source: branches/casa-prerelease/pre-asap/src/STMath.cpp @ 2145

Last change on this file since 2145 was 2145, checked in by Takeshi Nakazato, 13 years ago

merge bug fix in trunk (r2143,r2144).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 166.9 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <casa/iomanip.h>
14#include <casa/Exceptions/Error.h>
15#include <casa/Containers/Block.h>
16#include <casa/BasicSL/String.h>
17#include <casa/Arrays/MaskArrLogi.h>
18#include <casa/Arrays/MaskArrMath.h>
19#include <casa/Arrays/ArrayLogical.h>
20#include <casa/Arrays/ArrayMath.h>
21#include <casa/Arrays/Slice.h>
22#include <casa/Arrays/Slicer.h>
23#include <casa/Containers/RecordField.h>
24#include <tables/Tables/TableRow.h>
25#include <tables/Tables/TableVector.h>
26#include <tables/Tables/TabVecMath.h>
27#include <tables/Tables/ExprNode.h>
28#include <tables/Tables/TableRecord.h>
29#include <tables/Tables/TableParse.h>
30#include <tables/Tables/ReadAsciiTable.h>
31#include <tables/Tables/TableIter.h>
32#include <tables/Tables/TableCopy.h>
33#include <scimath/Mathematics/FFTServer.h>
34
35#include <lattices/Lattices/LatticeUtilities.h>
36
37#include <coordinates/Coordinates/SpectralCoordinate.h>
38#include <coordinates/Coordinates/CoordinateSystem.h>
39#include <coordinates/Coordinates/CoordinateUtil.h>
40#include <coordinates/Coordinates/FrequencyAligner.h>
41
42#include <scimath/Mathematics/VectorKernel.h>
43#include <scimath/Mathematics/Convolver.h>
44#include <scimath/Functionals/Polynomial.h>
45
46#include <atnf/PKSIO/SrcType.h>
47
48#include <casa/Logging/LogIO.h>
49#include <sstream>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STSelector.h"
55
56#include "STMath.h"
57using namespace casa;
58
59using namespace asap;
60
61// tolerance for direction comparison (rad)
62#define TOL_OTF    1.0e-15
63#define TOL_POINT  2.9088821e-4  // 1 arcmin
64
65STMath::STMath(bool insitu) :
66  insitu_(insitu)
67{
68}
69
70
71STMath::~STMath()
72{
73}
74
75CountedPtr<Scantable>
76STMath::average( const std::vector<CountedPtr<Scantable> >& in,
77                 const std::vector<bool>& mask,
78                 const std::string& weight,
79                 const std::string& avmode)
80{
81  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
82  if ( avmode == "SCAN" && in.size() != 1 )
83    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
84                    "Use merge first."));
85  WeightType wtype = stringToWeight(weight);
86
87  // check if OTF observation
88  String obstype = in[0]->getHeader().obstype ;
89  Double tol = 0.0 ;
90  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
91    tol = TOL_OTF ;
92  }
93  else {
94    tol = TOL_POINT ;
95  }
96
97  // output
98  // clone as this is non insitu
99  bool insitu = insitu_;
100  setInsitu(false);
101  CountedPtr< Scantable > out = getScantable(in[0], true);
102  setInsitu(insitu);
103  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
104  ++stit;
105  while ( stit != in.end() ) {
106    out->appendToHistoryTable((*stit)->history());
107    ++stit;
108  }
109
110  Table& tout = out->table();
111
112  /// @todo check if all scantables are conformant
113
114  ArrayColumn<Float> specColOut(tout,"SPECTRA");
115  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
116  ArrayColumn<Float> tsysColOut(tout,"TSYS");
117  ScalarColumn<Double> mjdColOut(tout,"TIME");
118  ScalarColumn<Double> intColOut(tout,"INTERVAL");
119  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
120  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
121
122  // set up the output table rows. These are based on the structure of the
123  // FIRST scantable in the vector
124  const Table& baset = in[0]->table();
125
126  Block<String> cols(3);
127  cols[0] = String("BEAMNO");
128  cols[1] = String("IFNO");
129  cols[2] = String("POLNO");
130  if ( avmode == "SOURCE" ) {
131    cols.resize(4);
132    cols[3] = String("SRCNAME");
133  }
134  if ( avmode == "SCAN"  && in.size() == 1) {
135    //cols.resize(4);
136    //cols[3] = String("SCANNO");
137    cols.resize(5);
138    cols[3] = String("SRCNAME");
139    cols[4] = String("SCANNO");
140  }
141  uInt outrowCount = 0;
142  TableIterator iter(baset, cols);
143//   int count = 0 ;
144  while (!iter.pastEnd()) {
145    Table subt = iter.table();
146//     // copy the first row of this selection into the new table
147//     tout.addRow();
148//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
149//     // re-index to 0
150//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
151//       scanColOut.put(outrowCount, uInt(0));
152//     }
153//     ++outrowCount;
154    MDirection::ScalarColumn dircol ;
155    dircol.attach( subt, "DIRECTION" ) ;
156    Int length = subt.nrow() ;
157    vector< Vector<Double> > dirs ;
158    vector<int> indexes ;
159    for ( Int i = 0 ; i < length ; i++ ) {
160      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
161      //os << << count++ << ": " ;
162      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
163      bool adddir = true ;
164      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
165        //if ( allTrue( t == dirs[j] ) ) {
166        Double dx = t[0] - dirs[j][0] ;
167        Double dy = t[1] - dirs[j][1] ;
168        Double dd = sqrt( dx * dx + dy * dy ) ;
169        //if ( allNearAbs( t, dirs[j], tol ) ) {
170        if ( dd <= tol ) {
171          adddir = false ;
172          break ;
173        }
174      }
175      if ( adddir ) {
176        dirs.push_back( t ) ;
177        indexes.push_back( i ) ;
178      }
179    }
180    uInt rowNum = dirs.size() ;
181    tout.addRow( rowNum ) ;
182    for ( uInt i = 0 ; i < rowNum ; i++ ) {
183      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
184      // re-index to 0
185      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
186        scanColOut.put(outrowCount+i, uInt(0));
187      }       
188    }
189    outrowCount += rowNum ;
190    ++iter;
191  }
192  RowAccumulator acc(wtype);
193  Vector<Bool> cmask(mask);
194  acc.setUserMask(cmask);
195  ROTableRow row(tout);
196  ROArrayColumn<Float> specCol, tsysCol;
197  ROArrayColumn<uChar> flagCol;
198  ROScalarColumn<Double> mjdCol, intCol;
199  ROScalarColumn<Int> scanIDCol;
200
201  Vector<uInt> rowstodelete;
202
203  for (uInt i=0; i < tout.nrow(); ++i) {
204    for ( int j=0; j < int(in.size()); ++j ) {
205      const Table& tin = in[j]->table();
206      const TableRecord& rec = row.get(i);
207      ROScalarColumn<Double> tmp(tin, "TIME");
208      Double td;tmp.get(0,td);
209      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
210                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
211                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
212      Table subt;
213      if ( avmode == "SOURCE") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
215      } else if (avmode == "SCAN") {
216        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
217                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
218      } else {
219        subt = basesubt;
220      }
221
222      vector<uInt> removeRows ;
223      uInt nrsubt = subt.nrow() ;
224      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
225        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
226        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
227        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
228        double dx = x0[0] - x1[0] ;
229        double dy = x0[0] - x1[0] ;
230        Double dd = sqrt( dx * dx + dy * dy ) ;
231        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
232        if ( dd > tol ) {
233          removeRows.push_back( irow ) ;
234        }
235      }
236      if ( removeRows.size() != 0 ) {
237        subt.removeRow( removeRows ) ;
238      }
239     
240      if ( nrsubt == removeRows.size() )
241        throw(AipsError("Averaging data is empty.")) ;
242
243      specCol.attach(subt,"SPECTRA");
244      flagCol.attach(subt,"FLAGTRA");
245      tsysCol.attach(subt,"TSYS");
246      intCol.attach(subt,"INTERVAL");
247      mjdCol.attach(subt,"TIME");
248      Vector<Float> spec,tsys;
249      Vector<uChar> flag;
250      Double inter,time;
251      for (uInt k = 0; k < subt.nrow(); ++k ) {
252        flagCol.get(k, flag);
253        Vector<Bool> bflag(flag.shape());
254        convertArray(bflag, flag);
255        /*
256        if ( allEQ(bflag, True) ) {
257        continue;//don't accumulate
258        }
259        */
260        specCol.get(k, spec);
261        tsysCol.get(k, tsys);
262        intCol.get(k, inter);
263        mjdCol.get(k, time);
264        // spectrum has to be added last to enable weighting by the other values
265        acc.add(spec, !bflag, tsys, inter, time);
266      }
267
268      // If there exists a channel at which all the input spectra are masked,
269      // spec has 'nan' values for that channel and it may affect the following
270      // processes. To avoid this, replacing 'nan' values in spec with
271      // weighted-mean of all spectra in the following line.
272      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
273      acc.replaceNaN();
274    }
275    const Vector<Bool>& msk = acc.getMask();
276    if ( allEQ(msk, False) ) {
277      uint n = rowstodelete.nelements();
278      rowstodelete.resize(n+1, True);
279      rowstodelete[n] = i;
280      continue;
281    }
282    //write out
283    if (acc.state()) {
284      Vector<uChar> flg(msk.shape());
285      convertArray(flg, !msk);
286      for (uInt k = 0; k < flg.nelements(); ++k) {
287        uChar userFlag = 1 << 7;
288        if (msk[k]==True) userFlag = 0 << 7;
289        flg(k) = userFlag;
290      }
291
292      flagColOut.put(i, flg);
293      specColOut.put(i, acc.getSpectrum());
294      tsysColOut.put(i, acc.getTsys());
295      intColOut.put(i, acc.getInterval());
296      mjdColOut.put(i, acc.getTime());
297      // we should only have one cycle now -> reset it to be 0
298      // frequency switched data has different CYCLENO for different IFNO
299      // which requires resetting this value
300      cycColOut.put(i, uInt(0));
301    } else {
302      ostringstream oss;
303      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
304      pushLog(String(oss));
305    }
306    acc.reset();
307  }
308
309  if (rowstodelete.nelements() > 0) {
310    os << rowstodelete << LogIO::POST ;
311    tout.removeRow(rowstodelete);
312    if (tout.nrow() == 0) {
313      throw(AipsError("Can't average fully flagged data."));
314    }
315  }
316  return out;
317}
318
319CountedPtr< Scantable >
320  STMath::averageChannel( const CountedPtr < Scantable > & in,
321                          const std::string & mode,
322                          const std::string& avmode )
323{
324  // check if OTF observation
325  String obstype = in->getHeader().obstype ;
326  Double tol = 0.0 ;
327  if ( obstype.find( "OTF" ) != String::npos ) {
328    tol = TOL_OTF ;
329  }
330  else {
331    tol = TOL_POINT ;
332  }
333
334  // clone as this is non insitu
335  bool insitu = insitu_;
336  setInsitu(false);
337  CountedPtr< Scantable > out = getScantable(in, true);
338  setInsitu(insitu);
339  Table& tout = out->table();
340  ArrayColumn<Float> specColOut(tout,"SPECTRA");
341  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
342  ArrayColumn<Float> tsysColOut(tout,"TSYS");
343  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
344  ScalarColumn<Double> intColOut(tout, "INTERVAL");
345  Table tmp = in->table().sort("BEAMNO");
346  Block<String> cols(3);
347  cols[0] = String("BEAMNO");
348  cols[1] = String("IFNO");
349  cols[2] = String("POLNO");
350  if ( avmode == "SCAN") {
351    cols.resize(4);
352    cols[3] = String("SCANNO");
353  }
354  uInt outrowCount = 0;
355  uChar userflag = 1 << 7;
356  TableIterator iter(tmp, cols);
357  while (!iter.pastEnd()) {
358    Table subt = iter.table();
359    ROArrayColumn<Float> specCol, tsysCol;
360    ROArrayColumn<uChar> flagCol;
361    ROScalarColumn<Double> intCol(subt, "INTERVAL");
362    specCol.attach(subt,"SPECTRA");
363    flagCol.attach(subt,"FLAGTRA");
364    tsysCol.attach(subt,"TSYS");
365//     tout.addRow();
366//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
367//     if ( avmode != "SCAN") {
368//       scanColOut.put(outrowCount, uInt(0));
369//     }
370//     Vector<Float> tmp;
371//     specCol.get(0, tmp);
372//     uInt nchan = tmp.nelements();
373//     // have to do channel by channel here as MaskedArrMath
374//     // doesn't have partialMedians
375//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
376//     Vector<Float> outspec(nchan);
377//     Vector<uChar> outflag(nchan,0);
378//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
379//     for (uInt i=0; i<nchan; ++i) {
380//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
381//       MaskedArray<Float> ma = maskedArray(specs,flags);
382//       outspec[i] = median(ma);
383//       if ( allEQ(ma.getMask(), False) )
384//         outflag[i] = userflag;// flag data
385//     }
386//     outtsys[0] = median(tsysCol.getColumn());
387//     specColOut.put(outrowCount, outspec);
388//     flagColOut.put(outrowCount, outflag);
389//     tsysColOut.put(outrowCount, outtsys);
390//     Double intsum = sum(intCol.getColumn());
391//     intColOut.put(outrowCount, intsum);
392//     ++outrowCount;
393//     ++iter;
394    MDirection::ScalarColumn dircol ;
395    dircol.attach( subt, "DIRECTION" ) ;
396    Int length = subt.nrow() ;
397    vector< Vector<Double> > dirs ;
398    vector<int> indexes ;
399    for ( Int i = 0 ; i < length ; i++ ) {
400      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
401      bool adddir = true ;
402      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
403        //if ( allTrue( t == dirs[j] ) ) {
404        Double dx = t[0] - dirs[j][0] ;
405        Double dy = t[1] - dirs[j][1] ;
406        Double dd = sqrt( dx * dx + dy * dy ) ;
407        //if ( allNearAbs( t, dirs[j], tol ) ) {
408        if ( dd <= tol ) {
409          adddir = false ;
410          break ;
411        }
412      }
413      if ( adddir ) {
414        dirs.push_back( t ) ;
415        indexes.push_back( i ) ;
416      }
417    }
418    uInt rowNum = dirs.size() ;
419    tout.addRow( rowNum );
420    for ( uInt i = 0 ; i < rowNum ; i++ ) {
421      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
422      if ( avmode != "SCAN") {
423        //scanColOut.put(outrowCount+i, uInt(0));
424      }
425    }
426    MDirection::ScalarColumn dircolOut ;
427    dircolOut.attach( tout, "DIRECTION" ) ;
428    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
429      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
430      Vector<Float> tmp;
431      specCol.get(0, tmp);
432      uInt nchan = tmp.nelements();
433      // have to do channel by channel here as MaskedArrMath
434      // doesn't have partialMedians
435      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
436      // mask spectra for different DIRECTION
437      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
438        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
439        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
440        Double dx = t[0] - direction[0] ;
441        Double dy = t[1] - direction[1] ;
442        Double dd = sqrt( dx * dx + dy * dy ) ;
443        //if ( !allNearAbs( t, direction, tol ) ) {
444        if ( dd > tol ) {
445          flags[jrow] = userflag ;
446        }
447      }
448      Vector<Float> outspec(nchan);
449      Vector<uChar> outflag(nchan,0);
450      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
451      for (uInt i=0; i<nchan; ++i) {
452        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
453        MaskedArray<Float> ma = maskedArray(specs,flags);
454        outspec[i] = median(ma);
455        if ( allEQ(ma.getMask(), False) )
456          outflag[i] = userflag;// flag data
457      }
458      outtsys[0] = median(tsysCol.getColumn());
459      specColOut.put(outrowCount+irow, outspec);
460      flagColOut.put(outrowCount+irow, outflag);
461      tsysColOut.put(outrowCount+irow, outtsys);
462      Vector<Double> integ = intCol.getColumn() ;
463      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
464      Double intsum = sum(mi);
465      intColOut.put(outrowCount+irow, intsum);
466    }
467    outrowCount += rowNum ;
468    ++iter;
469  }
470  return out;
471}
472
473CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
474                                             bool droprows)
475{
476  if (insitu_) {
477    return in;
478  }
479  else {
480    // clone
481    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
482  }
483}
484
485CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
486                                              float val,
487                                              const std::string& mode,
488                                              bool tsys )
489{
490  CountedPtr< Scantable > out = getScantable(in, false);
491  Table& tab = out->table();
492  ArrayColumn<Float> specCol(tab,"SPECTRA");
493  ArrayColumn<Float> tsysCol(tab,"TSYS");
494  if (mode=="DIV") val = 1.0/val ;
495  else if (mode=="SUB") val *= -1.0 ;
496  for (uInt i=0; i<tab.nrow(); ++i) {
497    Vector<Float> spec;
498    Vector<Float> ts;
499    specCol.get(i, spec);
500    tsysCol.get(i, ts);
501    if (mode == "MUL" || mode == "DIV") {
502      //if (mode == "DIV") val = 1.0/val;
503      spec *= val;
504      specCol.put(i, spec);
505      if ( tsys ) {
506        ts *= val;
507        tsysCol.put(i, ts);
508      }
509    } else if ( mode == "ADD"  || mode == "SUB") {
510      //if (mode == "SUB") val *= -1.0;
511      spec += val;
512      specCol.put(i, spec);
513      if ( tsys ) {
514        ts += val;
515        tsysCol.put(i, ts);
516      }
517    }
518  }
519  return out;
520}
521
522CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
523                                              const std::vector<float> val,
524                                              const std::string& mode,
525                                              const std::string& opmode,
526                                              bool tsys )
527{
528  CountedPtr< Scantable > out ;
529  if ( opmode == "channel" ) {
530    out = arrayOperateChannel( in, val, mode, tsys ) ;
531  }
532  else if ( opmode == "row" ) {
533    out = arrayOperateRow( in, val, mode, tsys ) ;
534  }
535  else {
536    throw( AipsError( "Unknown array operation mode." ) ) ;
537  }
538  return out ;
539}
540
541CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
542                                                     const std::vector<float> val,
543                                                     const std::string& mode,
544                                                     bool tsys )
545{
546  if ( val.size() == 1 ){
547    return unaryOperate( in, val[0], mode, tsys ) ;
548  }
549
550  // conformity of SPECTRA and TSYS
551  if ( tsys ) {
552    TableIterator titer(in->table(), "IFNO");
553    while ( !titer.pastEnd() ) {
554      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
555      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
556      Array<Float> spec = specCol.getColumn() ;
557      Array<Float> ts = tsysCol.getColumn() ;
558      if ( !spec.conform( ts ) ) {
559        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
560      }
561      titer.next() ;
562    }
563  }
564
565  // check if all spectra in the scantable have the same number of channel
566  vector<uInt> nchans;
567  vector<uInt> ifnos = in->getIFNos() ;
568  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
569    nchans.push_back( in->nchan( ifnos[i] ) ) ;
570  }
571  Vector<uInt> mchans( nchans ) ;
572  if ( anyNE( mchans, mchans[0] ) ) {
573    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
574  }
575
576  // check if vector size is equal to nchan
577  Vector<Float> fact( val ) ;
578  if ( fact.nelements() != mchans[0] ) {
579    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
580  }
581
582  // check divided by zero
583  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
584    throw( AipsError("Divided by zero is not recommended." ) ) ;
585  }
586
587  CountedPtr< Scantable > out = getScantable(in, false);
588  Table& tab = out->table();
589  ArrayColumn<Float> specCol(tab,"SPECTRA");
590  ArrayColumn<Float> tsysCol(tab,"TSYS");
591  if (mode == "DIV") fact = (float)1.0 / fact;
592  else if (mode == "SUB") fact *= (float)-1.0 ;
593  for (uInt i=0; i<tab.nrow(); ++i) {
594    Vector<Float> spec;
595    Vector<Float> ts;
596    specCol.get(i, spec);
597    tsysCol.get(i, ts);
598    if (mode == "MUL" || mode == "DIV") {
599      //if (mode == "DIV") fact = (float)1.0 / fact;
600      spec *= fact;
601      specCol.put(i, spec);
602      if ( tsys ) {
603        ts *= fact;
604        tsysCol.put(i, ts);
605      }
606    } else if ( mode == "ADD"  || mode == "SUB") {
607      //if (mode == "SUB") fact *= (float)-1.0 ;
608      spec += fact;
609      specCol.put(i, spec);
610      if ( tsys ) {
611        ts += fact;
612        tsysCol.put(i, ts);
613      }
614    }
615  }
616  return out;
617}
618
619CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
620                                                 const std::vector<float> val,
621                                                 const std::string& mode,
622                                                 bool tsys )
623{
624  if ( val.size() == 1 ) {
625    return unaryOperate( in, val[0], mode, tsys ) ;
626  }
627
628  // conformity of SPECTRA and TSYS
629  if ( tsys ) {
630    TableIterator titer(in->table(), "IFNO");
631    while ( !titer.pastEnd() ) {
632      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
633      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
634      Array<Float> spec = specCol.getColumn() ;
635      Array<Float> ts = tsysCol.getColumn() ;
636      if ( !spec.conform( ts ) ) {
637        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
638      }
639      titer.next() ;
640    }
641  }
642
643  // check if vector size is equal to nrow
644  Vector<Float> fact( val ) ;
645  if (fact.nelements() != uInt(in->nrow())) {
646    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
647  }
648
649  // check divided by zero
650  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
651    throw( AipsError("Divided by zero is not recommended." ) ) ;
652  }
653
654  CountedPtr< Scantable > out = getScantable(in, false);
655  Table& tab = out->table();
656  ArrayColumn<Float> specCol(tab,"SPECTRA");
657  ArrayColumn<Float> tsysCol(tab,"TSYS");
658  if (mode == "DIV") fact = (float)1.0 / fact;
659  if (mode == "SUB") fact *= (float)-1.0 ;
660  for (uInt i=0; i<tab.nrow(); ++i) {
661    Vector<Float> spec;
662    Vector<Float> ts;
663    specCol.get(i, spec);
664    tsysCol.get(i, ts);
665    if (mode == "MUL" || mode == "DIV") {
666      spec *= fact[i];
667      specCol.put(i, spec);
668      if ( tsys ) {
669        ts *= fact[i];
670        tsysCol.put(i, ts);
671      }
672    } else if ( mode == "ADD"  || mode == "SUB") {
673      spec += fact[i];
674      specCol.put(i, spec);
675      if ( tsys ) {
676        ts += fact[i];
677        tsysCol.put(i, ts);
678      }
679    }
680  }
681  return out;
682}
683
684CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
685                                                const std::vector< std::vector<float> > val,
686                                                const std::string& mode,
687                                                bool tsys )
688{
689  // conformity of SPECTRA and TSYS
690  if ( tsys ) {
691    TableIterator titer(in->table(), "IFNO");
692    while ( !titer.pastEnd() ) {
693      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
694      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
695      Array<Float> spec = specCol.getColumn() ;
696      Array<Float> ts = tsysCol.getColumn() ;
697      if ( !spec.conform( ts ) ) {
698        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
699      }
700      titer.next() ;
701    }
702  }
703
704  // some checks
705  vector<uInt> nchans;
706  for (Int i = 0 ; i < in->nrow() ; i++) {
707    nchans.push_back((in->getSpectrum(i)).size());
708  }
709  //Vector<uInt> mchans( nchans ) ;
710  vector< Vector<Float> > facts ;
711  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
712    Vector<Float> tmp( val[i] ) ;
713    // check divided by zero
714    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
715      throw( AipsError("Divided by zero is not recommended." ) ) ;
716    }
717    // conformity check
718    if ( tmp.nelements() != nchans[i] ) {
719      stringstream ss ;
720      ss << "Row " << i << ": Vector size must be same as number of channel." ;
721      throw( AipsError( ss.str() ) ) ;
722    }
723    facts.push_back( tmp ) ;
724  }
725
726
727  CountedPtr< Scantable > out = getScantable(in, false);
728  Table& tab = out->table();
729  ArrayColumn<Float> specCol(tab,"SPECTRA");
730  ArrayColumn<Float> tsysCol(tab,"TSYS");
731  for (uInt i=0; i<tab.nrow(); ++i) {
732    Vector<Float> fact = facts[i] ;
733    Vector<Float> spec;
734    Vector<Float> ts;
735    specCol.get(i, spec);
736    tsysCol.get(i, ts);
737    if (mode == "MUL" || mode == "DIV") {
738      if (mode == "DIV") fact = (float)1.0 / fact;
739      spec *= fact;
740      specCol.put(i, spec);
741      if ( tsys ) {
742        ts *= fact;
743        tsysCol.put(i, ts);
744      }
745    } else if ( mode == "ADD"  || mode == "SUB") {
746      if (mode == "SUB") fact *= (float)-1.0 ;
747      spec += fact;
748      specCol.put(i, spec);
749      if ( tsys ) {
750        ts += fact;
751        tsysCol.put(i, ts);
752      }
753    }
754  }
755  return out;
756}
757
758CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
759                                            const CountedPtr<Scantable>& right,
760                                            const std::string& mode)
761{
762  bool insitu = insitu_;
763  if ( ! left->conformant(*right) ) {
764    throw(AipsError("'left' and 'right' scantables are not conformant."));
765  }
766  setInsitu(false);
767  CountedPtr< Scantable > out = getScantable(left, false);
768  setInsitu(insitu);
769  Table& tout = out->table();
770  Block<String> coln(5);
771  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
772  coln[3] = "IFNO";  coln[4] = "POLNO";
773  Table tmpl = tout.sort(coln);
774  Table tmpr = right->table().sort(coln);
775  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
776  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
777  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
778  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
779
780  for (uInt i=0; i<tout.nrow(); ++i) {
781    Vector<Float> lspecvec, rspecvec;
782    Vector<uChar> lflagvec, rflagvec;
783    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
784    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
785    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
786    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
787    if (mode == "ADD") {
788      mleft += mright;
789    } else if ( mode == "SUB") {
790      mleft -= mright;
791    } else if ( mode == "MUL") {
792      mleft *= mright;
793    } else if ( mode == "DIV") {
794      mleft /= mright;
795    } else {
796      throw(AipsError("Illegal binary operator"));
797    }
798    lspecCol.put(i, mleft.getArray());
799  }
800  return out;
801}
802
803
804
805MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
806                                        const Vector<uChar>& f)
807{
808  Vector<Bool> mask;
809  mask.resize(f.shape());
810  convertArray(mask, f);
811  return MaskedArray<Float>(s,!mask);
812}
813
814MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
815                                         const Vector<uChar>& f)
816{
817  Vector<Bool> mask;
818  mask.resize(f.shape());
819  convertArray(mask, f);
820  return MaskedArray<Double>(s,!mask);
821}
822
823Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
824{
825  const Vector<Bool>& m = ma.getMask();
826  Vector<uChar> flags(m.shape());
827  convertArray(flags, !m);
828  return flags;
829}
830
831CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
832                                              const std::string & mode,
833                                              bool preserve )
834{
835  /// @todo make other modes available
836  /// modes should be "nearest", "pair"
837  // make this operation non insitu
838  const Table& tin = in->table();
839  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
840  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
841  if ( offs.nrow() == 0 )
842    throw(AipsError("No 'off' scans present."));
843  // put all "on" scans into output table
844
845  bool insitu = insitu_;
846  setInsitu(false);
847  CountedPtr< Scantable > out = getScantable(in, true);
848  setInsitu(insitu);
849  Table& tout = out->table();
850
851  TableCopy::copyRows(tout, ons);
852  TableRow row(tout);
853  ROScalarColumn<Double> offtimeCol(offs, "TIME");
854  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
855  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
856  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
857  for (uInt i=0; i < tout.nrow(); ++i) {
858    const TableRecord& rec = row.get(i);
859    Double ontime = rec.asDouble("TIME");
860    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
861                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
862                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
863    ROScalarColumn<Double> offtimeCol(presel, "TIME");
864
865    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
866    // Timestamp may vary within a cycle ???!!!
867    // increase this by 0.01 sec in case of rounding errors...
868    // There might be a better way to do this.
869    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
870    mindeltat += 0.01/24./60./60.;
871    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
872
873    if ( sel.nrow() < 1 )  {
874      throw(AipsError("No closest in time found... This could be a rounding "
875                      "issue. Try quotient instead."));
876    }
877    TableRow offrow(sel);
878    const TableRecord& offrec = offrow.get(0);//should only be one row
879    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
880    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
881    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
882    /// @fixme this assumes tsys is a scalar not vector
883    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
884    Vector<Float> specon, tsyson;
885    outtsysCol.get(i, tsyson);
886    outspecCol.get(i, specon);
887    Vector<uChar> flagon;
888    outflagCol.get(i, flagon);
889    MaskedArray<Float> mon = maskedArray(specon, flagon);
890    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
891    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
892    if (preserve) {
893      quot -= tsysoffscalar;
894    } else {
895      quot -= tsyson[0];
896    }
897    outspecCol.put(i, quot.getArray());
898    outflagCol.put(i, flagsFromMA(quot));
899  }
900  // renumber scanno
901  TableIterator it(tout, "SCANNO");
902  uInt i = 0;
903  while ( !it.pastEnd() ) {
904    Table t = it.table();
905    TableVector<uInt> vec(t, "SCANNO");
906    vec = i;
907    ++i;
908    ++it;
909  }
910  return out;
911}
912
913
914CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
915                                          const CountedPtr< Scantable > & off,
916                                          bool preserve )
917{
918  bool insitu = insitu_;
919  if ( ! on->conformant(*off) ) {
920    throw(AipsError("'on' and 'off' scantables are not conformant."));
921  }
922  setInsitu(false);
923  CountedPtr< Scantable > out = getScantable(on, false);
924  setInsitu(insitu);
925  Table& tout = out->table();
926  const Table& toff = off->table();
927  TableIterator sit(tout, "SCANNO");
928  TableIterator s2it(toff, "SCANNO");
929  while ( !sit.pastEnd() ) {
930    Table ton = sit.table();
931    TableRow row(ton);
932    Table t = s2it.table();
933    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
934    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
935    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
936    for (uInt i=0; i < ton.nrow(); ++i) {
937      const TableRecord& rec = row.get(i);
938      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
939                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
940                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
941      if ( offsel.nrow() == 0 )
942        throw AipsError("STMath::quotient: no matching off");
943      TableRow offrow(offsel);
944      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
945      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
946      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
947      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
948      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
949      Vector<Float> specon, tsyson;
950      outtsysCol.get(i, tsyson);
951      outspecCol.get(i, specon);
952      Vector<uChar> flagon;
953      outflagCol.get(i, flagon);
954      MaskedArray<Float> mon = maskedArray(specon, flagon);
955      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
956      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
957      if (preserve) {
958        quot -= tsysoffscalar;
959      } else {
960        quot -= tsyson[0];
961      }
962      outspecCol.put(i, quot.getArray());
963      outflagCol.put(i, flagsFromMA(quot));
964    }
965    ++sit;
966    ++s2it;
967    // take the first off for each on scan which doesn't have a
968    // matching off scan
969    // non <= noff:  matching pairs, non > noff matching pairs then first off
970    if ( s2it.pastEnd() ) s2it.reset();
971  }
972  return out;
973}
974
975// dototalpower (migration of GBTIDL procedure dototalpower.pro)
976// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
977// do it for each cycles in a specific scan.
978CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
979                                              const CountedPtr< Scantable >& caloff, Float tcal )
980{
981if ( ! calon->conformant(*caloff) ) {
982    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
983  }
984  setInsitu(false);
985  CountedPtr< Scantable > out = getScantable(caloff, false);
986  Table& tout = out->table();
987  const Table& tcon = calon->table();
988  Vector<Float> tcalout;
989  Vector<Float> tcalout2;  //debug
990
991  if ( tout.nrow() != tcon.nrow() ) {
992    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
993  }
994  // iteration by scanno or cycle no.
995  TableIterator sit(tout, "SCANNO");
996  TableIterator s2it(tcon, "SCANNO");
997  while ( !sit.pastEnd() ) {
998    Table toff = sit.table();
999    TableRow row(toff);
1000    Table t = s2it.table();
1001    ScalarColumn<Double> outintCol(toff, "INTERVAL");
1002    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
1003    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1004    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1005    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1006    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1007    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1008    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1009    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1010    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1011    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1012
1013    for (uInt i=0; i < toff.nrow(); ++i) {
1014      //skip these checks -> assumes the data order are the same between the cal on off pairs
1015      //
1016      Vector<Float> specCalon, specCaloff;
1017      // to store scalar (mean) tsys
1018      Vector<Float> tsysout(1);
1019      uInt tcalId, polno;
1020      Double offint, onint;
1021      outpolCol.get(i, polno);
1022      outspecCol.get(i, specCaloff);
1023      onspecCol.get(i, specCalon);
1024      Vector<uChar> flagCaloff, flagCalon;
1025      outflagCol.get(i, flagCaloff);
1026      onflagCol.get(i, flagCalon);
1027      outtcalIdCol.get(i, tcalId);
1028      outintCol.get(i, offint);
1029      onintCol.get(i, onint);
1030      // caluculate mean Tsys
1031      uInt nchan = specCaloff.nelements();
1032      // percentage of edge cut off
1033      uInt pc = 10;
1034      uInt bchan = nchan/pc;
1035      uInt echan = nchan-bchan;
1036
1037      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1038      Vector<Float> testsubsp = specCaloff(chansl);
1039      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1040      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1041      MaskedArray<Float> spdiff = spon-spoff;
1042      uInt noff = spoff.nelementsValid();
1043      //uInt non = spon.nelementsValid();
1044      uInt ndiff = spdiff.nelementsValid();
1045      Float meantsys;
1046
1047/**
1048      Double subspec, subdiff;
1049      uInt usednchan;
1050      subspec = 0;
1051      subdiff = 0;
1052      usednchan = 0;
1053      for(uInt k=(bchan-1); k<echan; k++) {
1054        subspec += specCaloff[k];
1055        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1056        ++usednchan;
1057      }
1058**/
1059      // get tcal if input tcal <= 0
1060      String tcalt;
1061      Float tcalUsed;
1062      tcalUsed = tcal;
1063      if ( tcal <= 0.0 ) {
1064        caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1065//         if (polno<=3) {
1066//           tcalUsed = tcalout[polno];
1067//         }
1068//         else {
1069//           tcalUsed = tcalout[0];
1070//         }
1071        if ( tcalout.size() == 1 )
1072          tcalUsed = tcalout[0] ;
1073        else if ( tcalout.size() == nchan )
1074          tcalUsed = mean(tcalout) ;
1075        else {
1076          uInt ipol = polno ;
1077          if ( ipol > 3 ) ipol = 0 ;
1078          tcalUsed = tcalout[ipol] ;
1079        }
1080      }
1081
1082      Float meanoff;
1083      Float meandiff;
1084      if (noff && ndiff) {
1085         //Debug
1086         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1087         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1088         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1089         meanoff = sum(spoff)/noff;
1090         meandiff = sum(spdiff)/ndiff;
1091         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1092      }
1093      else {
1094         meantsys=1;
1095      }
1096
1097      tsysout[0] = Float(meantsys);
1098      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1099      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1100      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1101      //uInt ncaloff = mcaloff.nelementsValid();
1102      //uInt ncalon = mcalon.nelementsValid();
1103
1104      outintCol.put(i, offint+onint);
1105      outspecCol.put(i, sig.getArray());
1106      outflagCol.put(i, flagsFromMA(sig));
1107      outtsysCol.put(i, tsysout);
1108    }
1109    ++sit;
1110    ++s2it;
1111  }
1112  return out;
1113}
1114
1115//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1116// observatiions.
1117// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1118//        no smoothing).
1119// output: resultant scantable [= (sig-ref/ref)*tsys]
1120CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1121                                          const CountedPtr < Scantable >& ref,
1122                                          int smoothref,
1123                                          casa::Float tsysv,
1124                                          casa::Float tau )
1125{
1126if ( ! ref->conformant(*sig) ) {
1127    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1128  }
1129  setInsitu(false);
1130  CountedPtr< Scantable > out = getScantable(sig, false);
1131  CountedPtr< Scantable > smref;
1132  if ( smoothref > 1 ) {
1133    float fsmoothref = static_cast<float>(smoothref);
1134    std::string inkernel = "boxcar";
1135    smref = smooth(ref, inkernel, fsmoothref );
1136    ostringstream oss;
1137    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1138    pushLog(String(oss));
1139  }
1140  else {
1141    smref = ref;
1142  }
1143  Table& tout = out->table();
1144  const Table& tref = smref->table();
1145  if ( tout.nrow() != tref.nrow() ) {
1146    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1147  }
1148  // iteration by scanno? or cycle no.
1149  TableIterator sit(tout, "SCANNO");
1150  TableIterator s2it(tref, "SCANNO");
1151  while ( !sit.pastEnd() ) {
1152    Table ton = sit.table();
1153    Table t = s2it.table();
1154    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1155    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1156    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1157    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1158    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1159    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1160    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1161    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1162    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1163    for (uInt i=0; i < ton.nrow(); ++i) {
1164
1165      Double onint, refint;
1166      Vector<Float> specon, specref;
1167      // to store scalar (mean) tsys
1168      Vector<Float> tsysref;
1169      outintCol.get(i, onint);
1170      refintCol.get(i, refint);
1171      outspecCol.get(i, specon);
1172      refspecCol.get(i, specref);
1173      Vector<uChar> flagref, flagon;
1174      outflagCol.get(i, flagon);
1175      refflagCol.get(i, flagref);
1176      reftsysCol.get(i, tsysref);
1177
1178      Float tsysrefscalar;
1179      if ( tsysv > 0.0 ) {
1180        ostringstream oss;
1181        Float elev;
1182        refelevCol.get(i, elev);
1183        oss << "user specified Tsys = " << tsysv;
1184        // do recalc elevation if EL = 0
1185        if ( elev == 0 ) {
1186          throw(AipsError("EL=0, elevation data is missing."));
1187        } else {
1188          if ( tau <= 0.0 ) {
1189            throw(AipsError("Valid tau is not supplied."));
1190          } else {
1191            tsysrefscalar = tsysv * exp(tau/elev);
1192          }
1193        }
1194        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1195        pushLog(String(oss));
1196      }
1197      else {
1198        tsysrefscalar = tsysref[0];
1199      }
1200      //get quotient spectrum
1201      MaskedArray<Float> mref = maskedArray(specref, flagref);
1202      MaskedArray<Float> mon = maskedArray(specon, flagon);
1203      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1204      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1205
1206      //Debug
1207      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1208      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1209      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1210      // fill the result, replay signal tsys by reference tsys
1211      outintCol.put(i, resint);
1212      outspecCol.put(i, specres.getArray());
1213      outflagCol.put(i, flagsFromMA(specres));
1214      outtsysCol.put(i, tsysref);
1215    }
1216    ++sit;
1217    ++s2it;
1218  }
1219  return out;
1220}
1221
1222CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1223                                     const std::vector<int>& scans,
1224                                     int smoothref,
1225                                     casa::Float tsysv,
1226                                     casa::Float tau,
1227                                     casa::Float tcal )
1228
1229{
1230  setInsitu(false);
1231  STSelector sel;
1232  std::vector<int> scan1, scan2, beams, types;
1233  std::vector< vector<int> > scanpair;
1234  //std::vector<string> calstate;
1235  std::vector<int> calstate;
1236  String msg;
1237
1238  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1239  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1240
1241  std::vector< CountedPtr< Scantable > > sctables;
1242  sctables.push_back(s1b1on);
1243  sctables.push_back(s1b1off);
1244  sctables.push_back(s1b2on);
1245  sctables.push_back(s1b2off);
1246  sctables.push_back(s2b1on);
1247  sctables.push_back(s2b1off);
1248  sctables.push_back(s2b2on);
1249  sctables.push_back(s2b2off);
1250
1251  //check scanlist
1252  int n=s->checkScanInfo(scans);
1253  if (n==1) {
1254     throw(AipsError("Incorrect scan pairs. "));
1255  }
1256
1257  // Assume scans contain only a pair of consecutive scan numbers.
1258  // It is assumed that first beam, b1,  is on target.
1259  // There is no check if the first beam is on or not.
1260  if ( scans.size()==1 ) {
1261    scan1.push_back(scans[0]);
1262    scan2.push_back(scans[0]+1);
1263  } else if ( scans.size()==2 ) {
1264   scan1.push_back(scans[0]);
1265   scan2.push_back(scans[1]);
1266  } else {
1267    if ( scans.size()%2 == 0 ) {
1268      for (uInt i=0; i<scans.size(); i++) {
1269        if (i%2 == 0) {
1270          scan1.push_back(scans[i]);
1271        }
1272        else {
1273          scan2.push_back(scans[i]);
1274        }
1275      }
1276    } else {
1277      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1278    }
1279  }
1280  scanpair.push_back(scan1);
1281  scanpair.push_back(scan2);
1282  //calstate.push_back("*calon");
1283  //calstate.push_back("*[^calon]");
1284  calstate.push_back(SrcType::NODCAL);
1285  calstate.push_back(SrcType::NOD);
1286  CountedPtr< Scantable > ws = getScantable(s, false);
1287  uInt l=0;
1288  while ( l < sctables.size() ) {
1289    for (uInt i=0; i < 2; i++) {
1290      for (uInt j=0; j < 2; j++) {
1291        for (uInt k=0; k < 2; k++) {
1292          sel.reset();
1293          sel.setScans(scanpair[i]);
1294          //sel.setName(calstate[k]);
1295          types.clear();
1296          types.push_back(calstate[k]);
1297          sel.setTypes(types);
1298          beams.clear();
1299          beams.push_back(j);
1300          sel.setBeams(beams);
1301          ws->setSelection(sel);
1302          sctables[l]= getScantable(ws, false);
1303          l++;
1304        }
1305      }
1306    }
1307  }
1308
1309  // replace here by splitData or getData functionality
1310  CountedPtr< Scantable > sig1;
1311  CountedPtr< Scantable > ref1;
1312  CountedPtr< Scantable > sig2;
1313  CountedPtr< Scantable > ref2;
1314  CountedPtr< Scantable > calb1;
1315  CountedPtr< Scantable > calb2;
1316
1317  msg=String("Processing dototalpower for subset of the data");
1318  ostringstream oss1;
1319  oss1 << msg  << endl;
1320  pushLog(String(oss1));
1321  // Debug for IRC CS data
1322  //float tcal1=7.0;
1323  //float tcal2=4.0;
1324  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1325  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1326  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1327  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1328
1329  // correction of user-specified tsys for elevation here
1330
1331  // dosigref calibration
1332  msg=String("Processing dosigref for subset of the data");
1333  ostringstream oss2;
1334  oss2 << msg  << endl;
1335  pushLog(String(oss2));
1336  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1337  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1338
1339  // iteration by scanno or cycle no.
1340  Table& tcalb1 = calb1->table();
1341  Table& tcalb2 = calb2->table();
1342  TableIterator sit(tcalb1, "SCANNO");
1343  TableIterator s2it(tcalb2, "SCANNO");
1344  while ( !sit.pastEnd() ) {
1345    Table t1 = sit.table();
1346    Table t2= s2it.table();
1347    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1348    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1349    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1350    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1351    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1352    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1353    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1354    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1355    for (uInt i=0; i < t1.nrow(); ++i) {
1356      Vector<Float> spec1, spec2;
1357      // to store scalar (mean) tsys
1358      Vector<Float> tsys1, tsys2;
1359      Vector<uChar> flag1, flag2;
1360      Double tint1, tint2;
1361      outspecCol.get(i, spec1);
1362      t2specCol.get(i, spec2);
1363      outflagCol.get(i, flag1);
1364      t2flagCol.get(i, flag2);
1365      outtsysCol.get(i, tsys1);
1366      t2tsysCol.get(i, tsys2);
1367      outintCol.get(i, tint1);
1368      t2intCol.get(i, tint2);
1369      // average
1370      // assume scalar tsys for weights
1371      Float wt1, wt2, tsyssq1, tsyssq2;
1372      tsyssq1 = tsys1[0]*tsys1[0];
1373      tsyssq2 = tsys2[0]*tsys2[0];
1374      wt1 = Float(tint1)/tsyssq1;
1375      wt2 = Float(tint2)/tsyssq2;
1376      Float invsumwt=1/(wt1+wt2);
1377      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1378      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1379      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1380      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1381      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1382      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1383      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1384      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1385      Array<Float> avtsys =  tsys1;
1386
1387      outspecCol.put(i, avspec.getArray());
1388      outflagCol.put(i, flagsFromMA(avspec));
1389      outtsysCol.put(i, avtsys);
1390    }
1391    ++sit;
1392    ++s2it;
1393  }
1394  return calb1;
1395}
1396
1397//GBTIDL version of frequency switched data calibration
1398CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1399                                      const std::vector<int>& scans,
1400                                      int smoothref,
1401                                      casa::Float tsysv,
1402                                      casa::Float tau,
1403                                      casa::Float tcal )
1404{
1405
1406
1407  STSelector sel;
1408  CountedPtr< Scantable > ws = getScantable(s, false);
1409  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1410  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1411  Bool nofold=False;
1412  vector<int> types ;
1413
1414  //split the data
1415  //sel.setName("*_fs");
1416  types.push_back( SrcType::FSON ) ;
1417  sel.setTypes( types ) ;
1418  ws->setSelection(sel);
1419  sig = getScantable(ws,false);
1420  sel.reset();
1421  types.clear() ;
1422  //sel.setName("*_fs_calon");
1423  types.push_back( SrcType::FONCAL ) ;
1424  sel.setTypes( types ) ;
1425  ws->setSelection(sel);
1426  sigwcal = getScantable(ws,false);
1427  sel.reset();
1428  types.clear() ;
1429  //sel.setName("*_fsr");
1430  types.push_back( SrcType::FSOFF ) ;
1431  sel.setTypes( types ) ;
1432  ws->setSelection(sel);
1433  ref = getScantable(ws,false);
1434  sel.reset();
1435  types.clear() ;
1436  //sel.setName("*_fsr_calon");
1437  types.push_back( SrcType::FOFFCAL ) ;
1438  sel.setTypes( types ) ;
1439  ws->setSelection(sel);
1440  refwcal = getScantable(ws,false);
1441  sel.reset() ;
1442  types.clear() ;
1443
1444  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1445  calref = dototalpower(refwcal, ref, tcal=tcal);
1446
1447  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1448  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1449
1450  Table& tabout1=out1->table();
1451  Table& tabout2=out2->table();
1452  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1453  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1454  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1455  Vector<Float> spec; specCol.get(0, spec);
1456  uInt nchan = spec.nelements();
1457  uInt freqid1; freqidCol1.get(0,freqid1);
1458  uInt freqid2; freqidCol2.get(0,freqid2);
1459  Double rp1, rp2, rv1, rv2, inc1, inc2;
1460  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1461  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1462  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1463  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1464  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1465  if (rp1==rp2) {
1466    Double foffset = rv1 - rv2;
1467    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1468    if (choffset >= nchan) {
1469      //cerr<<"out-band frequency switching, no folding"<<endl;
1470      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1471      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1472      nofold = True;
1473    }
1474  }
1475
1476  if (nofold) {
1477    std::vector< CountedPtr< Scantable > > tabs;
1478    tabs.push_back(out1);
1479    tabs.push_back(out2);
1480    out = merge(tabs);
1481  }
1482  else {
1483    //out = out1;
1484    Double choffset = ( rv1 - rv2 ) / inc2 ;
1485    out = dofold( out1, out2, choffset ) ;
1486  }
1487   
1488  return out;
1489}
1490
1491CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1492                                      const CountedPtr<Scantable> &ref,
1493                                      Double choffset,
1494                                      Double choffset2 )
1495{
1496  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1497  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1498
1499  // output scantable
1500  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1501
1502  // separate choffset to integer part and decimal part
1503  Int ioffset = (Int)choffset ;
1504  Double doffset = choffset - ioffset ;
1505  Int ioffset2 = (Int)choffset2 ;
1506  Double doffset2 = choffset2 - ioffset2 ;
1507  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1508  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1509
1510  // get column
1511  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1512  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1513  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1514  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1515  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1516  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1517  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1518  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1519  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1520  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1521
1522  // check
1523  if ( ioffset == 0 ) {
1524    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1525    os << "channel offset is zero, no folding" << LogIO::POST ;
1526    return out ;
1527  }
1528  int nchan = ref->nchan() ;
1529  if ( abs(ioffset) >= nchan ) {
1530    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1531    os << "out-band frequency switching, no folding" << LogIO::POST ;
1532    return out ;
1533  }
1534
1535  // attach column for output scantable
1536  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1537  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1538  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1539  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1540  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1541  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1542
1543  // for each row
1544  // assume that the data order are same between sig and ref
1545  RowAccumulator acc( asap::W_TINTSYS ) ;
1546  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1547    // get values
1548    Vector<Float> spsig ;
1549    specCol1.get( i, spsig ) ;
1550    Vector<Float> spref ;
1551    specCol2.get( i, spref ) ;
1552    Vector<Float> tsyssig ;
1553    tsysCol1.get( i, tsyssig ) ;
1554    Vector<Float> tsysref ;
1555    tsysCol2.get( i, tsysref ) ;
1556    Vector<uChar> flagsig ;
1557    flagCol1.get( i, flagsig ) ;
1558    Vector<uChar> flagref ;
1559    flagCol2.get( i, flagref ) ;
1560    Double timesig ;
1561    mjdCol1.get( i, timesig ) ;
1562    Double timeref ;
1563    mjdCol2.get( i, timeref ) ;
1564    Double intsig ;
1565    intervalCol1.get( i, intsig ) ;
1566    Double intref ;
1567    intervalCol2.get( i, intref ) ;
1568
1569    // shift reference spectra
1570    int refchan = spref.nelements() ;
1571    Vector<Float> sspref( spref.nelements() ) ;
1572    Vector<Float> stsysref( tsysref.nelements() ) ;
1573    Vector<uChar> sflagref( flagref.nelements() ) ;
1574    if ( ioffset > 0 ) {
1575      // SPECTRA and FLAGTRA
1576      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1577        sspref[j] = spref[j+ioffset] ;
1578        sflagref[j] = flagref[j+ioffset] ;
1579      }
1580      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1581        sspref[j] = spref[j-refchan+ioffset] ;
1582        sflagref[j] = flagref[j-refchan+ioffset] ;
1583      }
1584      spref = sspref.copy() ;
1585      flagref = sflagref.copy() ;
1586      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1587        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1588        sflagref[j] = flagref[j+1] + flagref[j] ;
1589      }
1590      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1591      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1592
1593      // TSYS
1594      if ( spref.nelements() == tsysref.nelements() ) {
1595        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1596          stsysref[j] = tsysref[j+ioffset] ;
1597        }
1598        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1599          stsysref[j] = tsysref[j-refchan+ioffset] ;
1600        }
1601        tsysref = stsysref.copy() ;
1602        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1603          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1604        }
1605        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1606      }
1607    }
1608    else {
1609      // SPECTRA and FLAGTRA
1610      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1611        sspref[j] = spref[refchan+ioffset+j] ;
1612        sflagref[j] = flagref[refchan+ioffset+j] ;
1613      }
1614      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1615        sspref[j] = spref[j+ioffset] ;
1616        sflagref[j] = flagref[j+ioffset] ;
1617      }
1618      spref = sspref.copy() ;
1619      flagref = sflagref.copy() ;
1620      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1621      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1622      for ( int j = 1 ; j < refchan ; j++ ) {
1623        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1624        sflagref[j] = flagref[j-1] + flagref[j] ;
1625      }
1626      // TSYS
1627      if ( spref.nelements() == tsysref.nelements() ) {
1628        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1629          stsysref[j] = tsysref[refchan+ioffset+j] ;
1630        }
1631        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1632          stsysref[j] = tsysref[j+ioffset] ;
1633        }
1634        tsysref = stsysref.copy() ;
1635        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1636        for ( int j = 1 ; j < refchan ; j++ ) {
1637          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1638        }
1639      }
1640    }
1641
1642    // shift signal spectra if necessary (only for APEX?)
1643    if ( choffset2 != 0.0 ) {
1644      int sigchan = spsig.nelements() ;
1645      Vector<Float> sspsig( spsig.nelements() ) ;
1646      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1647      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1648      if ( ioffset2 > 0 ) {
1649        // SPECTRA and FLAGTRA
1650        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1651          sspsig[j] = spsig[j+ioffset2] ;
1652          sflagsig[j] = flagsig[j+ioffset2] ;
1653        }
1654        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1655          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1656          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1657        }
1658        spsig = sspsig.copy() ;
1659        flagsig = sflagsig.copy() ;
1660        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1661          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1662          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1663        }
1664        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1665        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1666        // TSTS
1667        if ( spsig.nelements() == tsyssig.nelements() ) {
1668          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1669            stsyssig[j] = tsyssig[j+ioffset2] ;
1670          }
1671          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1672            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1673          }
1674          tsyssig = stsyssig.copy() ;
1675          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1676            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1677          }
1678          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1679        }
1680      }
1681      else {
1682        // SPECTRA and FLAGTRA
1683        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1684          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1685          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1686        }
1687        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1688          sspsig[j] = spsig[j+ioffset2] ;
1689          sflagsig[j] = flagsig[j+ioffset2] ;
1690        }
1691        spsig = sspsig.copy() ;
1692        flagsig = sflagsig.copy() ;
1693        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1694        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1695        for ( int j = 1 ; j < sigchan ; j++ ) {
1696          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1697          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1698        }
1699        // TSYS
1700        if ( spsig.nelements() == tsyssig.nelements() ) {
1701          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1702            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1703          }
1704          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1705            stsyssig[j] = tsyssig[j+ioffset2] ;
1706          }
1707          tsyssig = stsyssig.copy() ;
1708          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1709          for ( int j = 1 ; j < sigchan ; j++ ) {
1710            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1711          }
1712        }
1713      }
1714    }
1715
1716    // folding
1717    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1718    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1719   
1720    // put result
1721    specColOut.put( i, acc.getSpectrum() ) ;
1722    const Vector<Bool> &msk = acc.getMask() ;
1723    Vector<uChar> flg( msk.shape() ) ;
1724    convertArray( flg, !msk ) ;
1725    flagColOut.put( i, flg ) ;
1726    tsysColOut.put( i, acc.getTsys() ) ;
1727    intervalColOut.put( i, acc.getInterval() ) ;
1728    mjdColOut.put( i, acc.getTime() ) ;
1729    // change FREQ_ID to unshifted IF setting (only for APEX?)
1730    if ( choffset2 != 0.0 ) {
1731      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1732      double refpix, refval, increment ;
1733      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1734      refval -= choffset * increment ;
1735      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1736      Vector<uInt> freqids = fidColOut.getColumn() ;
1737      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1738        if ( freqids[j] == freqid )
1739          freqids[j] = newfreqid ;
1740      }
1741      fidColOut.putColumn( freqids ) ;
1742    }
1743
1744    acc.reset() ;
1745  }
1746
1747  return out ;
1748}
1749
1750
1751CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1752{
1753  // make copy or reference
1754  CountedPtr< Scantable > out = getScantable(in, false);
1755  Table& tout = out->table();
1756  Block<String> cols(4);
1757  cols[0] = String("SCANNO");
1758  cols[1] = String("CYCLENO");
1759  cols[2] = String("BEAMNO");
1760  cols[3] = String("POLNO");
1761  TableIterator iter(tout, cols);
1762  while (!iter.pastEnd()) {
1763    Table subt = iter.table();
1764    // this should leave us with two rows for the two IFs....if not ignore
1765    if (subt.nrow() != 2 ) {
1766      continue;
1767    }
1768    ArrayColumn<Float> specCol(subt, "SPECTRA");
1769    ArrayColumn<Float> tsysCol(subt, "TSYS");
1770    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1771    Vector<Float> onspec,offspec, ontsys, offtsys;
1772    Vector<uChar> onflag, offflag;
1773    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1774    specCol.get(0, onspec);   specCol.get(1, offspec);
1775    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1776    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1777    MaskedArray<Float> off = maskedArray(offspec, offflag);
1778    MaskedArray<Float> oncopy = on.copy();
1779
1780    on /= off; on -= 1.0f;
1781    on *= ontsys[0];
1782    off /= oncopy; off -= 1.0f;
1783    off *= offtsys[0];
1784    specCol.put(0, on.getArray());
1785    const Vector<Bool>& m0 = on.getMask();
1786    Vector<uChar> flags0(m0.shape());
1787    convertArray(flags0, !m0);
1788    flagCol.put(0, flags0);
1789
1790    specCol.put(1, off.getArray());
1791    const Vector<Bool>& m1 = off.getMask();
1792    Vector<uChar> flags1(m1.shape());
1793    convertArray(flags1, !m1);
1794    flagCol.put(1, flags1);
1795    ++iter;
1796  }
1797
1798  return out;
1799}
1800
1801std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1802                                        const std::vector< bool > & mask,
1803                                        const std::string& which )
1804{
1805
1806  Vector<Bool> m(mask);
1807  const Table& tab = in->table();
1808  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1809  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1810  std::vector<float> out;
1811  for (uInt i=0; i < tab.nrow(); ++i ) {
1812    Vector<Float> spec; specCol.get(i, spec);
1813    Vector<uChar> flag; flagCol.get(i, flag);
1814    MaskedArray<Float> ma  = maskedArray(spec, flag);
1815    float outstat = 0.0;
1816    if ( spec.nelements() == m.nelements() ) {
1817      outstat = mathutil::statistics(which, ma(m));
1818    } else {
1819      outstat = mathutil::statistics(which, ma);
1820    }
1821    out.push_back(outstat);
1822  }
1823  return out;
1824}
1825
1826std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1827                                        const std::vector< bool > & mask,
1828                                        const std::string& which,
1829                                        int row )
1830{
1831
1832  Vector<Bool> m(mask);
1833  const Table& tab = in->table();
1834  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1835  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1836  std::vector<float> out;
1837
1838  Vector<Float> spec; specCol.get(row, spec);
1839  Vector<uChar> flag; flagCol.get(row, flag);
1840  MaskedArray<Float> ma  = maskedArray(spec, flag);
1841  float outstat = 0.0;
1842  if ( spec.nelements() == m.nelements() ) {
1843    outstat = mathutil::statistics(which, ma(m));
1844  } else {
1845    outstat = mathutil::statistics(which, ma);
1846  }
1847  out.push_back(outstat);
1848
1849  return out;
1850}
1851
1852std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1853                                        const std::vector< bool > & mask,
1854                                        const std::string& which )
1855{
1856
1857  Vector<Bool> m(mask);
1858  const Table& tab = in->table();
1859  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1860  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1861  std::vector<int> out;
1862  for (uInt i=0; i < tab.nrow(); ++i ) {
1863    Vector<Float> spec; specCol.get(i, spec);
1864    Vector<uChar> flag; flagCol.get(i, flag);
1865    MaskedArray<Float> ma  = maskedArray(spec, flag);
1866    if (ma.ndim() != 1) {
1867      throw (ArrayError(
1868          "std::vector<int> STMath::minMaxChan("
1869          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1870          " std::string &which)"
1871          " - MaskedArray is not 1D"));
1872    }
1873    IPosition outpos(1,0);
1874    if ( spec.nelements() == m.nelements() ) {
1875      outpos = mathutil::minMaxPos(which, ma(m));
1876    } else {
1877      outpos = mathutil::minMaxPos(which, ma);
1878    }
1879    out.push_back(outpos[0]);
1880  }
1881  return out;
1882}
1883
1884CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1885                                     int width )
1886{
1887  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1888  CountedPtr< Scantable > out = getScantable(in, false);
1889  Table& tout = out->table();
1890  out->frequencies().rescale(width, "BIN");
1891  ArrayColumn<Float> specCol(tout, "SPECTRA");
1892  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1893  for (uInt i=0; i < tout.nrow(); ++i ) {
1894    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1895    MaskedArray<Float> maout;
1896    LatticeUtilities::bin(maout, main, 0, Int(width));
1897    /// @todo implement channel based tsys binning
1898    specCol.put(i, maout.getArray());
1899    flagCol.put(i, flagsFromMA(maout));
1900    // take only the first binned spectrum's length for the deprecated
1901    // global header item nChan
1902    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1903                                       Int(maout.getArray().nelements()));
1904  }
1905  return out;
1906}
1907
1908CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1909                                          const std::string& method,
1910                                          float width )
1911//
1912// Should add the possibility of width being specified in km/s. This means
1913// that for each freqID (SpectralCoordinate) we will need to convert to an
1914// average channel width (say at the reference pixel).  Then we would need
1915// to be careful to make sure each spectrum (of different freqID)
1916// is the same length.
1917//
1918{
1919  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1920  Int interpMethod(stringToIMethod(method));
1921
1922  CountedPtr< Scantable > out = getScantable(in, false);
1923  Table& tout = out->table();
1924
1925// Resample SpectralCoordinates (one per freqID)
1926  out->frequencies().rescale(width, "RESAMPLE");
1927  TableIterator iter(tout, "IFNO");
1928  TableRow row(tout);
1929  while ( !iter.pastEnd() ) {
1930    Table tab = iter.table();
1931    ArrayColumn<Float> specCol(tab, "SPECTRA");
1932    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1933    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1934    Vector<Float> spec;
1935    Vector<uChar> flag;
1936    specCol.get(0,spec); // the number of channels should be constant per IF
1937    uInt nChanIn = spec.nelements();
1938    Vector<Float> xIn(nChanIn); indgen(xIn);
1939    Int fac =  Int(nChanIn/width);
1940    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1941    uInt k = 0;
1942    Float x = 0.0;
1943    while (x < Float(nChanIn) ) {
1944      xOut(k) = x;
1945      k++;
1946      x += width;
1947    }
1948    uInt nChanOut = k;
1949    xOut.resize(nChanOut, True);
1950    // process all rows for this IFNO
1951    Vector<Float> specOut;
1952    Vector<Bool> maskOut;
1953    Vector<uChar> flagOut;
1954    for (uInt i=0; i < tab.nrow(); ++i) {
1955      specCol.get(i, spec);
1956      flagCol.get(i, flag);
1957      Vector<Bool> mask(flag.nelements());
1958      convertArray(mask, flag);
1959
1960      IPosition shapeIn(spec.shape());
1961      //sh.nchan = nChanOut;
1962      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1963                                                   xIn, spec, mask,
1964                                                   interpMethod, True, True);
1965      /// @todo do the same for channel based Tsys
1966      flagOut.resize(maskOut.nelements());
1967      convertArray(flagOut, maskOut);
1968      specCol.put(i, specOut);
1969      flagCol.put(i, flagOut);
1970    }
1971    ++iter;
1972  }
1973
1974  return out;
1975}
1976
1977STMath::imethod STMath::stringToIMethod(const std::string& in)
1978{
1979  static STMath::imap lookup;
1980
1981  // initialize the lookup table if necessary
1982  if ( lookup.empty() ) {
1983    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1984    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1985    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1986    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1987  }
1988
1989  STMath::imap::const_iterator iter = lookup.find(in);
1990
1991  if ( lookup.end() == iter ) {
1992    std::string message = in;
1993    message += " is not a valid interpolation mode";
1994    throw(AipsError(message));
1995  }
1996  return iter->second;
1997}
1998
1999WeightType STMath::stringToWeight(const std::string& in)
2000{
2001  static std::map<std::string, WeightType> lookup;
2002
2003  // initialize the lookup table if necessary
2004  if ( lookup.empty() ) {
2005    lookup["NONE"]   = asap::W_NONE;
2006    lookup["TINT"] = asap::W_TINT;
2007    lookup["TINTSYS"]  = asap::W_TINTSYS;
2008    lookup["TSYS"]  = asap::W_TSYS;
2009    lookup["VAR"]  = asap::W_VAR;
2010  }
2011
2012  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2013
2014  if ( lookup.end() == iter ) {
2015    std::string message = in;
2016    message += " is not a valid weighting mode";
2017    throw(AipsError(message));
2018  }
2019  return iter->second;
2020}
2021
2022CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2023                                               const vector< float > & coeff,
2024                                               const std::string & filename,
2025                                               const std::string& method)
2026{
2027  // Get elevation data from Scantable and convert to degrees
2028  CountedPtr< Scantable > out = getScantable(in, false);
2029  Table& tab = out->table();
2030  ROScalarColumn<Float> elev(tab, "ELEVATION");
2031  Vector<Float> x = elev.getColumn();
2032  x *= Float(180 / C::pi);                        // Degrees
2033
2034  Vector<Float> coeffs(coeff);
2035  const uInt nc = coeffs.nelements();
2036  if ( filename.length() > 0 && nc > 0 ) {
2037    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2038  }
2039
2040  // Correct
2041  if ( nc > 0 || filename.length() == 0 ) {
2042    // Find instrument
2043    Bool throwit = True;
2044    Instrument inst =
2045      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2046                                throwit);
2047
2048    // Set polynomial
2049    Polynomial<Float>* ppoly = 0;
2050    Vector<Float> coeff;
2051    String msg;
2052    if ( nc > 0 ) {
2053      ppoly = new Polynomial<Float>(nc-1);
2054      coeff = coeffs;
2055      msg = String("user");
2056    } else {
2057      STAttr sdAttr;
2058      coeff = sdAttr.gainElevationPoly(inst);
2059      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2060      msg = String("built in");
2061    }
2062
2063    if ( coeff.nelements() > 0 ) {
2064      ppoly->setCoefficients(coeff);
2065    } else {
2066      delete ppoly;
2067      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2068    }
2069    ostringstream oss;
2070    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2071    oss << "   " <<  coeff;
2072    pushLog(String(oss));
2073    const uInt nrow = tab.nrow();
2074    Vector<Float> factor(nrow);
2075    for ( uInt i=0; i < nrow; ++i ) {
2076      factor[i] = 1.0 / (*ppoly)(x[i]);
2077    }
2078    delete ppoly;
2079    scaleByVector(tab, factor, true);
2080
2081  } else {
2082    // Read and correct
2083    pushLog("Making correction from ascii Table");
2084    scaleFromAsciiTable(tab, filename, method, x, true);
2085  }
2086  return out;
2087}
2088
2089void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2090                                 const std::string& method,
2091                                 const Vector<Float>& xout, bool dotsys)
2092{
2093
2094// Read gain-elevation ascii file data into a Table.
2095
2096  String formatString;
2097  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2098  scaleFromTable(in, tbl, method, xout, dotsys);
2099}
2100
2101void STMath::scaleFromTable(Table& in,
2102                            const Table& table,
2103                            const std::string& method,
2104                            const Vector<Float>& xout, bool dotsys)
2105{
2106
2107  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2108  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2109  Vector<Float> xin = geElCol.getColumn();
2110  Vector<Float> yin = geFacCol.getColumn();
2111  Vector<Bool> maskin(xin.nelements(),True);
2112
2113  // Interpolate (and extrapolate) with desired method
2114
2115  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2116
2117   Vector<Float> yout;
2118   Vector<Bool> maskout;
2119   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2120                                                xin, yin, maskin, interp,
2121                                                True, True);
2122
2123   scaleByVector(in, Float(1.0)/yout, dotsys);
2124}
2125
2126void STMath::scaleByVector( Table& in,
2127                            const Vector< Float >& factor,
2128                            bool dotsys )
2129{
2130  uInt nrow = in.nrow();
2131  if ( factor.nelements() != nrow ) {
2132    throw(AipsError("factors.nelements() != table.nelements()"));
2133  }
2134  ArrayColumn<Float> specCol(in, "SPECTRA");
2135  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2136  ArrayColumn<Float> tsysCol(in, "TSYS");
2137  for (uInt i=0; i < nrow; ++i) {
2138    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2139    ma *= factor[i];
2140    specCol.put(i, ma.getArray());
2141    flagCol.put(i, flagsFromMA(ma));
2142    if ( dotsys ) {
2143      Vector<Float> tsys = tsysCol(i);
2144      tsys *= factor[i];
2145      tsysCol.put(i,tsys);
2146    }
2147  }
2148}
2149
2150CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2151                                             float d, float etaap,
2152                                             float jyperk )
2153{
2154  CountedPtr< Scantable > out = getScantable(in, false);
2155  Table& tab = in->table();
2156  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2157  Unit K(String("K"));
2158  Unit JY(String("Jy"));
2159
2160  bool tokelvin = true;
2161  Double cfac = 1.0;
2162
2163  if ( fluxUnit == JY ) {
2164    pushLog("Converting to K");
2165    Quantum<Double> t(1.0,fluxUnit);
2166    Quantum<Double> t2 = t.get(JY);
2167    cfac = (t2 / t).getValue();               // value to Jy
2168
2169    tokelvin = true;
2170    out->setFluxUnit("K");
2171  } else if ( fluxUnit == K ) {
2172    pushLog("Converting to Jy");
2173    Quantum<Double> t(1.0,fluxUnit);
2174    Quantum<Double> t2 = t.get(K);
2175    cfac = (t2 / t).getValue();              // value to K
2176
2177    tokelvin = false;
2178    out->setFluxUnit("Jy");
2179  } else {
2180    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2181  }
2182  // Make sure input values are converted to either Jy or K first...
2183  Float factor = cfac;
2184
2185  // Select method
2186  if (jyperk > 0.0) {
2187    factor *= jyperk;
2188    if ( tokelvin ) factor = 1.0 / jyperk;
2189    ostringstream oss;
2190    oss << "Jy/K = " << jyperk;
2191    pushLog(String(oss));
2192    Vector<Float> factors(tab.nrow(), factor);
2193    scaleByVector(tab,factors, false);
2194  } else if ( etaap > 0.0) {
2195    if (d < 0) {
2196      Instrument inst =
2197        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2198                                  True);
2199      STAttr sda;
2200      d = sda.diameter(inst);
2201    }
2202    jyperk = STAttr::findJyPerK(etaap, d);
2203    ostringstream oss;
2204    oss << "Jy/K = " << jyperk;
2205    pushLog(String(oss));
2206    factor *= jyperk;
2207    if ( tokelvin ) {
2208      factor = 1.0 / factor;
2209    }
2210    Vector<Float> factors(tab.nrow(), factor);
2211    scaleByVector(tab, factors, False);
2212  } else {
2213
2214    // OK now we must deal with automatic look up of values.
2215    // We must also deal with the fact that the factors need
2216    // to be computed per IF and may be different and may
2217    // change per integration.
2218
2219    pushLog("Looking up conversion factors");
2220    convertBrightnessUnits(out, tokelvin, cfac);
2221  }
2222
2223  return out;
2224}
2225
2226void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2227                                     bool tokelvin, float cfac )
2228{
2229  Table& table = in->table();
2230  Instrument inst =
2231    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2232  TableIterator iter(table, "FREQ_ID");
2233  STFrequencies stfreqs = in->frequencies();
2234  STAttr sdAtt;
2235  while (!iter.pastEnd()) {
2236    Table tab = iter.table();
2237    ArrayColumn<Float> specCol(tab, "SPECTRA");
2238    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2239    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2240    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2241
2242    uInt freqid; freqidCol.get(0, freqid);
2243    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2244    // STAttr.JyPerK has a Vector interface... change sometime.
2245    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2246    for ( uInt i=0; i<tab.nrow(); ++i) {
2247      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2248      Float factor = cfac * jyperk;
2249      if ( tokelvin ) factor = Float(1.0) / factor;
2250      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2251      ma *= factor;
2252      specCol.put(i, ma.getArray());
2253      flagCol.put(i, flagsFromMA(ma));
2254    }
2255  ++iter;
2256  }
2257}
2258
2259CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2260                                         const std::vector<float>& tau )
2261{
2262  CountedPtr< Scantable > out = getScantable(in, false);
2263
2264  Table outtab = out->table();
2265
2266  const Int ntau = uInt(tau.size());
2267  std::vector<float>::const_iterator tauit = tau.begin();
2268  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2269               AipsError);
2270  TableIterator iiter(outtab, "IFNO");
2271  while ( !iiter.pastEnd() ) {
2272    Table itab = iiter.table();
2273    TableIterator piter(outtab, "POLNO");
2274    while ( !piter.pastEnd() ) {
2275      Table tab = piter.table();
2276      ROScalarColumn<Float> elev(tab, "ELEVATION");
2277      ArrayColumn<Float> specCol(tab, "SPECTRA");
2278      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2279      ArrayColumn<Float> tsysCol(tab, "TSYS");
2280      for ( uInt i=0; i<tab.nrow(); ++i) {
2281        Float zdist = Float(C::pi_2) - elev(i);
2282        Float factor = exp(*tauit/cos(zdist));
2283        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2284        ma *= factor;
2285        specCol.put(i, ma.getArray());
2286        flagCol.put(i, flagsFromMA(ma));
2287        Vector<Float> tsys;
2288        tsysCol.get(i, tsys);
2289        tsys *= factor;
2290        tsysCol.put(i, tsys);
2291      }
2292      if (ntau == in->nif()*in->npol() ) {
2293        tauit++;
2294      }
2295      piter++;
2296    }
2297    if (ntau >= in->nif() ) {
2298      tauit++;
2299    }
2300    iiter++;
2301  }
2302  return out;
2303}
2304
2305CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2306                                             const std::string& kernel,
2307                                             float width, int order)
2308{
2309  CountedPtr< Scantable > out = getScantable(in, false);
2310  Table table = out->table();
2311
2312  TableIterator iter(table, "IFNO");
2313  while (!iter.pastEnd()) {
2314    Table tab = iter.table();
2315    ArrayColumn<Float> specCol(tab, "SPECTRA");
2316    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2317    Vector<Float> spec;
2318    Vector<uChar> flag;
2319    for (uInt i = 0; i < tab.nrow(); ++i) {
2320      specCol.get(i, spec);
2321      flagCol.get(i, flag);
2322      Vector<Bool> mask(flag.nelements());
2323      convertArray(mask, flag);
2324      Vector<Float> specout;
2325      Vector<Bool> maskout;
2326      if (kernel == "hanning") {
2327        mathutil::hanning(specout, maskout, spec, !mask);
2328        convertArray(flag, !maskout);
2329      } else if (kernel == "rmedian") {
2330        mathutil::runningMedian(specout, maskout, spec , mask, width);
2331        convertArray(flag, maskout);
2332      } else if (kernel == "poly") {
2333        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2334        convertArray(flag, !maskout);
2335      }
2336
2337      for (uInt j = 0; j < flag.nelements(); ++j) {
2338        uChar userFlag = 1 << 7;
2339        if (maskout[j]==True) userFlag = 0 << 7;
2340        flag(j) = userFlag;
2341      }
2342
2343      flagCol.put(i, flag);
2344      specCol.put(i, specout);
2345    }
2346  ++iter;
2347  }
2348  return out;
2349}
2350
2351CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2352                                        const std::string& kernel, float width,
2353                                        int order)
2354{
2355  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2356    return smoothOther(in, kernel, width, order);
2357  }
2358  CountedPtr< Scantable > out = getScantable(in, false);
2359  Table& table = out->table();
2360  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2361  // same IFNO should have same no of channels
2362  // this saves overhead
2363  TableIterator iter(table, "IFNO");
2364  while (!iter.pastEnd()) {
2365    Table tab = iter.table();
2366    ArrayColumn<Float> specCol(tab, "SPECTRA");
2367    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2368    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2369    uInt nchan = tmpspec.nelements();
2370    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2371    Convolver<Float> conv(kvec, IPosition(1,nchan));
2372    Vector<Float> spec;
2373    Vector<uChar> flag;
2374    for ( uInt i=0; i<tab.nrow(); ++i) {
2375      specCol.get(i, spec);
2376      flagCol.get(i, flag);
2377      Vector<Bool> mask(flag.nelements());
2378      convertArray(mask, flag);
2379      Vector<Float> specout;
2380      mathutil::replaceMaskByZero(specout, mask);
2381      conv.linearConv(specout, spec);
2382      specCol.put(i, specout);
2383    }
2384    ++iter;
2385  }
2386  return out;
2387}
2388
2389CountedPtr< Scantable >
2390  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2391{
2392  if ( in.size() < 2 ) {
2393    throw(AipsError("Need at least two scantables to perform a merge."));
2394  }
2395  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2396  bool insitu = insitu_;
2397  setInsitu(false);
2398  CountedPtr< Scantable > out = getScantable(*it, false);
2399  setInsitu(insitu);
2400  Table& tout = out->table();
2401  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2402  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2403  // Renumber SCANNO to be 0-based
2404  Vector<uInt> scannos = scannocol.getColumn();
2405  uInt offset = min(scannos);
2406  scannos -= offset;
2407  scannocol.putColumn(scannos);
2408  uInt newscanno = max(scannos)+1;
2409  ++it;
2410  while ( it != in.end() ){
2411    if ( ! (*it)->conformant(*out) ) {
2412      // non conformant.
2413      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2414      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2415      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2416    }
2417    out->appendToHistoryTable((*it)->history());
2418    const Table& tab = (*it)->table();
2419    TableIterator scanit(tab, "SCANNO");
2420    while (!scanit.pastEnd()) {
2421      TableIterator freqit(scanit.table(), "FREQ_ID");
2422      while ( !freqit.pastEnd() ) {
2423        Table thetab = freqit.table();
2424        uInt nrow = tout.nrow();
2425        tout.addRow(thetab.nrow());
2426        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2427        ROTableRow row(thetab);
2428        for ( uInt i=0; i<thetab.nrow(); ++i) {
2429          uInt k = nrow+i;
2430          scannocol.put(k, newscanno);
2431          const TableRecord& rec = row.get(i);
2432          Double rv,rp,inc;
2433          (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2434          uInt id;
2435          id = out->frequencies().addEntry(rp, rv, inc);
2436          freqidcol.put(k,id);
2437          //String name,fname;Double rf;
2438          Vector<String> name,fname;Vector<Double> rf;
2439          (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2440          id = out->molecules().addEntry(rf, name, fname);
2441          molidcol.put(k, id);
2442          Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2443          (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand,
2444                                  fmount,fuser, fxy, fxyp,
2445                                  rec.asuInt("FOCUS_ID"));
2446          id = out->focus().addEntry(fpa, fax, ftan, frot, fhand,
2447                                     fmount,fuser, fxy, fxyp);
2448          focusidcol.put(k, id);
2449        }
2450        ++freqit;
2451      }
2452      ++newscanno;
2453      ++scanit;
2454    }
2455    ++it;
2456  }
2457  return out;
2458}
2459
2460CountedPtr< Scantable >
2461  STMath::invertPhase( const CountedPtr < Scantable >& in )
2462{
2463  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2464}
2465
2466CountedPtr< Scantable >
2467  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2468{
2469   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2470}
2471
2472CountedPtr< Scantable >
2473  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2474{
2475  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2476}
2477
2478CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2479                                             STPol::polOperation fptr,
2480                                             Float phase )
2481{
2482  CountedPtr< Scantable > out = getScantable(in, false);
2483  Table& tout = out->table();
2484  Block<String> cols(4);
2485  cols[0] = String("SCANNO");
2486  cols[1] = String("BEAMNO");
2487  cols[2] = String("IFNO");
2488  cols[3] = String("CYCLENO");
2489  TableIterator iter(tout, cols);
2490  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2491                                               out->getPolType() );
2492  while (!iter.pastEnd()) {
2493    Table t = iter.table();
2494    ArrayColumn<Float> speccol(t, "SPECTRA");
2495    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2496    Matrix<Float> pols(speccol.getColumn());
2497    try {
2498      stpol->setSpectra(pols);
2499      Float fang,fhand;
2500      fang = in->focusTable_.getTotalAngle(focidcol(0));
2501      fhand = in->focusTable_.getFeedHand(focidcol(0));
2502      stpol->setPhaseCorrections(fang, fhand);
2503      // use a member function pointer in STPol.  This only works on
2504      // the STPol pointer itself, not the Counted Pointer so
2505      // derefernce it.
2506      (&(*(stpol))->*fptr)(phase);
2507      speccol.putColumn(stpol->getSpectra());
2508    } catch (AipsError& e) {
2509      //delete stpol;stpol=0;
2510      throw(e);
2511    }
2512    ++iter;
2513  }
2514  //delete stpol;stpol=0;
2515  return out;
2516}
2517
2518CountedPtr< Scantable >
2519  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2520{
2521  CountedPtr< Scantable > out = getScantable(in, false);
2522  Table& tout = out->table();
2523  Table t0 = tout(tout.col("POLNO") == 0);
2524  Table t1 = tout(tout.col("POLNO") == 1);
2525  if ( t0.nrow() != t1.nrow() )
2526    throw(AipsError("Inconsistent number of polarisations"));
2527  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2528  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2529  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2530  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2531  Matrix<Float> s0 = speccol0.getColumn();
2532  Matrix<uChar> f0 = flagcol0.getColumn();
2533  speccol0.putColumn(speccol1.getColumn());
2534  flagcol0.putColumn(flagcol1.getColumn());
2535  speccol1.putColumn(s0);
2536  flagcol1.putColumn(f0);
2537  return out;
2538}
2539
2540CountedPtr< Scantable >
2541  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2542                                const std::vector<bool>& mask,
2543                                const std::string& weight )
2544{
2545  if (in->npol() < 2 )
2546    throw(AipsError("averagePolarisations can only be applied to two or more"
2547                    "polarisations"));
2548  bool insitu = insitu_;
2549  setInsitu(false);
2550  CountedPtr< Scantable > pols = getScantable(in, true);
2551  setInsitu(insitu);
2552  Table& tout = pols->table();
2553  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2554  Table tab = tableCommand(taql, in->table());
2555  if (tab.nrow() == 0 )
2556    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2557  TableCopy::copyRows(tout, tab);
2558  TableVector<uInt> vec(tout, "POLNO");
2559  vec = 0;
2560  pols->table_.rwKeywordSet().define("nPol", Int(1));
2561  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2562  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2563  std::vector<CountedPtr<Scantable> > vpols;
2564  vpols.push_back(pols);
2565  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2566  return out;
2567}
2568
2569CountedPtr< Scantable >
2570  STMath::averageBeams( const CountedPtr< Scantable > & in,
2571                        const std::vector<bool>& mask,
2572                        const std::string& weight )
2573{
2574  bool insitu = insitu_;
2575  setInsitu(false);
2576  CountedPtr< Scantable > beams = getScantable(in, false);
2577  setInsitu(insitu);
2578  Table& tout = beams->table();
2579  // give all rows the same BEAMNO
2580  TableVector<uInt> vec(tout, "BEAMNO");
2581  vec = 0;
2582  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2583  std::vector<CountedPtr<Scantable> > vbeams;
2584  vbeams.push_back(beams);
2585  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2586  return out;
2587}
2588
2589
2590CountedPtr< Scantable >
2591  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2592                                const std::string & refTime,
2593                                const std::string & method)
2594{
2595  // clone as this is not working insitu
2596  bool insitu = insitu_;
2597  setInsitu(false);
2598  CountedPtr< Scantable > out = getScantable(in, false);
2599  setInsitu(insitu);
2600  Table& tout = out->table();
2601  // Get reference Epoch to time of first row or given String
2602  Unit DAY(String("d"));
2603  MEpoch::Ref epochRef(in->getTimeReference());
2604  MEpoch refEpoch;
2605  if (refTime.length()>0) {
2606    Quantum<Double> qt;
2607    if (MVTime::read(qt,refTime)) {
2608      MVEpoch mv(qt);
2609      refEpoch = MEpoch(mv, epochRef);
2610   } else {
2611      throw(AipsError("Invalid format for Epoch string"));
2612   }
2613  } else {
2614    refEpoch = in->timeCol_(0);
2615  }
2616  MPosition refPos = in->getAntennaPosition();
2617
2618  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2619  /*
2620  // Comment from MV.
2621  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2622  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2623  // test if user frame is different to base frame
2624  if ( in->frequencies().getFrameString(true)
2625       == in->frequencies().getFrameString(false) ) {
2626    throw(AipsError("Can't convert as no output frame has been set"
2627                    " (use set_freqframe) or it is aligned already."));
2628  }
2629  */
2630  MFrequency::Types system = in->frequencies().getFrame();
2631  MVTime mvt(refEpoch.getValue());
2632  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2633  ostringstream oss;
2634  oss << "Aligned at reference Epoch " << epochout
2635      << " in frame " << MFrequency::showType(system);
2636  pushLog(String(oss));
2637  // set up the iterator
2638  Block<String> cols(4);
2639  // select by constant direction
2640  cols[0] = String("SRCNAME");
2641  cols[1] = String("BEAMNO");
2642  // select by IF ( no of channels varies over this )
2643  cols[2] = String("IFNO");
2644  // select by restfrequency
2645  cols[3] = String("MOLECULE_ID");
2646  TableIterator iter(tout, cols);
2647  while ( !iter.pastEnd() ) {
2648    Table t = iter.table();
2649    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2650    TableIterator fiter(t, "FREQ_ID");
2651    // determine nchan from the first row. This should work as
2652    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2653
2654    ROArrayColumn<Float> sCol(t, "SPECTRA");
2655    const MDirection direction = dirCol(0);
2656    const uInt nchan = sCol(0).nelements();
2657
2658    // skip operations if there is nothing to align
2659    if (fiter.pastEnd()) {
2660        continue;
2661    }
2662
2663    Table ftab = fiter.table();
2664    // align all frequency ids with respect to the first encountered id
2665    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2666    // get the SpectralCoordinate for the freqid, which we are iterating over
2667    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2668    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2669                                direction, refPos, system );
2670    // realign the SpectralCoordinate and put into the output Scantable
2671    Vector<String> units(1);
2672    units = String("Hz");
2673    Bool linear=True;
2674    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2675    sc2.setWorldAxisUnits(units);
2676    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2677                                                sc2.referenceValue()[0],
2678                                                sc2.increment()[0]);
2679    while ( !fiter.pastEnd() ) {
2680      ftab = fiter.table();
2681      // spectral coordinate for the current FREQ_ID
2682      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2683      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2684      // create the "global" abcissa for alignment with same FREQ_ID
2685      Vector<Double> abc(nchan);
2686      for (uInt i=0; i<nchan; i++) {
2687           Double w;
2688           sC.toWorld(w,Double(i));
2689           abc[i] = w;
2690      }
2691      TableVector<uInt> tvec(ftab, "FREQ_ID");
2692      // assign new frequency id to all rows
2693      tvec = id;
2694      // cache abcissa for same time stamps, so iterate over those
2695      TableIterator timeiter(ftab, "TIME");
2696      while ( !timeiter.pastEnd() ) {
2697        Table tab = timeiter.table();
2698        ArrayColumn<Float> specCol(tab, "SPECTRA");
2699        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2700        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2701        // use align abcissa cache after the first row
2702        // these rows should be just be POLNO
2703        bool first = true;
2704        for (int i=0; i<int(tab.nrow()); ++i) {
2705          // input values
2706          Vector<uChar> flag = flagCol(i);
2707          Vector<Bool> mask(flag.shape());
2708          Vector<Float> specOut, spec;
2709          spec  = specCol(i);
2710          Vector<Bool> maskOut;Vector<uChar> flagOut;
2711          convertArray(mask, flag);
2712          // alignment
2713          Bool ok = fa.align(specOut, maskOut, abc, spec,
2714                             mask, timeCol(i), !first,
2715                             interp, False);
2716          // back into scantable
2717          flagOut.resize(maskOut.nelements());
2718          convertArray(flagOut, maskOut);
2719          flagCol.put(i, flagOut);
2720          specCol.put(i, specOut);
2721          // start abcissa caching
2722          first = false;
2723        }
2724        // next timestamp
2725        ++timeiter;
2726      }
2727      // next FREQ_ID
2728      ++fiter;
2729    }
2730    // next aligner
2731    ++iter;
2732  }
2733  // set this afterwards to ensure we are doing insitu correctly.
2734  out->frequencies().setFrame(system, true);
2735  return out;
2736}
2737
2738CountedPtr<Scantable>
2739  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2740                                     const std::string & newtype )
2741{
2742  if (in->npol() != 2 && in->npol() != 4)
2743    throw(AipsError("Can only convert two or four polarisations."));
2744  if ( in->getPolType() == newtype )
2745    throw(AipsError("No need to convert."));
2746  if ( ! in->selector_.empty() )
2747    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2748  bool insitu = insitu_;
2749  setInsitu(false);
2750  CountedPtr< Scantable > out = getScantable(in, true);
2751  setInsitu(insitu);
2752  Table& tout = out->table();
2753  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2754
2755  Block<String> cols(4);
2756  cols[0] = "SCANNO";
2757  cols[1] = "CYCLENO";
2758  cols[2] = "BEAMNO";
2759  cols[3] = "IFNO";
2760  TableIterator it(in->originalTable_, cols);
2761  String basetype = in->getPolType();
2762  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2763  try {
2764    while ( !it.pastEnd() ) {
2765      Table tab = it.table();
2766      uInt row = tab.rowNumbers()[0];
2767      stpol->setSpectra(in->getPolMatrix(row));
2768      Float fang,fhand;
2769      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2770      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2771      stpol->setPhaseCorrections(fang, fhand);
2772      Int npolout = 0;
2773      for (uInt i=0; i<tab.nrow(); ++i) {
2774        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2775        if ( outvec.nelements() > 0 ) {
2776          tout.addRow();
2777          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2778          ArrayColumn<Float> sCol(tout,"SPECTRA");
2779          ScalarColumn<uInt> pCol(tout,"POLNO");
2780          sCol.put(tout.nrow()-1 ,outvec);
2781          pCol.put(tout.nrow()-1 ,uInt(npolout));
2782          npolout++;
2783       }
2784      }
2785      tout.rwKeywordSet().define("nPol", npolout);
2786      ++it;
2787    }
2788  } catch (AipsError& e) {
2789    delete stpol;
2790    throw(e);
2791  }
2792  delete stpol;
2793  return out;
2794}
2795
2796CountedPtr< Scantable >
2797  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2798                           const std::string & scantype )
2799{
2800  bool insitu = insitu_;
2801  setInsitu(false);
2802  CountedPtr< Scantable > out = getScantable(in, true);
2803  setInsitu(insitu);
2804  Table& tout = out->table();
2805  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2806  if (scantype == "on") {
2807    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2808  }
2809  Table tab = tableCommand(taql, in->table());
2810  TableCopy::copyRows(tout, tab);
2811  if (scantype == "on") {
2812    // re-index SCANNO to 0
2813    TableVector<uInt> vec(tout, "SCANNO");
2814    vec = 0;
2815  }
2816  return out;
2817}
2818
2819CountedPtr< Scantable >
2820  asap::STMath::lagFlag( const CountedPtr< Scantable > & in,
2821                         double start, double end,
2822                         const std::string& mode)
2823{
2824  CountedPtr< Scantable > out = getScantable(in, false);
2825  Table& tout = out->table();
2826  TableIterator iter(tout, "FREQ_ID");
2827  FFTServer<Float,Complex> ffts;
2828  while ( !iter.pastEnd() ) {
2829    Table tab = iter.table();
2830    Double rp,rv,inc;
2831    ROTableRow row(tab);
2832    const TableRecord& rec = row.get(0);
2833    uInt freqid = rec.asuInt("FREQ_ID");
2834    out->frequencies().getEntry(rp, rv, inc, freqid);
2835    ArrayColumn<Float> specCol(tab, "SPECTRA");
2836    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2837    for (int i=0; i<int(tab.nrow()); ++i) {
2838      Vector<Float> spec = specCol(i);
2839      Vector<uChar> flag = flagCol(i);
2840      int fstart = -1;
2841      int fend = -1;
2842      for (unsigned int k=0; k < flag.nelements(); ++k ) {
2843        if (flag[k] > 0) {
2844          fstart = k;
2845          while (flag[k] > 0 && k < flag.nelements()) {
2846            fend = k;
2847            k++;
2848          }
2849        }
2850        Float interp = 0.0;
2851        if (fstart-1 > 0 ) {
2852          interp = spec[fstart-1];
2853          if (fend+1 < Int(spec.nelements())) {
2854            interp = (interp+spec[fend+1])/2.0;
2855          }
2856        } else {
2857          interp = spec[fend+1];
2858        }
2859        if (fstart > -1 && fend > -1) {
2860          for (int j=fstart;j<=fend;++j) {
2861            spec[j] = interp;
2862          }
2863        }
2864        fstart =-1;
2865        fend = -1;
2866      }
2867      Vector<Complex> lags;
2868      ffts.fft0(lags, spec);
2869      Int lag0(start+0.5);
2870      Int lag1(end+0.5);
2871      if (mode == "frequency") {
2872        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2873        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2874      }
2875      Int lstart =  max(0, lag0);
2876      Int lend =  min(Int(lags.nelements()-1), lag1);
2877      if (lstart == lend) {
2878        lags[lstart] = Complex(0.0);
2879      } else {
2880        if (lstart > lend) {
2881          Int tmp = lend;
2882          lend = lstart;
2883          lstart = tmp;
2884        }
2885        for (int j=lstart; j <=lend ;++j) {
2886          lags[j] = Complex(0.0);
2887        }
2888      }
2889      ffts.fft0(spec, lags);
2890      specCol.put(i, spec);
2891    }
2892    ++iter;
2893  }
2894  return out;
2895}
2896
2897// Averaging spectra with different channel/resolution
2898CountedPtr<Scantable>
2899STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2900                     const bool& compel,
2901                     const std::vector<bool>& mask,
2902                     const std::string& weight,
2903                     const std::string& avmode )
2904  throw ( casa::AipsError )
2905{
2906  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2907  if ( avmode == "SCAN" && in.size() != 1 )
2908    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2909                    "Use merge first."));
2910 
2911  // check if OTF observation
2912  String obstype = in[0]->getHeader().obstype ;
2913  Double tol = 0.0 ;
2914  if ( obstype.find( "OTF" ) != String::npos ) {
2915    tol = TOL_OTF ;
2916  }
2917  else {
2918    tol = TOL_POINT ;
2919  }
2920
2921  CountedPtr<Scantable> out ;     // processed result
2922  if ( compel ) {
2923    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2924    uInt insize = in.size() ;    // number of input scantables
2925
2926    // TEST: do normal average in each table before IF grouping
2927    os << "Do preliminary averaging" << LogIO::POST ;
2928    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2929    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2930      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2931      tmpin[itable] = average( v, mask, weight, avmode ) ;
2932    }
2933
2934    // warning
2935    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2936
2937    // temporarily set coordinfo
2938    vector<string> oldinfo( insize ) ;
2939    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2940      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2941      oldinfo[itable] = coordinfo[0] ;
2942      coordinfo[0] = "Hz" ;
2943      tmpin[itable]->setCoordInfo( coordinfo ) ;
2944    }
2945
2946    // columns
2947    ScalarColumn<uInt> freqIDCol ;
2948    ScalarColumn<uInt> ifnoCol ;
2949    ScalarColumn<uInt> scannoCol ;
2950
2951
2952    // check IF frequency coverage
2953    // freqid: list of FREQ_ID, which is used, in each table 
2954    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2955    //         each table
2956    // freqid[insize][numIF]
2957    // freqid: [[id00, id01, ...],
2958    //          [id10, id11, ...],
2959    //          ...
2960    //          [idn0, idn1, ...]]
2961    // iffreq[insize][numIF*2]
2962    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2963    //          [min_id10, max_id10, min_id11, max_id11, ...],
2964    //          ...
2965    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
2966    //os << "Check IF settings in each table" << LogIO::POST ;
2967    vector< vector<uInt> > freqid( insize );
2968    vector< vector<double> > iffreq( insize ) ;
2969    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2970      uInt rows = tmpin[itable]->nrow() ;
2971      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
2972      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
2973        if ( freqid[itable].size() == freqnrows ) {
2974          break ;
2975        }
2976        else {
2977          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
2978          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
2979          uInt id = freqIDCol( irow ) ;
2980          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
2981            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
2982            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
2983            freqid[itable].push_back( id ) ;
2984            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2985            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2986          }
2987        }
2988      }
2989    }
2990
2991    // debug
2992    //os << "IF settings summary:" << endl ;
2993    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
2994    //os << "   Table" << i << endl ;
2995    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
2996    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
2997    //}
2998    //}
2999    //os << endl ;
3000    //os.post() ;
3001
3002    // IF grouping based on their frequency coverage
3003    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3004    // ifgfreq: list of minimum and maximum frequency in each IF group
3005    // ifgrp[numgrp][nummember*2]
3006    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3007    //         [table10, freqrow10, table11, freqrow11, ...],
3008    //         ...
3009    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3010    // ifgfreq[numgrp*2]
3011    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3012    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3013    vector< vector<uInt> > ifgrp ;
3014    vector<double> ifgfreq ;
3015
3016    // parameter for IF grouping
3017    // groupmode = OR    retrieve all region
3018    //             AND   only retrieve overlaped region
3019    //string groupmode = "AND" ;
3020    string groupmode = "OR" ;
3021    uInt sizecr = 0 ;
3022    if ( groupmode == "AND" )
3023      sizecr = 2 ;
3024    else if ( groupmode == "OR" )
3025      sizecr = 0 ;
3026
3027    vector<double> sortedfreq ;
3028    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3029      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3030        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3031          sortedfreq.push_back( iffreq[i][j] ) ;
3032      }
3033    }
3034    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3035    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3036      ifgfreq.push_back( *i ) ;
3037      ifgfreq.push_back( *(i+1) ) ;
3038    }
3039    ifgrp.resize( ifgfreq.size()/2 ) ;
3040    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3041      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3042        double range0 = iffreq[itable][2*iif] ;
3043        double range1 = iffreq[itable][2*iif+1] ;
3044        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3045          double fmin = max( range0, ifgfreq[2*j] ) ;
3046          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3047          if ( fmin < fmax ) {
3048            ifgrp[j].push_back( itable ) ;
3049            ifgrp[j].push_back( freqid[itable][iif] ) ;
3050          }
3051        }
3052      }
3053    }
3054    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3055    vector<double>::iterator giter = ifgfreq.begin() ;
3056    while( fiter != ifgrp.end() ) {
3057      if ( fiter->size() <= sizecr ) {
3058        fiter = ifgrp.erase( fiter ) ;
3059        giter = ifgfreq.erase( giter ) ;
3060        giter = ifgfreq.erase( giter ) ;
3061      }
3062      else {
3063        fiter++ ;
3064        advance( giter, 2 ) ;
3065      }
3066    }
3067
3068    // Grouping continuous IF groups (without frequency gap)
3069    // freqgrp: list of IF group indexes in each frequency group
3070    // freqrange: list of minimum and maximum frequency in each frequency group
3071    // freqgrp[numgrp][nummember]
3072    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3073    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3074    //           ...
3075    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3076    // freqrange[numgrp*2]
3077    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3078    vector< vector<uInt> > freqgrp ;
3079    double freqrange = 0.0 ;
3080    uInt grpnum = 0 ;
3081    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3082      // Assumed that ifgfreq was sorted
3083      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3084        freqgrp[grpnum-1].push_back( i ) ;
3085      }
3086      else {
3087        vector<uInt> grp0( 1, i ) ;
3088        freqgrp.push_back( grp0 ) ;
3089        grpnum++ ;
3090      }
3091      freqrange = ifgfreq[2*i+1] ;
3092    }
3093       
3094
3095    // print IF groups
3096    ostringstream oss ;
3097    oss << "IF Group summary: " << endl ;
3098    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3099    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3100      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3101      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3102        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3103      }
3104      oss << endl ;
3105    }
3106    oss << endl ;
3107    os << oss.str() << LogIO::POST ;
3108   
3109    // print frequency group
3110    oss.str("") ;
3111    oss << "Frequency Group summary: " << endl ;
3112    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3113    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3114      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3115      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3116        oss << freqgrp[i][j] << " " ;
3117      }
3118      oss << endl ;
3119    }
3120    oss << endl ;
3121    os << oss.str() << LogIO::POST ;
3122
3123    // membership check
3124    // groups: list of IF group indexes whose frequency range overlaps with
3125    //         that of each table and IF
3126    // groups[numtable][numIF][nummembership]
3127    // groups: [[[grp, grp,...], [grp, grp,...],...],
3128    //          [[grp, grp,...], [grp, grp,...],...],
3129    //          ...
3130    //          [[grp, grp,...], [grp, grp,...],...]]
3131    vector< vector< vector<uInt> > > groups( insize ) ;
3132    for ( uInt i = 0 ; i < insize ; i++ ) {
3133      groups[i].resize( freqid[i].size() ) ;
3134    }
3135    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3136      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3137        uInt tableid = ifgrp[igrp][2*imem] ;
3138        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3139        if ( iter != freqid[tableid].end() ) {
3140          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3141          groups[tableid][rowid].push_back( igrp ) ;
3142        }
3143      }
3144    }
3145
3146    // print membership
3147    //oss.str("") ;
3148    //for ( uInt i = 0 ; i < insize ; i++ ) {
3149    //oss << "Table " << i << endl ;
3150    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3151    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3152    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3153    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3154    //}
3155    //oss << endl ;
3156    //}
3157    //}
3158    //os << oss.str() << LogIO::POST ;
3159
3160    // set back coordinfo
3161    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3162      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3163      coordinfo[0] = oldinfo[itable] ;
3164      tmpin[itable]->setCoordInfo( coordinfo ) ;
3165    }
3166
3167    // Create additional table if needed
3168    bool oldInsitu = insitu_ ;
3169    setInsitu( false ) ;
3170    vector< vector<uInt> > addrow( insize ) ;
3171    vector<uInt> addtable( insize, 0 ) ;
3172    vector<uInt> newtableids( insize ) ;
3173    vector<uInt> newifids( insize, 0 ) ;
3174    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3175      //os << "Table " << itable << ": " ;
3176      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3177        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3178        //os << addrow[itable][ifrow] << " " ;
3179      }
3180      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3181      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3182    }
3183    newin.resize( insize ) ;
3184    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3185    for ( uInt i = 0 ; i < insize ; i++ ) {
3186      newtableids[i] = i ;
3187    }
3188    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3189      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3190        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3191        vector<int> freqidlist ;
3192        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3193          if ( groups[itable][i].size() > iadd + 1 ) {
3194            freqidlist.push_back( freqid[itable][i] ) ;
3195          }
3196        }
3197        stringstream taqlstream ;
3198        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3199        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3200          taqlstream << freqidlist[i] ;
3201          if ( i < freqidlist.size() - 1 )
3202            taqlstream << "," ;
3203          else
3204            taqlstream << "]" ;
3205        }
3206        string taql = taqlstream.str() ;
3207        //os << "taql = " << taql << LogIO::POST ;
3208        STSelector selector = STSelector() ;
3209        selector.setTaQL( taql ) ;
3210        add->setSelection( selector ) ;
3211        newin.push_back( add ) ;
3212        newtableids.push_back( itable ) ;
3213        newifids.push_back( iadd + 1 ) ;
3214      }
3215    }
3216
3217    // udpate ifgrp
3218    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3219      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3220        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3221          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3222            uInt igrp = groups[itable][ifrow][iadd+1] ;
3223            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3224              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3225                ifgrp[igrp][2*imem] = insize + iadd ;
3226              }
3227            }
3228          }
3229        }
3230      }
3231    }
3232
3233    // print IF groups again for debug
3234    //oss.str( "" ) ;
3235    //oss << "IF Group summary: " << endl ;
3236    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3237    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3238    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3239    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3240    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3241    //}
3242    //oss << endl ;
3243    //}
3244    //oss << endl ;
3245    //os << oss.str() << LogIO::POST ;
3246
3247    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3248    os << "All scan number is set to 0" << LogIO::POST ;
3249    //os << "All IF number is set to IF group index" << LogIO::POST ;
3250    insize = newin.size() ;
3251    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3252      uInt rows = newin[itable]->nrow() ;
3253      Table &tmpt = newin[itable]->table() ;
3254      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3255      scannoCol.attach( tmpt, "SCANNO" ) ;
3256      ifnoCol.attach( tmpt, "IFNO" ) ;
3257      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3258        scannoCol.put( irow, 0 ) ;
3259        uInt freqID = freqIDCol( irow ) ;
3260        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3261        if ( iter != freqid[newtableids[itable]].end() ) {
3262          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3263          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3264        }
3265        else {
3266          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3267        }
3268      }
3269    }
3270    oldinfo.resize( insize ) ;
3271    setInsitu( oldInsitu ) ;
3272
3273    // temporarily set coordinfo
3274    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3275      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3276      oldinfo[itable] = coordinfo[0] ;
3277      coordinfo[0] = "Hz" ;
3278      newin[itable]->setCoordInfo( coordinfo ) ;
3279    }
3280
3281    // save column values in the vector
3282    vector< vector<uInt> > freqTableIdVec( insize ) ;
3283    vector< vector<uInt> > freqIdVec( insize ) ;
3284    vector< vector<uInt> > ifNoVec( insize ) ;
3285    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3286      ScalarColumn<uInt> freqIDs ;
3287      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3288      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3289      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3290      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3291        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3292      }
3293      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3294        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3295        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3296      }
3297    }
3298
3299    // reset spectra and flagtra: pick up common part of frequency coverage
3300    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3301    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3302      uInt rows = newin[itable]->nrow() ;
3303      int nminchan = -1 ;
3304      int nmaxchan = -1 ;
3305      vector<uInt> freqIdUpdate ;
3306      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3307        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3308        double minfreq = ifgfreq[2*ifno] ;
3309        double maxfreq = ifgfreq[2*ifno+1] ;
3310        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3311        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3312        int nchan = abcissa.size() ;
3313        double resol = abcissa[1] - abcissa[0] ;
3314        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3315        if ( minfreq <= abcissa[0] )
3316          nminchan = 0 ;
3317        else {
3318          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3319          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3320          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3321        }
3322        if ( maxfreq >= abcissa[abcissa.size()-1] )
3323          nmaxchan = abcissa.size() - 1 ;
3324        else {
3325          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3326          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3327          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3328        }
3329        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3330        if ( nmaxchan > nminchan ) {
3331          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3332          int newchan = nmaxchan - nminchan + 1 ;
3333          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3334            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3335        }
3336        else {
3337          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3338        }
3339      }
3340      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3341        uInt freqId = freqIdUpdate[i] ;
3342        Double refpix ;
3343        Double refval ;
3344        Double increment ;
3345       
3346        // update row
3347        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3348        refval = refval - ( refpix - nminchan ) * increment ;
3349        refpix = 0 ;
3350        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3351      }   
3352    }
3353
3354   
3355    // reset spectra and flagtra: align spectral resolution
3356    //os << "Align spectral resolution" << LogIO::POST ;
3357    // gmaxdnu: the coarsest frequency resolution in the frequency group
3358    // gmemid: member index that have a resolution equal to gmaxdnu
3359    // gmaxdnu[numfreqgrp]
3360    // gmaxdnu: [dnu0, dnu1, ...]
3361    // gmemid[numfreqgrp]
3362    // gmemid: [id0, id1, ...]
3363    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3364    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3365    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3366      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3367      int minchan = INT_MAX ;     // minimum channel number
3368      Double refpixref = -1 ;     // reference of 'reference pixel'
3369      Double refvalref = -1 ;     // reference of 'reference frequency'
3370      Double refinc = -1 ;        // reference frequency resolution
3371      uInt refreqid ;
3372      uInt reftable = INT_MAX;
3373      // process only if group member > 1
3374      if ( ifgrp[igrp].size() > 2 ) {
3375        // find minchan and maxdnu in each group
3376        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3377          uInt tableid = ifgrp[igrp][2*imem] ;
3378          uInt rowid = ifgrp[igrp][2*imem+1] ;
3379          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3380          if ( iter != freqIdVec[tableid].end() ) {
3381            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3382            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3383            int nchan = abcissa.size() ;
3384            double dnu = abcissa[1] - abcissa[0] ;
3385            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3386            if ( nchan < minchan ) {
3387              minchan = nchan ;
3388              maxdnu = dnu ;
3389              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3390              refreqid = rowid ;
3391              reftable = tableid ;
3392            }
3393          }
3394        }
3395        // regrid spectra in each group
3396        os << "GROUP " << igrp << endl ;
3397        os << "   Channel number is adjusted to " << minchan << endl ;
3398        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3399        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3400          uInt tableid = ifgrp[igrp][2*imem] ;
3401          uInt rowid = ifgrp[igrp][2*imem+1] ;
3402          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3403          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3404          //os << "   regridChannel applied to " ;
3405          //if ( tableid != reftable )
3406          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3407          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3408            uInt tfreqid = freqIdVec[tableid][irow] ;
3409            if ( tfreqid == rowid ) {     
3410              //os << irow << " " ;
3411              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3412              freqIDCol.put( irow, refreqid ) ;
3413              freqIdVec[tableid][irow] = refreqid ;
3414            }
3415          }
3416          //os << LogIO::POST ;
3417        }
3418      }
3419      else {
3420        uInt tableid = ifgrp[igrp][0] ;
3421        uInt rowid = ifgrp[igrp][1] ;
3422        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3423        if ( iter != freqIdVec[tableid].end() ) {
3424          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3425          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3426          minchan = abcissa.size() ;
3427          maxdnu = abcissa[1] - abcissa[0] ;
3428        }
3429      }
3430      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3431        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3432          if ( maxdnu > gmaxdnu[i] ) {
3433            gmaxdnu[i] = maxdnu ;
3434            gmemid[i] = igrp ;
3435          }
3436          break ;
3437        }
3438      }
3439    }
3440
3441    // set back coordinfo
3442    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3443      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3444      coordinfo[0] = oldinfo[itable] ;
3445      newin[itable]->setCoordInfo( coordinfo ) ;
3446    }     
3447
3448    // accumulate all rows into the first table
3449    // NOTE: assumed in.size() = 1
3450    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3451    if ( newin.size() == 1 )
3452      tmp[0] = newin[0] ;
3453    else
3454      tmp[0] = merge( newin ) ;
3455
3456    //return tmp[0] ;
3457
3458    // average
3459    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3460
3461    //return tmpout ;
3462
3463    // combine frequency group
3464    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3465    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3466    vector<string> coordinfo = tmpout->getCoordInfo() ;
3467    oldinfo[0] = coordinfo[0] ;
3468    coordinfo[0] = "Hz" ;
3469    tmpout->setCoordInfo( coordinfo ) ;
3470    // create proformas of output table
3471    stringstream taqlstream ;
3472    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3473    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3474      taqlstream << gmemid[i] ;
3475      if ( i < gmemid.size() - 1 )
3476        taqlstream << "," ;
3477      else
3478        taqlstream << "]" ;
3479    }
3480    string taql = taqlstream.str() ;
3481    //os << "taql = " << taql << LogIO::POST ;
3482    STSelector selector = STSelector() ;
3483    selector.setTaQL( taql ) ;
3484    oldInsitu = insitu_ ;
3485    setInsitu( false ) ;
3486    out = getScantable( tmpout, false ) ;
3487    setInsitu( oldInsitu ) ;
3488    out->setSelection( selector ) ;
3489    // regrid rows
3490    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3491    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3492      uInt ifno = ifnoCol( irow ) ;
3493      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3494        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3495          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3496          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3497          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3498          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3499          break ;
3500        }
3501      }
3502    }
3503    // combine spectra
3504    ArrayColumn<Float> specColOut ;
3505    specColOut.attach( out->table(), "SPECTRA" ) ;
3506    ArrayColumn<uChar> flagColOut ;
3507    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3508    ScalarColumn<uInt> ifnoColOut ;
3509    ifnoColOut.attach( out->table(), "IFNO" ) ;
3510    ScalarColumn<uInt> polnoColOut ;
3511    polnoColOut.attach( out->table(), "POLNO" ) ;
3512    ScalarColumn<uInt> freqidColOut ;
3513    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3514    MDirection::ScalarColumn dirColOut ;
3515    dirColOut.attach( out->table(), "DIRECTION" ) ;
3516    Table &tab = tmpout->table() ;
3517    Block<String> cols(1);
3518    cols[0] = String("POLNO") ;
3519    TableIterator iter( tab, cols ) ;
3520    bool done = false ;
3521    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3522    while( !iter.pastEnd() ) {
3523      vector< vector<Float> > specout( freqgrp.size() ) ;
3524      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3525      ArrayColumn<Float> specCols ;
3526      specCols.attach( iter.table(), "SPECTRA" ) ;
3527      ArrayColumn<uChar> flagCols ;
3528      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3529      ifnoCol.attach( iter.table(), "IFNO" ) ;
3530      ScalarColumn<uInt> polnos ;
3531      polnos.attach( iter.table(), "POLNO" ) ;
3532      MDirection::ScalarColumn dircol ;
3533      dircol.attach( iter.table(), "DIRECTION" ) ;
3534      uInt polno = polnos( 0 ) ;
3535      //os << "POLNO iteration: " << polno << LogIO::POST ;
3536//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3537//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3538//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3539//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3540//          uInt ifno = ifnoCol( irow ) ;
3541//          if ( ifno == freqgrp[igrp][imem] ) {
3542//            Vector<Float> spec = specCols( irow ) ;
3543//            Vector<uChar> flag = flagCols( irow ) ;
3544//            vector<Float> svec ;
3545//            spec.tovector( svec ) ;
3546//            vector<uChar> fvec ;
3547//            flag.tovector( fvec ) ;
3548//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3549//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3550//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3551//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3552//            sizes[igrp][imem] = spec.nelements() ;
3553//          }
3554//        }
3555//      }
3556//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3557//        uInt ifout = ifnoColOut( irow ) ;
3558//        uInt polout = polnoColOut( irow ) ;
3559//        if ( ifout == gmemid[igrp] && polout == polno ) {
3560//          // set SPECTRA and FRAGTRA
3561//          Vector<Float> newspec( specout[igrp] ) ;
3562//          Vector<uChar> newflag( flagout[igrp] ) ;
3563//          specColOut.put( irow, newspec ) ;
3564//          flagColOut.put( irow, newflag ) ;
3565//          // IFNO renumbering
3566//          ifnoColOut.put( irow, igrp ) ;
3567//        }
3568//      }
3569//       }
3570      // get a list of number of channels for each frequency group member
3571      if ( !done ) {
3572        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3573          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3574          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3575            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3576              uInt ifno = ifnoCol( irow ) ;
3577              if ( ifno == freqgrp[igrp][imem] ) {
3578                Vector<Float> spec = specCols( irow ) ;
3579                sizes[igrp][imem] = spec.nelements() ;
3580                break ;
3581              }               
3582            }
3583          }
3584        }
3585        done = true ;
3586      }
3587      // combine spectra
3588      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3589        uInt polout = polnoColOut( irow ) ;
3590        if ( polout == polno ) {
3591          uInt ifout = ifnoColOut( irow ) ;
3592          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3593          uInt igrp ;
3594          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3595            if ( ifout == gmemid[jgrp] ) {
3596              igrp = jgrp ;
3597              break ;
3598            }
3599          }
3600          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3601            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3602              uInt ifno = ifnoCol( jrow ) ;
3603              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3604              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3605              Double dx = tdir[0] - direction[0] ;
3606              Double dy = tdir[1] - direction[1] ;
3607              Double dd = sqrt( dx * dx + dy * dy ) ;
3608              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3609              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3610                Vector<Float> spec = specCols( jrow ) ;
3611                Vector<uChar> flag = flagCols( jrow ) ;
3612                vector<Float> svec ;
3613                spec.tovector( svec ) ;
3614                vector<uChar> fvec ;
3615                flag.tovector( fvec ) ;
3616                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3617                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3618                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3619                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3620              }
3621            }
3622          }
3623          // set SPECTRA and FRAGTRA
3624          Vector<Float> newspec( specout[igrp] ) ;
3625          Vector<uChar> newflag( flagout[igrp] ) ;
3626          specColOut.put( irow, newspec ) ;
3627          flagColOut.put( irow, newflag ) ;
3628          // IFNO renumbering
3629          ifnoColOut.put( irow, igrp ) ;
3630        }
3631      }
3632      iter++ ;
3633    }
3634    // update FREQUENCIES subtable
3635    vector<bool> updated( freqgrp.size(), false ) ;
3636    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3637      uInt index = 0 ;
3638      uInt pixShift = 0 ;
3639      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3640        pixShift += sizes[igrp][index++] ;
3641      }
3642      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3643        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3644          uInt freqidOut = freqidColOut( irow ) ;
3645          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3646          double refpix ;
3647          double refval ;
3648          double increm ;
3649          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3650          refpix += pixShift ;
3651          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3652          updated[igrp] = true ;
3653        }
3654      }
3655    }
3656
3657    //out = tmpout ;
3658
3659    coordinfo = tmpout->getCoordInfo() ;
3660    coordinfo[0] = oldinfo[0] ;
3661    tmpout->setCoordInfo( coordinfo ) ;
3662  }
3663  else {
3664    // simple average
3665    out =  average( in, mask, weight, avmode ) ;
3666  }
3667 
3668  return out ;
3669}
3670
3671CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3672                                     const String calmode,
3673                                     const String antname )
3674{
3675  // frequency switch
3676  if ( calmode == "fs" ) {
3677    return cwcalfs( s, antname ) ;
3678  }
3679  else {
3680    vector<bool> masks = s->getMask( 0 ) ;
3681    vector<int> types ;
3682
3683    // sky scan
3684    STSelector sel = STSelector() ;
3685    types.push_back( SrcType::SKY ) ;
3686    sel.setTypes( types ) ;
3687    s->setSelection( sel ) ;
3688    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3689    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3690    s->unsetSelection() ;
3691    sel.reset() ;
3692    types.clear() ;
3693
3694    // hot scan
3695    types.push_back( SrcType::HOT ) ;
3696    sel.setTypes( types ) ;
3697    s->setSelection( sel ) ;
3698    tmp.clear() ;
3699    tmp.push_back( getScantable( s, false ) ) ;
3700    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3701    s->unsetSelection() ;
3702    sel.reset() ;
3703    types.clear() ;
3704   
3705    // cold scan
3706    CountedPtr<Scantable> acold ;
3707//     types.push_back( SrcType::COLD ) ;
3708//     sel.setTypes( types ) ;
3709//     s->setSelection( sel ) ;
3710//     tmp.clear() ;
3711//     tmp.push_back( getScantable( s, false ) ) ;
3712//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3713//     s->unsetSelection() ;
3714//     sel.reset() ;
3715//     types.clear() ;
3716
3717    // off scan
3718    types.push_back( SrcType::PSOFF ) ;
3719    sel.setTypes( types ) ;
3720    s->setSelection( sel ) ;
3721    tmp.clear() ;
3722    tmp.push_back( getScantable( s, false ) ) ;
3723    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3724    s->unsetSelection() ;
3725    sel.reset() ;
3726    types.clear() ;
3727   
3728    // on scan
3729    bool insitu = insitu_ ;
3730    insitu_ = false ;
3731    CountedPtr<Scantable> out = getScantable( s, true ) ;
3732    insitu_ = insitu ;
3733    types.push_back( SrcType::PSON ) ;
3734    sel.setTypes( types ) ;
3735    s->setSelection( sel ) ;
3736    TableCopy::copyRows( out->table(), s->table() ) ;
3737    s->unsetSelection() ;
3738    sel.reset() ;
3739    types.clear() ;
3740   
3741    // process each on scan
3742    ArrayColumn<Float> tsysCol ;
3743    tsysCol.attach( out->table(), "TSYS" ) ;
3744    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3745      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3746      out->setSpectrum( sp, i ) ;
3747      string reftime = out->getTime( i ) ;
3748      vector<int> ii( 1, out->getIF( i ) ) ;
3749      vector<int> ib( 1, out->getBeam( i ) ) ;
3750      vector<int> ip( 1, out->getPol( i ) ) ;
3751      sel.setIFs( ii ) ;
3752      sel.setBeams( ib ) ;
3753      sel.setPolarizations( ip ) ;
3754      asky->setSelection( sel ) ;   
3755      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3756      const Vector<Float> Vtsys( sptsys ) ;
3757      tsysCol.put( i, Vtsys ) ;
3758      asky->unsetSelection() ;
3759      sel.reset() ;
3760    }
3761
3762    // flux unit
3763    out->setFluxUnit( "K" ) ;
3764
3765    return out ;
3766  }
3767}
3768 
3769CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3770                                       const String calmode )
3771{
3772  // frequency switch
3773  if ( calmode == "fs" ) {
3774    return almacalfs( s ) ;
3775  }
3776  else {
3777    vector<bool> masks = s->getMask( 0 ) ;
3778   
3779    // off scan
3780    STSelector sel = STSelector() ;
3781    vector<int> types ;
3782    types.push_back( SrcType::PSOFF ) ;
3783    sel.setTypes( types ) ;
3784    s->setSelection( sel ) ;
3785    // TODO 2010/01/08 TN
3786    // Grouping by time should be needed before averaging.
3787    // Each group must have own unique SCANNO (should be renumbered).
3788    // See PIPELINE/SDCalibration.py
3789    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3790    Table ttab = soff->table() ;
3791    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3792    uInt nrow = timeCol.nrow() ;
3793    Vector<Double> timeSep( nrow - 1 ) ;
3794    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3795      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3796    }
3797    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3798    Vector<Double> interval = intervalCol.getColumn() ;
3799    interval /= 86400.0 ;
3800    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3801    vector<uInt> glist ;
3802    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3803      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3804      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3805      if ( gap > 1.1 ) {
3806        glist.push_back( i ) ;
3807      }
3808    }
3809    Vector<uInt> gaplist( glist ) ;
3810    //cout << "gaplist = " << gaplist << endl ;
3811    uInt newid = 0 ;
3812    for ( uInt i = 0 ; i < nrow ; i++ ) {
3813      scanCol.put( i, newid ) ;
3814      if ( i == gaplist[newid] ) {
3815        newid++ ;
3816      }
3817    }
3818    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3819    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3820    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3821    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3822    s->unsetSelection() ;
3823    sel.reset() ;
3824    types.clear() ;
3825   
3826    // on scan
3827    bool insitu = insitu_ ;
3828    insitu_ = false ;
3829    CountedPtr<Scantable> out = getScantable( s, true ) ;
3830    insitu_ = insitu ;
3831    types.push_back( SrcType::PSON ) ;
3832    sel.setTypes( types ) ;
3833    s->setSelection( sel ) ;
3834    TableCopy::copyRows( out->table(), s->table() ) ;
3835    s->unsetSelection() ;
3836    sel.reset() ;
3837    types.clear() ;
3838   
3839    // process each on scan
3840    ArrayColumn<Float> tsysCol ;
3841    tsysCol.attach( out->table(), "TSYS" ) ;
3842    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3843      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3844      out->setSpectrum( sp, i ) ;
3845    }
3846
3847    // flux unit
3848    out->setFluxUnit( "K" ) ;
3849
3850    return out ;
3851  }
3852}
3853
3854CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3855                                       const String antname )
3856{
3857  vector<int> types ;
3858
3859  // APEX calibration mode
3860  int apexcalmode = 1 ;
3861 
3862  if ( antname.find( "APEX" ) != string::npos ) {
3863    // check if off scan exists or not
3864    STSelector sel = STSelector() ;
3865    //sel.setName( offstr1 ) ;
3866    types.push_back( SrcType::FLOOFF ) ;
3867    sel.setTypes( types ) ;
3868    try {
3869      s->setSelection( sel ) ;
3870    }
3871    catch ( AipsError &e ) {
3872      apexcalmode = 0 ;
3873    }
3874    sel.reset() ;
3875  }
3876  s->unsetSelection() ;
3877  types.clear() ;
3878
3879  vector<bool> masks = s->getMask( 0 ) ;
3880  CountedPtr<Scantable> ssig, sref ;
3881  CountedPtr<Scantable> out ;
3882
3883  if ( antname.find( "APEX" ) != string::npos ) {
3884    // APEX calibration
3885    // sky scan
3886    STSelector sel = STSelector() ;
3887    types.push_back( SrcType::FLOSKY ) ;
3888    sel.setTypes( types ) ;
3889    s->setSelection( sel ) ;
3890    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3891    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3892    s->unsetSelection() ;
3893    sel.reset() ;
3894    types.clear() ;
3895    types.push_back( SrcType::FHISKY ) ;
3896    sel.setTypes( types ) ;
3897    s->setSelection( sel ) ;
3898    tmp.clear() ;
3899    tmp.push_back( getScantable( s, false ) ) ;
3900    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3901    s->unsetSelection() ;
3902    sel.reset() ;
3903    types.clear() ;
3904   
3905    // hot scan
3906    types.push_back( SrcType::FLOHOT ) ;
3907    sel.setTypes( types ) ;
3908    s->setSelection( sel ) ;
3909    tmp.clear() ;
3910    tmp.push_back( getScantable( s, false ) ) ;
3911    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3912    s->unsetSelection() ;
3913    sel.reset() ;
3914    types.clear() ;
3915    types.push_back( SrcType::FHIHOT ) ;
3916    sel.setTypes( types ) ;
3917    s->setSelection( sel ) ;
3918    tmp.clear() ;
3919    tmp.push_back( getScantable( s, false ) ) ;
3920    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3921    s->unsetSelection() ;
3922    sel.reset() ;
3923    types.clear() ;
3924   
3925    // cold scan
3926    CountedPtr<Scantable> acoldlo, acoldhi ;
3927//     types.push_back( SrcType::FLOCOLD ) ;
3928//     sel.setTypes( types ) ;
3929//     s->setSelection( sel ) ;
3930//     tmp.clear() ;
3931//     tmp.push_back( getScantable( s, false ) ) ;
3932//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3933//     s->unsetSelection() ;
3934//     sel.reset() ;
3935//     types.clear() ;
3936//     types.push_back( SrcType::FHICOLD ) ;
3937//     sel.setTypes( types ) ;
3938//     s->setSelection( sel ) ;
3939//     tmp.clear() ;
3940//     tmp.push_back( getScantable( s, false ) ) ;
3941//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3942//     s->unsetSelection() ;
3943//     sel.reset() ;
3944//     types.clear() ;
3945
3946    // ref scan
3947    bool insitu = insitu_ ;
3948    insitu_ = false ;
3949    sref = getScantable( s, true ) ;
3950    insitu_ = insitu ;
3951    types.push_back( SrcType::FSLO ) ;
3952    sel.setTypes( types ) ;
3953    s->setSelection( sel ) ;
3954    TableCopy::copyRows( sref->table(), s->table() ) ;
3955    s->unsetSelection() ;
3956    sel.reset() ;
3957    types.clear() ;
3958   
3959    // sig scan
3960    insitu_ = false ;
3961    ssig = getScantable( s, true ) ;
3962    insitu_ = insitu ;
3963    types.push_back( SrcType::FSHI ) ;
3964    sel.setTypes( types ) ;
3965    s->setSelection( sel ) ;
3966    TableCopy::copyRows( ssig->table(), s->table() ) ;
3967    s->unsetSelection() ;
3968    sel.reset() ; 
3969    types.clear() ;
3970         
3971    if ( apexcalmode == 0 ) {
3972      // APEX fs data without off scan
3973      // process each sig and ref scan
3974      ArrayColumn<Float> tsysCollo ;
3975      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3976      ArrayColumn<Float> tsysColhi ;
3977      tsysColhi.attach( sref->table(), "TSYS" ) ;
3978      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3979        vector< CountedPtr<Scantable> > sky( 2 ) ;
3980        sky[0] = askylo ;
3981        sky[1] = askyhi ;
3982        vector< CountedPtr<Scantable> > hot( 2 ) ;
3983        hot[0] = ahotlo ;
3984        hot[1] = ahothi ;
3985        vector< CountedPtr<Scantable> > cold( 2 ) ;
3986        //cold[0] = acoldlo ;
3987        //cold[1] = acoldhi ;
3988        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
3989        ssig->setSpectrum( sp, i ) ;
3990        string reftime = ssig->getTime( i ) ;
3991        vector<int> ii( 1, ssig->getIF( i ) ) ;
3992        vector<int> ib( 1, ssig->getBeam( i ) ) ;
3993        vector<int> ip( 1, ssig->getPol( i ) ) ;
3994        sel.setIFs( ii ) ;
3995        sel.setBeams( ib ) ;
3996        sel.setPolarizations( ip ) ;
3997        askylo->setSelection( sel ) ;
3998        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
3999        const Vector<Float> Vtsyslo( sptsys ) ;
4000        tsysCollo.put( i, Vtsyslo ) ;
4001        askylo->unsetSelection() ;
4002        sel.reset() ;
4003        sky[0] = askyhi ;
4004        sky[1] = askylo ;
4005        hot[0] = ahothi ;
4006        hot[1] = ahotlo ;
4007        cold[0] = acoldhi ;
4008        cold[1] = acoldlo ;
4009        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4010        sref->setSpectrum( sp, i ) ;
4011        reftime = sref->getTime( i ) ;
4012        ii[0] = sref->getIF( i )  ;
4013        ib[0] = sref->getBeam( i ) ;
4014        ip[0] = sref->getPol( i ) ;
4015        sel.setIFs( ii ) ;
4016        sel.setBeams( ib ) ;
4017        sel.setPolarizations( ip ) ;
4018        askyhi->setSelection( sel ) ;   
4019        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4020        const Vector<Float> Vtsyshi( sptsys ) ;
4021        tsysColhi.put( i, Vtsyshi ) ;
4022        askyhi->unsetSelection() ;
4023        sel.reset() ;
4024      }
4025    }
4026    else if ( apexcalmode == 1 ) {
4027      // APEX fs data with off scan
4028      // off scan
4029      types.push_back( SrcType::FLOOFF ) ;
4030      sel.setTypes( types ) ;
4031      s->setSelection( sel ) ;
4032      tmp.clear() ;
4033      tmp.push_back( getScantable( s, false ) ) ;
4034      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4035      s->unsetSelection() ;
4036      sel.reset() ;
4037      types.clear() ;
4038      types.push_back( SrcType::FHIOFF ) ;
4039      sel.setTypes( types ) ;
4040      s->setSelection( sel ) ;
4041      tmp.clear() ;
4042      tmp.push_back( getScantable( s, false ) ) ;
4043      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4044      s->unsetSelection() ;
4045      sel.reset() ;
4046      types.clear() ;
4047     
4048      // process each sig and ref scan
4049      ArrayColumn<Float> tsysCollo ;
4050      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4051      ArrayColumn<Float> tsysColhi ;
4052      tsysColhi.attach( sref->table(), "TSYS" ) ;
4053      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4054        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4055        ssig->setSpectrum( sp, i ) ;
4056        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4057        string reftime = ssig->getTime( i ) ;
4058        vector<int> ii( 1, ssig->getIF( i ) ) ;
4059        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4060        vector<int> ip( 1, ssig->getPol( i ) ) ;
4061        sel.setIFs( ii ) ;
4062        sel.setBeams( ib ) ;
4063        sel.setPolarizations( ip ) ;
4064        askylo->setSelection( sel ) ;
4065        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4066        const Vector<Float> Vtsyslo( sptsys ) ;
4067        tsysCollo.put( i, Vtsyslo ) ;
4068        askylo->unsetSelection() ;
4069        sel.reset() ;
4070        sref->setSpectrum( sp, i ) ;
4071        reftime = sref->getTime( i ) ;
4072        ii[0] = sref->getIF( i )  ;
4073        ib[0] = sref->getBeam( i ) ;
4074        ip[0] = sref->getPol( i ) ;
4075        sel.setIFs( ii ) ;
4076        sel.setBeams( ib ) ;
4077        sel.setPolarizations( ip ) ;
4078        askyhi->setSelection( sel ) ;   
4079        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4080        const Vector<Float> Vtsyshi( sptsys ) ;
4081        tsysColhi.put( i, Vtsyshi ) ;
4082        askyhi->unsetSelection() ;
4083        sel.reset() ;
4084      }
4085    }
4086  }
4087  else {
4088    // non-APEX fs data
4089    // sky scan
4090    STSelector sel = STSelector() ;
4091    types.push_back( SrcType::SKY ) ;
4092    sel.setTypes( types ) ;
4093    s->setSelection( sel ) ;
4094    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4095    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4096    s->unsetSelection() ;
4097    sel.reset() ;
4098    types.clear() ;
4099   
4100    // hot scan
4101    types.push_back( SrcType::HOT ) ;
4102    sel.setTypes( types ) ;
4103    s->setSelection( sel ) ;
4104    tmp.clear() ;
4105    tmp.push_back( getScantable( s, false ) ) ;
4106    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4107    s->unsetSelection() ;
4108    sel.reset() ;
4109    types.clear() ;
4110
4111    // cold scan
4112    CountedPtr<Scantable> acold ;
4113//     types.push_back( SrcType::COLD ) ;
4114//     sel.setTypes( types ) ;
4115//     s->setSelection( sel ) ;
4116//     tmp.clear() ;
4117//     tmp.push_back( getScantable( s, false ) ) ;
4118//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4119//     s->unsetSelection() ;
4120//     sel.reset() ;
4121//     types.clear() ;
4122   
4123    // ref scan
4124    bool insitu = insitu_ ;
4125    insitu_ = false ;
4126    sref = getScantable( s, true ) ;
4127    insitu_ = insitu ;
4128    types.push_back( SrcType::FSOFF ) ;
4129    sel.setTypes( types ) ;
4130    s->setSelection( sel ) ;
4131    TableCopy::copyRows( sref->table(), s->table() ) ;
4132    s->unsetSelection() ;
4133    sel.reset() ;
4134    types.clear() ;
4135   
4136    // sig scan
4137    insitu_ = false ;
4138    ssig = getScantable( s, true ) ;
4139    insitu_ = insitu ;
4140    types.push_back( SrcType::FSON ) ;
4141    sel.setTypes( types ) ;
4142    s->setSelection( sel ) ;
4143    TableCopy::copyRows( ssig->table(), s->table() ) ;
4144    s->unsetSelection() ;
4145    sel.reset() ;
4146    types.clear() ;
4147
4148    // process each sig and ref scan
4149    ArrayColumn<Float> tsysColsig ;
4150    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4151    ArrayColumn<Float> tsysColref ;
4152    tsysColref.attach( ssig->table(), "TSYS" ) ;
4153    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4154      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4155      ssig->setSpectrum( sp, i ) ;
4156      string reftime = ssig->getTime( i ) ;
4157      vector<int> ii( 1, ssig->getIF( i ) ) ;
4158      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4159      vector<int> ip( 1, ssig->getPol( i ) ) ;
4160      sel.setIFs( ii ) ;
4161      sel.setBeams( ib ) ;
4162      sel.setPolarizations( ip ) ;
4163      asky->setSelection( sel ) ;
4164      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4165      const Vector<Float> Vtsys( sptsys ) ;
4166      tsysColsig.put( i, Vtsys ) ;
4167      asky->unsetSelection() ;
4168      sel.reset() ;
4169      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4170      sref->setSpectrum( sp, i ) ;
4171      tsysColref.put( i, Vtsys ) ;
4172    }
4173  }
4174
4175  // do folding if necessary
4176  Table sigtab = ssig->table() ;
4177  Table reftab = sref->table() ;
4178  ScalarColumn<uInt> sigifnoCol ;
4179  ScalarColumn<uInt> refifnoCol ;
4180  ScalarColumn<uInt> sigfidCol ;
4181  ScalarColumn<uInt> reffidCol ;
4182  Int nchan = (Int)ssig->nchan() ;
4183  sigifnoCol.attach( sigtab, "IFNO" ) ;
4184  refifnoCol.attach( reftab, "IFNO" ) ;
4185  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4186  reffidCol.attach( reftab, "FREQ_ID" ) ;
4187  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4188  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4189  vector<uInt> sfids_unique ;
4190  vector<uInt> rfids_unique ;
4191  vector<uInt> sifno_unique ;
4192  vector<uInt> rifno_unique ;
4193  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4194    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4195      sfids_unique.push_back( sfids[i] ) ;
4196      sifno_unique.push_back( ssig->getIF( i ) ) ;
4197    }
4198    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4199      rfids_unique.push_back( rfids[i] ) ;
4200      rifno_unique.push_back( sref->getIF( i ) ) ;
4201    }
4202  }
4203  double refpix_sig, refval_sig, increment_sig ;
4204  double refpix_ref, refval_ref, increment_ref ;
4205  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4206  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4207    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4208    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4209    if ( refpix_sig == refpix_ref ) {
4210      double foffset = refval_ref - refval_sig ;
4211      int choffset = static_cast<int>(foffset/increment_sig) ;
4212      double doffset = foffset / increment_sig ;
4213      if ( abs(choffset) >= nchan ) {
4214        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4215        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4216        os << "Just return signal data" << LogIO::POST ;
4217        //std::vector< CountedPtr<Scantable> > tabs ;
4218        //tabs.push_back( ssig ) ;
4219        //tabs.push_back( sref ) ;
4220        //out = merge( tabs ) ;
4221        tmp[i] = ssig ;
4222      }
4223      else {
4224        STSelector sel = STSelector() ;
4225        vector<int> v( 1, sifno_unique[i] ) ;
4226        sel.setIFs( v ) ;
4227        ssig->setSelection( sel ) ;
4228        sel.reset() ;
4229        v[0] = rifno_unique[i] ;
4230        sel.setIFs( v ) ;
4231        sref->setSelection( sel ) ;
4232        sel.reset() ;
4233        if ( antname.find( "APEX" ) != string::npos ) {
4234          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4235          //tmp[i] = dofold( ssig, sref, doffset ) ;
4236        }
4237        else {
4238          tmp[i] = dofold( ssig, sref, doffset ) ;
4239        }
4240        ssig->unsetSelection() ;
4241        sref->unsetSelection() ;
4242      }
4243    }
4244  }
4245
4246  if ( tmp.size() > 1 ) {
4247    out = merge( tmp ) ;
4248  }
4249  else {
4250    out = tmp[0] ;
4251  }
4252
4253  // flux unit
4254  out->setFluxUnit( "K" ) ;
4255
4256  return out ;
4257}
4258
4259CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4260{
4261  CountedPtr<Scantable> out ;
4262
4263  return out ;
4264}
4265
4266vector<float> STMath::getSpectrumFromTime( string reftime,
4267                                           CountedPtr<Scantable>& s,
4268                                           string mode )
4269{
4270  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4271  vector<float> sp ;
4272
4273  if ( s->nrow() == 0 ) {
4274    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4275    return sp ;
4276  }
4277  else if ( s->nrow() == 1 ) {
4278    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4279    return s->getSpectrum( 0 ) ;
4280  }
4281  else {
4282    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4283    if ( mode == "before" ) {
4284      int id = -1 ;
4285      if ( idx[0] != -1 ) {
4286        id = idx[0] ;
4287      }
4288      else if ( idx[1] != -1 ) {
4289        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4290        id = idx[1] ;
4291      }
4292      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4293      sp = s->getSpectrum( id ) ;
4294    }
4295    else if ( mode == "after" ) {
4296      int id = -1 ;
4297      if ( idx[1] != -1 ) {
4298        id = idx[1] ;
4299      }
4300      else if ( idx[0] != -1 ) {
4301        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4302        id = idx[1] ;
4303      }
4304      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4305      sp = s->getSpectrum( id ) ;
4306    }
4307    else if ( mode == "nearest" ) {
4308      int id = -1 ;
4309      if ( idx[0] == -1 ) {
4310        id = idx[1] ;
4311      }
4312      else if ( idx[1] == -1 ) {
4313        id = idx[0] ;
4314      }
4315      else if ( idx[0] == idx[1] ) {
4316        id = idx[0] ;
4317      }
4318      else {
4319        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4320        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4321        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4322        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4323        double tref = getMJD( reftime ) ;
4324        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4325          id = idx[1] ;
4326        }
4327        else {
4328          id = idx[0] ;
4329        }
4330      }
4331      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4332      sp = s->getSpectrum( id ) ;     
4333    }
4334    else if ( mode == "linear" ) {
4335      if ( idx[0] == -1 ) {
4336        // use after
4337        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4338        int id = idx[1] ;
4339        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4340        sp = s->getSpectrum( id ) ;
4341      }
4342      else if ( idx[1] == -1 ) {
4343        // use before
4344        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4345        int id = idx[0] ;
4346        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4347        sp = s->getSpectrum( id ) ;
4348      }
4349      else if ( idx[0] == idx[1] ) {
4350        // use before
4351        //os << "No need to interporate." << LogIO::POST ;
4352        int id = idx[0] ;
4353        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4354        sp = s->getSpectrum( id ) ;
4355      }
4356      else {
4357        // do interpolation
4358        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4359        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4360        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4361        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4362        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4363        double tref = getMJD( reftime ) ;
4364        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4365        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4366        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4367          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4368          sp.push_back( v ) ;
4369        }
4370      }
4371    }
4372    else {
4373      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4374    }
4375    return sp ;
4376  }
4377}
4378
4379double STMath::getMJD( string strtime )
4380{
4381  if ( strtime.find("/") == string::npos ) {
4382    // MJD time string
4383    return atof( strtime.c_str() ) ;
4384  }
4385  else {
4386    // string in YYYY/MM/DD/HH:MM:SS format
4387    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4388    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4389    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4390    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4391    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4392    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4393    Time t( year, month, day, hour, minute, sec ) ;
4394    return t.modifiedJulianDay() ;
4395  }
4396}
4397
4398vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4399{
4400  double reft = getMJD( reftime ) ;
4401  double dtmin = 1.0e100 ;
4402  double dtmax = -1.0e100 ;
4403  vector<double> dt ;
4404  int just_before = -1 ;
4405  int just_after = -1 ;
4406  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4407    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4408  }
4409  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4410    if ( dt[i] > 0.0 ) {
4411      // after reftime
4412      if ( dt[i] < dtmin ) {
4413        just_after = i ;
4414        dtmin = dt[i] ;
4415      }
4416    }
4417    else if ( dt[i] < 0.0 ) {
4418      // before reftime
4419      if ( dt[i] > dtmax ) {
4420        just_before = i ;
4421        dtmax = dt[i] ;
4422      }
4423    }
4424    else {
4425      // just a reftime
4426      just_before = i ;
4427      just_after = i ;
4428      dtmax = 0 ;
4429      dtmin = 0 ;
4430      break ;
4431    }
4432  }
4433
4434  vector<int> v ;
4435  v.push_back( just_before ) ;
4436  v.push_back( just_after ) ;
4437
4438  return v ;
4439}
4440
4441vector<float> STMath::getTcalFromTime( string reftime,
4442                                       CountedPtr<Scantable>& s,
4443                                       string mode )
4444{
4445  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4446  vector<float> tcal ;
4447  STTcal tcalTable = s->tcal() ;
4448  String time ;
4449  Vector<Float> tcalval ;
4450  if ( s->nrow() == 0 ) {
4451    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4452    return tcal ;
4453  }
4454  else if ( s->nrow() == 1 ) {
4455    uInt tcalid = s->getTcalId( 0 ) ;
4456    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4457    tcalTable.getEntry( time, tcalval, tcalid ) ;
4458    tcalval.tovector( tcal ) ;
4459    return tcal ;
4460  }
4461  else {
4462    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4463    if ( mode == "before" ) {
4464      int id = -1 ;
4465      if ( idx[0] != -1 ) {
4466        id = idx[0] ;
4467      }
4468      else if ( idx[1] != -1 ) {
4469        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4470        id = idx[1] ;
4471      }
4472      uInt tcalid = s->getTcalId( id ) ;
4473      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4474      tcalTable.getEntry( time, tcalval, tcalid ) ;
4475      tcalval.tovector( tcal ) ;
4476    }
4477    else if ( mode == "after" ) {
4478      int id = -1 ;
4479      if ( idx[1] != -1 ) {
4480        id = idx[1] ;
4481      }
4482      else if ( idx[0] != -1 ) {
4483        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4484        id = idx[1] ;
4485      }
4486      uInt tcalid = s->getTcalId( id ) ;
4487      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4488      tcalTable.getEntry( time, tcalval, tcalid ) ;
4489      tcalval.tovector( tcal ) ;
4490    }
4491    else if ( mode == "nearest" ) {
4492      int id = -1 ;
4493      if ( idx[0] == -1 ) {
4494        id = idx[1] ;
4495      }
4496      else if ( idx[1] == -1 ) {
4497        id = idx[0] ;
4498      }
4499      else if ( idx[0] == idx[1] ) {
4500        id = idx[0] ;
4501      }
4502      else {
4503        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4504        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4505        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4506        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4507        double tref = getMJD( reftime ) ;
4508        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4509          id = idx[1] ;
4510        }
4511        else {
4512          id = idx[0] ;
4513        }
4514      }
4515      uInt tcalid = s->getTcalId( id ) ;
4516      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4517      tcalTable.getEntry( time, tcalval, tcalid ) ;
4518      tcalval.tovector( tcal ) ;
4519    }
4520    else if ( mode == "linear" ) {
4521      if ( idx[0] == -1 ) {
4522        // use after
4523        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4524        int id = idx[1] ;
4525        uInt tcalid = s->getTcalId( id ) ;
4526        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4527        tcalTable.getEntry( time, tcalval, tcalid ) ;
4528        tcalval.tovector( tcal ) ;
4529      }
4530      else if ( idx[1] == -1 ) {
4531        // use before
4532        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4533        int id = idx[0] ;
4534        uInt tcalid = s->getTcalId( id ) ;
4535        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4536        tcalTable.getEntry( time, tcalval, tcalid ) ;
4537        tcalval.tovector( tcal ) ;
4538      }
4539      else if ( idx[0] == idx[1] ) {
4540        // use before
4541        //os << "No need to interporate." << LogIO::POST ;
4542        int id = idx[0] ;
4543        uInt tcalid = s->getTcalId( id ) ;
4544        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4545        tcalTable.getEntry( time, tcalval, tcalid ) ;
4546        tcalval.tovector( tcal ) ;
4547      }
4548      else {
4549        // do interpolation
4550        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4551        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4552        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4553        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4554        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4555        double tref = getMJD( reftime ) ;
4556        vector<float> tcal0 ;
4557        vector<float> tcal1 ;
4558        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4559        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4560        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4561        tcalval.tovector( tcal0 ) ;
4562        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4563        tcalval.tovector( tcal1 ) ;       
4564        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4565          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4566          tcal.push_back( v ) ;
4567        }
4568      }
4569    }
4570    else {
4571      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4572    }
4573    return tcal ;
4574  }
4575}
4576
4577vector<float> STMath::getTsysFromTime( string reftime,
4578                                       CountedPtr<Scantable>& s,
4579                                       string mode )
4580{
4581  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4582  ArrayColumn<Float> tsysCol ;
4583  tsysCol.attach( s->table(), "TSYS" ) ;
4584  vector<float> tsys ;
4585  String time ;
4586  Vector<Float> tsysval ;
4587  if ( s->nrow() == 0 ) {
4588    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4589    return tsys ;
4590  }
4591  else if ( s->nrow() == 1 ) {
4592    //os << "use row " << 0 << LogIO::POST ;
4593    tsysval = tsysCol( 0 ) ;
4594    tsysval.tovector( tsys ) ;
4595    return tsys ;
4596  }
4597  else {
4598    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4599    if ( mode == "before" ) {
4600      int id = -1 ;
4601      if ( idx[0] != -1 ) {
4602        id = idx[0] ;
4603      }
4604      else if ( idx[1] != -1 ) {
4605        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4606        id = idx[1] ;
4607      }
4608      //os << "use row " << id << LogIO::POST ;
4609      tsysval = tsysCol( id ) ;
4610      tsysval.tovector( tsys ) ;
4611    }
4612    else if ( mode == "after" ) {
4613      int id = -1 ;
4614      if ( idx[1] != -1 ) {
4615        id = idx[1] ;
4616      }
4617      else if ( idx[0] != -1 ) {
4618        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4619        id = idx[1] ;
4620      }
4621      //os << "use row " << id << LogIO::POST ;
4622      tsysval = tsysCol( id ) ;
4623      tsysval.tovector( tsys ) ;
4624    }
4625    else if ( mode == "nearest" ) {
4626      int id = -1 ;
4627      if ( idx[0] == -1 ) {
4628        id = idx[1] ;
4629      }
4630      else if ( idx[1] == -1 ) {
4631        id = idx[0] ;
4632      }
4633      else if ( idx[0] == idx[1] ) {
4634        id = idx[0] ;
4635      }
4636      else {
4637        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4638        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4639        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4640        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4641        double tref = getMJD( reftime ) ;
4642        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4643          id = idx[1] ;
4644        }
4645        else {
4646          id = idx[0] ;
4647        }
4648      }
4649      //os << "use row " << id << LogIO::POST ;
4650      tsysval = tsysCol( id ) ;
4651      tsysval.tovector( tsys ) ;
4652    }
4653    else if ( mode == "linear" ) {
4654      if ( idx[0] == -1 ) {
4655        // use after
4656        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4657        int id = idx[1] ;
4658        //os << "use row " << id << LogIO::POST ;
4659        tsysval = tsysCol( id ) ;
4660        tsysval.tovector( tsys ) ;
4661      }
4662      else if ( idx[1] == -1 ) {
4663        // use before
4664        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4665        int id = idx[0] ;
4666        //os << "use row " << id << LogIO::POST ;
4667        tsysval = tsysCol( id ) ;
4668        tsysval.tovector( tsys ) ;
4669      }
4670      else if ( idx[0] == idx[1] ) {
4671        // use before
4672        //os << "No need to interporate." << LogIO::POST ;
4673        int id = idx[0] ;
4674        //os << "use row " << id << LogIO::POST ;
4675        tsysval = tsysCol( id ) ;
4676        tsysval.tovector( tsys ) ;
4677      }
4678      else {
4679        // do interpolation
4680        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4681        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4682        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4683        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4684        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4685        double tref = getMJD( reftime ) ;
4686        vector<float> tsys0 ;
4687        vector<float> tsys1 ;
4688        tsysval = tsysCol( idx[0] ) ;
4689        tsysval.tovector( tsys0 ) ;
4690        tsysval = tsysCol( idx[1] ) ;
4691        tsysval.tovector( tsys1 ) ;       
4692        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4693          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4694          tsys.push_back( v ) ;
4695        }
4696      }
4697    }
4698    else {
4699      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4700    }
4701    return tsys ;
4702  }
4703}
4704
4705vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4706                                            CountedPtr<Scantable>& off,
4707                                            CountedPtr<Scantable>& sky,
4708                                            CountedPtr<Scantable>& hot,
4709                                            CountedPtr<Scantable>& cold,
4710                                            int index,
4711                                            string antname )
4712{
4713  string reftime = on->getTime( index ) ;
4714  vector<int> ii( 1, on->getIF( index ) ) ;
4715  vector<int> ib( 1, on->getBeam( index ) ) ;
4716  vector<int> ip( 1, on->getPol( index ) ) ;
4717  vector<int> ic( 1, on->getScan( index ) ) ;
4718  STSelector sel = STSelector() ;
4719  sel.setIFs( ii ) ;
4720  sel.setBeams( ib ) ;
4721  sel.setPolarizations( ip ) ;
4722  sky->setSelection( sel ) ;
4723  hot->setSelection( sel ) ;
4724  //cold->setSelection( sel ) ;
4725  off->setSelection( sel ) ;
4726  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4727  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4728  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4729  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4730  vector<float> spec = on->getSpectrum( index ) ;
4731  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4732  vector<float> sp( tcal.size() ) ;
4733  if ( antname.find( "APEX" ) != string::npos ) {
4734    // using gain array
4735    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4736      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4737        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4738      sp[j] = v ;
4739    }
4740  }
4741  else {
4742    // Chopper-Wheel calibration (Ulich & Haas 1976)
4743    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4744      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4745      sp[j] = v ;
4746    }
4747  }
4748  sel.reset() ;
4749  sky->unsetSelection() ;
4750  hot->unsetSelection() ;
4751  //cold->unsetSelection() ;
4752  off->unsetSelection() ;
4753
4754  return sp ;
4755}
4756
4757vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4758                                            CountedPtr<Scantable>& off,
4759                                            int index )
4760{
4761  string reftime = on->getTime( index ) ;
4762  vector<int> ii( 1, on->getIF( index ) ) ;
4763  vector<int> ib( 1, on->getBeam( index ) ) ;
4764  vector<int> ip( 1, on->getPol( index ) ) ;
4765  vector<int> ic( 1, on->getScan( index ) ) ;
4766  STSelector sel = STSelector() ;
4767  sel.setIFs( ii ) ;
4768  sel.setBeams( ib ) ;
4769  sel.setPolarizations( ip ) ;
4770  off->setSelection( sel ) ;
4771  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4772  vector<float> spec = on->getSpectrum( index ) ;
4773  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4774  //vector<float> tsys = on->getTsysVec( index ) ;
4775  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4776  Vector<Float> tsys = tsysCol( index ) ;
4777  vector<float> sp( spec.size() ) ;
4778  // ALMA Calibration
4779  //
4780  // Ta* = Tsys * ( ON - OFF ) / OFF
4781  //
4782  // 2010/01/07 Takeshi Nakazato
4783  unsigned int tsyssize = tsys.nelements() ;
4784  unsigned int spsize = sp.size() ;
4785  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4786    float tscale = 0.0 ;
4787    if ( tsyssize == spsize )
4788      tscale = tsys[j] ;
4789    else
4790      tscale = tsys[0] ;
4791    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4792    sp[j] = v ;
4793  }
4794  sel.reset() ;
4795  off->unsetSelection() ;
4796
4797  return sp ;
4798}
4799
4800vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4801                                              CountedPtr<Scantable>& ref,
4802                                              CountedPtr<Scantable>& sky,
4803                                              CountedPtr<Scantable>& hot,
4804                                              CountedPtr<Scantable>& cold,
4805                                              int index )
4806{
4807  string reftime = sig->getTime( index ) ;
4808  vector<int> ii( 1, sig->getIF( index ) ) ;
4809  vector<int> ib( 1, sig->getBeam( index ) ) ;
4810  vector<int> ip( 1, sig->getPol( index ) ) ;
4811  vector<int> ic( 1, sig->getScan( index ) ) ;
4812  STSelector sel = STSelector() ;
4813  sel.setIFs( ii ) ;
4814  sel.setBeams( ib ) ;
4815  sel.setPolarizations( ip ) ;
4816  sky->setSelection( sel ) ;
4817  hot->setSelection( sel ) ;
4818  //cold->setSelection( sel ) ;
4819  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4820  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4821  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4822  vector<float> spref = ref->getSpectrum( index ) ;
4823  vector<float> spsig = sig->getSpectrum( index ) ;
4824  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4825  vector<float> sp( tcal.size() ) ;
4826  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4827    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4828    sp[j] = v ;
4829  }
4830  sel.reset() ;
4831  sky->unsetSelection() ;
4832  hot->unsetSelection() ;
4833  //cold->unsetSelection() ;
4834
4835  return sp ;
4836}
4837
4838vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4839                                              CountedPtr<Scantable>& ref,
4840                                              vector< CountedPtr<Scantable> >& sky,
4841                                              vector< CountedPtr<Scantable> >& hot,
4842                                              vector< CountedPtr<Scantable> >& cold,
4843                                              int index )
4844{
4845  string reftime = sig->getTime( index ) ;
4846  vector<int> ii( 1, sig->getIF( index ) ) ;
4847  vector<int> ib( 1, sig->getBeam( index ) ) ;
4848  vector<int> ip( 1, sig->getPol( index ) ) ;
4849  vector<int> ic( 1, sig->getScan( index ) ) ;
4850  STSelector sel = STSelector() ;
4851  sel.setIFs( ii ) ;
4852  sel.setBeams( ib ) ;
4853  sel.setPolarizations( ip ) ;
4854  sky[0]->setSelection( sel ) ;
4855  hot[0]->setSelection( sel ) ;
4856  //cold[0]->setSelection( sel ) ;
4857  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4858  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4859  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4860  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4861  sel.reset() ;
4862  ii[0] = ref->getIF( index ) ;
4863  sel.setIFs( ii ) ;
4864  sel.setBeams( ib ) ;
4865  sel.setPolarizations( ip ) ;
4866  sky[1]->setSelection( sel ) ;
4867  hot[1]->setSelection( sel ) ;
4868  //cold[1]->setSelection( sel ) ;
4869  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4870  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4871  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4872  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4873  vector<float> spref = ref->getSpectrum( index ) ;
4874  vector<float> spsig = sig->getSpectrum( index ) ;
4875  vector<float> sp( tcals.size() ) ;
4876  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4877    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4878    sp[j] = v ;
4879  }
4880  sel.reset() ;
4881  sky[0]->unsetSelection() ;
4882  hot[0]->unsetSelection() ;
4883  //cold[0]->unsetSelection() ;
4884  sky[1]->unsetSelection() ;
4885  hot[1]->unsetSelection() ;
4886  //cold[1]->unsetSelection() ;
4887
4888  return sp ;
4889}
Note: See TracBrowser for help on using the repository browser.