaName", sdh.antennaname);
415 table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
416 table_.keywordSet().get("Equinox", sdh.equinox);
417 table_.keywordSet().get("FreqRefFrame", sdh.freqref);
418 table_.keywordSet().get("FreqRefVal", sdh.reffreq);
419 table_.keywordSet().get("Bandwidth", sdh.bandwidth);
420 table_.keywordSet().get("UTC", sdh.utc);
421 table_.keywordSet().get("FluxUnit", sdh.fluxunit);
422 table_.keywordSet().get("Epoch", sdh.epoch);
423 table_.keywordSet().get("POLTYPE", sdh.poltype);
424 return sdh;
425}
426
427void Scantable::setSourceType( int stype )
428{
429 if ( stype < 0 || stype > 1 )
430 throw(AipsError("Illegal sourcetype."));
431 TableVector<Int> tabvec(table_, "SRCTYPE");
432 tabvec = Int(stype);
433}
434
435bool Scantable::conformant( const Scantable& other )
436{
437 return this->getHeader().conformant(other.getHeader());
438}
439
440
441
442std::string Scantable::formatSec(Double x) const
443{
444 Double xcop = x;
445 MVTime mvt(xcop/24./3600.); // make days
446
447 if (x < 59.95)
448 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
449 else if (x < 3599.95)
450 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
451 else {
452 ostringstream oss;
453 oss << setw(2) << std::right << setprecision(1) << mvt.hour();
454 oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
455 return String(oss);
456 }
457};
458
459std::string Scantable::formatDirection(const MDirection& md) const
460{
461 Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
462 Int prec = 7;
463
464 MVAngle mvLon(t[0]);
465 String sLon = mvLon.string(MVAngle::TIME,prec);
466 uInt tp = md.getRef().getType();
467 if (tp == MDirection::GALACTIC ||
468 tp == MDirection::SUPERGAL ) {
469 sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
470 }
471 MVAngle mvLat(t[1]);
472 String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
473 return sLon + String(" ") + sLat;
474}
475
476
477std::string Scantable::getFluxUnit() const
478{
479 return table_.keywordSet().asString("FluxUnit");
480}
481
482void Scantable::setFluxUnit(const std::string& unit)
483{
484 String tmp(unit);
485 Unit tU(tmp);
486 if (tU==Unit("K") || tU==Unit("Jy")) {
487 table_.rwKeywordSet().define(String("FluxUnit"), tmp);
488 } else {
489 throw AipsError("Illegal unit - must be compatible with Jy or K");
490 }
491}
492
493void Scantable::setInstrument(const std::string& name)
494{
495 bool throwIt = true;
496 // create an Instrument to see if this is valid
497 STAttr::convertInstrument(name, throwIt);
498 String nameU(name);
499 nameU.upcase();
500 table_.rwKeywordSet().define(String("AntennaName"), nameU);
501}
502
503void Scantable::setFeedType(const std::string& feedtype)
504{
505 if ( Scantable::factories_.find(feedtype) == Scantable::factories_.end() ) {
506 std::string msg = "Illegal feed type "+ feedtype;
507 throw(casa::AipsError(msg));
508 }
509 table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
510}
511
512MPosition Scantable::getAntennaPosition() const
513{
514 Vector<Double> antpos;
515 table_.keywordSet().get("AntennaPosition", antpos);
516 MVPosition mvpos(antpos(0),antpos(1),antpos(2));
517 return MPosition(mvpos);
518}
519
520void Scantable::makePersistent(const std::string& filename)
521{
522 String inname(filename);
523 Path path(inname);
524 /// @todo reindex SCANNO, recompute nbeam, nif, npol
525 inname = path.expandedName();
526 // 2011/03/04 TN
527 // We can comment out this workaround since the essential bug is
528 // fixed in casacore (r20889 in google code).
529 table_.deepCopy(inname, Table::New);
530// // WORKAROUND !!! for Table bug
531// // Remove when fixed in casacore
532// if ( table_.tableType() == Table::Memory && !selector_.empty() ) {
533// Table tab = table_.copyToMemoryTable(generateName());
534// tab.deepCopy(inname, Table::New);
535// tab.markForDelete();
536//
537// } else {
538// table_.deepCopy(inname, Table::New);
539// }
540}
541
542int Scantable::nbeam( int scanno ) const
543{
544 if ( scanno < 0 ) {
545 Int n;
546 table_.keywordSet().get("nBeam",n);
547 return int(n);
548 } else {
549 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
550 Table t = table_(table_.col("SCANNO") == scanno);
551 ROTableRow row(t);
552 const TableRecord& rec = row.get(0);
553 Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
554 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
555 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
556 ROTableVector<uInt> v(subt, "BEAMNO");
557 return int(v.nelements());
558 }
559 return 0;
560}
561
562int Scantable::nif( int scanno ) const
563{
564 if ( scanno < 0 ) {
565 Int n;
566 table_.keywordSet().get("nIF",n);
567 return int(n);
568 } else {
569 // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
570 Table t = table_(table_.col("SCANNO") == scanno);
571 ROTableRow row(t);
572 const TableRecord& rec = row.get(0);
573 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
574 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
575 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
576 if ( subt.nrow() == 0 ) return 0;
577 ROTableVector<uInt> v(subt, "IFNO");
578 return int(v.nelements());
579 }
580 return 0;
581}
582
583int Scantable::npol( int scanno ) const
584{
585 if ( scanno < 0 ) {
586 Int n;
587 table_.keywordSet().get("nPol",n);
588 return n;
589 } else {
590 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
591 Table t = table_(table_.col("SCANNO") == scanno);
592 ROTableRow row(t);
593 const TableRecord& rec = row.get(0);
594 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
595 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
596 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
597 if ( subt.nrow() == 0 ) return 0;
598 ROTableVector<uInt> v(subt, "POLNO");
599 return int(v.nelements());
600 }
601 return 0;
602}
603
604int Scantable::ncycle( int scanno ) const
605{
606 if ( scanno < 0 ) {
607 Block<String> cols(2);
608 cols[0] = "SCANNO";
609 cols[1] = "CYCLENO";
610 TableIterator it(table_, cols);
611 int n = 0;
612 while ( !it.pastEnd() ) {
613 ++n;
614 ++it;
615 }
616 return n;
617 } else {
618 Table t = table_(table_.col("SCANNO") == scanno);
619 ROTableRow row(t);
620 const TableRecord& rec = row.get(0);
621 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
622 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
623 && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
624 if ( subt.nrow() == 0 ) return 0;
625 return int(subt.nrow());
626 }
627 return 0;
628}
629
630
631int Scantable::nrow( int scanno ) const
632{
633 return int(table_.nrow());
634}
635
636int Scantable::nchan( int ifno ) const
637{
638 if ( ifno < 0 ) {
639 Int n;
640 table_.keywordSet().get("nChan",n);
641 return int(n);
642 } else {
643 // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
644 // vary with these
645 Table t = table_(table_.col("IFNO") == ifno);
646 if ( t.nrow() == 0 ) return 0;
647 ROArrayColumn<Float> v(t, "SPECTRA");
648 return v.shape(0)(0);
649 }
650 return 0;
651}
652
653int Scantable::nscan() const {
654 Vector<uInt> scannos(scanCol_.getColumn());
655 uInt nout = genSort( scannos, Sort::Ascending,
656 Sort::QuickSort|Sort::NoDuplicates );
657 return int(nout);
658}
659
660int Scantable::getChannels(int whichrow) const
661{
662 return specCol_.shape(whichrow)(0);
663}
664
665int Scantable::getBeam(int whichrow) const
666{
667 return beamCol_(whichrow);
668}
669
670std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
671{
672 Vector<uInt> nos(col.getColumn());
673 uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
674 nos.resize(n, True);
675 std::vector<uint> stlout;
676 nos.tovector(stlout);
677 return stlout;
678}
679
680int Scantable::getIF(int whichrow) const
681{
682 return ifCol_(whichrow);
683}
684
685int Scantable::getPol(int whichrow) const
686{
687 return polCol_(whichrow);
688}
689
690std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
691{
692 return formatTime(me, showdate, 0);
693}
694
695std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
696{
697 MVTime mvt(me.getValue());
698 if (showdate)
699 //mvt.setFormat(MVTime::YMD);
700 mvt.setFormat(MVTime::YMD, prec);
701 else
702 //mvt.setFormat(MVTime::TIME);
703 mvt.setFormat(MVTime::TIME, prec);
704 ostringstream oss;
705 oss << mvt;
706 return String(oss);
707}
708
709void Scantable::calculateAZEL()
710{
711 MPosition mp = getAntennaPosition();
712 MEpoch::ROScalarColumn timeCol(table_, "TIME");
713 ostringstream oss;
714 oss << "Computed azimuth/elevation using " << endl
715 << mp << endl;
716 for (Int i=0; i<nrow(); ++i) {
717 MEpoch me = timeCol(i);
718 MDirection md = getDirection(i);
719 oss << " Time: " << formatTime(me,False) << " Direction: " << formatDirection(md)
720 << endl << " => ";
721 MeasFrame frame(mp, me);
722 Vector<Double> azel =
723 MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
724 frame)
725 )().getAngle("rad").getValue();
726 azCol_.put(i,Float(azel[0]));
727 elCol_.put(i,Float(azel[1]));
728 oss << "azel: " << azel[0]/C::pi*180.0 << " "
729 << azel[1]/C::pi*180.0 << " (deg)" << endl;
730 }
731 pushLog(String(oss));
732}
733
734void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
735{
736 for (uInt i=0; i<table_.nrow(); ++i) {
737 Vector<uChar> flgs = flagsCol_(i);
738 srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
739 flagsCol_.put(i, flgs);
740 }
741}
742
743std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
744{
745 Vector<uChar> flags;
746 flagsCol_.get(uInt(whichrow), flags);
747 srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
748 Vector<Bool> bflag(flags.shape());
749 convertArray(bflag, flags);
750 //bflag = !bflag;
751
752 std::vector<bool> mask;
753 bflag.tovector(mask);
754 return mask;
755}
756
757void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
758 Vector<uChar> flgs)
759{
760 Vector<Float> spcs = specCol_(whichrow);
761 uInt nchannel = nchan();
762 if (spcs.nelements() != nchannel) {
763 throw(AipsError("Data has incorrect number of channels"));
764 }
765 uChar userflag = 1 << 7;
766 if (unflag) {
767 userflag = 0 << 7;
768 }
769 if (clipoutside) {
770 for (uInt j = 0; j < nchannel; ++j) {
771 Float spc = spcs(j);
772 if ((spc >= uthres) || (spc <= dthres)) {
773 flgs(j) = userflag;
774 }
775 }
776 } else {
777 for (uInt j = 0; j < nchannel; ++j) {
778 Float spc = spcs(j);
779 if ((spc < uthres) && (spc > dthres)) {
780 flgs(j) = userflag;
781 }
782 }
783 }
784}
785
786
787void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
788 std::vector<bool>::const_iterator it;
789 uInt ntrue = 0;
790 if (whichrow >= int(table_.nrow()) ) {
791 throw(AipsError("Invalid row number"));
792 }
793 for (it = msk.begin(); it != msk.end(); ++it) {
794 if ( *it ) {
795 ntrue++;
796 }
797 }
798 //if ( selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
799 if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
800 throw(AipsError("Trying to flag whole scantable."));
801 uChar userflag = 1 << 7;
802 if ( unflag ) {
803 userflag = 0 << 7;
804 }
805 if (whichrow > -1 ) {
806 applyChanFlag(uInt(whichrow), msk, userflag);
807 } else {
808 for ( uInt i=0; i<table_.nrow(); ++i) {
809 applyChanFlag(i, msk, userflag);
810 }
811 }
812}
813
814void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
815{
816 if (whichrow >= table_.nrow() ) {
817 throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
818 }
819 Vector<uChar> flgs = flagsCol_(whichrow);
820 if ( msk.size() == 0 ) {
821 flgs = flagval;
822 flagsCol_.put(whichrow, flgs);
823 return;
824 }
825 if ( int(msk.size()) != nchan() ) {
826 throw(AipsError("Mask has incorrect number of channels."));
827 }
828 if ( flgs.nelements() != msk.size() ) {
829 throw(AipsError("Mask has incorrect number of channels."
830 " Probably varying with IF. Please flag per IF"));
831 }
832 std::vector<bool>::const_iterator it;
833 uInt j = 0;
834 for (it = msk.begin(); it != msk.end(); ++it) {
835 if ( *it ) {
836 flgs(j) = flagval;
837 }
838 ++j;
839 }
840 flagsCol_.put(whichrow, flgs);
841}
842
843void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
844{
845 if ( selector_.empty() && (rows.size() == table_.nrow()) )
846 throw(AipsError("Trying to flag whole scantable."));
847
848 uInt rowflag = (unflag ? 0 : 1);
849 std::vector<uInt>::const_iterator it;
850 for (it = rows.begin(); it != rows.end(); ++it)
851 flagrowCol_.put(*it, rowflag);
852}
853
854std::vector<bool> Scantable::getMask(int whichrow) const
855{
856 Vector<uChar> flags;
857 flagsCol_.get(uInt(whichrow), flags);
858 Vector<Bool> bflag(flags.shape());
859 convertArray(bflag, flags);
860 bflag = !bflag;
861 std::vector<bool> mask;
862 bflag.tovector(mask);
863 return mask;
864}
865
866std::vector<float> Scantable::getSpectrum( int whichrow,
867 const std::string& poltype ) const
868{
869 String ptype = poltype;
870 if (poltype == "" ) ptype = getPolType();
871 if ( whichrow < 0 || whichrow >= nrow() )
872 throw(AipsError("Illegal row number."));
873 std::vector<float> out;
874 Vector<Float> arr;
875 uInt requestedpol = polCol_(whichrow);
876 String basetype = getPolType();
877 if ( ptype == basetype ) {
878 specCol_.get(whichrow, arr);
879 } else {
880 CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
881 basetype));
882 uInt row = uInt(whichrow);
883 stpol->setSpectra(getPolMatrix(row));
884 Float fang,fhand;
885 fang = focusTable_.getTotalAngle(mfocusidCol_(row));
886 fhand = focusTable_.getFeedHand(mfocusidCol_(row));
887 stpol->setPhaseCorrections(fang, fhand);
888 arr = stpol->getSpectrum(requestedpol, ptype);
889 }
890 if ( arr.nelements() == 0 )
891 pushLog("Not enough polarisations present to do the conversion.");
892 arr.tovector(out);
893 return out;
894}
895
896void Scantable::setSpectrum( const std::vector<float>& spec,
897 int whichrow )
898{
899 Vector<Float> spectrum(spec);
900 Vector<Float> arr;
901 specCol_.get(whichrow, arr);
902 if ( spectrum.nelements() != arr.nelements() )
903 throw AipsError("The spectrum has incorrect number of channels.");
904 specCol_.put(whichrow, spectrum);
905}
906
907
908String Scantable::generateName()
909{
910 return (File::newUniqueName("./","temp")).baseName();
911}
912
913const casa::Table& Scantable::table( ) const
914{
915 return table_;
916}
917
918casa::Table& Scantable::table( )
919{
920 return table_;
921}
922
923std::string Scantable::getPolType() const
924{
925 return table_.keywordSet().asString("POLTYPE");
926}
927
928void Scantable::unsetSelection()
929{
930 table_ = originalTable_;
931 attach();
932 selector_.reset();
933}
934
935void Scantable::setSelection( const STSelector& selection )
936{
937 Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
938 if ( tab.nrow() == 0 ) {
939 throw(AipsError("Selection contains no data. Not applying it."));
940 }
941 table_ = tab;
942 attach();
943 selector_ = selection;
944}
945
946std::string Scantable::summary( bool verbose )
947{
948 // Format header info
949 ostringstream oss;
950 oss << endl;
951 oss << asap::SEPERATOR << endl;
952 oss << " Scan Table Summary" << endl;
953 oss << asap::SEPERATOR << endl;
954 oss.flags(std::ios_base::left);
955 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
956 << setw(15) << "IFs:" << setw(4) << nif() << endl
957 << setw(15) << "Polarisations:" << setw(4) << npol()
958 << "(" << getPolType() << ")" << endl
959 << setw(15) << "Channels:" << nchan() << endl;
960 String tmp;
961 oss << setw(15) << "Observer:"
962 << table_.keywordSet().asString("Observer") << endl;
963 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
964 table_.keywordSet().get("Project", tmp);
965 oss << setw(15) << "Project:" << tmp << endl;
966 table_.keywordSet().get("Obstype", tmp);
967 oss << setw(15) << "Obs. Type:" << tmp << endl;
968 table_.keywordSet().get("AntennaName", tmp);
969 oss << setw(15) << "Antenna Name:" << tmp << endl;
970 table_.keywordSet().get("FluxUnit", tmp);
971 oss << setw(15) << "Flux Unit:" << tmp << endl;
972 //Vector<Double> vec(moleculeTable_.getRestFrequencies());
973 int nid = moleculeTable_.nrow();
974 Bool firstline = True;
975 oss << setw(15) << "Rest Freqs:";
976 for (int i=0; i<nid; i++) {
977 Table t = table_(table_.col("MOLECULE_ID") == i);
978 if (t.nrow() > 0) {
979 Vector<Double> vec(moleculeTable_.getRestFrequency(i));
980 if (vec.nelements() > 0) {
981 if (firstline) {
982 oss << setprecision(10) << vec << " [Hz]" << endl;
983 firstline=False;
984 }
985 else{
986 oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
987 }
988 } else {
989 oss << "none" << endl;
990 }
991 }
992 }
993
994 oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
995 oss << selector_.print() << endl;
996 oss << endl;
997 // main table
998 String dirtype = "Position ("
999 + getDirectionRefString()
1000 + ")";
1001 oss << setw(5) << "Scan" << setw(15) << "Source"
1002 << setw(10) << "Time" << setw(18) << "Integration"
1003 << setw(15) << "Source Type" << endl;
1004 oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1005 oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1006 << setw(8) << "Frame" << setw(16)
1007 << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1008 << setw(7) << "Channels"
1009 << endl;
1010 oss << asap::SEPERATOR << endl;
1011 TableIterator iter(table_, "SCANNO");
1012 while (!iter.pastEnd()) {
1013 Table subt = iter.table();
1014 ROTableRow row(subt);
1015 MEpoch::ROScalarColumn timeCol(subt,"TIME");
1016 const TableRecord& rec = row.get(0);
1017 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1018 << std::left << setw(1) << ""
1019 << setw(15) << rec.asString("SRCNAME")
1020 << setw(10) << formatTime(timeCol(0), false);
1021 // count the cycles in the scan
1022 TableIterator cyciter(subt, "CYCLENO");
1023 int nint = 0;
1024 while (!cyciter.pastEnd()) {
1025 ++nint;
1026 ++cyciter;
1027 }
1028 oss << setw(3) << std::right << nint << setw(3) << " x " << std::left
1029 << setw(11) << formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1030 << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1031
1032 TableIterator biter(subt, "BEAMNO");
1033 while (!biter.pastEnd()) {
1034 Table bsubt = biter.table();
1035 ROTableRow brow(bsubt);
1036 const TableRecord& brec = brow.get(0);
1037 uInt row0 = bsubt.rowNumbers(table_)[0];
1038 oss << setw(5) << "" << setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1039 oss << setw(4) << "" << formatDirection(getDirection(row0)) << endl;
1040 TableIterator iiter(bsubt, "IFNO");
1041 while (!iiter.pastEnd()) {
1042 Table isubt = iiter.table();
1043 ROTableRow irow(isubt);
1044 const TableRecord& irec = irow.get(0);
1045 oss << setw(9) << "";
1046 oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1047 << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1048 << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1049 << endl;
1050
1051 ++iiter;
1052 }
1053 ++biter;
1054 }
1055 ++iter;
1056 }
1057 /// @todo implement verbose mode
1058 return String(oss);
1059}
1060
1061// std::string Scantable::getTime(int whichrow, bool showdate) const
1062// {
1063// MEpoch::ROScalarColumn timeCol(table_, "TIME");
1064// MEpoch me;
1065// if (whichrow > -1) {
1066// me = timeCol(uInt(whichrow));
1067// } else {
1068// Double tm;
1069// table_.keywordSet().get("UTC",tm);
1070// me = MEpoch(MVEpoch(tm));
1071// }
1072// return formatTime(me, showdate);
1073// }
1074
1075std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1076{
1077 MEpoch me;
1078 me = getEpoch(whichrow);
1079 return formatTime(me, showdate, prec);
1080}
1081
1082MEpoch Scantable::getEpoch(int whichrow) const
1083{
1084 if (whichrow > -1) {
1085 return timeCol_(uInt(whichrow));
1086 } else {
1087 Double tm;
1088 table_.keywordSet().get("UTC",tm);
1089 return MEpoch(MVEpoch(tm));
1090 }
1091}
1092
1093std::string Scantable::getDirectionString(int whichrow) const
1094{
1095 return formatDirection(getDirection(uInt(whichrow)));
1096}
1097
1098
1099SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1100 const MPosition& mp = getAntennaPosition();
1101 const MDirection& md = getDirection(whichrow);
1102 const MEpoch& me = timeCol_(whichrow);
1103 //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1104 Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1105 return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1106 mfreqidCol_(whichrow));
1107}
1108
1109std::vector< double > Scantable::getAbcissa( int whichrow ) const
1110{
1111 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1112 std::vector<double> stlout;
1113 int nchan = specCol_(whichrow).nelements();
1114 String us = freqTable_.getUnitString();
1115 if ( us == "" || us == "pixel" || us == "channel" ) {
1116 for (int i=0; i<nchan; ++i) {
1117 stlout.push_back(double(i));
1118 }
1119 return stlout;
1120 }
1121 SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1122 Vector<Double> pixel(nchan);
1123 Vector<Double> world;
1124 indgen(pixel);
1125 if ( Unit(us) == Unit("Hz") ) {
1126 for ( int i=0; i < nchan; ++i) {
1127 Double world;
1128 spc.toWorld(world, pixel[i]);
1129 stlout.push_back(double(world));
1130 }
1131 } else if ( Unit(us) == Unit("km/s") ) {
1132 Vector<Double> world;
1133 spc.pixelToVelocity(world, pixel);
1134 world.tovector(stlout);
1135 }
1136 return stlout;
1137}
1138void Scantable::setDirectionRefString( const std::string & refstr )
1139{
1140 MDirection::Types mdt;
1141 if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1142 throw(AipsError("Illegal Direction frame."));
1143 }
1144 if ( refstr == "" ) {
1145 String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1146 table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1147 } else {
1148 table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1149 }
1150}
1151
1152std::string Scantable::getDirectionRefString( ) const
1153{
1154 return table_.keywordSet().asString("DIRECTIONREF");
1155}
1156
1157MDirection Scantable::getDirection(int whichrow ) const
1158{
1159 String usertype = table_.keywordSet().asString("DIRECTIONREF");
1160 String type = MDirection::showType(dirCol_.getMeasRef().getType());
1161 if ( usertype != type ) {
1162 MDirection::Types mdt;
1163 if (!MDirection::getType(mdt, usertype)) {
1164 throw(AipsError("Illegal Direction frame."));
1165 }
1166 return dirCol_.convert(uInt(whichrow), mdt);
1167 } else {
1168 return dirCol_(uInt(whichrow));
1169 }
1170}
1171
1172std::string Scantable::getAbcissaLabel( int whichrow ) const
1173{
1174 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1175 const MPosition& mp = getAntennaPosition();
1176 const MDirection& md = getDirection(whichrow);
1177 const MEpoch& me = timeCol_(whichrow);
1178 //const Double& rf = mmolidCol_(whichrow);
1179 const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1180 SpectralCoordinate spc =
1181 freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1182
1183 String s = "Channel";
1184 Unit u = Unit(freqTable_.getUnitString());
1185 if (u == Unit("km/s")) {
1186 s = CoordinateUtil::axisLabel(spc, 0, True,True, True);
1187 } else if (u == Unit("Hz")) {
1188 Vector<String> wau(1);wau = u.getName();
1189 spc.setWorldAxisUnits(wau);
1190 s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1191 }
1192 return s;
1193
1194}
1195
1196/**
1197void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1198 const std::string& unit )
1199**/
1200void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1201 const std::string& unit )
1202
1203{
1204 ///@todo lookup in line table to fill in name and formattedname
1205 Unit u(unit);
1206 //Quantum<Double> urf(rf, u);
1207 Quantum<Vector<Double> >urf(rf, u);
1208 Vector<String> formattedname(0);
1209 //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1210
1211 //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1212 uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1213 TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1214 tabvec = id;
1215}
1216
1217/**
1218void asap::Scantable::setRestFrequencies( const std::string& name )
1219{
1220 throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1221 ///@todo implement
1222}
1223**/
1224
1225void Scantable::setRestFrequencies( const vector<std::string>& name )
1226{
1227 throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1228 ///@todo implement
1229}
1230
1231std::vector< unsigned int > Scantable::rownumbers( ) const
1232{
1233 std::vector<unsigned int> stlout;
1234 Vector<uInt> vec = table_.rowNumbers();
1235 vec.tovector(stlout);
1236 return stlout;
1237}
1238
1239
1240Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1241{
1242 ROTableRow row(table_);
1243 const TableRecord& rec = row.get(whichrow);
1244 Table t =
1245 originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1246 && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1247 && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1248 && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1249 ROArrayColumn<Float> speccol(t, "SPECTRA");
1250 return speccol.getColumn();
1251}
1252
1253std::vector< std::string > Scantable::columnNames( ) const
1254{
1255 Vector<String> vec = table_.tableDesc().columnNames();
1256 return mathutil::tovectorstring(vec);
1257}
1258
1259MEpoch::Types Scantable::getTimeReference( ) const
1260{
1261 return MEpoch::castType(timeCol_.getMeasRef().getType());
1262}
1263
1264void Scantable::addFit( const STFitEntry& fit, int row )
1265{
1266 //cout << mfitidCol_(uInt(row)) << endl;
1267 LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1268 os << mfitidCol_(uInt(row)) << LogIO::POST ;
1269 uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1270 mfitidCol_.put(uInt(row), id);
1271}
1272
1273void Scantable::shift(int npix)
1274{
1275 Vector<uInt> fids(mfreqidCol_.getColumn());
1276 genSort( fids, Sort::Ascending,
1277 Sort::QuickSort|Sort::NoDuplicates );
1278 for (uInt i=0; i<fids.nelements(); ++i) {
1279 frequencies().shiftRefPix(npix, fids[i]);
1280 }
1281}
1282
1283String Scantable::getAntennaName() const
1284{
1285 String out;
1286 table_.keywordSet().get("AntennaName", out);
1287 String::size_type pos1 = out.find("@") ;
1288 String::size_type pos2 = out.find("//") ;
1289 if ( pos2 != String::npos )
1290 out = out.substr(pos2+2,pos1-pos2-2) ;
1291 else if ( pos1 != String::npos )
1292 out = out.substr(0,pos1) ;
1293 return out;
1294}
1295
1296int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1297{
1298 String tbpath;
1299 int ret = 0;
1300 if ( table_.keywordSet().isDefined("GBT_GO") ) {
1301 table_.keywordSet().get("GBT_GO", tbpath);
1302 Table t(tbpath,Table::Old);
1303 // check each scan if other scan of the pair exist
1304 int nscan = scanlist.size();
1305 for (int i = 0; i < nscan; i++) {
1306 Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1307 if (subt.nrow()==0) {
1308 //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1309 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1310 os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1311 ret = 1;
1312 break;
1313 }
1314 ROTableRow row(subt);
1315 const TableRecord& rec = row.get(0);
1316 int scan1seqn = rec.asuInt("PROCSEQN");
1317 int laston1 = rec.asuInt("LASTON");
1318 if ( rec.asuInt("PROCSIZE")==2 ) {
1319 if ( i < nscan-1 ) {
1320 Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1321 if ( subt2.nrow() == 0) {
1322 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1323
1324 //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1325 os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1326 ret = 1;
1327 break;
1328 }
1329 ROTableRow row2(subt2);
1330 const TableRecord& rec2 = row2.get(0);
1331 int scan2seqn = rec2.asuInt("PROCSEQN");
1332 int laston2 = rec2.asuInt("LASTON");
1333 if (scan1seqn == 1 && scan2seqn == 2) {
1334 if (laston1 == laston2) {
1335 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1336 //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1337 os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1338 i +=1;
1339 }
1340 else {
1341 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1342 //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1343 os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1344 }
1345 }
1346 else if (scan1seqn==2 && scan2seqn == 1) {
1347 if (laston1 == laston2) {
1348 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1349 //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1350 os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1351 ret = 1;
1352 break;
1353 }
1354 }
1355 else {
1356 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1357 //cerr<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1358 os<<LogIO::WARN<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1359 ret = 1;
1360 break;
1361 }
1362 }
1363 }
1364 else {
1365 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1366 //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1367 os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1368 }
1369 //if ( i >= nscan ) break;
1370 }
1371 }
1372 else {
1373 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1374 //cerr<<"No reference to GBT_GO table."<<endl;
1375 os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1376 ret = 1;
1377 }
1378 return ret;
1379}
1380
1381std::vector<double> Scantable::getDirectionVector(int whichrow) const
1382{
1383 Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1384 std::vector<double> dir;
1385 Dir.tovector(dir);
1386 return dir;
1387}
1388
1389void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1390 throw( casa::AipsError )
1391{
1392 // assumed that all rows have same nChan
1393 Vector<Float> arr = specCol_( 0 ) ;
1394 int nChan = arr.nelements() ;
1395
1396 // if nmin < 0 or nmax < 0, nothing to do
1397 if ( nmin < 0 ) {
1398 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1399 }
1400 if ( nmax < 0 ) {
1401 throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1402 }
1403
1404 // if nmin > nmax, exchange values
1405 if ( nmin > nmax ) {
1406 int tmp = nmax ;
1407 nmax = nmin ;
1408 nmin = tmp ;
1409 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1410 os << "Swap values. Applied range is ["
1411 << nmin << ", " << nmax << "]" << LogIO::POST ;
1412 }
1413
1414 // if nmin exceeds nChan, nothing to do
1415 if ( nmin >= nChan ) {
1416 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1417 }
1418
1419 // if nmax exceeds nChan, reset nmax to nChan
1420 if ( nmax >= nChan ) {
1421 if ( nmin == 0 ) {
1422 // nothing to do
1423 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1424 os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1425 return ;
1426 }
1427 else {
1428 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1429 os << "Specified maximum exceeds nChan. Applied range is ["
1430 << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1431 nmax = nChan - 1 ;
1432 }
1433 }
1434
1435 // reshape specCol_ and flagCol_
1436 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1437 reshapeSpectrum( nmin, nmax, irow ) ;
1438 }
1439
1440 // update FREQUENCIES subtable
1441 Double refpix ;
1442 Double refval ;
1443 Double increment ;
1444 int freqnrow = freqTable_.table().nrow() ;
1445 Vector<uInt> oldId( freqnrow ) ;
1446 Vector<uInt> newId( freqnrow ) ;
1447 for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1448 freqTable_.getEntry( refpix, refval, increment, irow ) ;
1449 /***
1450 * need to shift refpix to nmin
1451 * note that channel nmin in old index will be channel 0 in new one
1452 ***/
1453 refval = refval - ( refpix - nmin ) * increment ;
1454 refpix = 0 ;
1455 freqTable_.setEntry( refpix, refval, increment, irow ) ;
1456 }
1457
1458 // update nchan
1459 int newsize = nmax - nmin + 1 ;
1460 table_.rwKeywordSet().define( "nChan", newsize ) ;
1461
1462 // update bandwidth
1463 // assumed all spectra in the scantable have same bandwidth
1464 table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1465
1466 return ;
1467}
1468
1469void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1470{
1471 // reshape specCol_ and flagCol_
1472 Vector<Float> oldspec = specCol_( irow ) ;
1473 Vector<uChar> oldflag = flagsCol_( irow ) ;
1474 uInt newsize = nmax - nmin + 1 ;
1475 specCol_.put( irow, oldspec( Slice( nmin, newsize, 1 ) ) ) ;
1476 flagsCol_.put( irow, oldflag( Slice( nmin, newsize, 1 ) ) ) ;
1477
1478 return ;
1479}
1480
1481void asap::Scantable::regridChannel( int nChan, double dnu )
1482{
1483 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1484 os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1485 // assumed that all rows have same nChan
1486 Vector<Float> arr = specCol_( 0 ) ;
1487 int oldsize = arr.nelements() ;
1488
1489 // if oldsize == nChan, nothing to do
1490 if ( oldsize == nChan ) {
1491 os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1492 return ;
1493 }
1494
1495 // if oldChan < nChan, unphysical operation
1496 if ( oldsize < nChan ) {
1497 os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1498 return ;
1499 }
1500
1501 // change channel number for specCol_ and flagCol_
1502 Vector<Float> newspec( nChan, 0 ) ;
1503 Vector<uChar> newflag( nChan, false ) ;
1504 vector<string> coordinfo = getCoordInfo() ;
1505 string oldinfo = coordinfo[0] ;
1506 coordinfo[0] = "Hz" ;
1507 setCoordInfo( coordinfo ) ;
1508 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1509 regridChannel( nChan, dnu, irow ) ;
1510 }
1511 coordinfo[0] = oldinfo ;
1512 setCoordInfo( coordinfo ) ;
1513
1514
1515 // NOTE: this method does not update metadata such as
1516 // FREQUENCIES subtable, nChan, Bandwidth, etc.
1517
1518 return ;
1519}
1520
1521void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1522{
1523 // logging
1524 //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1525 //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1526
1527 Vector<Float> oldspec = specCol_( irow ) ;
1528 Vector<uChar> oldflag = flagsCol_( irow ) ;
1529 Vector<Float> newspec( nChan, 0 ) ;
1530 Vector<uChar> newflag( nChan, false ) ;
1531
1532 // regrid
1533 vector<double> abcissa = getAbcissa( irow ) ;
1534 int oldsize = abcissa.size() ;
1535 double olddnu = abcissa[1] - abcissa[0] ;
1536 //int refChan = 0 ;
1537 //double frac = 0.0 ;
1538 //double wedge = 0.0 ;
1539 //double pile = 0.0 ;
1540 int ichan = 0 ;
1541 double wsum = 0.0 ;
1542 Vector<Float> z( nChan ) ;
1543 z[0] = abcissa[0] - 0.5 * olddnu + 0.5 * dnu ;
1544 for ( int ii = 1 ; ii < nChan ; ii++ )
1545 z[ii] = z[ii-1] + dnu ;
1546 Vector<Float> zi( nChan+1 ) ;
1547 Vector<Float> yi( oldsize + 1 ) ;
1548 zi[0] = z[0] - 0.5 * dnu ;
1549 zi[1] = z[0] + 0.5 * dnu ;
1550 for ( int ii = 2 ; ii < nChan ; ii++ )
1551 zi[ii] = zi[ii-1] + dnu ;
1552 zi[nChan] = z[nChan-1] + 0.5 * dnu ;
1553 yi[0] = abcissa[0] - 0.5 * olddnu ;
1554 yi[1] = abcissa[1] + 0.5 * olddnu ;
1555 for ( int ii = 2 ; ii < oldsize ; ii++ )
1556 yi[ii] = abcissa[ii-1] + olddnu ;
1557 yi[oldsize] = abcissa[oldsize-1] + 0.5 * olddnu ;
1558 if ( dnu > 0.0 ) {
1559 for ( int ii = 0 ; ii < nChan ; ii++ ) {
1560 double zl = zi[ii] ;
1561 double zr = zi[ii+1] ;
1562 for ( int j = ichan ; j < oldsize ; j++ ) {
1563 double yl = yi[j] ;
1564 double yr = yi[j+1] ;
1565 if ( yl <= zl ) {
1566 if ( yr <= zl ) {
1567 continue ;
1568 }
1569 else if ( yr <= zr ) {
1570 newspec[ii] += oldspec[j] * ( yr - zl ) ;
1571 newflag[ii] = newflag[ii] || oldflag[j] ;
1572 wsum += ( yr - zl ) ;
1573 }
1574 else {
1575 newspec[ii] += oldspec[j] * dnu ;
1576 newflag[ii] = newflag[ii] || oldflag[j] ;
1577 wsum += dnu ;
1578 ichan = j ;
1579 break ;
1580 }
1581 }
1582 else if ( yl < zr ) {
1583 if ( yr <= zr ) {
1584 newspec[ii] += oldspec[j] * ( yr - yl ) ;
1585 newflag[ii] = newflag[ii] || oldflag[j] ;
1586 wsum += ( yr - yl ) ;
1587 }
1588 else {
1589 newspec[ii] += oldspec[j] * ( zr - yl ) ;
1590 newflag[ii] = newflag[ii] || oldflag[j] ;
1591 wsum += ( zr - yl ) ;
1592 ichan = j ;
1593 break ;
1594 }
1595 }
1596 else {
1597 ichan = j - 1 ;
1598 break ;
1599 }
1600 }
1601 newspec[ii] /= wsum ;
1602 wsum = 0.0 ;
1603 }
1604 }
1605 else if ( dnu < 0.0 ) {
1606 for ( int ii = 0 ; ii < nChan ; ii++ ) {
1607 double zl = zi[ii] ;
1608 double zr = zi[ii+1] ;
1609 for ( int j = ichan ; j < oldsize ; j++ ) {
1610 double yl = yi[j] ;
1611 double yr = yi[j+1] ;
1612 if ( yl >= zl ) {
1613 if ( yr >= zl ) {
1614 continue ;
1615 }
1616 else if ( yr >= zr ) {
1617 newspec[ii] += oldspec[j] * abs( yr - zl ) ;
1618 newflag[ii] = newflag[ii] || oldflag[j] ;
1619 wsum += abs( yr - zl ) ;
1620 }
1621 else {
1622 newspec[ii] += oldspec[j] * abs( dnu ) ;
1623 newflag[ii] = newflag[ii] || oldflag[j] ;
1624 wsum += abs( dnu ) ;
1625 ichan = j ;
1626 break ;
1627 }
1628 }
1629 else if ( yl > zr ) {
1630 if ( yr >= zr ) {
1631 newspec[ii] += oldspec[j] * abs( yr - yl ) ;
1632 newflag[ii] = newflag[ii] || oldflag[j] ;
1633 wsum += abs( yr - yl ) ;
1634 }
1635 else {
1636 newspec[ii] += oldspec[j] * abs( zr - yl ) ;
1637 newflag[ii] = newflag[ii] || oldflag[j] ;
1638 wsum += abs( zr - yl ) ;
1639 ichan = j ;
1640 break ;
1641 }
1642 }
1643 else {
1644 ichan = j - 1 ;
1645 break ;
1646 }
1647 }
1648 newspec[ii] /= wsum ;
1649 wsum = 0.0 ;
1650 }
1651 }
1652// * ichan = 0
1653// ***/
1654// //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
1655// pile += dnu ;
1656// wedge = olddnu * ( refChan + 1 ) ;
1657// while ( wedge < pile ) {
1658// newspec[0] += olddnu * oldspec[refChan] ;
1659// newflag[0] = newflag[0] || oldflag[refChan] ;
1660// //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
1661// refChan++ ;
1662// wedge += olddnu ;
1663// wsum += olddnu ;
1664// //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
1665// }
1666// frac = ( wedge - pile ) / olddnu ;
1667// wsum += ( 1.0 - frac ) * olddnu ;
1668// newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
1669// newflag[0] = newflag[0] || oldflag[refChan] ;
1670// //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
1671// //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
1672// newspec[0] /= wsum ;
1673// //ofs << "newspec[0] = " << newspec[0] << endl ;
1674// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1675
1676// /***
1677// * ichan = 1 - nChan-2
1678// ***/
1679// for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
1680// pile += dnu ;
1681// newspec[ichan] += frac * olddnu * oldspec[refChan] ;
1682// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1683// //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
1684// refChan++ ;
1685// wedge += olddnu ;
1686// wsum = frac * olddnu ;
1687// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1688// while ( wedge < pile ) {
1689// newspec[ichan] += olddnu * oldspec[refChan] ;
1690// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1691// //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
1692// refChan++ ;
1693// wedge += olddnu ;
1694// wsum += olddnu ;
1695// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1696// }
1697// frac = ( wedge - pile ) / olddnu ;
1698// wsum += ( 1.0 - frac ) * olddnu ;
1699// newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
1700// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1701// //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
1702// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1703// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1704// newspec[ichan] /= wsum ;
1705// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
1706// }
1707
1708// /***
1709// * ichan = nChan-1
1710// ***/
1711// // NOTE: Assumed that all spectra have the same bandwidth
1712// pile += dnu ;
1713// newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
1714// newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
1715// //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
1716// refChan++ ;
1717// wedge += olddnu ;
1718// wsum = frac * olddnu ;
1719// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1720// for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
1721// newspec[nChan-1] += olddnu * oldspec[jchan] ;
1722// newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
1723// wsum += olddnu ;
1724// //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
1725// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1726// }
1727// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1728// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1729// newspec[nChan-1] /= wsum ;
1730// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
1731
1732// // ofs.close() ;
1733
1734 specCol_.put( irow, newspec ) ;
1735 flagsCol_.put( irow, newflag ) ;
1736
1737 return ;
1738}
1739
1740std::vector<float> Scantable::getWeather(int whichrow) const
1741{
1742 std::vector<float> out(5);
1743 //Float temperature, pressure, humidity, windspeed, windaz;
1744 weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
1745 mweatheridCol_(uInt(whichrow)));
1746
1747
1748 return out;
1749}
1750
1751bool Scantable::getFlagtraFast(uInt whichrow)
1752{
1753 uChar flag;
1754 Vector<uChar> flags;
1755 flagsCol_.get(whichrow, flags);
1756 flag = flags[0];
1757 for (uInt i = 1; i < flags.size(); ++i) {
1758 flag &= flags[i];
1759 }
1760 return ((flag >> 7) == 1);
1761}
1762
1763void Scantable::polyBaseline(const std::vector<bool>& mask, int order, bool getResidual, bool outLogger, const std::string& blfile)
1764{
1765 ofstream ofs;
1766 String coordInfo = "";
1767 bool hasSameNchan = true;
1768 bool outTextFile = false;
1769
1770 if (blfile != "") {
1771 ofs.open(blfile.c_str(), ios::out | ios::app);
1772 if (ofs) outTextFile = true;
1773 }
1774
1775 if (outLogger || outTextFile) {
1776 coordInfo = getCoordInfo()[0];
1777 if (coordInfo == "") coordInfo = "channel";
1778 hasSameNchan = hasSameNchanOverIFs();
1779 }
1780
1781 Fitter fitter = Fitter();
1782 fitter.setExpression("poly", order);
1783 //fitter.setIterClipping(thresClip, nIterClip);
1784
1785 int nRow = nrow();
1786 std::vector<bool> chanMask;
1787
1788 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1789 chanMask = getCompositeChanMask(whichrow, mask);
1790 fitBaseline(chanMask, whichrow, fitter);
1791 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1792 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", fitter);
1793 }
1794
1795 if (outTextFile) ofs.close();
1796}
1797
1798void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
1799{
1800 ofstream ofs;
1801 String coordInfo = "";
1802 bool hasSameNchan = true;
1803 bool outTextFile = false;
1804
1805 if (blfile != "") {
1806 ofs.open(blfile.c_str(), ios::out | ios::app);
1807 if (ofs) outTextFile = true;
1808 }
1809
1810 if (outLogger || outTextFile) {
1811 coordInfo = getCoordInfo()[0];
1812 if (coordInfo == "") coordInfo = "channel";
1813 hasSameNchan = hasSameNchanOverIFs();
1814 }
1815
1816 Fitter fitter = Fitter();
1817 fitter.setExpression("poly", order);
1818 //fitter.setIterClipping(thresClip, nIterClip);
1819
1820 int nRow = nrow();
1821 std::vector<bool> chanMask;
1822 int minEdgeSize = getIFNos().size()*2;
1823 STLineFinder lineFinder = STLineFinder();
1824 lineFinder.setOptions(threshold, 3, chanAvgLimit);
1825
1826 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1827
1828 //-------------------------------------------------------
1829 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
1830 //-------------------------------------------------------
1831 int edgeSize = edge.size();
1832 std::vector<int> currentEdge;
1833 if (edgeSize >= 2) {
1834 int idx = 0;
1835 if (edgeSize > 2) {
1836 if (edgeSize < minEdgeSize) {
1837 throw(AipsError("Length of edge element info is less than that of IFs"));
1838 }
1839 idx = 2 * getIF(whichrow);
1840 }
1841 currentEdge.push_back(edge[idx]);
1842 currentEdge.push_back(edge[idx+1]);
1843 } else {
1844 throw(AipsError("Wrong length of edge element"));
1845 }
1846 lineFinder.setData(getSpectrum(whichrow));
1847 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
1848 chanMask = lineFinder.getMask();
1849 //-------------------------------------------------------
1850
1851 fitBaseline(chanMask, whichrow, fitter);
1852 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1853
1854 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", fitter);
1855 }
1856
1857 if (outTextFile) ofs.close();
1858}
1859
1860void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, bool outLogger, const std::string& blfile)
1861{
1862 ofstream ofs;
1863 String coordInfo = "";
1864 bool hasSameNchan = true;
1865 bool outTextFile = false;
1866
1867 if (blfile != "") {
1868 ofs.open(blfile.c_str(), ios::out | ios::app);
1869 if (ofs) outTextFile = true;
1870 }
1871
1872 if (outLogger || outTextFile) {
1873 coordInfo = getCoordInfo()[0];
1874 if (coordInfo == "") coordInfo = "channel";
1875 hasSameNchan = hasSameNchanOverIFs();
1876 }
1877
1878 //Fitter fitter = Fitter();
1879 //fitter.setExpression("cspline", nPiece);
1880 //fitter.setIterClipping(thresClip, nIterClip);
1881
1882 int nRow = nrow();
1883 std::vector<bool> chanMask;
1884
1885 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1886 chanMask = getCompositeChanMask(whichrow, mask);
1887 //fitBaseline(chanMask, whichrow, fitter);
1888 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1889 std::vector<int> pieceEdges;
1890 std::vector<float> params;
1891 std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, thresClip, nIterClip, getResidual);
1892 setSpectrum(res, whichrow);
1893 //
1894
1895 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params);
1896 }
1897
1898 if (outTextFile) ofs.close();
1899}
1900
1901void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
1902{
1903 ofstream ofs;
1904 String coordInfo = "";
1905 bool hasSameNchan = true;
1906 bool outTextFile = false;
1907
1908 if (blfile != "") {
1909 ofs.open(blfile.c_str(), ios::out | ios::app);
1910 if (ofs) outTextFile = true;
1911 }
1912
1913 if (outLogger || outTextFile) {
1914 coordInfo = getCoordInfo()[0];
1915 if (coordInfo == "") coordInfo = "channel";
1916 hasSameNchan = hasSameNchanOverIFs();
1917 }
1918
1919 //Fitter fitter = Fitter();
1920 //fitter.setExpression("cspline", nPiece);
1921 //fitter.setIterClipping(thresClip, nIterClip);
1922
1923 int nRow = nrow();
1924 std::vector<bool> chanMask;
1925 int minEdgeSize = getIFNos().size()*2;
1926 STLineFinder lineFinder = STLineFinder();
1927 lineFinder.setOptions(threshold, 3, chanAvgLimit);
1928
1929 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1930
1931 //-------------------------------------------------------
1932 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
1933 //-------------------------------------------------------
1934 int edgeSize = edge.size();
1935 std::vector<int> currentEdge;
1936 if (edgeSize >= 2) {
1937 int idx = 0;
1938 if (edgeSize > 2) {
1939 if (edgeSize < minEdgeSize) {
1940 throw(AipsError("Length of edge element info is less than that of IFs"));
1941 }
1942 idx = 2 * getIF(whichrow);
1943 }
1944 currentEdge.push_back(edge[idx]);
1945 currentEdge.push_back(edge[idx+1]);
1946 } else {
1947 throw(AipsError("Wrong length of edge element"));
1948 }
1949 lineFinder.setData(getSpectrum(whichrow));
1950 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
1951 chanMask = lineFinder.getMask();
1952 //-------------------------------------------------------
1953
1954
1955 //fitBaseline(chanMask, whichrow, fitter);
1956 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1957 std::vector<int> pieceEdges;
1958 std::vector<float> params;
1959 std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, thresClip, nIterClip, getResidual);
1960 setSpectrum(res, whichrow);
1961 //
1962
1963 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params);
1964 }
1965
1966 if (outTextFile) ofs.close();
1967}
1968
1969std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, float thresClip, int nIterClip, bool getResidual)
1970{
1971 if (data.size() != mask.size()) {
1972 throw(AipsError("data and mask sizes are not identical"));
1973 }
1974 if (nPiece < 1) {
1975 throw(AipsError("number of the sections must be one or more"));
1976 }
1977
1978 int nChan = data.size();
1979 std::vector<int> maskArray;
1980 std::vector<int> x;
1981 for (int i = 0; i < nChan; ++i) {
1982 maskArray.push_back(mask[i] ? 1 : 0);
1983 if (mask[i]) {
1984 x.push_back(i);
1985 }
1986 }
1987
1988 int initNData = x.size();
1989
1990 int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
1991 std::vector<double> invEdge;
1992 idxEdge.clear();
1993 idxEdge.push_back(x[0]);
1994 for (int i = 1; i < nPiece; ++i) {
1995 int valX = x[nElement*i];
1996 idxEdge.push_back(valX);
1997 invEdge.push_back(1.0/(double)valX);
1998 }
1999 idxEdge.push_back(x[x.size()-1]+1);
2000
2001 int nData = initNData;
2002 int nDOF = nPiece + 3; //number of parameters to solve, namely, 4+(nPiece-1).
2003
2004 std::vector<double> x1, x2, x3, z1, x1z1, x2z1, x3z1, r1, residual;
2005 for (int i = 0; i < nChan; ++i) {
2006 double di = (double)i;
2007 double dD = (double)data[i];
2008 x1.push_back(di);
2009 x2.push_back(di*di);
2010 x3.push_back(di*di*di);
2011 z1.push_back(dD);
2012 x1z1.push_back(dD*di);
2013 x2z1.push_back(dD*di*di);
2014 x3z1.push_back(dD*di*di*di);
2015 r1.push_back(0.0);
2016 residual.push_back(0.0);
2017 }
2018
2019 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2020 // xMatrix : horizontal concatenation of
2021 // the least-sq. matrix (left) and an
2022 // identity matrix (right).
2023 // the right part is used to calculate the inverse matrix of the left part.
2024 double xMatrix[nDOF][2*nDOF];
2025 double zMatrix[nDOF];
2026 for (int i = 0; i < nDOF; ++i) {
2027 for (int j = 0; j < 2*nDOF; ++j) {
2028 xMatrix[i][j] = 0.0;
2029 }
2030 xMatrix[i][nDOF+i] = 1.0;
2031 zMatrix[i] = 0.0;
2032 }
2033
2034 for (int n = 0; n < nPiece; ++n) {
2035 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2036
2037 if (maskArray[i] == 0) continue;
2038
2039 xMatrix[0][0] += 1.0;
2040 xMatrix[0][1] += x1[i];
2041 xMatrix[0][2] += x2[i];
2042 xMatrix[0][3] += x3[i];
2043 xMatrix[1][1] += x2[i];
2044 xMatrix[1][2] += x3[i];
2045 xMatrix[1][3] += x2[i]*x2[i];
2046 xMatrix[2][2] += x2[i]*x2[i];
2047 xMatrix[2][3] += x3[i]*x2[i];
2048 xMatrix[3][3] += x3[i]*x3[i];
2049 zMatrix[0] += z1[i];
2050 zMatrix[1] += x1z1[i];
2051 zMatrix[2] += x2z1[i];
2052 zMatrix[3] += x3z1[i];
2053
2054 for (int j = 0; j < n; ++j) {
2055 double q = 1.0 - x1[i]*invEdge[j];
2056 q = q*q*q;
2057 xMatrix[0][j+4] += q;
2058 xMatrix[1][j+4] += q*x1[i];
2059 xMatrix[2][j+4] += q*x2[i];
2060 xMatrix[3][j+4] += q*x3[i];
2061 for (int k = 0; k < j; ++k) {
2062 double r = 1.0 - x1[i]*invEdge[k];
2063 r = r*r*r;
2064 xMatrix[k+4][j+4] += r*q;
2065 }
2066 xMatrix[j+4][j+4] += q*q;
2067 zMatrix[j+4] += q*z1[i];
2068 }
2069
2070 }
2071 }
2072
2073 for (int i = 0; i < nDOF; ++i) {
2074 for (int j = 0; j < i; ++j) {
2075 xMatrix[i][j] = xMatrix[j][i];
2076 }
2077 }
2078
2079 std::vector<double> invDiag;
2080 for (int i = 0; i < nDOF; ++i) {
2081 invDiag.push_back(1.0/xMatrix[i][i]);
2082 for (int j = 0; j < nDOF; ++j) {
2083 xMatrix[i][j] *= invDiag[i];
2084 }
2085 }
2086
2087 for (int k = 0; k < nDOF; ++k) {
2088 for (int i = 0; i < nDOF; ++i) {
2089 if (i != k) {
2090 double factor1 = xMatrix[k][k];
2091 double factor2 = xMatrix[i][k];
2092 for (int j = k; j < 2*nDOF; ++j) {
2093 xMatrix[i][j] *= factor1;
2094 xMatrix[i][j] -= xMatrix[k][j]*factor2;
2095 xMatrix[i][j] /= factor1;
2096 }
2097 }
2098 }
2099 double xDiag = xMatrix[k][k];
2100 for (int j = k; j < 2*nDOF; ++j) {
2101 xMatrix[k][j] /= xDiag;
2102 }
2103 }
2104
2105 for (int i = 0; i < nDOF; ++i) {
2106 for (int j = 0; j < nDOF; ++j) {
2107 xMatrix[i][nDOF+j] *= invDiag[j];
2108 }
2109 }
2110 //compute a vector y which consists of the coefficients of the best-fit spline curves
2111 //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
2112 //cubic terms for the other pieces (in case nPiece>1).
2113 std::vector<double> y;
2114 y.clear();
2115 for (int i = 0; i < nDOF; ++i) {
2116 y.push_back(0.0);
2117 for (int j = 0; j < nDOF; ++j) {
2118 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2119 }
2120 }
2121
2122 double a0 = y[0];
2123 double a1 = y[1];
2124 double a2 = y[2];
2125 double a3 = y[3];
2126 params.clear();
2127
2128 for (int n = 0; n < nPiece; ++n) {
2129 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2130 r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
2131 residual[i] = z1[i] - r1[i];
2132 }
2133 params.push_back(a0);
2134 params.push_back(a1);
2135 params.push_back(a2);
2136 params.push_back(a3);
2137
2138 if (n == nPiece-1) break;
2139
2140 double d = y[4+n];
2141 double iE = invEdge[n];
2142 a0 += d;
2143 a1 -= 3.0*d*iE;
2144 a2 += 3.0*d*iE*iE;
2145 a3 -= d*iE*iE*iE;
2146 }
2147
2148 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2149 break;
2150 } else {
2151 double stdDev = 0.0;
2152 for (int i = 0; i < nChan; ++i) {
2153 stdDev += residual[i]*residual[i]*(double)maskArray[i];
2154 }
2155 stdDev = sqrt(stdDev/(double)nData);
2156
2157 double thres = stdDev * thresClip;
2158 int newNData = 0;
2159 for (int i = 0; i < nChan; ++i) {
2160 if (abs(residual[i]) >= thres) {
2161 maskArray[i] = 0;
2162 }
2163 if (maskArray[i] > 0) {
2164 newNData++;
2165 }
2166 }
2167 if (newNData == nData) {
2168 break; //no more flag to add. iteration stops.
2169 } else {
2170 nData = newNData;
2171 }
2172 }
2173 }
2174
2175 std::vector<float> result;
2176 if (getResidual) {
2177 for (int i = 0; i < nChan; ++i) {
2178 result.push_back((float)residual[i]);
2179 }
2180 } else {
2181 for (int i = 0; i < nChan; ++i) {
2182 result.push_back((float)r1[i]);
2183 }
2184 }
2185
2186 return result;
2187}
2188
2189void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::vector<int>& nWaves, float maxWaveLength, float thresClip, int nIterClip, bool getResidual, bool outLogger, const std::string& blfile)
2190{
2191 ofstream ofs;
2192 String coordInfo = "";
2193 bool hasSameNchan = true;
2194 bool outTextFile = false;
2195
2196 if (blfile != "") {
2197 ofs.open(blfile.c_str(), ios::out | ios::app);
2198 if (ofs) outTextFile = true;
2199 }
2200
2201 if (outLogger || outTextFile) {
2202 coordInfo = getCoordInfo()[0];
2203 if (coordInfo == "") coordInfo = "channel";
2204 hasSameNchan = hasSameNchanOverIFs();
2205 }
2206
2207 //Fitter fitter = Fitter();
2208 //fitter.setExpression("sinusoid", nWaves);
2209 //fitter.setIterClipping(thresClip, nIterClip);
2210
2211 int nRow = nrow();
2212 std::vector<bool> chanMask;
2213
2214 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2215 chanMask = getCompositeChanMask(whichrow, mask);
2216 //fitBaseline(chanMask, whichrow, fitter);
2217 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2218 std::vector<float> params;
2219 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, maxWaveLength, params, thresClip, nIterClip, getResidual);
2220 setSpectrum(res, whichrow);
2221 //
2222
2223 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params);
2224 }
2225
2226 if (outTextFile) ofs.close();
2227}
2228
2229void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::vector<int>& nWaves, float maxWaveLength, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
2230{
2231 ofstream ofs;
2232 String coordInfo = "";
2233 bool hasSameNchan = true;
2234 bool outTextFile = false;
2235
2236 if (blfile != "") {
2237 ofs.open(blfile.c_str(), ios::out | ios::app);
2238 if (ofs) outTextFile = true;
2239 }
2240
2241 if (outLogger || outTextFile) {
2242 coordInfo = getCoordInfo()[0];
2243 if (coordInfo == "") coordInfo = "channel";
2244 hasSameNchan = hasSameNchanOverIFs();
2245 }
2246
2247 //Fitter fitter = Fitter();
2248 //fitter.setExpression("sinusoid", nWaves);
2249 //fitter.setIterClipping(thresClip, nIterClip);
2250
2251 int nRow = nrow();
2252 std::vector<bool> chanMask;
2253 int minEdgeSize = getIFNos().size()*2;
2254 STLineFinder lineFinder = STLineFinder();
2255 lineFinder.setOptions(threshold, 3, chanAvgLimit);
2256
2257 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2258
2259 //-------------------------------------------------------
2260 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2261 //-------------------------------------------------------
2262 int edgeSize = edge.size();
2263 std::vector<int> currentEdge;
2264 if (edgeSize >= 2) {
2265 int idx = 0;
2266 if (edgeSize > 2) {
2267 if (edgeSize < minEdgeSize) {
2268 throw(AipsError("Length of edge element info is less than that of IFs"));
2269 }
2270 idx = 2 * getIF(whichrow);
2271 }
2272 currentEdge.push_back(edge[idx]);
2273 currentEdge.push_back(edge[idx+1]);
2274 } else {
2275 throw(AipsError("Wrong length of edge element"));
2276 }
2277 lineFinder.setData(getSpectrum(whichrow));
2278 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2279 chanMask = lineFinder.getMask();
2280 //-------------------------------------------------------
2281
2282
2283 //fitBaseline(chanMask, whichrow, fitter);
2284 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2285 std::vector<float> params;
2286 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, maxWaveLength, params, thresClip, nIterClip, getResidual);
2287 setSpectrum(res, whichrow);
2288 //
2289
2290 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params);
2291 }
2292
2293 if (outTextFile) ofs.close();
2294}
2295
2296std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, float maxWaveLength, std::vector<float>& params, float thresClip, int nIterClip, bool getResidual)
2297{
2298 if (data.size() != mask.size()) {
2299 throw(AipsError("data and mask sizes are not identical"));
2300 }
2301 if (data.size() < 2) {
2302 throw(AipsError("data size is too short"));
2303 }
2304 if (waveNumbers.size() == 0) {
2305 throw(AipsError("missing wave number info"));
2306 }
2307 std::vector<int> nWaves; // sorted and uniqued array of wave numbers
2308 nWaves.reserve(waveNumbers.size());
2309 copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
2310 sort(nWaves.begin(), nWaves.end());
2311 std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
2312 nWaves.erase(end_it, nWaves.end());
2313
2314 int minNWaves = nWaves[0];
2315 if (minNWaves < 0) {
2316 throw(AipsError("wave number must be positive or zero (i.e. constant)"));
2317 }
2318 bool hasConstantTerm = (minNWaves == 0);
2319
2320 int nChan = data.size();
2321 std::vector<int> maskArray;
2322 std::vector<int> x;
2323 for (int i = 0; i < nChan; ++i) {
2324 maskArray.push_back(mask[i] ? 1 : 0);
2325 if (mask[i]) {
2326 x.push_back(i);
2327 }
2328 }
2329
2330 int initNData = x.size();
2331
2332 int nData = initNData;
2333 int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0); //number of parameters to solve.
2334
2335 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
2336 double baseXFactor = 2.0*PI/(double)maxWaveLength/(double)(nChan-1); //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
2337
2338 // xArray : contains elemental values for computing the least-square matrix.
2339 // xArray.size() is nDOF and xArray[*].size() is nChan.
2340 // Each xArray element are as follows:
2341 // xArray[0] = {1.0, 1.0, 1.0, ..., 1.0},
2342 // xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
2343 // xArray[2n] = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
2344 // where (1 <= n <= nMaxWavesInSW),
2345 // or,
2346 // xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
2347 // xArray[2n] = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
2348 // where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
2349 std::vector<std::vector<double> > xArray;
2350 if (hasConstantTerm) {
2351 std::vector<double> xu;
2352 for (int j = 0; j < nChan; ++j) {
2353 xu.push_back(1.0);
2354 }
2355 xArray.push_back(xu);
2356 }
2357 for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
2358 double xFactor = baseXFactor*(double)nWaves[i];
2359 std::vector<double> xs, xc;
2360 xs.clear();
2361 xc.clear();
2362 for (int j = 0; j < nChan; ++j) {
2363 xs.push_back(sin(xFactor*(double)j));
2364 xc.push_back(cos(xFactor*(double)j));
2365 }
2366 xArray.push_back(xs);
2367 xArray.push_back(xc);
2368 }
2369
2370 std::vector<double> z1, r1, residual;
2371 for (int i = 0; i < nChan; ++i) {
2372 z1.push_back((double)data[i]);
2373 r1.push_back(0.0);
2374 residual.push_back(0.0);
2375 }
2376
2377 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2378 // xMatrix : horizontal concatenation of
2379 // the least-sq. matrix (left) and an
2380 // identity matrix (right).
2381 // the right part is used to calculate the inverse matrix of the left part.
2382 double xMatrix[nDOF][2*nDOF];
2383 double zMatrix[nDOF];
2384 for (int i = 0; i < nDOF; ++i) {
2385 for (int j = 0; j < 2*nDOF; ++j) {
2386 xMatrix[i][j] = 0.0;
2387 }
2388 xMatrix[i][nDOF+i] = 1.0;
2389 zMatrix[i] = 0.0;
2390 }
2391
2392 for (int k = 0; k < nChan; ++k) {
2393 if (maskArray[k] == 0) continue;
2394
2395 for (int i = 0; i < nDOF; ++i) {
2396 for (int j = i; j < nDOF; ++j) {
2397 xMatrix[i][j] += xArray[i][k] * xArray[j][k];
2398 }
2399 zMatrix[i] += z1[k] * xArray[i][k];
2400 }
2401 }
2402
2403 for (int i = 0; i < nDOF; ++i) {
2404 for (int j = 0; j < i; ++j) {
2405 xMatrix[i][j] = xMatrix[j][i];
2406 }
2407 }
2408
2409 std::vector<double> invDiag;
2410 for (int i = 0; i < nDOF; ++i) {
2411 invDiag.push_back(1.0/xMatrix[i][i]);
2412 for (int j = 0; j < nDOF; ++j) {
2413 xMatrix[i][j] *= invDiag[i];
2414 }
2415 }
2416
2417 for (int k = 0; k < nDOF; ++k) {
2418 for (int i = 0; i < nDOF; ++i) {
2419 if (i != k) {
2420 double factor1 = xMatrix[k][k];
2421 double factor2 = xMatrix[i][k];
2422 for (int j = k; j < 2*nDOF; ++j) {
2423 xMatrix[i][j] *= factor1;
2424 xMatrix[i][j] -= xMatrix[k][j]*factor2;
2425 xMatrix[i][j] /= factor1;
2426 }
2427 }
2428 }
2429 double xDiag = xMatrix[k][k];
2430 for (int j = k; j < 2*nDOF; ++j) {
2431 xMatrix[k][j] /= xDiag;
2432 }
2433 }
2434
2435 for (int i = 0; i < nDOF; ++i) {
2436 for (int j = 0; j < nDOF; ++j) {
2437 xMatrix[i][nDOF+j] *= invDiag[j];
2438 }
2439 }
2440 //compute a vector y which consists of the coefficients of the sinusoids forming the
2441 //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
2442 //and cosine functions, respectively.
2443 std::vector<double> y;
2444 params.clear();
2445 for (int i = 0; i < nDOF; ++i) {
2446 y.push_back(0.0);
2447 for (int j = 0; j < nDOF; ++j) {
2448 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2449 }
2450 params.push_back(y[i]);
2451 }
2452
2453 for (int i = 0; i < nChan; ++i) {
2454 r1[i] = y[0];
2455 for (int j = 1; j < nDOF; ++j) {
2456 r1[i] += y[j]*xArray[j][i];
2457 }
2458 residual[i] = z1[i] - r1[i];
2459 }
2460
2461 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2462 break;
2463 } else {
2464 double stdDev = 0.0;
2465 for (int i = 0; i < nChan; ++i) {
2466 stdDev += residual[i]*residual[i]*(double)maskArray[i];
2467 }
2468 stdDev = sqrt(stdDev/(double)nData);
2469
2470 double thres = stdDev * thresClip;
2471 int newNData = 0;
2472 for (int i = 0; i < nChan; ++i) {
2473 if (abs(residual[i]) >= thres) {
2474 maskArray[i] = 0;
2475 }
2476 if (maskArray[i] > 0) {
2477 newNData++;
2478 }
2479 }
2480 if (newNData == nData) {
2481 break; //no more flag to add. iteration stops.
2482 } else {
2483 nData = newNData;
2484 }
2485 }
2486 }
2487
2488 std::vector<float> result;
2489 if (getResidual) {
2490 for (int i = 0; i < nChan; ++i) {
2491 result.push_back((float)residual[i]);
2492 }
2493 } else {
2494 for (int i = 0; i < nChan; ++i) {
2495 result.push_back((float)r1[i]);
2496 }
2497 }
2498
2499 return result;
2500}
2501
2502void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
2503{
2504 std::vector<double> dAbcissa = getAbcissa(whichrow);
2505 std::vector<float> abcissa;
2506 for (uInt i = 0; i < dAbcissa.size(); ++i) {
2507 abcissa.push_back((float)dAbcissa[i]);
2508 }
2509 std::vector<float> spec = getSpectrum(whichrow);
2510
2511 fitter.setData(abcissa, spec, mask);
2512 fitter.lfit();
2513}
2514
2515std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
2516{
2517 std::vector<bool> chanMask = getMask(whichrow);
2518 uInt chanMaskSize = chanMask.size();
2519 if (chanMaskSize != inMask.size()) {
2520 throw(AipsError("different mask sizes"));
2521 }
2522 for (uInt i = 0; i < chanMaskSize; ++i) {
2523 chanMask[i] = chanMask[i] && inMask[i];
2524 }
2525
2526 return chanMask;
2527}
2528
2529/*
2530std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
2531{
2532 int edgeSize = edge.size();
2533 std::vector<int> currentEdge;
2534 if (edgeSize >= 2) {
2535 int idx = 0;
2536 if (edgeSize > 2) {
2537 if (edgeSize < minEdgeSize) {
2538 throw(AipsError("Length of edge element info is less than that of IFs"));
2539 }
2540 idx = 2 * getIF(whichrow);
2541 }
2542 currentEdge.push_back(edge[idx]);
2543 currentEdge.push_back(edge[idx+1]);
2544 } else {
2545 throw(AipsError("Wrong length of edge element"));
2546 }
2547
2548 lineFinder.setData(getSpectrum(whichrow));
2549 lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
2550
2551 return lineFinder.getMask();
2552}
2553*/
2554
2555/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK) */
2556void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter) {
2557 if (outLogger || outTextFile) {
2558 std::vector<float> params = fitter.getParameters();
2559 std::vector<bool> fixed = fitter.getFixedParameters();
2560 float rms = getRms(chanMask, whichrow);
2561 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2562
2563 if (outLogger) {
2564 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2565 ols << formatBaselineParams(params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2566 }
2567 if (outTextFile) {
2568 ofs << formatBaselineParams(params, fixed, rms, masklist, whichrow, true) << flush;
2569 }
2570 }
2571}
2572
2573/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
2574void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params) {
2575 if (outLogger || outTextFile) {
2576 float rms = getRms(chanMask, whichrow);
2577 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2578 std::vector<bool> fixed;
2579 fixed.clear();
2580
2581 if (outLogger) {
2582 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2583 ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2584 }
2585 if (outTextFile) {
2586 ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, masklist, whichrow, true) << flush;
2587 }
2588 }
2589}
2590
2591/* for sinusoid. will be merged once sinusoid is available in fitter (2011/3/10 WK) */
2592void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params) {
2593 if (outLogger || outTextFile) {
2594 float rms = getRms(chanMask, whichrow);
2595 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2596 std::vector<bool> fixed;
2597 fixed.clear();
2598
2599 if (outLogger) {
2600 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2601 ols << formatBaselineParams(params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2602 }
2603 if (outTextFile) {
2604 ofs << formatBaselineParams(params, fixed, rms, masklist, whichrow, true) << flush;
2605 }
2606 }
2607}
2608
2609float Scantable::getRms(const std::vector<bool>& mask, int whichrow) {
2610 Vector<Float> spec;
2611 specCol_.get(whichrow, spec);
2612
2613 float mean = 0.0;
2614 float smean = 0.0;
2615 int n = 0;
2616 for (uInt i = 0; i < spec.nelements(); ++i) {
2617 if (mask[i]) {
2618 mean += spec[i];
2619 smean += spec[i]*spec[i];
2620 n++;
2621 }
2622 }
2623
2624 mean /= (float)n;
2625 smean /= (float)n;
2626
2627 return sqrt(smean - mean*mean);
2628}
2629
2630
2631std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose) const
2632{
2633 ostringstream oss;
2634
2635 if (verbose) {
2636 oss << " Scan[" << getScan(whichrow) << "]";
2637 oss << " Beam[" << getBeam(whichrow) << "]";
2638 oss << " IF[" << getIF(whichrow) << "]";
2639 oss << " Pol[" << getPol(whichrow) << "]";
2640 oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
2641 oss << "Fitter range = " << masklist << endl;
2642 oss << "Baseline parameters" << endl;
2643 oss << flush;
2644 }
2645
2646 return String(oss);
2647}
2648
2649std::string Scantable::formatBaselineParamsFooter(float rms, bool verbose) const
2650{
2651 ostringstream oss;
2652
2653 if (verbose) {
2654 oss << "Results of baseline fit" << endl;
2655 oss << " rms = " << setprecision(6) << rms << endl;
2656 for (int i = 0; i < 60; ++i) {
2657 oss << "-";
2658 }
2659 oss << flush;
2660 }
2661
2662 return String(oss);
2663}
2664
2665 std::string Scantable::formatBaselineParams(const std::vector<float>& params, const std::vector<bool>& fixed, float rms, const std::string& masklist, int whichrow, bool verbose, int start, int count, bool resetparamid) const
2666{
2667 int nParam = (int)(params.size());
2668
2669 if (nParam < 1) {
2670 return(" Not fitted");
2671 } else {
2672
2673 ostringstream oss;
2674 oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
2675
2676 if (start < 0) start = 0;
2677 if (count < 0) count = nParam;
2678 int end = start + count;
2679 if (end > nParam) end = nParam;
2680 int paramidoffset = (resetparamid) ? (-start) : 0;
2681
2682 for (int i = start; i < end; ++i) {
2683 if (i > start) {
2684 oss << ",";
2685 }
2686 std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
2687 oss << " p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
2688 }
2689
2690 oss << endl;
2691 oss << formatBaselineParamsFooter(rms, verbose);
2692
2693 return String(oss);
2694 }
2695
2696}
2697
2698std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, const std::string& masklist, int whichrow, bool verbose) const
2699{
2700 int nOutParam = (int)(params.size());
2701 int nPiece = (int)(ranges.size()) - 1;
2702
2703 if (nOutParam < 1) {
2704 return(" Not fitted");
2705 } else if (nPiece < 0) {
2706 return formatBaselineParams(params, fixed, rms, masklist, whichrow, verbose);
2707 } else if (nPiece < 1) {
2708 return(" Bad count of the piece edge info");
2709 } else if (nOutParam % nPiece != 0) {
2710 return(" Bad count of the output baseline parameters");
2711 } else {
2712
2713 int nParam = nOutParam / nPiece;
2714
2715 ostringstream oss;
2716 oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
2717
2718 stringstream ss;
2719 ss << ranges[nPiece] << flush;
2720 int wRange = ss.str().size() * 2 + 5;
2721
2722 for (int i = 0; i < nPiece; ++i) {
2723 ss.str("");
2724 ss << " [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
2725 oss << left << setw(wRange) << ss.str();
2726 oss << formatBaselineParams(params, fixed, rms, masklist, whichrow, false, i*nParam, nParam, true);
2727 }
2728
2729 oss << formatBaselineParamsFooter(rms, verbose);
2730
2731 return String(oss);
2732 }
2733
2734}
2735
2736bool Scantable::hasSameNchanOverIFs()
2737{
2738 int nIF = nif(-1);
2739 int nCh;
2740 int totalPositiveNChan = 0;
2741 int nPositiveNChan = 0;
2742
2743 for (int i = 0; i < nIF; ++i) {
2744 nCh = nchan(i);
2745 if (nCh > 0) {
2746 totalPositiveNChan += nCh;
2747 nPositiveNChan++;
2748 }
2749 }
2750
2751 return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
2752}
2753
2754std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
2755{
2756 if (mask.size() < 2) {
2757 throw(AipsError("The mask elements should be > 1"));
2758 }
2759 int IF = getIF(whichrow);
2760 if (mask.size() != (uInt)nchan(IF)) {
2761 throw(AipsError("Number of channels in scantable != number of mask elements"));
2762 }
2763
2764 if (verbose) {
2765 LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
2766 logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
2767 if (!hasSameNchan) {
2768 logOs << endl << "This mask is only valid for IF=" << IF;
2769 }
2770 logOs << LogIO::POST;
2771 }
2772
2773 std::vector<double> abcissa = getAbcissa(whichrow);
2774 std::vector<int> edge = getMaskEdgeIndices(mask);
2775
2776 ostringstream oss;
2777 oss.setf(ios::fixed);
2778 oss << setprecision(1) << "[";
2779 for (uInt i = 0; i < edge.size(); i+=2) {
2780 if (i > 0) oss << ",";
2781 oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
2782 }
2783 oss << "]" << flush;
2784
2785 return String(oss);
2786}
2787
2788std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
2789{
2790 if (mask.size() < 2) {
2791 throw(AipsError("The mask elements should be > 1"));
2792 }
2793
2794 std::vector<int> out, startIndices, endIndices;
2795 int maskSize = mask.size();
2796
2797 startIndices.clear();
2798 endIndices.clear();
2799
2800 if (mask[0]) {
2801 startIndices.push_back(0);
2802 }
2803 for (int i = 1; i < maskSize; ++i) {
2804 if ((!mask[i-1]) && mask[i]) {
2805 startIndices.push_back(i);
2806 } else if (mask[i-1] && (!mask[i])) {
2807 endIndices.push_back(i-1);
2808 }
2809 }
2810 if (mask[maskSize-1]) {
2811 endIndices.push_back(maskSize-1);
2812 }
2813
2814 if (startIndices.size() != endIndices.size()) {
2815 throw(AipsError("Inconsistent Mask Size: bad data?"));
2816 }
2817 for (uInt i = 0; i < startIndices.size(); ++i) {
2818 if (startIndices[i] > endIndices[i]) {
2819 throw(AipsError("Mask start index > mask end index"));
2820 }
2821 }
2822
2823 out.clear();
2824 for (uInt i = 0; i < startIndices.size(); ++i) {
2825 out.push_back(startIndices[i]);
2826 out.push_back(endIndices[i]);
2827 }
2828
2829 return out;
2830}
2831
2832
2833/*
2834STFitEntry Scantable::polyBaseline(const std::vector<bool>& mask, int order, int rowno)
2835{
2836 Fitter fitter = Fitter();
2837 fitter.setExpression("poly", order);
2838
2839 std::vector<bool> fmask = getMask(rowno);
2840 if (fmask.size() != mask.size()) {
2841 throw(AipsError("different mask sizes"));
2842 }
2843 for (int i = 0; i < fmask.size(); ++i) {
2844 fmask[i] = fmask[i] && mask[i];
2845 }
2846
2847 fitBaseline(fmask, rowno, fitter);
2848 setSpectrum(fitter.getResidual(), rowno);
2849 return fitter.getFitEntry();
2850}
2851*/
2852
2853}
2854//namespace asap
Note: See TracBrowser for help on using the repository browser.