source: branches/casa-prerelease/pre-asap/src/Scantable.cpp@ 2133

Last change on this file since 2133 was 2132, checked in by Kana Sugimoto, 14 years ago

merged a bug fix in trunk (r2131)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 88.1 KB
Line 
1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12#include <map>
13#include <fstream>
14
15#include <casa/aips.h>
16#include <casa/iostream.h>
17#include <casa/iomanip.h>
18#include <casa/OS/Path.h>
19#include <casa/OS/File.h>
20#include <casa/Arrays/Array.h>
21#include <casa/Arrays/ArrayMath.h>
22#include <casa/Arrays/MaskArrMath.h>
23#include <casa/Arrays/ArrayLogical.h>
24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/Vector.h>
26#include <casa/Arrays/VectorSTLIterator.h>
27#include <casa/Arrays/Slice.h>
28#include <casa/BasicMath/Math.h>
29#include <casa/BasicSL/Constants.h>
30#include <casa/Quanta/MVAngle.h>
31#include <casa/Containers/RecordField.h>
32#include <casa/Utilities/GenSort.h>
33#include <casa/Logging/LogIO.h>
34
35#include <tables/Tables/TableParse.h>
36#include <tables/Tables/TableDesc.h>
37#include <tables/Tables/TableCopy.h>
38#include <tables/Tables/SetupNewTab.h>
39#include <tables/Tables/ScaColDesc.h>
40#include <tables/Tables/ArrColDesc.h>
41#include <tables/Tables/TableRow.h>
42#include <tables/Tables/TableVector.h>
43#include <tables/Tables/TableIter.h>
44
45#include <tables/Tables/ExprNode.h>
46#include <tables/Tables/TableRecord.h>
47#include <casa/Quanta/MVTime.h>
48#include <casa/Quanta/MVAngle.h>
49#include <measures/Measures/MeasRef.h>
50#include <measures/Measures/MeasTable.h>
51// needed to avoid error in .tcc
52#include <measures/Measures/MCDirection.h>
53//
54#include <measures/Measures/MDirection.h>
55#include <measures/Measures/MFrequency.h>
56#include <measures/Measures/MEpoch.h>
57#include <measures/TableMeasures/TableMeasRefDesc.h>
58#include <measures/TableMeasures/TableMeasValueDesc.h>
59#include <measures/TableMeasures/TableMeasDesc.h>
60#include <measures/TableMeasures/ScalarMeasColumn.h>
61#include <coordinates/Coordinates/CoordinateUtil.h>
62
63#include <atnf/PKSIO/SrcType.h>
64#include "Scantable.h"
65#include "STPolLinear.h"
66#include "STPolCircular.h"
67#include "STPolStokes.h"
68#include "STAttr.h"
69#include "STLineFinder.h"
70#include "MathUtils.h"
71
72using namespace casa;
73
74namespace asap {
75
76std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
77
78void Scantable::initFactories() {
79 if ( factories_.empty() ) {
80 Scantable::factories_["linear"] = &STPolLinear::myFactory;
81 Scantable::factories_["circular"] = &STPolCircular::myFactory;
82 Scantable::factories_["stokes"] = &STPolStokes::myFactory;
83 }
84}
85
86Scantable::Scantable(Table::TableType ttype) :
87 type_(ttype)
88{
89 initFactories();
90 setupMainTable();
91 freqTable_ = STFrequencies(*this);
92 table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
93 weatherTable_ = STWeather(*this);
94 table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
95 focusTable_ = STFocus(*this);
96 table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
97 tcalTable_ = STTcal(*this);
98 table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
99 moleculeTable_ = STMolecules(*this);
100 table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
101 historyTable_ = STHistory(*this);
102 table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
103 fitTable_ = STFit(*this);
104 table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
105 table_.tableInfo().setType( "Scantable" ) ;
106 originalTable_ = table_;
107 attach();
108}
109
110Scantable::Scantable(const std::string& name, Table::TableType ttype) :
111 type_(ttype)
112{
113 initFactories();
114
115 Table tab(name, Table::Update);
116 uInt version = tab.keywordSet().asuInt("VERSION");
117 if (version != version_) {
118 throw(AipsError("Unsupported version of ASAP file."));
119 }
120 if ( type_ == Table::Memory ) {
121 table_ = tab.copyToMemoryTable(generateName());
122 } else {
123 table_ = tab;
124 }
125 table_.tableInfo().setType( "Scantable" ) ;
126
127 attachSubtables();
128 originalTable_ = table_;
129 attach();
130}
131/*
132Scantable::Scantable(const std::string& name, Table::TableType ttype) :
133 type_(ttype)
134{
135 initFactories();
136 Table tab(name, Table::Update);
137 uInt version = tab.keywordSet().asuInt("VERSION");
138 if (version != version_) {
139 throw(AipsError("Unsupported version of ASAP file."));
140 }
141 if ( type_ == Table::Memory ) {
142 table_ = tab.copyToMemoryTable(generateName());
143 } else {
144 table_ = tab;
145 }
146
147 attachSubtables();
148 originalTable_ = table_;
149 attach();
150}
151*/
152
153Scantable::Scantable( const Scantable& other, bool clear )
154{
155 // with or without data
156 String newname = String(generateName());
157 type_ = other.table_.tableType();
158 if ( other.table_.tableType() == Table::Memory ) {
159 if ( clear ) {
160 table_ = TableCopy::makeEmptyMemoryTable(newname,
161 other.table_, True);
162 } else
163 table_ = other.table_.copyToMemoryTable(newname);
164 } else {
165 other.table_.deepCopy(newname, Table::New, False,
166 other.table_.endianFormat(),
167 Bool(clear));
168 table_ = Table(newname, Table::Update);
169 table_.markForDelete();
170 }
171 table_.tableInfo().setType( "Scantable" ) ;
172 /// @todo reindex SCANNO, recompute nbeam, nif, npol
173 if ( clear ) copySubtables(other);
174 attachSubtables();
175 originalTable_ = table_;
176 attach();
177}
178
179void Scantable::copySubtables(const Scantable& other) {
180 Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
181 TableCopy::copyRows(t, other.freqTable_.table());
182 t = table_.rwKeywordSet().asTable("FOCUS");
183 TableCopy::copyRows(t, other.focusTable_.table());
184 t = table_.rwKeywordSet().asTable("WEATHER");
185 TableCopy::copyRows(t, other.weatherTable_.table());
186 t = table_.rwKeywordSet().asTable("TCAL");
187 TableCopy::copyRows(t, other.tcalTable_.table());
188 t = table_.rwKeywordSet().asTable("MOLECULES");
189 TableCopy::copyRows(t, other.moleculeTable_.table());
190 t = table_.rwKeywordSet().asTable("HISTORY");
191 TableCopy::copyRows(t, other.historyTable_.table());
192 t = table_.rwKeywordSet().asTable("FIT");
193 TableCopy::copyRows(t, other.fitTable_.table());
194}
195
196void Scantable::attachSubtables()
197{
198 freqTable_ = STFrequencies(table_);
199 focusTable_ = STFocus(table_);
200 weatherTable_ = STWeather(table_);
201 tcalTable_ = STTcal(table_);
202 moleculeTable_ = STMolecules(table_);
203 historyTable_ = STHistory(table_);
204 fitTable_ = STFit(table_);
205}
206
207Scantable::~Scantable()
208{
209 //cout << "~Scantable() " << this << endl;
210}
211
212void Scantable::setupMainTable()
213{
214 TableDesc td("", "1", TableDesc::Scratch);
215 td.comment() = "An ASAP Scantable";
216 td.rwKeywordSet().define("VERSION", uInt(version_));
217
218 // n Cycles
219 td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
220 // new index every nBeam x nIF x nPol
221 td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
222
223 td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
224 td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
225 // linear, circular, stokes
226 td.rwKeywordSet().define("POLTYPE", String("linear"));
227 td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
228
229 td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
230 td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
231
232 ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
233 refbeamnoColumn.setDefault(Int(-1));
234 td.addColumn(refbeamnoColumn);
235
236 ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
237 flagrowColumn.setDefault(uInt(0));
238 td.addColumn(flagrowColumn);
239
240 td.addColumn(ScalarColumnDesc<Double>("TIME"));
241 TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
242 TableMeasValueDesc measVal(td, "TIME");
243 TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
244 mepochCol.write(td);
245
246 td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
247
248 td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
249 // Type of source (on=0, off=1, other=-1)
250 ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
251 stypeColumn.setDefault(Int(-1));
252 td.addColumn(stypeColumn);
253 td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
254
255 //The actual Data Vectors
256 td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
257 td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
258 td.addColumn(ArrayColumnDesc<Float>("TSYS"));
259
260 td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
261 IPosition(1,2),
262 ColumnDesc::Direct));
263 TableMeasRefDesc mdirRef(MDirection::J2000); // default
264 TableMeasValueDesc tmvdMDir(td, "DIRECTION");
265 // the TableMeasDesc gives the column a type
266 TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
267 // a uder set table type e.g. GALCTIC, B1950 ...
268 td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
269 // writing create the measure column
270 mdirCol.write(td);
271 td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
272 td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
273 td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
274
275 td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
276 ScalarColumnDesc<Int> fitColumn("FIT_ID");
277 fitColumn.setDefault(Int(-1));
278 td.addColumn(fitColumn);
279
280 td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
281 td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
282
283 // columns which just get dragged along, as they aren't used in asap
284 td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
285 td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
286 td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
287 td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
288
289 td.rwKeywordSet().define("OBSMODE", String(""));
290
291 // Now create Table SetUp from the description.
292 SetupNewTable aNewTab(generateName(), td, Table::Scratch);
293 table_ = Table(aNewTab, type_, 0);
294 originalTable_ = table_;
295}
296
297void Scantable::attach()
298{
299 timeCol_.attach(table_, "TIME");
300 srcnCol_.attach(table_, "SRCNAME");
301 srctCol_.attach(table_, "SRCTYPE");
302 specCol_.attach(table_, "SPECTRA");
303 flagsCol_.attach(table_, "FLAGTRA");
304 tsysCol_.attach(table_, "TSYS");
305 cycleCol_.attach(table_,"CYCLENO");
306 scanCol_.attach(table_, "SCANNO");
307 beamCol_.attach(table_, "BEAMNO");
308 ifCol_.attach(table_, "IFNO");
309 polCol_.attach(table_, "POLNO");
310 integrCol_.attach(table_, "INTERVAL");
311 azCol_.attach(table_, "AZIMUTH");
312 elCol_.attach(table_, "ELEVATION");
313 dirCol_.attach(table_, "DIRECTION");
314 fldnCol_.attach(table_, "FIELDNAME");
315 rbeamCol_.attach(table_, "REFBEAMNO");
316
317 mweatheridCol_.attach(table_,"WEATHER_ID");
318 mfitidCol_.attach(table_,"FIT_ID");
319 mfreqidCol_.attach(table_, "FREQ_ID");
320 mtcalidCol_.attach(table_, "TCAL_ID");
321 mfocusidCol_.attach(table_, "FOCUS_ID");
322 mmolidCol_.attach(table_, "MOLECULE_ID");
323
324 //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
325 attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
326
327}
328
329template<class T, class T2>
330void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
331 const String& colName,
332 const T2& defValue)
333{
334 try {
335 col.attach(table_, colName);
336 } catch (TableError& err) {
337 String errMesg = err.getMesg();
338 if (errMesg == "Table column " + colName + " is unknown") {
339 table_.addColumn(ScalarColumnDesc<T>(colName));
340 col.attach(table_, colName);
341 col.fillColumn(static_cast<T>(defValue));
342 } else {
343 throw;
344 }
345 } catch (...) {
346 throw;
347 }
348}
349
350template<class T, class T2>
351void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
352 const String& colName,
353 const Array<T2>& defValue)
354{
355 try {
356 col.attach(table_, colName);
357 } catch (TableError& err) {
358 String errMesg = err.getMesg();
359 if (errMesg == "Table column " + colName + " is unknown") {
360 table_.addColumn(ArrayColumnDesc<T>(colName));
361 col.attach(table_, colName);
362
363 int size = 0;
364 ArrayIterator<T2>& it = defValue.begin();
365 while (it != defValue.end()) {
366 ++size;
367 ++it;
368 }
369 IPosition ip(1, size);
370 Array<T>& arr(ip);
371 for (int i = 0; i < size; ++i)
372 arr[i] = static_cast<T>(defValue[i]);
373
374 col.fillColumn(arr);
375 } else {
376 throw;
377 }
378 } catch (...) {
379 throw;
380 }
381}
382
383void Scantable::setHeader(const STHeader& sdh)
384{
385 table_.rwKeywordSet().define("nIF", sdh.nif);
386 table_.rwKeywordSet().define("nBeam", sdh.nbeam);
387 table_.rwKeywordSet().define("nPol", sdh.npol);
388 table_.rwKeywordSet().define("nChan", sdh.nchan);
389 table_.rwKeywordSet().define("Observer", sdh.observer);
390 table_.rwKeywordSet().define("Project", sdh.project);
391 table_.rwKeywordSet().define("Obstype", sdh.obstype);
392 table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
393 table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
394 table_.rwKeywordSet().define("Equinox", sdh.equinox);
395 table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
396 table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
397 table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
398 table_.rwKeywordSet().define("UTC", sdh.utc);
399 table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
400 table_.rwKeywordSet().define("Epoch", sdh.epoch);
401 table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
402}
403
404STHeader Scantable::getHeader() const
405{
406 STHeader sdh;
407 table_.keywordSet().get("nBeam",sdh.nbeam);
408 table_.keywordSet().get("nIF",sdh.nif);
409 table_.keywordSet().get("nPol",sdh.npol);
410 table_.keywordSet().get("nChan",sdh.nchan);
411 table_.keywordSet().get("Observer", sdh.observer);
412 table_.keywordSet().get("Project", sdh.project);
413 table_.keywordSet().get("Obstype", sdh.obstype);
414 table_.keywordSet().get("AntennaName", sdh.antennaname);
415 table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
416 table_.keywordSet().get("Equinox", sdh.equinox);
417 table_.keywordSet().get("FreqRefFrame", sdh.freqref);
418 table_.keywordSet().get("FreqRefVal", sdh.reffreq);
419 table_.keywordSet().get("Bandwidth", sdh.bandwidth);
420 table_.keywordSet().get("UTC", sdh.utc);
421 table_.keywordSet().get("FluxUnit", sdh.fluxunit);
422 table_.keywordSet().get("Epoch", sdh.epoch);
423 table_.keywordSet().get("POLTYPE", sdh.poltype);
424 return sdh;
425}
426
427void Scantable::setSourceType( int stype )
428{
429 if ( stype < 0 || stype > 1 )
430 throw(AipsError("Illegal sourcetype."));
431 TableVector<Int> tabvec(table_, "SRCTYPE");
432 tabvec = Int(stype);
433}
434
435bool Scantable::conformant( const Scantable& other )
436{
437 return this->getHeader().conformant(other.getHeader());
438}
439
440
441
442std::string Scantable::formatSec(Double x) const
443{
444 Double xcop = x;
445 MVTime mvt(xcop/24./3600.); // make days
446
447 if (x < 59.95)
448 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
449 else if (x < 3599.95)
450 return String(" ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
451 else {
452 ostringstream oss;
453 oss << setw(2) << std::right << setprecision(1) << mvt.hour();
454 oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
455 return String(oss);
456 }
457};
458
459std::string Scantable::formatDirection(const MDirection& md) const
460{
461 Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
462 Int prec = 7;
463
464 MVAngle mvLon(t[0]);
465 String sLon = mvLon.string(MVAngle::TIME,prec);
466 uInt tp = md.getRef().getType();
467 if (tp == MDirection::GALACTIC ||
468 tp == MDirection::SUPERGAL ) {
469 sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
470 }
471 MVAngle mvLat(t[1]);
472 String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
473 return sLon + String(" ") + sLat;
474}
475
476
477std::string Scantable::getFluxUnit() const
478{
479 return table_.keywordSet().asString("FluxUnit");
480}
481
482void Scantable::setFluxUnit(const std::string& unit)
483{
484 String tmp(unit);
485 Unit tU(tmp);
486 if (tU==Unit("K") || tU==Unit("Jy")) {
487 table_.rwKeywordSet().define(String("FluxUnit"), tmp);
488 } else {
489 throw AipsError("Illegal unit - must be compatible with Jy or K");
490 }
491}
492
493void Scantable::setInstrument(const std::string& name)
494{
495 bool throwIt = true;
496 // create an Instrument to see if this is valid
497 STAttr::convertInstrument(name, throwIt);
498 String nameU(name);
499 nameU.upcase();
500 table_.rwKeywordSet().define(String("AntennaName"), nameU);
501}
502
503void Scantable::setFeedType(const std::string& feedtype)
504{
505 if ( Scantable::factories_.find(feedtype) == Scantable::factories_.end() ) {
506 std::string msg = "Illegal feed type "+ feedtype;
507 throw(casa::AipsError(msg));
508 }
509 table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
510}
511
512MPosition Scantable::getAntennaPosition() const
513{
514 Vector<Double> antpos;
515 table_.keywordSet().get("AntennaPosition", antpos);
516 MVPosition mvpos(antpos(0),antpos(1),antpos(2));
517 return MPosition(mvpos);
518}
519
520void Scantable::makePersistent(const std::string& filename)
521{
522 String inname(filename);
523 Path path(inname);
524 /// @todo reindex SCANNO, recompute nbeam, nif, npol
525 inname = path.expandedName();
526 // 2011/03/04 TN
527 // We can comment out this workaround since the essential bug is
528 // fixed in casacore (r20889 in google code).
529 table_.deepCopy(inname, Table::New);
530// // WORKAROUND !!! for Table bug
531// // Remove when fixed in casacore
532// if ( table_.tableType() == Table::Memory && !selector_.empty() ) {
533// Table tab = table_.copyToMemoryTable(generateName());
534// tab.deepCopy(inname, Table::New);
535// tab.markForDelete();
536//
537// } else {
538// table_.deepCopy(inname, Table::New);
539// }
540}
541
542int Scantable::nbeam( int scanno ) const
543{
544 if ( scanno < 0 ) {
545 Int n;
546 table_.keywordSet().get("nBeam",n);
547 return int(n);
548 } else {
549 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
550 Table t = table_(table_.col("SCANNO") == scanno);
551 ROTableRow row(t);
552 const TableRecord& rec = row.get(0);
553 Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
554 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
555 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
556 ROTableVector<uInt> v(subt, "BEAMNO");
557 return int(v.nelements());
558 }
559 return 0;
560}
561
562int Scantable::nif( int scanno ) const
563{
564 if ( scanno < 0 ) {
565 Int n;
566 table_.keywordSet().get("nIF",n);
567 return int(n);
568 } else {
569 // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
570 Table t = table_(table_.col("SCANNO") == scanno);
571 ROTableRow row(t);
572 const TableRecord& rec = row.get(0);
573 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
574 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
575 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
576 if ( subt.nrow() == 0 ) return 0;
577 ROTableVector<uInt> v(subt, "IFNO");
578 return int(v.nelements());
579 }
580 return 0;
581}
582
583int Scantable::npol( int scanno ) const
584{
585 if ( scanno < 0 ) {
586 Int n;
587 table_.keywordSet().get("nPol",n);
588 return n;
589 } else {
590 // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
591 Table t = table_(table_.col("SCANNO") == scanno);
592 ROTableRow row(t);
593 const TableRecord& rec = row.get(0);
594 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
595 && t.col("IFNO") == Int(rec.asuInt("IFNO"))
596 && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
597 if ( subt.nrow() == 0 ) return 0;
598 ROTableVector<uInt> v(subt, "POLNO");
599 return int(v.nelements());
600 }
601 return 0;
602}
603
604int Scantable::ncycle( int scanno ) const
605{
606 if ( scanno < 0 ) {
607 Block<String> cols(2);
608 cols[0] = "SCANNO";
609 cols[1] = "CYCLENO";
610 TableIterator it(table_, cols);
611 int n = 0;
612 while ( !it.pastEnd() ) {
613 ++n;
614 ++it;
615 }
616 return n;
617 } else {
618 Table t = table_(table_.col("SCANNO") == scanno);
619 ROTableRow row(t);
620 const TableRecord& rec = row.get(0);
621 Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
622 && t.col("POLNO") == Int(rec.asuInt("POLNO"))
623 && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
624 if ( subt.nrow() == 0 ) return 0;
625 return int(subt.nrow());
626 }
627 return 0;
628}
629
630
631int Scantable::nrow( int scanno ) const
632{
633 return int(table_.nrow());
634}
635
636int Scantable::nchan( int ifno ) const
637{
638 if ( ifno < 0 ) {
639 Int n;
640 table_.keywordSet().get("nChan",n);
641 return int(n);
642 } else {
643 // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
644 // vary with these
645 Table t = table_(table_.col("IFNO") == ifno);
646 if ( t.nrow() == 0 ) return 0;
647 ROArrayColumn<Float> v(t, "SPECTRA");
648 return v.shape(0)(0);
649 }
650 return 0;
651}
652
653int Scantable::nscan() const {
654 Vector<uInt> scannos(scanCol_.getColumn());
655 uInt nout = genSort( scannos, Sort::Ascending,
656 Sort::QuickSort|Sort::NoDuplicates );
657 return int(nout);
658}
659
660int Scantable::getChannels(int whichrow) const
661{
662 return specCol_.shape(whichrow)(0);
663}
664
665int Scantable::getBeam(int whichrow) const
666{
667 return beamCol_(whichrow);
668}
669
670std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
671{
672 Vector<uInt> nos(col.getColumn());
673 uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
674 nos.resize(n, True);
675 std::vector<uint> stlout;
676 nos.tovector(stlout);
677 return stlout;
678}
679
680int Scantable::getIF(int whichrow) const
681{
682 return ifCol_(whichrow);
683}
684
685int Scantable::getPol(int whichrow) const
686{
687 return polCol_(whichrow);
688}
689
690std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
691{
692 return formatTime(me, showdate, 0);
693}
694
695std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
696{
697 MVTime mvt(me.getValue());
698 if (showdate)
699 //mvt.setFormat(MVTime::YMD);
700 mvt.setFormat(MVTime::YMD, prec);
701 else
702 //mvt.setFormat(MVTime::TIME);
703 mvt.setFormat(MVTime::TIME, prec);
704 ostringstream oss;
705 oss << mvt;
706 return String(oss);
707}
708
709void Scantable::calculateAZEL()
710{
711 MPosition mp = getAntennaPosition();
712 MEpoch::ROScalarColumn timeCol(table_, "TIME");
713 ostringstream oss;
714 oss << "Computed azimuth/elevation using " << endl
715 << mp << endl;
716 for (Int i=0; i<nrow(); ++i) {
717 MEpoch me = timeCol(i);
718 MDirection md = getDirection(i);
719 oss << " Time: " << formatTime(me,False) << " Direction: " << formatDirection(md)
720 << endl << " => ";
721 MeasFrame frame(mp, me);
722 Vector<Double> azel =
723 MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
724 frame)
725 )().getAngle("rad").getValue();
726 azCol_.put(i,Float(azel[0]));
727 elCol_.put(i,Float(azel[1]));
728 oss << "azel: " << azel[0]/C::pi*180.0 << " "
729 << azel[1]/C::pi*180.0 << " (deg)" << endl;
730 }
731 pushLog(String(oss));
732}
733
734void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
735{
736 for (uInt i=0; i<table_.nrow(); ++i) {
737 Vector<uChar> flgs = flagsCol_(i);
738 srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
739 flagsCol_.put(i, flgs);
740 }
741}
742
743std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
744{
745 Vector<uChar> flags;
746 flagsCol_.get(uInt(whichrow), flags);
747 srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
748 Vector<Bool> bflag(flags.shape());
749 convertArray(bflag, flags);
750 //bflag = !bflag;
751
752 std::vector<bool> mask;
753 bflag.tovector(mask);
754 return mask;
755}
756
757void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
758 Vector<uChar> flgs)
759{
760 Vector<Float> spcs = specCol_(whichrow);
761 uInt nchannel = nchan();
762 if (spcs.nelements() != nchannel) {
763 throw(AipsError("Data has incorrect number of channels"));
764 }
765 uChar userflag = 1 << 7;
766 if (unflag) {
767 userflag = 0 << 7;
768 }
769 if (clipoutside) {
770 for (uInt j = 0; j < nchannel; ++j) {
771 Float spc = spcs(j);
772 if ((spc >= uthres) || (spc <= dthres)) {
773 flgs(j) = userflag;
774 }
775 }
776 } else {
777 for (uInt j = 0; j < nchannel; ++j) {
778 Float spc = spcs(j);
779 if ((spc < uthres) && (spc > dthres)) {
780 flgs(j) = userflag;
781 }
782 }
783 }
784}
785
786
787void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
788 std::vector<bool>::const_iterator it;
789 uInt ntrue = 0;
790 if (whichrow >= int(table_.nrow()) ) {
791 throw(AipsError("Invalid row number"));
792 }
793 for (it = msk.begin(); it != msk.end(); ++it) {
794 if ( *it ) {
795 ntrue++;
796 }
797 }
798 //if ( selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
799 if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
800 throw(AipsError("Trying to flag whole scantable."));
801 uChar userflag = 1 << 7;
802 if ( unflag ) {
803 userflag = 0 << 7;
804 }
805 if (whichrow > -1 ) {
806 applyChanFlag(uInt(whichrow), msk, userflag);
807 } else {
808 for ( uInt i=0; i<table_.nrow(); ++i) {
809 applyChanFlag(i, msk, userflag);
810 }
811 }
812}
813
814void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
815{
816 if (whichrow >= table_.nrow() ) {
817 throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
818 }
819 Vector<uChar> flgs = flagsCol_(whichrow);
820 if ( msk.size() == 0 ) {
821 flgs = flagval;
822 flagsCol_.put(whichrow, flgs);
823 return;
824 }
825 if ( int(msk.size()) != nchan() ) {
826 throw(AipsError("Mask has incorrect number of channels."));
827 }
828 if ( flgs.nelements() != msk.size() ) {
829 throw(AipsError("Mask has incorrect number of channels."
830 " Probably varying with IF. Please flag per IF"));
831 }
832 std::vector<bool>::const_iterator it;
833 uInt j = 0;
834 for (it = msk.begin(); it != msk.end(); ++it) {
835 if ( *it ) {
836 flgs(j) = flagval;
837 }
838 ++j;
839 }
840 flagsCol_.put(whichrow, flgs);
841}
842
843void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
844{
845 if ( selector_.empty() && (rows.size() == table_.nrow()) )
846 throw(AipsError("Trying to flag whole scantable."));
847
848 uInt rowflag = (unflag ? 0 : 1);
849 std::vector<uInt>::const_iterator it;
850 for (it = rows.begin(); it != rows.end(); ++it)
851 flagrowCol_.put(*it, rowflag);
852}
853
854std::vector<bool> Scantable::getMask(int whichrow) const
855{
856 Vector<uChar> flags;
857 flagsCol_.get(uInt(whichrow), flags);
858 Vector<Bool> bflag(flags.shape());
859 convertArray(bflag, flags);
860 bflag = !bflag;
861 std::vector<bool> mask;
862 bflag.tovector(mask);
863 return mask;
864}
865
866std::vector<float> Scantable::getSpectrum( int whichrow,
867 const std::string& poltype ) const
868{
869 String ptype = poltype;
870 if (poltype == "" ) ptype = getPolType();
871 if ( whichrow < 0 || whichrow >= nrow() )
872 throw(AipsError("Illegal row number."));
873 std::vector<float> out;
874 Vector<Float> arr;
875 uInt requestedpol = polCol_(whichrow);
876 String basetype = getPolType();
877 if ( ptype == basetype ) {
878 specCol_.get(whichrow, arr);
879 } else {
880 CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
881 basetype));
882 uInt row = uInt(whichrow);
883 stpol->setSpectra(getPolMatrix(row));
884 Float fang,fhand;
885 fang = focusTable_.getTotalAngle(mfocusidCol_(row));
886 fhand = focusTable_.getFeedHand(mfocusidCol_(row));
887 stpol->setPhaseCorrections(fang, fhand);
888 arr = stpol->getSpectrum(requestedpol, ptype);
889 }
890 if ( arr.nelements() == 0 )
891 pushLog("Not enough polarisations present to do the conversion.");
892 arr.tovector(out);
893 return out;
894}
895
896void Scantable::setSpectrum( const std::vector<float>& spec,
897 int whichrow )
898{
899 Vector<Float> spectrum(spec);
900 Vector<Float> arr;
901 specCol_.get(whichrow, arr);
902 if ( spectrum.nelements() != arr.nelements() )
903 throw AipsError("The spectrum has incorrect number of channels.");
904 specCol_.put(whichrow, spectrum);
905}
906
907
908String Scantable::generateName()
909{
910 return (File::newUniqueName("./","temp")).baseName();
911}
912
913const casa::Table& Scantable::table( ) const
914{
915 return table_;
916}
917
918casa::Table& Scantable::table( )
919{
920 return table_;
921}
922
923std::string Scantable::getPolType() const
924{
925 return table_.keywordSet().asString("POLTYPE");
926}
927
928void Scantable::unsetSelection()
929{
930 table_ = originalTable_;
931 attach();
932 selector_.reset();
933}
934
935void Scantable::setSelection( const STSelector& selection )
936{
937 Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
938 if ( tab.nrow() == 0 ) {
939 throw(AipsError("Selection contains no data. Not applying it."));
940 }
941 table_ = tab;
942 attach();
943 selector_ = selection;
944}
945
946
947std::string Scantable::headerSummary( bool verbose )
948{
949 // Format header info
950// STHeader sdh;
951// sdh = getHeader();
952// sdh.print();
953 ostringstream oss;
954 oss.flags(std::ios_base::left);
955 oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
956 << setw(15) << "IFs:" << setw(4) << nif() << endl
957 << setw(15) << "Polarisations:" << setw(4) << npol()
958 << "(" << getPolType() << ")" << endl
959 << setw(15) << "Channels:" << nchan() << endl;
960 String tmp;
961 oss << setw(15) << "Observer:"
962 << table_.keywordSet().asString("Observer") << endl;
963 oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
964 table_.keywordSet().get("Project", tmp);
965 oss << setw(15) << "Project:" << tmp << endl;
966 table_.keywordSet().get("Obstype", tmp);
967 oss << setw(15) << "Obs. Type:" << tmp << endl;
968 table_.keywordSet().get("AntennaName", tmp);
969 oss << setw(15) << "Antenna Name:" << tmp << endl;
970 table_.keywordSet().get("FluxUnit", tmp);
971 oss << setw(15) << "Flux Unit:" << tmp << endl;
972 //Vector<Double> vec(moleculeTable_.getRestFrequencies());
973 int nid = moleculeTable_.nrow();
974 Bool firstline = True;
975 oss << setw(15) << "Rest Freqs:";
976 for (int i=0; i<nid; i++) {
977 Table t = table_(table_.col("MOLECULE_ID") == i);
978 if (t.nrow() > 0) {
979 Vector<Double> vec(moleculeTable_.getRestFrequency(i));
980 if (vec.nelements() > 0) {
981 if (firstline) {
982 oss << setprecision(10) << vec << " [Hz]" << endl;
983 firstline=False;
984 }
985 else{
986 oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
987 }
988 } else {
989 oss << "none" << endl;
990 }
991 }
992 }
993
994 oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
995 oss << selector_.print() << endl;
996 /// @todo implement verbose mode
997 return String(oss);
998}
999
1000std::string Scantable::summary( bool verbose )
1001{
1002 ostringstream oss;
1003 oss << endl;
1004 oss << asap::SEPERATOR << endl;
1005 oss << " Scan Table Summary" << endl;
1006 oss << asap::SEPERATOR << endl;
1007
1008 // Format header info
1009 oss << headerSummary(verbose);
1010 oss << endl;
1011
1012 // main table
1013 String dirtype = "Position ("
1014 + getDirectionRefString()
1015 + ")";
1016 oss.flags(std::ios_base::left);
1017 oss << setw(5) << "Scan" << setw(15) << "Source"
1018 << setw(10) << "Time" << setw(18) << "Integration"
1019 << setw(15) << "Source Type" << endl;
1020 oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
1021 oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
1022 << setw(8) << "Frame" << setw(16)
1023 << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1024 << setw(7) << "Channels"
1025 << endl;
1026 oss << asap::SEPERATOR << endl;
1027 TableIterator iter(table_, "SCANNO");
1028 while (!iter.pastEnd()) {
1029 Table subt = iter.table();
1030 ROTableRow row(subt);
1031 MEpoch::ROScalarColumn timeCol(subt,"TIME");
1032 const TableRecord& rec = row.get(0);
1033 oss << setw(4) << std::right << rec.asuInt("SCANNO")
1034 << std::left << setw(1) << ""
1035 << setw(15) << rec.asString("SRCNAME")
1036 << setw(10) << formatTime(timeCol(0), false);
1037 // count the cycles in the scan
1038 TableIterator cyciter(subt, "CYCLENO");
1039 int nint = 0;
1040 while (!cyciter.pastEnd()) {
1041 ++nint;
1042 ++cyciter;
1043 }
1044 oss << setw(3) << std::right << nint << setw(3) << " x " << std::left
1045 << setw(11) << formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1046 << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
1047
1048 TableIterator biter(subt, "BEAMNO");
1049 while (!biter.pastEnd()) {
1050 Table bsubt = biter.table();
1051 ROTableRow brow(bsubt);
1052 const TableRecord& brec = brow.get(0);
1053 uInt row0 = bsubt.rowNumbers(table_)[0];
1054 oss << setw(5) << "" << setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
1055 oss << setw(4) << "" << formatDirection(getDirection(row0)) << endl;
1056 TableIterator iiter(bsubt, "IFNO");
1057 while (!iiter.pastEnd()) {
1058 Table isubt = iiter.table();
1059 ROTableRow irow(isubt);
1060 const TableRecord& irec = irow.get(0);
1061 oss << setw(9) << "";
1062 oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
1063 << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1064 << setw(3) << "" << nchan(irec.asuInt("IFNO"))
1065 << endl;
1066
1067 ++iiter;
1068 }
1069 ++biter;
1070 }
1071 ++iter;
1072 }
1073 /// @todo implement verbose mode
1074 return String(oss);
1075}
1076
1077// std::string Scantable::getTime(int whichrow, bool showdate) const
1078// {
1079// MEpoch::ROScalarColumn timeCol(table_, "TIME");
1080// MEpoch me;
1081// if (whichrow > -1) {
1082// me = timeCol(uInt(whichrow));
1083// } else {
1084// Double tm;
1085// table_.keywordSet().get("UTC",tm);
1086// me = MEpoch(MVEpoch(tm));
1087// }
1088// return formatTime(me, showdate);
1089// }
1090
1091std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
1092{
1093 MEpoch me;
1094 me = getEpoch(whichrow);
1095 return formatTime(me, showdate, prec);
1096}
1097
1098MEpoch Scantable::getEpoch(int whichrow) const
1099{
1100 if (whichrow > -1) {
1101 return timeCol_(uInt(whichrow));
1102 } else {
1103 Double tm;
1104 table_.keywordSet().get("UTC",tm);
1105 return MEpoch(MVEpoch(tm));
1106 }
1107}
1108
1109std::string Scantable::getDirectionString(int whichrow) const
1110{
1111 return formatDirection(getDirection(uInt(whichrow)));
1112}
1113
1114
1115SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1116 const MPosition& mp = getAntennaPosition();
1117 const MDirection& md = getDirection(whichrow);
1118 const MEpoch& me = timeCol_(whichrow);
1119 //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1120 Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1121 return freqTable_.getSpectralCoordinate(md, mp, me, rf,
1122 mfreqidCol_(whichrow));
1123}
1124
1125std::vector< double > Scantable::getAbcissa( int whichrow ) const
1126{
1127 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
1128 std::vector<double> stlout;
1129 int nchan = specCol_(whichrow).nelements();
1130 String us = freqTable_.getUnitString();
1131 if ( us == "" || us == "pixel" || us == "channel" ) {
1132 for (int i=0; i<nchan; ++i) {
1133 stlout.push_back(double(i));
1134 }
1135 return stlout;
1136 }
1137 SpectralCoordinate spc = getSpectralCoordinate(whichrow);
1138 Vector<Double> pixel(nchan);
1139 Vector<Double> world;
1140 indgen(pixel);
1141 if ( Unit(us) == Unit("Hz") ) {
1142 for ( int i=0; i < nchan; ++i) {
1143 Double world;
1144 spc.toWorld(world, pixel[i]);
1145 stlout.push_back(double(world));
1146 }
1147 } else if ( Unit(us) == Unit("km/s") ) {
1148 Vector<Double> world;
1149 spc.pixelToVelocity(world, pixel);
1150 world.tovector(stlout);
1151 }
1152 return stlout;
1153}
1154void Scantable::setDirectionRefString( const std::string & refstr )
1155{
1156 MDirection::Types mdt;
1157 if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1158 throw(AipsError("Illegal Direction frame."));
1159 }
1160 if ( refstr == "" ) {
1161 String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1162 table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1163 } else {
1164 table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1165 }
1166}
1167
1168std::string Scantable::getDirectionRefString( ) const
1169{
1170 return table_.keywordSet().asString("DIRECTIONREF");
1171}
1172
1173MDirection Scantable::getDirection(int whichrow ) const
1174{
1175 String usertype = table_.keywordSet().asString("DIRECTIONREF");
1176 String type = MDirection::showType(dirCol_.getMeasRef().getType());
1177 if ( usertype != type ) {
1178 MDirection::Types mdt;
1179 if (!MDirection::getType(mdt, usertype)) {
1180 throw(AipsError("Illegal Direction frame."));
1181 }
1182 return dirCol_.convert(uInt(whichrow), mdt);
1183 } else {
1184 return dirCol_(uInt(whichrow));
1185 }
1186}
1187
1188std::string Scantable::getAbcissaLabel( int whichrow ) const
1189{
1190 if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
1191 const MPosition& mp = getAntennaPosition();
1192 const MDirection& md = getDirection(whichrow);
1193 const MEpoch& me = timeCol_(whichrow);
1194 //const Double& rf = mmolidCol_(whichrow);
1195 const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1196 SpectralCoordinate spc =
1197 freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
1198
1199 String s = "Channel";
1200 Unit u = Unit(freqTable_.getUnitString());
1201 if (u == Unit("km/s")) {
1202 s = CoordinateUtil::axisLabel(spc, 0, True,True, True);
1203 } else if (u == Unit("Hz")) {
1204 Vector<String> wau(1);wau = u.getName();
1205 spc.setWorldAxisUnits(wau);
1206 s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
1207 }
1208 return s;
1209
1210}
1211
1212/**
1213void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
1214 const std::string& unit )
1215**/
1216void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1217 const std::string& unit )
1218
1219{
1220 ///@todo lookup in line table to fill in name and formattedname
1221 Unit u(unit);
1222 //Quantum<Double> urf(rf, u);
1223 Quantum<Vector<Double> >urf(rf, u);
1224 Vector<String> formattedname(0);
1225 //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1226
1227 //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1228 uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
1229 TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1230 tabvec = id;
1231}
1232
1233/**
1234void asap::Scantable::setRestFrequencies( const std::string& name )
1235{
1236 throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1237 ///@todo implement
1238}
1239**/
1240
1241void Scantable::setRestFrequencies( const vector<std::string>& name )
1242{
1243 throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1244 ///@todo implement
1245}
1246
1247std::vector< unsigned int > Scantable::rownumbers( ) const
1248{
1249 std::vector<unsigned int> stlout;
1250 Vector<uInt> vec = table_.rowNumbers();
1251 vec.tovector(stlout);
1252 return stlout;
1253}
1254
1255
1256Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
1257{
1258 ROTableRow row(table_);
1259 const TableRecord& rec = row.get(whichrow);
1260 Table t =
1261 originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1262 && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1263 && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1264 && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1265 ROArrayColumn<Float> speccol(t, "SPECTRA");
1266 return speccol.getColumn();
1267}
1268
1269std::vector< std::string > Scantable::columnNames( ) const
1270{
1271 Vector<String> vec = table_.tableDesc().columnNames();
1272 return mathutil::tovectorstring(vec);
1273}
1274
1275MEpoch::Types Scantable::getTimeReference( ) const
1276{
1277 return MEpoch::castType(timeCol_.getMeasRef().getType());
1278}
1279
1280void Scantable::addFit( const STFitEntry& fit, int row )
1281{
1282 //cout << mfitidCol_(uInt(row)) << endl;
1283 LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1284 os << mfitidCol_(uInt(row)) << LogIO::POST ;
1285 uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1286 mfitidCol_.put(uInt(row), id);
1287}
1288
1289void Scantable::shift(int npix)
1290{
1291 Vector<uInt> fids(mfreqidCol_.getColumn());
1292 genSort( fids, Sort::Ascending,
1293 Sort::QuickSort|Sort::NoDuplicates );
1294 for (uInt i=0; i<fids.nelements(); ++i) {
1295 frequencies().shiftRefPix(npix, fids[i]);
1296 }
1297}
1298
1299String Scantable::getAntennaName() const
1300{
1301 String out;
1302 table_.keywordSet().get("AntennaName", out);
1303 String::size_type pos1 = out.find("@") ;
1304 String::size_type pos2 = out.find("//") ;
1305 if ( pos2 != String::npos )
1306 out = out.substr(pos2+2,pos1-pos2-2) ;
1307 else if ( pos1 != String::npos )
1308 out = out.substr(0,pos1) ;
1309 return out;
1310}
1311
1312int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
1313{
1314 String tbpath;
1315 int ret = 0;
1316 if ( table_.keywordSet().isDefined("GBT_GO") ) {
1317 table_.keywordSet().get("GBT_GO", tbpath);
1318 Table t(tbpath,Table::Old);
1319 // check each scan if other scan of the pair exist
1320 int nscan = scanlist.size();
1321 for (int i = 0; i < nscan; i++) {
1322 Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1323 if (subt.nrow()==0) {
1324 //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1325 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1326 os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
1327 ret = 1;
1328 break;
1329 }
1330 ROTableRow row(subt);
1331 const TableRecord& rec = row.get(0);
1332 int scan1seqn = rec.asuInt("PROCSEQN");
1333 int laston1 = rec.asuInt("LASTON");
1334 if ( rec.asuInt("PROCSIZE")==2 ) {
1335 if ( i < nscan-1 ) {
1336 Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1337 if ( subt2.nrow() == 0) {
1338 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1339
1340 //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1341 os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
1342 ret = 1;
1343 break;
1344 }
1345 ROTableRow row2(subt2);
1346 const TableRecord& rec2 = row2.get(0);
1347 int scan2seqn = rec2.asuInt("PROCSEQN");
1348 int laston2 = rec2.asuInt("LASTON");
1349 if (scan1seqn == 1 && scan2seqn == 2) {
1350 if (laston1 == laston2) {
1351 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1352 //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1353 os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1354 i +=1;
1355 }
1356 else {
1357 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1358 //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1359 os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
1360 }
1361 }
1362 else if (scan1seqn==2 && scan2seqn == 1) {
1363 if (laston1 == laston2) {
1364 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1365 //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1366 os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
1367 ret = 1;
1368 break;
1369 }
1370 }
1371 else {
1372 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1373 //cerr<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1374 os<<LogIO::WARN<<"The other scan for "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
1375 ret = 1;
1376 break;
1377 }
1378 }
1379 }
1380 else {
1381 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1382 //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1383 os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
1384 }
1385 //if ( i >= nscan ) break;
1386 }
1387 }
1388 else {
1389 LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1390 //cerr<<"No reference to GBT_GO table."<<endl;
1391 os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
1392 ret = 1;
1393 }
1394 return ret;
1395}
1396
1397std::vector<double> Scantable::getDirectionVector(int whichrow) const
1398{
1399 Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1400 std::vector<double> dir;
1401 Dir.tovector(dir);
1402 return dir;
1403}
1404
1405void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1406 throw( casa::AipsError )
1407{
1408 // assumed that all rows have same nChan
1409 Vector<Float> arr = specCol_( 0 ) ;
1410 int nChan = arr.nelements() ;
1411
1412 // if nmin < 0 or nmax < 0, nothing to do
1413 if ( nmin < 0 ) {
1414 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1415 }
1416 if ( nmax < 0 ) {
1417 throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1418 }
1419
1420 // if nmin > nmax, exchange values
1421 if ( nmin > nmax ) {
1422 int tmp = nmax ;
1423 nmax = nmin ;
1424 nmin = tmp ;
1425 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1426 os << "Swap values. Applied range is ["
1427 << nmin << ", " << nmax << "]" << LogIO::POST ;
1428 }
1429
1430 // if nmin exceeds nChan, nothing to do
1431 if ( nmin >= nChan ) {
1432 throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1433 }
1434
1435 // if nmax exceeds nChan, reset nmax to nChan
1436 if ( nmax >= nChan ) {
1437 if ( nmin == 0 ) {
1438 // nothing to do
1439 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1440 os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1441 return ;
1442 }
1443 else {
1444 LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1445 os << "Specified maximum exceeds nChan. Applied range is ["
1446 << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1447 nmax = nChan - 1 ;
1448 }
1449 }
1450
1451 // reshape specCol_ and flagCol_
1452 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1453 reshapeSpectrum( nmin, nmax, irow ) ;
1454 }
1455
1456 // update FREQUENCIES subtable
1457 Double refpix ;
1458 Double refval ;
1459 Double increment ;
1460 int freqnrow = freqTable_.table().nrow() ;
1461 Vector<uInt> oldId( freqnrow ) ;
1462 Vector<uInt> newId( freqnrow ) ;
1463 for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
1464 freqTable_.getEntry( refpix, refval, increment, irow ) ;
1465 /***
1466 * need to shift refpix to nmin
1467 * note that channel nmin in old index will be channel 0 in new one
1468 ***/
1469 refval = refval - ( refpix - nmin ) * increment ;
1470 refpix = 0 ;
1471 freqTable_.setEntry( refpix, refval, increment, irow ) ;
1472 }
1473
1474 // update nchan
1475 int newsize = nmax - nmin + 1 ;
1476 table_.rwKeywordSet().define( "nChan", newsize ) ;
1477
1478 // update bandwidth
1479 // assumed all spectra in the scantable have same bandwidth
1480 table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1481
1482 return ;
1483}
1484
1485void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1486{
1487 // reshape specCol_ and flagCol_
1488 Vector<Float> oldspec = specCol_( irow ) ;
1489 Vector<uChar> oldflag = flagsCol_( irow ) ;
1490 uInt newsize = nmax - nmin + 1 ;
1491 specCol_.put( irow, oldspec( Slice( nmin, newsize, 1 ) ) ) ;
1492 flagsCol_.put( irow, oldflag( Slice( nmin, newsize, 1 ) ) ) ;
1493
1494 return ;
1495}
1496
1497void asap::Scantable::regridChannel( int nChan, double dnu )
1498{
1499 LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1500 os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1501 // assumed that all rows have same nChan
1502 Vector<Float> arr = specCol_( 0 ) ;
1503 int oldsize = arr.nelements() ;
1504
1505 // if oldsize == nChan, nothing to do
1506 if ( oldsize == nChan ) {
1507 os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1508 return ;
1509 }
1510
1511 // if oldChan < nChan, unphysical operation
1512 if ( oldsize < nChan ) {
1513 os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1514 return ;
1515 }
1516
1517 // change channel number for specCol_ and flagCol_
1518 Vector<Float> newspec( nChan, 0 ) ;
1519 Vector<uChar> newflag( nChan, false ) ;
1520 vector<string> coordinfo = getCoordInfo() ;
1521 string oldinfo = coordinfo[0] ;
1522 coordinfo[0] = "Hz" ;
1523 setCoordInfo( coordinfo ) ;
1524 for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1525 regridChannel( nChan, dnu, irow ) ;
1526 }
1527 coordinfo[0] = oldinfo ;
1528 setCoordInfo( coordinfo ) ;
1529
1530
1531 // NOTE: this method does not update metadata such as
1532 // FREQUENCIES subtable, nChan, Bandwidth, etc.
1533
1534 return ;
1535}
1536
1537void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1538{
1539 // logging
1540 //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1541 //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1542
1543 Vector<Float> oldspec = specCol_( irow ) ;
1544 Vector<uChar> oldflag = flagsCol_( irow ) ;
1545 Vector<Float> newspec( nChan, 0 ) ;
1546 Vector<uChar> newflag( nChan, false ) ;
1547
1548 // regrid
1549 vector<double> abcissa = getAbcissa( irow ) ;
1550 int oldsize = abcissa.size() ;
1551 double olddnu = abcissa[1] - abcissa[0] ;
1552 //int refChan = 0 ;
1553 //double frac = 0.0 ;
1554 //double wedge = 0.0 ;
1555 //double pile = 0.0 ;
1556 int ichan = 0 ;
1557 double wsum = 0.0 ;
1558 Vector<Float> z( nChan ) ;
1559 z[0] = abcissa[0] - 0.5 * olddnu + 0.5 * dnu ;
1560 for ( int ii = 1 ; ii < nChan ; ii++ )
1561 z[ii] = z[ii-1] + dnu ;
1562 Vector<Float> zi( nChan+1 ) ;
1563 Vector<Float> yi( oldsize + 1 ) ;
1564 zi[0] = z[0] - 0.5 * dnu ;
1565 zi[1] = z[0] + 0.5 * dnu ;
1566 for ( int ii = 2 ; ii < nChan ; ii++ )
1567 zi[ii] = zi[ii-1] + dnu ;
1568 zi[nChan] = z[nChan-1] + 0.5 * dnu ;
1569 yi[0] = abcissa[0] - 0.5 * olddnu ;
1570 yi[1] = abcissa[1] + 0.5 * olddnu ;
1571 for ( int ii = 2 ; ii < oldsize ; ii++ )
1572 yi[ii] = abcissa[ii-1] + olddnu ;
1573 yi[oldsize] = abcissa[oldsize-1] + 0.5 * olddnu ;
1574 if ( dnu > 0.0 ) {
1575 for ( int ii = 0 ; ii < nChan ; ii++ ) {
1576 double zl = zi[ii] ;
1577 double zr = zi[ii+1] ;
1578 for ( int j = ichan ; j < oldsize ; j++ ) {
1579 double yl = yi[j] ;
1580 double yr = yi[j+1] ;
1581 if ( yl <= zl ) {
1582 if ( yr <= zl ) {
1583 continue ;
1584 }
1585 else if ( yr <= zr ) {
1586 newspec[ii] += oldspec[j] * ( yr - zl ) ;
1587 newflag[ii] = newflag[ii] || oldflag[j] ;
1588 wsum += ( yr - zl ) ;
1589 }
1590 else {
1591 newspec[ii] += oldspec[j] * dnu ;
1592 newflag[ii] = newflag[ii] || oldflag[j] ;
1593 wsum += dnu ;
1594 ichan = j ;
1595 break ;
1596 }
1597 }
1598 else if ( yl < zr ) {
1599 if ( yr <= zr ) {
1600 newspec[ii] += oldspec[j] * ( yr - yl ) ;
1601 newflag[ii] = newflag[ii] || oldflag[j] ;
1602 wsum += ( yr - yl ) ;
1603 }
1604 else {
1605 newspec[ii] += oldspec[j] * ( zr - yl ) ;
1606 newflag[ii] = newflag[ii] || oldflag[j] ;
1607 wsum += ( zr - yl ) ;
1608 ichan = j ;
1609 break ;
1610 }
1611 }
1612 else {
1613 ichan = j - 1 ;
1614 break ;
1615 }
1616 }
1617 newspec[ii] /= wsum ;
1618 wsum = 0.0 ;
1619 }
1620 }
1621 else if ( dnu < 0.0 ) {
1622 for ( int ii = 0 ; ii < nChan ; ii++ ) {
1623 double zl = zi[ii] ;
1624 double zr = zi[ii+1] ;
1625 for ( int j = ichan ; j < oldsize ; j++ ) {
1626 double yl = yi[j] ;
1627 double yr = yi[j+1] ;
1628 if ( yl >= zl ) {
1629 if ( yr >= zl ) {
1630 continue ;
1631 }
1632 else if ( yr >= zr ) {
1633 newspec[ii] += oldspec[j] * abs( yr - zl ) ;
1634 newflag[ii] = newflag[ii] || oldflag[j] ;
1635 wsum += abs( yr - zl ) ;
1636 }
1637 else {
1638 newspec[ii] += oldspec[j] * abs( dnu ) ;
1639 newflag[ii] = newflag[ii] || oldflag[j] ;
1640 wsum += abs( dnu ) ;
1641 ichan = j ;
1642 break ;
1643 }
1644 }
1645 else if ( yl > zr ) {
1646 if ( yr >= zr ) {
1647 newspec[ii] += oldspec[j] * abs( yr - yl ) ;
1648 newflag[ii] = newflag[ii] || oldflag[j] ;
1649 wsum += abs( yr - yl ) ;
1650 }
1651 else {
1652 newspec[ii] += oldspec[j] * abs( zr - yl ) ;
1653 newflag[ii] = newflag[ii] || oldflag[j] ;
1654 wsum += abs( zr - yl ) ;
1655 ichan = j ;
1656 break ;
1657 }
1658 }
1659 else {
1660 ichan = j - 1 ;
1661 break ;
1662 }
1663 }
1664 newspec[ii] /= wsum ;
1665 wsum = 0.0 ;
1666 }
1667 }
1668// * ichan = 0
1669// ***/
1670// //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
1671// pile += dnu ;
1672// wedge = olddnu * ( refChan + 1 ) ;
1673// while ( wedge < pile ) {
1674// newspec[0] += olddnu * oldspec[refChan] ;
1675// newflag[0] = newflag[0] || oldflag[refChan] ;
1676// //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
1677// refChan++ ;
1678// wedge += olddnu ;
1679// wsum += olddnu ;
1680// //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
1681// }
1682// frac = ( wedge - pile ) / olddnu ;
1683// wsum += ( 1.0 - frac ) * olddnu ;
1684// newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
1685// newflag[0] = newflag[0] || oldflag[refChan] ;
1686// //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
1687// //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
1688// newspec[0] /= wsum ;
1689// //ofs << "newspec[0] = " << newspec[0] << endl ;
1690// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1691
1692// /***
1693// * ichan = 1 - nChan-2
1694// ***/
1695// for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
1696// pile += dnu ;
1697// newspec[ichan] += frac * olddnu * oldspec[refChan] ;
1698// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1699// //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
1700// refChan++ ;
1701// wedge += olddnu ;
1702// wsum = frac * olddnu ;
1703// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1704// while ( wedge < pile ) {
1705// newspec[ichan] += olddnu * oldspec[refChan] ;
1706// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1707// //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
1708// refChan++ ;
1709// wedge += olddnu ;
1710// wsum += olddnu ;
1711// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1712// }
1713// frac = ( wedge - pile ) / olddnu ;
1714// wsum += ( 1.0 - frac ) * olddnu ;
1715// newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
1716// newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
1717// //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
1718// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1719// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
1720// newspec[ichan] /= wsum ;
1721// //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
1722// }
1723
1724// /***
1725// * ichan = nChan-1
1726// ***/
1727// // NOTE: Assumed that all spectra have the same bandwidth
1728// pile += dnu ;
1729// newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
1730// newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
1731// //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
1732// refChan++ ;
1733// wedge += olddnu ;
1734// wsum = frac * olddnu ;
1735// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1736// for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
1737// newspec[nChan-1] += olddnu * oldspec[jchan] ;
1738// newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
1739// wsum += olddnu ;
1740// //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
1741// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1742// }
1743// //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
1744// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
1745// newspec[nChan-1] /= wsum ;
1746// //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
1747
1748// // ofs.close() ;
1749
1750 specCol_.put( irow, newspec ) ;
1751 flagsCol_.put( irow, newflag ) ;
1752
1753 return ;
1754}
1755
1756std::vector<float> Scantable::getWeather(int whichrow) const
1757{
1758 std::vector<float> out(5);
1759 //Float temperature, pressure, humidity, windspeed, windaz;
1760 weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
1761 mweatheridCol_(uInt(whichrow)));
1762
1763
1764 return out;
1765}
1766
1767bool Scantable::getFlagtraFast(uInt whichrow)
1768{
1769 uChar flag;
1770 Vector<uChar> flags;
1771 flagsCol_.get(whichrow, flags);
1772 flag = flags[0];
1773 for (uInt i = 1; i < flags.size(); ++i) {
1774 flag &= flags[i];
1775 }
1776 return ((flag >> 7) == 1);
1777}
1778
1779void Scantable::polyBaseline(const std::vector<bool>& mask, int order, bool getResidual, bool outLogger, const std::string& blfile)
1780{
1781 ofstream ofs;
1782 String coordInfo = "";
1783 bool hasSameNchan = true;
1784 bool outTextFile = false;
1785
1786 if (blfile != "") {
1787 ofs.open(blfile.c_str(), ios::out | ios::app);
1788 if (ofs) outTextFile = true;
1789 }
1790
1791 if (outLogger || outTextFile) {
1792 coordInfo = getCoordInfo()[0];
1793 if (coordInfo == "") coordInfo = "channel";
1794 hasSameNchan = hasSameNchanOverIFs();
1795 }
1796
1797 Fitter fitter = Fitter();
1798 fitter.setExpression("poly", order);
1799 //fitter.setIterClipping(thresClip, nIterClip);
1800
1801 int nRow = nrow();
1802 std::vector<bool> chanMask;
1803
1804 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1805 chanMask = getCompositeChanMask(whichrow, mask);
1806 fitBaseline(chanMask, whichrow, fitter);
1807 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1808 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "polyBaseline()", fitter);
1809 }
1810
1811 if (outTextFile) ofs.close();
1812}
1813
1814void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
1815{
1816 ofstream ofs;
1817 String coordInfo = "";
1818 bool hasSameNchan = true;
1819 bool outTextFile = false;
1820
1821 if (blfile != "") {
1822 ofs.open(blfile.c_str(), ios::out | ios::app);
1823 if (ofs) outTextFile = true;
1824 }
1825
1826 if (outLogger || outTextFile) {
1827 coordInfo = getCoordInfo()[0];
1828 if (coordInfo == "") coordInfo = "channel";
1829 hasSameNchan = hasSameNchanOverIFs();
1830 }
1831
1832 Fitter fitter = Fitter();
1833 fitter.setExpression("poly", order);
1834 //fitter.setIterClipping(thresClip, nIterClip);
1835
1836 int nRow = nrow();
1837 std::vector<bool> chanMask;
1838 int minEdgeSize = getIFNos().size()*2;
1839 STLineFinder lineFinder = STLineFinder();
1840 lineFinder.setOptions(threshold, 3, chanAvgLimit);
1841
1842 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1843
1844 //-------------------------------------------------------
1845 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
1846 //-------------------------------------------------------
1847 int edgeSize = edge.size();
1848 std::vector<int> currentEdge;
1849 if (edgeSize >= 2) {
1850 int idx = 0;
1851 if (edgeSize > 2) {
1852 if (edgeSize < minEdgeSize) {
1853 throw(AipsError("Length of edge element info is less than that of IFs"));
1854 }
1855 idx = 2 * getIF(whichrow);
1856 }
1857 currentEdge.push_back(edge[idx]);
1858 currentEdge.push_back(edge[idx+1]);
1859 } else {
1860 throw(AipsError("Wrong length of edge element"));
1861 }
1862 lineFinder.setData(getSpectrum(whichrow));
1863 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
1864 chanMask = lineFinder.getMask();
1865 //-------------------------------------------------------
1866
1867 fitBaseline(chanMask, whichrow, fitter);
1868 setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1869
1870 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoPolyBaseline()", fitter);
1871 }
1872
1873 if (outTextFile) ofs.close();
1874}
1875
1876void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, bool getResidual, bool outLogger, const std::string& blfile)
1877{
1878 ofstream ofs;
1879 String coordInfo = "";
1880 bool hasSameNchan = true;
1881 bool outTextFile = false;
1882
1883 if (blfile != "") {
1884 ofs.open(blfile.c_str(), ios::out | ios::app);
1885 if (ofs) outTextFile = true;
1886 }
1887
1888 if (outLogger || outTextFile) {
1889 coordInfo = getCoordInfo()[0];
1890 if (coordInfo == "") coordInfo = "channel";
1891 hasSameNchan = hasSameNchanOverIFs();
1892 }
1893
1894 //Fitter fitter = Fitter();
1895 //fitter.setExpression("cspline", nPiece);
1896 //fitter.setIterClipping(thresClip, nIterClip);
1897
1898 int nRow = nrow();
1899 std::vector<bool> chanMask;
1900
1901 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1902 chanMask = getCompositeChanMask(whichrow, mask);
1903 //fitBaseline(chanMask, whichrow, fitter);
1904 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1905 std::vector<int> pieceEdges;
1906 std::vector<float> params;
1907 std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, thresClip, nIterClip, getResidual);
1908 setSpectrum(res, whichrow);
1909 //
1910
1911 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()", pieceEdges, params);
1912 }
1913
1914 if (outTextFile) ofs.close();
1915}
1916
1917void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
1918{
1919 ofstream ofs;
1920 String coordInfo = "";
1921 bool hasSameNchan = true;
1922 bool outTextFile = false;
1923
1924 if (blfile != "") {
1925 ofs.open(blfile.c_str(), ios::out | ios::app);
1926 if (ofs) outTextFile = true;
1927 }
1928
1929 if (outLogger || outTextFile) {
1930 coordInfo = getCoordInfo()[0];
1931 if (coordInfo == "") coordInfo = "channel";
1932 hasSameNchan = hasSameNchanOverIFs();
1933 }
1934
1935 //Fitter fitter = Fitter();
1936 //fitter.setExpression("cspline", nPiece);
1937 //fitter.setIterClipping(thresClip, nIterClip);
1938
1939 int nRow = nrow();
1940 std::vector<bool> chanMask;
1941 int minEdgeSize = getIFNos().size()*2;
1942 STLineFinder lineFinder = STLineFinder();
1943 lineFinder.setOptions(threshold, 3, chanAvgLimit);
1944
1945 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
1946
1947 //-------------------------------------------------------
1948 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
1949 //-------------------------------------------------------
1950 int edgeSize = edge.size();
1951 std::vector<int> currentEdge;
1952 if (edgeSize >= 2) {
1953 int idx = 0;
1954 if (edgeSize > 2) {
1955 if (edgeSize < minEdgeSize) {
1956 throw(AipsError("Length of edge element info is less than that of IFs"));
1957 }
1958 idx = 2 * getIF(whichrow);
1959 }
1960 currentEdge.push_back(edge[idx]);
1961 currentEdge.push_back(edge[idx+1]);
1962 } else {
1963 throw(AipsError("Wrong length of edge element"));
1964 }
1965 lineFinder.setData(getSpectrum(whichrow));
1966 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
1967 chanMask = lineFinder.getMask();
1968 //-------------------------------------------------------
1969
1970
1971 //fitBaseline(chanMask, whichrow, fitter);
1972 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
1973 std::vector<int> pieceEdges;
1974 std::vector<float> params;
1975 std::vector<float> res = doCubicSplineFitting(getSpectrum(whichrow), chanMask, nPiece, pieceEdges, params, thresClip, nIterClip, getResidual);
1976 setSpectrum(res, whichrow);
1977 //
1978
1979 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()", pieceEdges, params);
1980 }
1981
1982 if (outTextFile) ofs.close();
1983}
1984
1985std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data, const std::vector<bool>& mask, int nPiece, std::vector<int>& idxEdge, std::vector<float>& params, float thresClip, int nIterClip, bool getResidual)
1986{
1987 if (data.size() != mask.size()) {
1988 throw(AipsError("data and mask sizes are not identical"));
1989 }
1990 if (nPiece < 1) {
1991 throw(AipsError("number of the sections must be one or more"));
1992 }
1993
1994 int nChan = data.size();
1995 std::vector<int> maskArray;
1996 std::vector<int> x;
1997 for (int i = 0; i < nChan; ++i) {
1998 maskArray.push_back(mask[i] ? 1 : 0);
1999 if (mask[i]) {
2000 x.push_back(i);
2001 }
2002 }
2003
2004 int initNData = x.size();
2005
2006 int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
2007 std::vector<double> invEdge;
2008 idxEdge.clear();
2009 idxEdge.push_back(x[0]);
2010 for (int i = 1; i < nPiece; ++i) {
2011 int valX = x[nElement*i];
2012 idxEdge.push_back(valX);
2013 invEdge.push_back(1.0/(double)valX);
2014 }
2015 idxEdge.push_back(x[x.size()-1]+1);
2016
2017 int nData = initNData;
2018 int nDOF = nPiece + 3; //number of parameters to solve, namely, 4+(nPiece-1).
2019
2020 std::vector<double> x1, x2, x3, z1, x1z1, x2z1, x3z1, r1, residual;
2021 for (int i = 0; i < nChan; ++i) {
2022 double di = (double)i;
2023 double dD = (double)data[i];
2024 x1.push_back(di);
2025 x2.push_back(di*di);
2026 x3.push_back(di*di*di);
2027 z1.push_back(dD);
2028 x1z1.push_back(dD*di);
2029 x2z1.push_back(dD*di*di);
2030 x3z1.push_back(dD*di*di*di);
2031 r1.push_back(0.0);
2032 residual.push_back(0.0);
2033 }
2034
2035 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2036 // xMatrix : horizontal concatenation of
2037 // the least-sq. matrix (left) and an
2038 // identity matrix (right).
2039 // the right part is used to calculate the inverse matrix of the left part.
2040 double xMatrix[nDOF][2*nDOF];
2041 double zMatrix[nDOF];
2042 for (int i = 0; i < nDOF; ++i) {
2043 for (int j = 0; j < 2*nDOF; ++j) {
2044 xMatrix[i][j] = 0.0;
2045 }
2046 xMatrix[i][nDOF+i] = 1.0;
2047 zMatrix[i] = 0.0;
2048 }
2049
2050 for (int n = 0; n < nPiece; ++n) {
2051 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2052
2053 if (maskArray[i] == 0) continue;
2054
2055 xMatrix[0][0] += 1.0;
2056 xMatrix[0][1] += x1[i];
2057 xMatrix[0][2] += x2[i];
2058 xMatrix[0][3] += x3[i];
2059 xMatrix[1][1] += x2[i];
2060 xMatrix[1][2] += x3[i];
2061 xMatrix[1][3] += x2[i]*x2[i];
2062 xMatrix[2][2] += x2[i]*x2[i];
2063 xMatrix[2][3] += x3[i]*x2[i];
2064 xMatrix[3][3] += x3[i]*x3[i];
2065 zMatrix[0] += z1[i];
2066 zMatrix[1] += x1z1[i];
2067 zMatrix[2] += x2z1[i];
2068 zMatrix[3] += x3z1[i];
2069
2070 for (int j = 0; j < n; ++j) {
2071 double q = 1.0 - x1[i]*invEdge[j];
2072 q = q*q*q;
2073 xMatrix[0][j+4] += q;
2074 xMatrix[1][j+4] += q*x1[i];
2075 xMatrix[2][j+4] += q*x2[i];
2076 xMatrix[3][j+4] += q*x3[i];
2077 for (int k = 0; k < j; ++k) {
2078 double r = 1.0 - x1[i]*invEdge[k];
2079 r = r*r*r;
2080 xMatrix[k+4][j+4] += r*q;
2081 }
2082 xMatrix[j+4][j+4] += q*q;
2083 zMatrix[j+4] += q*z1[i];
2084 }
2085
2086 }
2087 }
2088
2089 for (int i = 0; i < nDOF; ++i) {
2090 for (int j = 0; j < i; ++j) {
2091 xMatrix[i][j] = xMatrix[j][i];
2092 }
2093 }
2094
2095 std::vector<double> invDiag;
2096 for (int i = 0; i < nDOF; ++i) {
2097 invDiag.push_back(1.0/xMatrix[i][i]);
2098 for (int j = 0; j < nDOF; ++j) {
2099 xMatrix[i][j] *= invDiag[i];
2100 }
2101 }
2102
2103 for (int k = 0; k < nDOF; ++k) {
2104 for (int i = 0; i < nDOF; ++i) {
2105 if (i != k) {
2106 double factor1 = xMatrix[k][k];
2107 double factor2 = xMatrix[i][k];
2108 for (int j = k; j < 2*nDOF; ++j) {
2109 xMatrix[i][j] *= factor1;
2110 xMatrix[i][j] -= xMatrix[k][j]*factor2;
2111 xMatrix[i][j] /= factor1;
2112 }
2113 }
2114 }
2115 double xDiag = xMatrix[k][k];
2116 for (int j = k; j < 2*nDOF; ++j) {
2117 xMatrix[k][j] /= xDiag;
2118 }
2119 }
2120
2121 for (int i = 0; i < nDOF; ++i) {
2122 for (int j = 0; j < nDOF; ++j) {
2123 xMatrix[i][nDOF+j] *= invDiag[j];
2124 }
2125 }
2126 //compute a vector y which consists of the coefficients of the best-fit spline curves
2127 //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
2128 //cubic terms for the other pieces (in case nPiece>1).
2129 std::vector<double> y;
2130 y.clear();
2131 for (int i = 0; i < nDOF; ++i) {
2132 y.push_back(0.0);
2133 for (int j = 0; j < nDOF; ++j) {
2134 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2135 }
2136 }
2137
2138 double a0 = y[0];
2139 double a1 = y[1];
2140 double a2 = y[2];
2141 double a3 = y[3];
2142 params.clear();
2143
2144 for (int n = 0; n < nPiece; ++n) {
2145 for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
2146 r1[i] = a0 + a1*x1[i] + a2*x2[i] + a3*x3[i];
2147 residual[i] = z1[i] - r1[i];
2148 }
2149 params.push_back(a0);
2150 params.push_back(a1);
2151 params.push_back(a2);
2152 params.push_back(a3);
2153
2154 if (n == nPiece-1) break;
2155
2156 double d = y[4+n];
2157 double iE = invEdge[n];
2158 a0 += d;
2159 a1 -= 3.0*d*iE;
2160 a2 += 3.0*d*iE*iE;
2161 a3 -= d*iE*iE*iE;
2162 }
2163
2164 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2165 break;
2166 } else {
2167 double stdDev = 0.0;
2168 for (int i = 0; i < nChan; ++i) {
2169 stdDev += residual[i]*residual[i]*(double)maskArray[i];
2170 }
2171 stdDev = sqrt(stdDev/(double)nData);
2172
2173 double thres = stdDev * thresClip;
2174 int newNData = 0;
2175 for (int i = 0; i < nChan; ++i) {
2176 if (abs(residual[i]) >= thres) {
2177 maskArray[i] = 0;
2178 }
2179 if (maskArray[i] > 0) {
2180 newNData++;
2181 }
2182 }
2183 if (newNData == nData) {
2184 break; //no more flag to add. iteration stops.
2185 } else {
2186 nData = newNData;
2187 }
2188 }
2189 }
2190
2191 std::vector<float> result;
2192 if (getResidual) {
2193 for (int i = 0; i < nChan; ++i) {
2194 result.push_back((float)residual[i]);
2195 }
2196 } else {
2197 for (int i = 0; i < nChan; ++i) {
2198 result.push_back((float)r1[i]);
2199 }
2200 }
2201
2202 return result;
2203}
2204
2205void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::vector<int>& nWaves, float maxWaveLength, float thresClip, int nIterClip, bool getResidual, bool outLogger, const std::string& blfile)
2206{
2207 ofstream ofs;
2208 String coordInfo = "";
2209 bool hasSameNchan = true;
2210 bool outTextFile = false;
2211
2212 if (blfile != "") {
2213 ofs.open(blfile.c_str(), ios::out | ios::app);
2214 if (ofs) outTextFile = true;
2215 }
2216
2217 if (outLogger || outTextFile) {
2218 coordInfo = getCoordInfo()[0];
2219 if (coordInfo == "") coordInfo = "channel";
2220 hasSameNchan = hasSameNchanOverIFs();
2221 }
2222
2223 //Fitter fitter = Fitter();
2224 //fitter.setExpression("sinusoid", nWaves);
2225 //fitter.setIterClipping(thresClip, nIterClip);
2226
2227 int nRow = nrow();
2228 std::vector<bool> chanMask;
2229
2230 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2231 chanMask = getCompositeChanMask(whichrow, mask);
2232 //fitBaseline(chanMask, whichrow, fitter);
2233 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2234 std::vector<float> params;
2235 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, maxWaveLength, params, thresClip, nIterClip, getResidual);
2236 setSpectrum(res, whichrow);
2237 //
2238
2239 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "sinusoidBaseline()", params);
2240 }
2241
2242 if (outTextFile) ofs.close();
2243}
2244
2245void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::vector<int>& nWaves, float maxWaveLength, float thresClip, int nIterClip, const std::vector<int>& edge, float threshold, int chanAvgLimit, bool getResidual, bool outLogger, const std::string& blfile)
2246{
2247 ofstream ofs;
2248 String coordInfo = "";
2249 bool hasSameNchan = true;
2250 bool outTextFile = false;
2251
2252 if (blfile != "") {
2253 ofs.open(blfile.c_str(), ios::out | ios::app);
2254 if (ofs) outTextFile = true;
2255 }
2256
2257 if (outLogger || outTextFile) {
2258 coordInfo = getCoordInfo()[0];
2259 if (coordInfo == "") coordInfo = "channel";
2260 hasSameNchan = hasSameNchanOverIFs();
2261 }
2262
2263 //Fitter fitter = Fitter();
2264 //fitter.setExpression("sinusoid", nWaves);
2265 //fitter.setIterClipping(thresClip, nIterClip);
2266
2267 int nRow = nrow();
2268 std::vector<bool> chanMask;
2269 int minEdgeSize = getIFNos().size()*2;
2270 STLineFinder lineFinder = STLineFinder();
2271 lineFinder.setOptions(threshold, 3, chanAvgLimit);
2272
2273 for (int whichrow = 0; whichrow < nRow; ++whichrow) {
2274
2275 //-------------------------------------------------------
2276 //chanMask = getCompositeChanMask(whichrow, mask, edge, minEdgeSize, lineFinder);
2277 //-------------------------------------------------------
2278 int edgeSize = edge.size();
2279 std::vector<int> currentEdge;
2280 if (edgeSize >= 2) {
2281 int idx = 0;
2282 if (edgeSize > 2) {
2283 if (edgeSize < minEdgeSize) {
2284 throw(AipsError("Length of edge element info is less than that of IFs"));
2285 }
2286 idx = 2 * getIF(whichrow);
2287 }
2288 currentEdge.push_back(edge[idx]);
2289 currentEdge.push_back(edge[idx+1]);
2290 } else {
2291 throw(AipsError("Wrong length of edge element"));
2292 }
2293 lineFinder.setData(getSpectrum(whichrow));
2294 lineFinder.findLines(getCompositeChanMask(whichrow, mask), currentEdge, whichrow);
2295 chanMask = lineFinder.getMask();
2296 //-------------------------------------------------------
2297
2298
2299 //fitBaseline(chanMask, whichrow, fitter);
2300 //setSpectrum((getResidual ? fitter.getResidual() : fitter.getFit()), whichrow);
2301 std::vector<float> params;
2302 std::vector<float> res = doSinusoidFitting(getSpectrum(whichrow), chanMask, nWaves, maxWaveLength, params, thresClip, nIterClip, getResidual);
2303 setSpectrum(res, whichrow);
2304 //
2305
2306 outputFittingResult(outLogger, outTextFile, chanMask, whichrow, coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()", params);
2307 }
2308
2309 if (outTextFile) ofs.close();
2310}
2311
2312std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data, const std::vector<bool>& mask, const std::vector<int>& waveNumbers, float maxWaveLength, std::vector<float>& params, float thresClip, int nIterClip, bool getResidual)
2313{
2314 if (data.size() != mask.size()) {
2315 throw(AipsError("data and mask sizes are not identical"));
2316 }
2317 if (data.size() < 2) {
2318 throw(AipsError("data size is too short"));
2319 }
2320 if (waveNumbers.size() == 0) {
2321 throw(AipsError("missing wave number info"));
2322 }
2323 std::vector<int> nWaves; // sorted and uniqued array of wave numbers
2324 nWaves.reserve(waveNumbers.size());
2325 copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
2326 sort(nWaves.begin(), nWaves.end());
2327 std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
2328 nWaves.erase(end_it, nWaves.end());
2329
2330 int minNWaves = nWaves[0];
2331 if (minNWaves < 0) {
2332 throw(AipsError("wave number must be positive or zero (i.e. constant)"));
2333 }
2334 bool hasConstantTerm = (minNWaves == 0);
2335
2336 int nChan = data.size();
2337 std::vector<int> maskArray;
2338 std::vector<int> x;
2339 for (int i = 0; i < nChan; ++i) {
2340 maskArray.push_back(mask[i] ? 1 : 0);
2341 if (mask[i]) {
2342 x.push_back(i);
2343 }
2344 }
2345
2346 int initNData = x.size();
2347
2348 int nData = initNData;
2349 int nDOF = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0); //number of parameters to solve.
2350
2351 const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
2352 double baseXFactor = 2.0*PI/(double)maxWaveLength/(double)(nChan-1); //the denominator (nChan-1) should be changed to (xdata[nChan-1]-xdata[0]) for accepting x-values given in velocity or frequency when this function is moved to fitter. (2011/03/30 WK)
2353
2354 // xArray : contains elemental values for computing the least-square matrix.
2355 // xArray.size() is nDOF and xArray[*].size() is nChan.
2356 // Each xArray element are as follows:
2357 // xArray[0] = {1.0, 1.0, 1.0, ..., 1.0},
2358 // xArray[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nChan])},
2359 // xArray[2n] = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nChan])},
2360 // where (1 <= n <= nMaxWavesInSW),
2361 // or,
2362 // xArray[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nChan])},
2363 // xArray[2n] = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nChan])},
2364 // where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
2365 std::vector<std::vector<double> > xArray;
2366 if (hasConstantTerm) {
2367 std::vector<double> xu;
2368 for (int j = 0; j < nChan; ++j) {
2369 xu.push_back(1.0);
2370 }
2371 xArray.push_back(xu);
2372 }
2373 for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
2374 double xFactor = baseXFactor*(double)nWaves[i];
2375 std::vector<double> xs, xc;
2376 xs.clear();
2377 xc.clear();
2378 for (int j = 0; j < nChan; ++j) {
2379 xs.push_back(sin(xFactor*(double)j));
2380 xc.push_back(cos(xFactor*(double)j));
2381 }
2382 xArray.push_back(xs);
2383 xArray.push_back(xc);
2384 }
2385
2386 std::vector<double> z1, r1, residual;
2387 for (int i = 0; i < nChan; ++i) {
2388 z1.push_back((double)data[i]);
2389 r1.push_back(0.0);
2390 residual.push_back(0.0);
2391 }
2392
2393 for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
2394 // xMatrix : horizontal concatenation of
2395 // the least-sq. matrix (left) and an
2396 // identity matrix (right).
2397 // the right part is used to calculate the inverse matrix of the left part.
2398 double xMatrix[nDOF][2*nDOF];
2399 double zMatrix[nDOF];
2400 for (int i = 0; i < nDOF; ++i) {
2401 for (int j = 0; j < 2*nDOF; ++j) {
2402 xMatrix[i][j] = 0.0;
2403 }
2404 xMatrix[i][nDOF+i] = 1.0;
2405 zMatrix[i] = 0.0;
2406 }
2407
2408 for (int k = 0; k < nChan; ++k) {
2409 if (maskArray[k] == 0) continue;
2410
2411 for (int i = 0; i < nDOF; ++i) {
2412 for (int j = i; j < nDOF; ++j) {
2413 xMatrix[i][j] += xArray[i][k] * xArray[j][k];
2414 }
2415 zMatrix[i] += z1[k] * xArray[i][k];
2416 }
2417 }
2418
2419 for (int i = 0; i < nDOF; ++i) {
2420 for (int j = 0; j < i; ++j) {
2421 xMatrix[i][j] = xMatrix[j][i];
2422 }
2423 }
2424
2425 std::vector<double> invDiag;
2426 for (int i = 0; i < nDOF; ++i) {
2427 invDiag.push_back(1.0/xMatrix[i][i]);
2428 for (int j = 0; j < nDOF; ++j) {
2429 xMatrix[i][j] *= invDiag[i];
2430 }
2431 }
2432
2433 for (int k = 0; k < nDOF; ++k) {
2434 for (int i = 0; i < nDOF; ++i) {
2435 if (i != k) {
2436 double factor1 = xMatrix[k][k];
2437 double factor2 = xMatrix[i][k];
2438 for (int j = k; j < 2*nDOF; ++j) {
2439 xMatrix[i][j] *= factor1;
2440 xMatrix[i][j] -= xMatrix[k][j]*factor2;
2441 xMatrix[i][j] /= factor1;
2442 }
2443 }
2444 }
2445 double xDiag = xMatrix[k][k];
2446 for (int j = k; j < 2*nDOF; ++j) {
2447 xMatrix[k][j] /= xDiag;
2448 }
2449 }
2450
2451 for (int i = 0; i < nDOF; ++i) {
2452 for (int j = 0; j < nDOF; ++j) {
2453 xMatrix[i][nDOF+j] *= invDiag[j];
2454 }
2455 }
2456 //compute a vector y which consists of the coefficients of the sinusoids forming the
2457 //best-fit curves (a0,s1,c1,s2,c2,...), where a0 is constant and s* and c* are of sine
2458 //and cosine functions, respectively.
2459 std::vector<double> y;
2460 params.clear();
2461 for (int i = 0; i < nDOF; ++i) {
2462 y.push_back(0.0);
2463 for (int j = 0; j < nDOF; ++j) {
2464 y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
2465 }
2466 params.push_back(y[i]);
2467 }
2468
2469 for (int i = 0; i < nChan; ++i) {
2470 r1[i] = y[0];
2471 for (int j = 1; j < nDOF; ++j) {
2472 r1[i] += y[j]*xArray[j][i];
2473 }
2474 residual[i] = z1[i] - r1[i];
2475 }
2476
2477 if ((nClip == nIterClip) || (thresClip <= 0.0)) {
2478 break;
2479 } else {
2480 double stdDev = 0.0;
2481 for (int i = 0; i < nChan; ++i) {
2482 stdDev += residual[i]*residual[i]*(double)maskArray[i];
2483 }
2484 stdDev = sqrt(stdDev/(double)nData);
2485
2486 double thres = stdDev * thresClip;
2487 int newNData = 0;
2488 for (int i = 0; i < nChan; ++i) {
2489 if (abs(residual[i]) >= thres) {
2490 maskArray[i] = 0;
2491 }
2492 if (maskArray[i] > 0) {
2493 newNData++;
2494 }
2495 }
2496 if (newNData == nData) {
2497 break; //no more flag to add. iteration stops.
2498 } else {
2499 nData = newNData;
2500 }
2501 }
2502 }
2503
2504 std::vector<float> result;
2505 if (getResidual) {
2506 for (int i = 0; i < nChan; ++i) {
2507 result.push_back((float)residual[i]);
2508 }
2509 } else {
2510 for (int i = 0; i < nChan; ++i) {
2511 result.push_back((float)r1[i]);
2512 }
2513 }
2514
2515 return result;
2516}
2517
2518void Scantable::fitBaseline(const std::vector<bool>& mask, int whichrow, Fitter& fitter)
2519{
2520 std::vector<double> dAbcissa = getAbcissa(whichrow);
2521 std::vector<float> abcissa;
2522 for (uInt i = 0; i < dAbcissa.size(); ++i) {
2523 abcissa.push_back((float)dAbcissa[i]);
2524 }
2525 std::vector<float> spec = getSpectrum(whichrow);
2526
2527 fitter.setData(abcissa, spec, mask);
2528 fitter.lfit();
2529}
2530
2531std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask)
2532{
2533 std::vector<bool> chanMask = getMask(whichrow);
2534 uInt chanMaskSize = chanMask.size();
2535 if (chanMaskSize != inMask.size()) {
2536 throw(AipsError("different mask sizes"));
2537 }
2538 for (uInt i = 0; i < chanMaskSize; ++i) {
2539 chanMask[i] = chanMask[i] && inMask[i];
2540 }
2541
2542 return chanMask;
2543}
2544
2545/*
2546std::vector<bool> Scantable::getCompositeChanMask(int whichrow, const std::vector<bool>& inMask, const std::vector<int>& edge, const int minEdgeSize, STLineFinder& lineFinder)
2547{
2548 int edgeSize = edge.size();
2549 std::vector<int> currentEdge;
2550 if (edgeSize >= 2) {
2551 int idx = 0;
2552 if (edgeSize > 2) {
2553 if (edgeSize < minEdgeSize) {
2554 throw(AipsError("Length of edge element info is less than that of IFs"));
2555 }
2556 idx = 2 * getIF(whichrow);
2557 }
2558 currentEdge.push_back(edge[idx]);
2559 currentEdge.push_back(edge[idx+1]);
2560 } else {
2561 throw(AipsError("Wrong length of edge element"));
2562 }
2563
2564 lineFinder.setData(getSpectrum(whichrow));
2565 lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currentEdge, whichrow);
2566
2567 return lineFinder.getMask();
2568}
2569*/
2570
2571/* for poly. the variations of outputFittingResult() should be merged into one eventually (2011/3/10 WK) */
2572void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, Fitter& fitter) {
2573 if (outLogger || outTextFile) {
2574 std::vector<float> params = fitter.getParameters();
2575 std::vector<bool> fixed = fitter.getFixedParameters();
2576 float rms = getRms(chanMask, whichrow);
2577 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2578
2579 if (outLogger) {
2580 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2581 ols << formatBaselineParams(params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2582 }
2583 if (outTextFile) {
2584 ofs << formatBaselineParams(params, fixed, rms, masklist, whichrow, true) << flush;
2585 }
2586 }
2587}
2588
2589/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
2590void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<int>& edge, const std::vector<float>& params) {
2591 if (outLogger || outTextFile) {
2592 float rms = getRms(chanMask, whichrow);
2593 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2594 std::vector<bool> fixed;
2595 fixed.clear();
2596
2597 if (outLogger) {
2598 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2599 ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2600 }
2601 if (outTextFile) {
2602 ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, masklist, whichrow, true) << flush;
2603 }
2604 }
2605}
2606
2607/* for sinusoid. will be merged once sinusoid is available in fitter (2011/3/10 WK) */
2608void Scantable::outputFittingResult(bool outLogger, bool outTextFile, const std::vector<bool>& chanMask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, ofstream& ofs, const casa::String& funcName, const std::vector<float>& params) {
2609 if (outLogger || outTextFile) {
2610 float rms = getRms(chanMask, whichrow);
2611 String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
2612 std::vector<bool> fixed;
2613 fixed.clear();
2614
2615 if (outLogger) {
2616 LogIO ols(LogOrigin("Scantable", funcName, WHERE));
2617 ols << formatBaselineParams(params, fixed, rms, masklist, whichrow, false) << LogIO::POST ;
2618 }
2619 if (outTextFile) {
2620 ofs << formatBaselineParams(params, fixed, rms, masklist, whichrow, true) << flush;
2621 }
2622 }
2623}
2624
2625float Scantable::getRms(const std::vector<bool>& mask, int whichrow) {
2626 Vector<Float> spec;
2627 specCol_.get(whichrow, spec);
2628
2629 float mean = 0.0;
2630 float smean = 0.0;
2631 int n = 0;
2632 for (uInt i = 0; i < spec.nelements(); ++i) {
2633 if (mask[i]) {
2634 mean += spec[i];
2635 smean += spec[i]*spec[i];
2636 n++;
2637 }
2638 }
2639
2640 mean /= (float)n;
2641 smean /= (float)n;
2642
2643 return sqrt(smean - mean*mean);
2644}
2645
2646
2647std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose) const
2648{
2649 ostringstream oss;
2650
2651 if (verbose) {
2652 oss << " Scan[" << getScan(whichrow) << "]";
2653 oss << " Beam[" << getBeam(whichrow) << "]";
2654 oss << " IF[" << getIF(whichrow) << "]";
2655 oss << " Pol[" << getPol(whichrow) << "]";
2656 oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
2657 oss << "Fitter range = " << masklist << endl;
2658 oss << "Baseline parameters" << endl;
2659 oss << flush;
2660 }
2661
2662 return String(oss);
2663}
2664
2665std::string Scantable::formatBaselineParamsFooter(float rms, bool verbose) const
2666{
2667 ostringstream oss;
2668
2669 if (verbose) {
2670 oss << "Results of baseline fit" << endl;
2671 oss << " rms = " << setprecision(6) << rms << endl;
2672 for (int i = 0; i < 60; ++i) {
2673 oss << "-";
2674 }
2675 oss << endl;
2676 oss << flush;
2677 }
2678
2679 return String(oss);
2680}
2681
2682 std::string Scantable::formatBaselineParams(const std::vector<float>& params, const std::vector<bool>& fixed, float rms, const std::string& masklist, int whichrow, bool verbose, int start, int count, bool resetparamid) const
2683{
2684 int nParam = (int)(params.size());
2685
2686 if (nParam < 1) {
2687 return(" Not fitted");
2688 } else {
2689
2690 ostringstream oss;
2691 oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
2692
2693 if (start < 0) start = 0;
2694 if (count < 0) count = nParam;
2695 int end = start + count;
2696 if (end > nParam) end = nParam;
2697 int paramidoffset = (resetparamid) ? (-start) : 0;
2698
2699 for (int i = start; i < end; ++i) {
2700 if (i > start) {
2701 oss << ",";
2702 }
2703 std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
2704 oss << " p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
2705 }
2706
2707 oss << endl;
2708 oss << formatBaselineParamsFooter(rms, verbose);
2709
2710 return String(oss);
2711 }
2712
2713}
2714
2715std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, const std::string& masklist, int whichrow, bool verbose) const
2716{
2717 int nOutParam = (int)(params.size());
2718 int nPiece = (int)(ranges.size()) - 1;
2719
2720 if (nOutParam < 1) {
2721 return(" Not fitted");
2722 } else if (nPiece < 0) {
2723 return formatBaselineParams(params, fixed, rms, masklist, whichrow, verbose);
2724 } else if (nPiece < 1) {
2725 return(" Bad count of the piece edge info");
2726 } else if (nOutParam % nPiece != 0) {
2727 return(" Bad count of the output baseline parameters");
2728 } else {
2729
2730 int nParam = nOutParam / nPiece;
2731
2732 ostringstream oss;
2733 oss << formatBaselineParamsHeader(whichrow, masklist, verbose);
2734
2735 stringstream ss;
2736 ss << ranges[nPiece] << flush;
2737 int wRange = ss.str().size() * 2 + 5;
2738
2739 for (int i = 0; i < nPiece; ++i) {
2740 ss.str("");
2741 ss << " [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
2742 oss << left << setw(wRange) << ss.str();
2743 oss << formatBaselineParams(params, fixed, rms, masklist, whichrow, false, i*nParam, nParam, true);
2744 }
2745
2746 oss << formatBaselineParamsFooter(rms, verbose);
2747
2748 return String(oss);
2749 }
2750
2751}
2752
2753bool Scantable::hasSameNchanOverIFs()
2754{
2755 int nIF = nif(-1);
2756 int nCh;
2757 int totalPositiveNChan = 0;
2758 int nPositiveNChan = 0;
2759
2760 for (int i = 0; i < nIF; ++i) {
2761 nCh = nchan(i);
2762 if (nCh > 0) {
2763 totalPositiveNChan += nCh;
2764 nPositiveNChan++;
2765 }
2766 }
2767
2768 return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
2769}
2770
2771std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
2772{
2773 if (mask.size() < 2) {
2774 throw(AipsError("The mask elements should be > 1"));
2775 }
2776 int IF = getIF(whichrow);
2777 if (mask.size() != (uInt)nchan(IF)) {
2778 throw(AipsError("Number of channels in scantable != number of mask elements"));
2779 }
2780
2781 if (verbose) {
2782 LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
2783 logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
2784 if (!hasSameNchan) {
2785 logOs << endl << "This mask is only valid for IF=" << IF;
2786 }
2787 logOs << LogIO::POST;
2788 }
2789
2790 std::vector<double> abcissa = getAbcissa(whichrow);
2791 std::vector<int> edge = getMaskEdgeIndices(mask);
2792
2793 ostringstream oss;
2794 oss.setf(ios::fixed);
2795 oss << setprecision(1) << "[";
2796 for (uInt i = 0; i < edge.size(); i+=2) {
2797 if (i > 0) oss << ",";
2798 oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
2799 }
2800 oss << "]" << flush;
2801
2802 return String(oss);
2803}
2804
2805std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
2806{
2807 if (mask.size() < 2) {
2808 throw(AipsError("The mask elements should be > 1"));
2809 }
2810
2811 std::vector<int> out, startIndices, endIndices;
2812 int maskSize = mask.size();
2813
2814 startIndices.clear();
2815 endIndices.clear();
2816
2817 if (mask[0]) {
2818 startIndices.push_back(0);
2819 }
2820 for (int i = 1; i < maskSize; ++i) {
2821 if ((!mask[i-1]) && mask[i]) {
2822 startIndices.push_back(i);
2823 } else if (mask[i-1] && (!mask[i])) {
2824 endIndices.push_back(i-1);
2825 }
2826 }
2827 if (mask[maskSize-1]) {
2828 endIndices.push_back(maskSize-1);
2829 }
2830
2831 if (startIndices.size() != endIndices.size()) {
2832 throw(AipsError("Inconsistent Mask Size: bad data?"));
2833 }
2834 for (uInt i = 0; i < startIndices.size(); ++i) {
2835 if (startIndices[i] > endIndices[i]) {
2836 throw(AipsError("Mask start index > mask end index"));
2837 }
2838 }
2839
2840 out.clear();
2841 for (uInt i = 0; i < startIndices.size(); ++i) {
2842 out.push_back(startIndices[i]);
2843 out.push_back(endIndices[i]);
2844 }
2845
2846 return out;
2847}
2848
2849
2850/*
2851STFitEntry Scantable::polyBaseline(const std::vector<bool>& mask, int order, int rowno)
2852{
2853 Fitter fitter = Fitter();
2854 fitter.setExpression("poly", order);
2855
2856 std::vector<bool> fmask = getMask(rowno);
2857 if (fmask.size() != mask.size()) {
2858 throw(AipsError("different mask sizes"));
2859 }
2860 for (int i = 0; i < fmask.size(); ++i) {
2861 fmask[i] = fmask[i] && mask[i];
2862 }
2863
2864 fitBaseline(fmask, rowno, fitter);
2865 setSpectrum(fitter.getResidual(), rowno);
2866 return fitter.getFitEntry();
2867}
2868*/
2869
2870}
2871//namespace asap
Note: See TracBrowser for help on using the repository browser.