source: branches/casa-prerelease/pre-asap/src/STMath.cpp @ 2134

Last change on this file since 2134 was 2134, checked in by Takeshi Nakazato, 13 years ago

merge bug fix in trunk (r2133).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 166.8 KB
Line 
1//
2// C++ Implementation: STMath
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2006
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
12
13#include <casa/iomanip.h>
14#include <casa/Exceptions/Error.h>
15#include <casa/Containers/Block.h>
16#include <casa/BasicSL/String.h>
17#include <casa/Arrays/MaskArrLogi.h>
18#include <casa/Arrays/MaskArrMath.h>
19#include <casa/Arrays/ArrayLogical.h>
20#include <casa/Arrays/ArrayMath.h>
21#include <casa/Arrays/Slice.h>
22#include <casa/Arrays/Slicer.h>
23#include <casa/Containers/RecordField.h>
24#include <tables/Tables/TableRow.h>
25#include <tables/Tables/TableVector.h>
26#include <tables/Tables/TabVecMath.h>
27#include <tables/Tables/ExprNode.h>
28#include <tables/Tables/TableRecord.h>
29#include <tables/Tables/TableParse.h>
30#include <tables/Tables/ReadAsciiTable.h>
31#include <tables/Tables/TableIter.h>
32#include <tables/Tables/TableCopy.h>
33#include <scimath/Mathematics/FFTServer.h>
34
35#include <lattices/Lattices/LatticeUtilities.h>
36
37#include <coordinates/Coordinates/SpectralCoordinate.h>
38#include <coordinates/Coordinates/CoordinateSystem.h>
39#include <coordinates/Coordinates/CoordinateUtil.h>
40#include <coordinates/Coordinates/FrequencyAligner.h>
41
42#include <scimath/Mathematics/VectorKernel.h>
43#include <scimath/Mathematics/Convolver.h>
44#include <scimath/Functionals/Polynomial.h>
45
46#include <atnf/PKSIO/SrcType.h>
47
48#include <casa/Logging/LogIO.h>
49#include <sstream>
50
51#include "MathUtils.h"
52#include "RowAccumulator.h"
53#include "STAttr.h"
54#include "STSelector.h"
55
56#include "STMath.h"
57using namespace casa;
58
59using namespace asap;
60
61// tolerance for direction comparison (rad)
62#define TOL_OTF    1.0e-15
63#define TOL_POINT  2.9088821e-4  // 1 arcmin
64
65STMath::STMath(bool insitu) :
66  insitu_(insitu)
67{
68}
69
70
71STMath::~STMath()
72{
73}
74
75CountedPtr<Scantable>
76STMath::average( const std::vector<CountedPtr<Scantable> >& in,
77                 const std::vector<bool>& mask,
78                 const std::string& weight,
79                 const std::string& avmode)
80{
81  LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ;
82  if ( avmode == "SCAN" && in.size() != 1 )
83    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
84                    "Use merge first."));
85  WeightType wtype = stringToWeight(weight);
86
87  // check if OTF observation
88  String obstype = in[0]->getHeader().obstype ;
89  Double tol = 0.0 ;
90  if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) {
91    tol = TOL_OTF ;
92  }
93  else {
94    tol = TOL_POINT ;
95  }
96
97  // output
98  // clone as this is non insitu
99  bool insitu = insitu_;
100  setInsitu(false);
101  CountedPtr< Scantable > out = getScantable(in[0], true);
102  setInsitu(insitu);
103  std::vector<CountedPtr<Scantable> >::const_iterator stit = in.begin();
104  ++stit;
105  while ( stit != in.end() ) {
106    out->appendToHistoryTable((*stit)->history());
107    ++stit;
108  }
109
110  Table& tout = out->table();
111
112  /// @todo check if all scantables are conformant
113
114  ArrayColumn<Float> specColOut(tout,"SPECTRA");
115  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
116  ArrayColumn<Float> tsysColOut(tout,"TSYS");
117  ScalarColumn<Double> mjdColOut(tout,"TIME");
118  ScalarColumn<Double> intColOut(tout,"INTERVAL");
119  ScalarColumn<uInt> cycColOut(tout,"CYCLENO");
120  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
121
122  // set up the output table rows. These are based on the structure of the
123  // FIRST scantable in the vector
124  const Table& baset = in[0]->table();
125
126  Block<String> cols(3);
127  cols[0] = String("BEAMNO");
128  cols[1] = String("IFNO");
129  cols[2] = String("POLNO");
130  if ( avmode == "SOURCE" ) {
131    cols.resize(4);
132    cols[3] = String("SRCNAME");
133  }
134  if ( avmode == "SCAN"  && in.size() == 1) {
135    //cols.resize(4);
136    //cols[3] = String("SCANNO");
137    cols.resize(5);
138    cols[3] = String("SRCNAME");
139    cols[4] = String("SCANNO");
140  }
141  uInt outrowCount = 0;
142  TableIterator iter(baset, cols);
143//   int count = 0 ;
144  while (!iter.pastEnd()) {
145    Table subt = iter.table();
146//     // copy the first row of this selection into the new table
147//     tout.addRow();
148//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
149//     // re-index to 0
150//     if ( avmode != "SCAN" && avmode != "SOURCE" ) {
151//       scanColOut.put(outrowCount, uInt(0));
152//     }
153//     ++outrowCount;
154    MDirection::ScalarColumn dircol ;
155    dircol.attach( subt, "DIRECTION" ) ;
156    Int length = subt.nrow() ;
157    vector< Vector<Double> > dirs ;
158    vector<int> indexes ;
159    for ( Int i = 0 ; i < length ; i++ ) {
160      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
161      //os << << count++ << ": " ;
162      //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ;
163      bool adddir = true ;
164      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
165        //if ( allTrue( t == dirs[j] ) ) {
166        Double dx = t[0] - dirs[j][0] ;
167        Double dy = t[1] - dirs[j][1] ;
168        Double dd = sqrt( dx * dx + dy * dy ) ;
169        //if ( allNearAbs( t, dirs[j], tol ) ) {
170        if ( dd <= tol ) {
171          adddir = false ;
172          break ;
173        }
174      }
175      if ( adddir ) {
176        dirs.push_back( t ) ;
177        indexes.push_back( i ) ;
178      }
179    }
180    uInt rowNum = dirs.size() ;
181    tout.addRow( rowNum ) ;
182    for ( uInt i = 0 ; i < rowNum ; i++ ) {
183      TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ;
184      // re-index to 0
185      if ( avmode != "SCAN" && avmode != "SOURCE" ) {
186        scanColOut.put(outrowCount+i, uInt(0));
187      }       
188    }
189    outrowCount += rowNum ;
190    ++iter;
191  }
192  RowAccumulator acc(wtype);
193  Vector<Bool> cmask(mask);
194  acc.setUserMask(cmask);
195  ROTableRow row(tout);
196  ROArrayColumn<Float> specCol, tsysCol;
197  ROArrayColumn<uChar> flagCol;
198  ROScalarColumn<Double> mjdCol, intCol;
199  ROScalarColumn<Int> scanIDCol;
200
201  Vector<uInt> rowstodelete;
202
203  for (uInt i=0; i < tout.nrow(); ++i) {
204    for ( int j=0; j < int(in.size()); ++j ) {
205      const Table& tin = in[j]->table();
206      const TableRecord& rec = row.get(i);
207      ROScalarColumn<Double> tmp(tin, "TIME");
208      Double td;tmp.get(0,td);
209      Table basesubt = tin( tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
210                         && tin.col("IFNO") == Int(rec.asuInt("IFNO"))
211                         && tin.col("POLNO") == Int(rec.asuInt("POLNO")) );
212      Table subt;
213      if ( avmode == "SOURCE") {
214        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME"));
215      } else if (avmode == "SCAN") {
216        subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME")
217                      && basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) );
218      } else {
219        subt = basesubt;
220      }
221
222      vector<uInt> removeRows ;
223      uInt nrsubt = subt.nrow() ;
224      for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) {
225        //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) {
226        Vector<Double> x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ;
227        Vector<Double> x1 = rec.asArrayDouble("DIRECTION") ;
228        double dx = x0[0] - x1[0] ;
229        double dy = x0[0] - x1[0] ;
230        Double dd = sqrt( dx * dx + dy * dy ) ;
231        //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) {
232        if ( dd > tol ) {
233          removeRows.push_back( irow ) ;
234        }
235      }
236      if ( removeRows.size() != 0 ) {
237        subt.removeRow( removeRows ) ;
238      }
239     
240      if ( nrsubt == removeRows.size() )
241        throw(AipsError("Averaging data is empty.")) ;
242
243      specCol.attach(subt,"SPECTRA");
244      flagCol.attach(subt,"FLAGTRA");
245      tsysCol.attach(subt,"TSYS");
246      intCol.attach(subt,"INTERVAL");
247      mjdCol.attach(subt,"TIME");
248      Vector<Float> spec,tsys;
249      Vector<uChar> flag;
250      Double inter,time;
251      for (uInt k = 0; k < subt.nrow(); ++k ) {
252        flagCol.get(k, flag);
253        Vector<Bool> bflag(flag.shape());
254        convertArray(bflag, flag);
255        /*
256        if ( allEQ(bflag, True) ) {
257        continue;//don't accumulate
258        }
259        */
260        specCol.get(k, spec);
261        tsysCol.get(k, tsys);
262        intCol.get(k, inter);
263        mjdCol.get(k, time);
264        // spectrum has to be added last to enable weighting by the other values
265        acc.add(spec, !bflag, tsys, inter, time);
266      }
267
268      // If there exists a channel at which all the input spectra are masked,
269      // spec has 'nan' values for that channel and it may affect the following
270      // processes. To avoid this, replacing 'nan' values in spec with
271      // weighted-mean of all spectra in the following line.
272      // (done for CAS-2776, 2011/04/07 by Wataru Kawasaki)
273      acc.replaceNaN();
274    }
275    const Vector<Bool>& msk = acc.getMask();
276    if ( allEQ(msk, False) ) {
277      uint n = rowstodelete.nelements();
278      rowstodelete.resize(n+1, True);
279      rowstodelete[n] = i;
280      continue;
281    }
282    //write out
283    if (acc.state()) {
284      Vector<uChar> flg(msk.shape());
285      convertArray(flg, !msk);
286      for (uInt k = 0; k < flg.nelements(); ++k) {
287        uChar userFlag = 1 << 7;
288        if (msk[k]==True) userFlag = 0 << 7;
289        flg(k) = userFlag;
290      }
291
292      flagColOut.put(i, flg);
293      specColOut.put(i, acc.getSpectrum());
294      tsysColOut.put(i, acc.getTsys());
295      intColOut.put(i, acc.getInterval());
296      mjdColOut.put(i, acc.getTime());
297      // we should only have one cycle now -> reset it to be 0
298      // frequency switched data has different CYCLENO for different IFNO
299      // which requires resetting this value
300      cycColOut.put(i, uInt(0));
301    } else {
302      ostringstream oss;
303      oss << "For output row="<<i<<", all input rows of data are flagged. no averaging" << endl;
304      pushLog(String(oss));
305    }
306    acc.reset();
307  }
308  if (rowstodelete.nelements() > 0) {
309    //cout << rowstodelete << endl;
310    os << rowstodelete << LogIO::POST ;
311    tout.removeRow(rowstodelete);
312    if (tout.nrow() == 0) {
313      throw(AipsError("Can't average fully flagged data."));
314    }
315  }
316  return out;
317}
318
319CountedPtr< Scantable >
320  STMath::averageChannel( const CountedPtr < Scantable > & in,
321                          const std::string & mode,
322                          const std::string& avmode )
323{
324  // check if OTF observation
325  String obstype = in->getHeader().obstype ;
326  Double tol = 0.0 ;
327  if ( obstype.find( "OTF" ) != String::npos ) {
328    tol = TOL_OTF ;
329  }
330  else {
331    tol = TOL_POINT ;
332  }
333
334  // clone as this is non insitu
335  bool insitu = insitu_;
336  setInsitu(false);
337  CountedPtr< Scantable > out = getScantable(in, true);
338  setInsitu(insitu);
339  Table& tout = out->table();
340  ArrayColumn<Float> specColOut(tout,"SPECTRA");
341  ArrayColumn<uChar> flagColOut(tout,"FLAGTRA");
342  ArrayColumn<Float> tsysColOut(tout,"TSYS");
343  ScalarColumn<uInt> scanColOut(tout,"SCANNO");
344  ScalarColumn<Double> intColOut(tout, "INTERVAL");
345  Table tmp = in->table().sort("BEAMNO");
346  Block<String> cols(3);
347  cols[0] = String("BEAMNO");
348  cols[1] = String("IFNO");
349  cols[2] = String("POLNO");
350  if ( avmode == "SCAN") {
351    cols.resize(4);
352    cols[3] = String("SCANNO");
353  }
354  uInt outrowCount = 0;
355  uChar userflag = 1 << 7;
356  TableIterator iter(tmp, cols);
357  while (!iter.pastEnd()) {
358    Table subt = iter.table();
359    ROArrayColumn<Float> specCol, tsysCol;
360    ROArrayColumn<uChar> flagCol;
361    ROScalarColumn<Double> intCol(subt, "INTERVAL");
362    specCol.attach(subt,"SPECTRA");
363    flagCol.attach(subt,"FLAGTRA");
364    tsysCol.attach(subt,"TSYS");
365//     tout.addRow();
366//     TableCopy::copyRows(tout, subt, outrowCount, 0, 1);
367//     if ( avmode != "SCAN") {
368//       scanColOut.put(outrowCount, uInt(0));
369//     }
370//     Vector<Float> tmp;
371//     specCol.get(0, tmp);
372//     uInt nchan = tmp.nelements();
373//     // have to do channel by channel here as MaskedArrMath
374//     // doesn't have partialMedians
375//     Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
376//     Vector<Float> outspec(nchan);
377//     Vector<uChar> outflag(nchan,0);
378//     Vector<Float> outtsys(1);/// @fixme when tsys is channel based
379//     for (uInt i=0; i<nchan; ++i) {
380//       Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
381//       MaskedArray<Float> ma = maskedArray(specs,flags);
382//       outspec[i] = median(ma);
383//       if ( allEQ(ma.getMask(), False) )
384//         outflag[i] = userflag;// flag data
385//     }
386//     outtsys[0] = median(tsysCol.getColumn());
387//     specColOut.put(outrowCount, outspec);
388//     flagColOut.put(outrowCount, outflag);
389//     tsysColOut.put(outrowCount, outtsys);
390//     Double intsum = sum(intCol.getColumn());
391//     intColOut.put(outrowCount, intsum);
392//     ++outrowCount;
393//     ++iter;
394    MDirection::ScalarColumn dircol ;
395    dircol.attach( subt, "DIRECTION" ) ;
396    Int length = subt.nrow() ;
397    vector< Vector<Double> > dirs ;
398    vector<int> indexes ;
399    for ( Int i = 0 ; i < length ; i++ ) {
400      Vector<Double> t = dircol(i).getAngle(Unit(String("rad"))).getValue() ;
401      bool adddir = true ;
402      for ( uInt j = 0 ; j < dirs.size() ; j++ ) {
403        //if ( allTrue( t == dirs[j] ) ) {
404        Double dx = t[0] - dirs[j][0] ;
405        Double dy = t[1] - dirs[j][1] ;
406        Double dd = sqrt( dx * dx + dy * dy ) ;
407        //if ( allNearAbs( t, dirs[j], tol ) ) {
408        if ( dd <= tol ) {
409          adddir = false ;
410          break ;
411        }
412      }
413      if ( adddir ) {
414        dirs.push_back( t ) ;
415        indexes.push_back( i ) ;
416      }
417    }
418    uInt rowNum = dirs.size() ;
419    tout.addRow( rowNum );
420    for ( uInt i = 0 ; i < rowNum ; i++ ) {
421      TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ;
422      if ( avmode != "SCAN") {
423        //scanColOut.put(outrowCount+i, uInt(0));
424      }
425    }
426    MDirection::ScalarColumn dircolOut ;
427    dircolOut.attach( tout, "DIRECTION" ) ;
428    for ( uInt irow = 0 ; irow < rowNum ; irow++ ) {
429      Vector<Double> t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ;
430      Vector<Float> tmp;
431      specCol.get(0, tmp);
432      uInt nchan = tmp.nelements();
433      // have to do channel by channel here as MaskedArrMath
434      // doesn't have partialMedians
435      Vector<uChar> flags = flagCol.getColumn(Slicer(Slice(0)));
436      // mask spectra for different DIRECTION
437      for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) {
438        Vector<Double> direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
439        //if ( t[0] != direction[0] || t[1] != direction[1] ) {
440        Double dx = t[0] - direction[0] ;
441        Double dy = t[1] - direction[1] ;
442        Double dd = sqrt( dx * dx + dy * dy ) ;
443        //if ( !allNearAbs( t, direction, tol ) ) {
444        if ( dd > tol ) {
445          flags[jrow] = userflag ;
446        }
447      }
448      Vector<Float> outspec(nchan);
449      Vector<uChar> outflag(nchan,0);
450      Vector<Float> outtsys(1);/// @fixme when tsys is channel based
451      for (uInt i=0; i<nchan; ++i) {
452        Vector<Float> specs = specCol.getColumn(Slicer(Slice(i)));
453        MaskedArray<Float> ma = maskedArray(specs,flags);
454        outspec[i] = median(ma);
455        if ( allEQ(ma.getMask(), False) )
456          outflag[i] = userflag;// flag data
457      }
458      outtsys[0] = median(tsysCol.getColumn());
459      specColOut.put(outrowCount+irow, outspec);
460      flagColOut.put(outrowCount+irow, outflag);
461      tsysColOut.put(outrowCount+irow, outtsys);
462      Vector<Double> integ = intCol.getColumn() ;
463      MaskedArray<Double> mi = maskedArray( integ, flags ) ;
464      Double intsum = sum(mi);
465      intColOut.put(outrowCount+irow, intsum);
466    }
467    outrowCount += rowNum ;
468    ++iter;
469  }
470  return out;
471}
472
473CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in,
474                                             bool droprows)
475{
476  if (insitu_) {
477    return in;
478  }
479  else {
480    // clone
481    return CountedPtr<Scantable>(new Scantable(*in, Bool(droprows)));
482  }
483}
484
485CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in,
486                                              float val,
487                                              const std::string& mode,
488                                              bool tsys )
489{
490  CountedPtr< Scantable > out = getScantable(in, false);
491  Table& tab = out->table();
492  ArrayColumn<Float> specCol(tab,"SPECTRA");
493  ArrayColumn<Float> tsysCol(tab,"TSYS");
494  for (uInt i=0; i<tab.nrow(); ++i) {
495    Vector<Float> spec;
496    Vector<Float> ts;
497    specCol.get(i, spec);
498    tsysCol.get(i, ts);
499    if (mode == "MUL" || mode == "DIV") {
500      if (mode == "DIV") val = 1.0/val;
501      spec *= val;
502      specCol.put(i, spec);
503      if ( tsys ) {
504        ts *= val;
505        tsysCol.put(i, ts);
506      }
507    } else if ( mode == "ADD"  || mode == "SUB") {
508      if (mode == "SUB") val *= -1.0;
509      spec += val;
510      specCol.put(i, spec);
511      if ( tsys ) {
512        ts += val;
513        tsysCol.put(i, ts);
514      }
515    }
516  }
517  return out;
518}
519
520CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in,
521                                              const std::vector<float> val,
522                                              const std::string& mode,
523                                              const std::string& opmode,
524                                              bool tsys )
525{
526  CountedPtr< Scantable > out ;
527  if ( opmode == "channel" ) {
528    out = arrayOperateChannel( in, val, mode, tsys ) ;
529  }
530  else if ( opmode == "row" ) {
531    out = arrayOperateRow( in, val, mode, tsys ) ;
532  }
533  else {
534    throw( AipsError( "Unknown array operation mode." ) ) ;
535  }
536  return out ;
537}
538
539CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in,
540                                                     const std::vector<float> val,
541                                                     const std::string& mode,
542                                                     bool tsys )
543{
544  if ( val.size() == 1 ){
545    return unaryOperate( in, val[0], mode, tsys ) ;
546  }
547
548  // conformity of SPECTRA and TSYS
549  if ( tsys ) {
550    TableIterator titer(in->table(), "IFNO");
551    while ( !titer.pastEnd() ) {
552      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
553      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
554      Array<Float> spec = specCol.getColumn() ;
555      Array<Float> ts = tsysCol.getColumn() ;
556      if ( !spec.conform( ts ) ) {
557        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
558      }
559      titer.next() ;
560    }
561  }
562
563  // check if all spectra in the scantable have the same number of channel
564  vector<uInt> nchans;
565  vector<uInt> ifnos = in->getIFNos() ;
566  for ( uInt i = 0 ; i < ifnos.size() ; i++ ) {
567    nchans.push_back( in->nchan( ifnos[i] ) ) ;
568  }
569  Vector<uInt> mchans( nchans ) ;
570  if ( anyNE( mchans, mchans[0] ) ) {
571    throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ;
572  }
573
574  // check if vector size is equal to nchan
575  Vector<Float> fact( val ) ;
576  if ( fact.nelements() != mchans[0] ) {
577    throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ;
578  }
579
580  // check divided by zero
581  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
582    throw( AipsError("Divided by zero is not recommended." ) ) ;
583  }
584
585  CountedPtr< Scantable > out = getScantable(in, false);
586  Table& tab = out->table();
587  ArrayColumn<Float> specCol(tab,"SPECTRA");
588  ArrayColumn<Float> tsysCol(tab,"TSYS");
589  for (uInt i=0; i<tab.nrow(); ++i) {
590    Vector<Float> spec;
591    Vector<Float> ts;
592    specCol.get(i, spec);
593    tsysCol.get(i, ts);
594    if (mode == "MUL" || mode == "DIV") {
595      if (mode == "DIV") fact = (float)1.0 / fact;
596      spec *= fact;
597      specCol.put(i, spec);
598      if ( tsys ) {
599        ts *= fact;
600        tsysCol.put(i, ts);
601      }
602    } else if ( mode == "ADD"  || mode == "SUB") {
603      if (mode == "SUB") fact *= (float)-1.0 ;
604      spec += fact;
605      specCol.put(i, spec);
606      if ( tsys ) {
607        ts += fact;
608        tsysCol.put(i, ts);
609      }
610    }
611  }
612  return out;
613}
614
615CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in,
616                                                 const std::vector<float> val,
617                                                 const std::string& mode,
618                                                 bool tsys )
619{
620  if ( val.size() == 1 ) {
621    return unaryOperate( in, val[0], mode, tsys ) ;
622  }
623
624  // conformity of SPECTRA and TSYS
625  if ( tsys ) {
626    TableIterator titer(in->table(), "IFNO");
627    while ( !titer.pastEnd() ) {
628      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
629      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
630      Array<Float> spec = specCol.getColumn() ;
631      Array<Float> ts = tsysCol.getColumn() ;
632      if ( !spec.conform( ts ) ) {
633        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
634      }
635      titer.next() ;
636    }
637  }
638
639  // check if vector size is equal to nrow
640  Vector<Float> fact( val ) ;
641  if (fact.nelements() != uInt(in->nrow())) {
642    throw( AipsError("Vector size must be 1 or be same as number of row.") ) ;
643  }
644
645  // check divided by zero
646  if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) {
647    throw( AipsError("Divided by zero is not recommended." ) ) ;
648  }
649
650  CountedPtr< Scantable > out = getScantable(in, false);
651  Table& tab = out->table();
652  ArrayColumn<Float> specCol(tab,"SPECTRA");
653  ArrayColumn<Float> tsysCol(tab,"TSYS");
654  if (mode == "DIV") fact = (float)1.0 / fact;
655  if (mode == "SUB") fact *= (float)-1.0 ;
656  for (uInt i=0; i<tab.nrow(); ++i) {
657    Vector<Float> spec;
658    Vector<Float> ts;
659    specCol.get(i, spec);
660    tsysCol.get(i, ts);
661    if (mode == "MUL" || mode == "DIV") {
662      spec *= fact[i];
663      specCol.put(i, spec);
664      if ( tsys ) {
665        ts *= fact[i];
666        tsysCol.put(i, ts);
667      }
668    } else if ( mode == "ADD"  || mode == "SUB") {
669      spec += fact[i];
670      specCol.put(i, spec);
671      if ( tsys ) {
672        ts += fact[i];
673        tsysCol.put(i, ts);
674      }
675    }
676  }
677  return out;
678}
679
680CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in,
681                                                const std::vector< std::vector<float> > val,
682                                                const std::string& mode,
683                                                bool tsys )
684{
685  // conformity of SPECTRA and TSYS
686  if ( tsys ) {
687    TableIterator titer(in->table(), "IFNO");
688    while ( !titer.pastEnd() ) {
689      ArrayColumn<Float> specCol( in->table(), "SPECTRA" ) ;
690      ArrayColumn<Float> tsysCol( in->table(), "TSYS" ) ;
691      Array<Float> spec = specCol.getColumn() ;
692      Array<Float> ts = tsysCol.getColumn() ;
693      if ( !spec.conform( ts ) ) {
694        throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ;
695      }
696      titer.next() ;
697    }
698  }
699
700  // some checks
701  vector<uInt> nchans;
702  for (Int i = 0 ; i < in->nrow() ; i++) {
703    nchans.push_back((in->getSpectrum(i)).size());
704  }
705  //Vector<uInt> mchans( nchans ) ;
706  vector< Vector<Float> > facts ;
707  for ( uInt i = 0 ; i < nchans.size() ; i++ ) {
708    Vector<Float> tmp( val[i] ) ;
709    // check divided by zero
710    if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) {
711      throw( AipsError("Divided by zero is not recommended." ) ) ;
712    }
713    // conformity check
714    if ( tmp.nelements() != nchans[i] ) {
715      stringstream ss ;
716      ss << "Row " << i << ": Vector size must be same as number of channel." ;
717      throw( AipsError( ss.str() ) ) ;
718    }
719    facts.push_back( tmp ) ;
720  }
721
722
723  CountedPtr< Scantable > out = getScantable(in, false);
724  Table& tab = out->table();
725  ArrayColumn<Float> specCol(tab,"SPECTRA");
726  ArrayColumn<Float> tsysCol(tab,"TSYS");
727  for (uInt i=0; i<tab.nrow(); ++i) {
728    Vector<Float> fact = facts[i] ;
729    Vector<Float> spec;
730    Vector<Float> ts;
731    specCol.get(i, spec);
732    tsysCol.get(i, ts);
733    if (mode == "MUL" || mode == "DIV") {
734      if (mode == "DIV") fact = (float)1.0 / fact;
735      spec *= fact;
736      specCol.put(i, spec);
737      if ( tsys ) {
738        ts *= fact;
739        tsysCol.put(i, ts);
740      }
741    } else if ( mode == "ADD"  || mode == "SUB") {
742      if (mode == "SUB") fact *= (float)-1.0 ;
743      spec += fact;
744      specCol.put(i, spec);
745      if ( tsys ) {
746        ts += fact;
747        tsysCol.put(i, ts);
748      }
749    }
750  }
751  return out;
752}
753
754CountedPtr<Scantable> STMath::binaryOperate(const CountedPtr<Scantable>& left,
755                                            const CountedPtr<Scantable>& right,
756                                            const std::string& mode)
757{
758  bool insitu = insitu_;
759  if ( ! left->conformant(*right) ) {
760    throw(AipsError("'left' and 'right' scantables are not conformant."));
761  }
762  setInsitu(false);
763  CountedPtr< Scantable > out = getScantable(left, false);
764  setInsitu(insitu);
765  Table& tout = out->table();
766  Block<String> coln(5);
767  coln[0] = "SCANNO";  coln[1] = "CYCLENO";  coln[2] = "BEAMNO";
768  coln[3] = "IFNO";  coln[4] = "POLNO";
769  Table tmpl = tout.sort(coln);
770  Table tmpr = right->table().sort(coln);
771  ArrayColumn<Float> lspecCol(tmpl,"SPECTRA");
772  ROArrayColumn<Float> rspecCol(tmpr,"SPECTRA");
773  ArrayColumn<uChar> lflagCol(tmpl,"FLAGTRA");
774  ROArrayColumn<uChar> rflagCol(tmpr,"FLAGTRA");
775
776  for (uInt i=0; i<tout.nrow(); ++i) {
777    Vector<Float> lspecvec, rspecvec;
778    Vector<uChar> lflagvec, rflagvec;
779    lspecvec = lspecCol(i);    rspecvec = rspecCol(i);
780    lflagvec = lflagCol(i);    rflagvec = rflagCol(i);
781    MaskedArray<Float> mleft = maskedArray(lspecvec, lflagvec);
782    MaskedArray<Float> mright = maskedArray(rspecvec, rflagvec);
783    if (mode == "ADD") {
784      mleft += mright;
785    } else if ( mode == "SUB") {
786      mleft -= mright;
787    } else if ( mode == "MUL") {
788      mleft *= mright;
789    } else if ( mode == "DIV") {
790      mleft /= mright;
791    } else {
792      throw(AipsError("Illegal binary operator"));
793    }
794    lspecCol.put(i, mleft.getArray());
795  }
796  return out;
797}
798
799
800
801MaskedArray<Float> STMath::maskedArray( const Vector<Float>& s,
802                                        const Vector<uChar>& f)
803{
804  Vector<Bool> mask;
805  mask.resize(f.shape());
806  convertArray(mask, f);
807  return MaskedArray<Float>(s,!mask);
808}
809
810MaskedArray<Double> STMath::maskedArray( const Vector<Double>& s,
811                                         const Vector<uChar>& f)
812{
813  Vector<Bool> mask;
814  mask.resize(f.shape());
815  convertArray(mask, f);
816  return MaskedArray<Double>(s,!mask);
817}
818
819Vector<uChar> STMath::flagsFromMA(const MaskedArray<Float>& ma)
820{
821  const Vector<Bool>& m = ma.getMask();
822  Vector<uChar> flags(m.shape());
823  convertArray(flags, !m);
824  return flags;
825}
826
827CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in,
828                                              const std::string & mode,
829                                              bool preserve )
830{
831  /// @todo make other modes available
832  /// modes should be "nearest", "pair"
833  // make this operation non insitu
834  const Table& tin = in->table();
835  Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON));
836  Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF));
837  if ( offs.nrow() == 0 )
838    throw(AipsError("No 'off' scans present."));
839  // put all "on" scans into output table
840
841  bool insitu = insitu_;
842  setInsitu(false);
843  CountedPtr< Scantable > out = getScantable(in, true);
844  setInsitu(insitu);
845  Table& tout = out->table();
846
847  TableCopy::copyRows(tout, ons);
848  TableRow row(tout);
849  ROScalarColumn<Double> offtimeCol(offs, "TIME");
850  ArrayColumn<Float> outspecCol(tout, "SPECTRA");
851  ROArrayColumn<Float> outtsysCol(tout, "TSYS");
852  ArrayColumn<uChar> outflagCol(tout, "FLAGTRA");
853  for (uInt i=0; i < tout.nrow(); ++i) {
854    const TableRecord& rec = row.get(i);
855    Double ontime = rec.asDouble("TIME");
856    Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
857                        && offs.col("IFNO") == Int(rec.asuInt("IFNO"))
858                        && offs.col("POLNO") == Int(rec.asuInt("POLNO")) );
859    ROScalarColumn<Double> offtimeCol(presel, "TIME");
860
861    Double mindeltat = min(abs(offtimeCol.getColumn() - ontime));
862    // Timestamp may vary within a cycle ???!!!
863    // increase this by 0.01 sec in case of rounding errors...
864    // There might be a better way to do this.
865    // fix to this fix. TIME is MJD, so 1.0d not 1.0s
866    mindeltat += 0.01/24./60./60.;
867    Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat);
868
869    if ( sel.nrow() < 1 )  {
870      throw(AipsError("No closest in time found... This could be a rounding "
871                      "issue. Try quotient instead."));
872    }
873    TableRow offrow(sel);
874    const TableRecord& offrec = offrow.get(0);//should only be one row
875    RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
876    RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
877    RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
878    /// @fixme this assumes tsys is a scalar not vector
879    Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
880    Vector<Float> specon, tsyson;
881    outtsysCol.get(i, tsyson);
882    outspecCol.get(i, specon);
883    Vector<uChar> flagon;
884    outflagCol.get(i, flagon);
885    MaskedArray<Float> mon = maskedArray(specon, flagon);
886    MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
887    MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
888    if (preserve) {
889      quot -= tsysoffscalar;
890    } else {
891      quot -= tsyson[0];
892    }
893    outspecCol.put(i, quot.getArray());
894    outflagCol.put(i, flagsFromMA(quot));
895  }
896  // renumber scanno
897  TableIterator it(tout, "SCANNO");
898  uInt i = 0;
899  while ( !it.pastEnd() ) {
900    Table t = it.table();
901    TableVector<uInt> vec(t, "SCANNO");
902    vec = i;
903    ++i;
904    ++it;
905  }
906  return out;
907}
908
909
910CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on,
911                                          const CountedPtr< Scantable > & off,
912                                          bool preserve )
913{
914  bool insitu = insitu_;
915  if ( ! on->conformant(*off) ) {
916    throw(AipsError("'on' and 'off' scantables are not conformant."));
917  }
918  setInsitu(false);
919  CountedPtr< Scantable > out = getScantable(on, false);
920  setInsitu(insitu);
921  Table& tout = out->table();
922  const Table& toff = off->table();
923  TableIterator sit(tout, "SCANNO");
924  TableIterator s2it(toff, "SCANNO");
925  while ( !sit.pastEnd() ) {
926    Table ton = sit.table();
927    TableRow row(ton);
928    Table t = s2it.table();
929    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
930    ROArrayColumn<Float> outtsysCol(ton, "TSYS");
931    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
932    for (uInt i=0; i < ton.nrow(); ++i) {
933      const TableRecord& rec = row.get(i);
934      Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
935                          && t.col("IFNO") == Int(rec.asuInt("IFNO"))
936                          && t.col("POLNO") == Int(rec.asuInt("POLNO")) );
937      if ( offsel.nrow() == 0 )
938        throw AipsError("STMath::quotient: no matching off");
939      TableRow offrow(offsel);
940      const TableRecord& offrec = offrow.get(0);//should be ncycles - take first
941      RORecordFieldPtr< Array<Float> > specoff(offrec, "SPECTRA");
942      RORecordFieldPtr< Array<Float> > tsysoff(offrec, "TSYS");
943      RORecordFieldPtr< Array<uChar> > flagoff(offrec, "FLAGTRA");
944      Float tsysoffscalar = (*tsysoff)(IPosition(1,0));
945      Vector<Float> specon, tsyson;
946      outtsysCol.get(i, tsyson);
947      outspecCol.get(i, specon);
948      Vector<uChar> flagon;
949      outflagCol.get(i, flagon);
950      MaskedArray<Float> mon = maskedArray(specon, flagon);
951      MaskedArray<Float> moff = maskedArray(*specoff, *flagoff);
952      MaskedArray<Float> quot = (tsysoffscalar * mon / moff);
953      if (preserve) {
954        quot -= tsysoffscalar;
955      } else {
956        quot -= tsyson[0];
957      }
958      outspecCol.put(i, quot.getArray());
959      outflagCol.put(i, flagsFromMA(quot));
960    }
961    ++sit;
962    ++s2it;
963    // take the first off for each on scan which doesn't have a
964    // matching off scan
965    // non <= noff:  matching pairs, non > noff matching pairs then first off
966    if ( s2it.pastEnd() ) s2it.reset();
967  }
968  return out;
969}
970
971// dototalpower (migration of GBTIDL procedure dototalpower.pro)
972// calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations
973// do it for each cycles in a specific scan.
974CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon,
975                                              const CountedPtr< Scantable >& caloff, Float tcal )
976{
977if ( ! calon->conformant(*caloff) ) {
978    throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant."));
979  }
980  setInsitu(false);
981  CountedPtr< Scantable > out = getScantable(caloff, false);
982  Table& tout = out->table();
983  const Table& tcon = calon->table();
984  Vector<Float> tcalout;
985  Vector<Float> tcalout2;  //debug
986
987  if ( tout.nrow() != tcon.nrow() ) {
988    throw(AipsError("Mismatch in number of rows to form cal on - off pair."));
989  }
990  // iteration by scanno or cycle no.
991  TableIterator sit(tout, "SCANNO");
992  TableIterator s2it(tcon, "SCANNO");
993  while ( !sit.pastEnd() ) {
994    Table toff = sit.table();
995    TableRow row(toff);
996    Table t = s2it.table();
997    ScalarColumn<Double> outintCol(toff, "INTERVAL");
998    ArrayColumn<Float> outspecCol(toff, "SPECTRA");
999    ArrayColumn<Float> outtsysCol(toff, "TSYS");
1000    ArrayColumn<uChar> outflagCol(toff, "FLAGTRA");
1001    ROScalarColumn<uInt> outtcalIdCol(toff, "TCAL_ID");
1002    ROScalarColumn<uInt> outpolCol(toff, "POLNO");
1003    ROScalarColumn<Double> onintCol(t, "INTERVAL");
1004    ROArrayColumn<Float> onspecCol(t, "SPECTRA");
1005    ROArrayColumn<Float> ontsysCol(t, "TSYS");
1006    ROArrayColumn<uChar> onflagCol(t, "FLAGTRA");
1007    //ROScalarColumn<uInt> ontcalIdCol(t, "TCAL_ID");
1008
1009    for (uInt i=0; i < toff.nrow(); ++i) {
1010      //skip these checks -> assumes the data order are the same between the cal on off pairs
1011      //
1012      Vector<Float> specCalon, specCaloff;
1013      // to store scalar (mean) tsys
1014      Vector<Float> tsysout(1);
1015      uInt tcalId, polno;
1016      Double offint, onint;
1017      outpolCol.get(i, polno);
1018      outspecCol.get(i, specCaloff);
1019      onspecCol.get(i, specCalon);
1020      Vector<uChar> flagCaloff, flagCalon;
1021      outflagCol.get(i, flagCaloff);
1022      onflagCol.get(i, flagCalon);
1023      outtcalIdCol.get(i, tcalId);
1024      outintCol.get(i, offint);
1025      onintCol.get(i, onint);
1026      // caluculate mean Tsys
1027      uInt nchan = specCaloff.nelements();
1028      // percentage of edge cut off
1029      uInt pc = 10;
1030      uInt bchan = nchan/pc;
1031      uInt echan = nchan-bchan;
1032
1033      Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast);
1034      Vector<Float> testsubsp = specCaloff(chansl);
1035      MaskedArray<Float> spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) );
1036      MaskedArray<Float> spon = maskedArray( specCalon(chansl),flagCalon(chansl) );
1037      MaskedArray<Float> spdiff = spon-spoff;
1038      uInt noff = spoff.nelementsValid();
1039      //uInt non = spon.nelementsValid();
1040      uInt ndiff = spdiff.nelementsValid();
1041      Float meantsys;
1042
1043/**
1044      Double subspec, subdiff;
1045      uInt usednchan;
1046      subspec = 0;
1047      subdiff = 0;
1048      usednchan = 0;
1049      for(uInt k=(bchan-1); k<echan; k++) {
1050        subspec += specCaloff[k];
1051        subdiff += static_cast<Double>(specCalon[k]-specCaloff[k]);
1052        ++usednchan;
1053      }
1054**/
1055      // get tcal if input tcal <= 0
1056      String tcalt;
1057      Float tcalUsed;
1058      tcalUsed = tcal;
1059      if ( tcal <= 0.0 ) {
1060        caloff->tcal().getEntry(tcalt, tcalout, tcalId);
1061//         if (polno<=3) {
1062//           tcalUsed = tcalout[polno];
1063//         }
1064//         else {
1065//           tcalUsed = tcalout[0];
1066//         }
1067        if ( tcalout.size() == 1 )
1068          tcalUsed = tcalout[0] ;
1069        else if ( tcalout.size() == nchan )
1070          tcalUsed = mean(tcalout) ;
1071        else {
1072          uInt ipol = polno ;
1073          if ( ipol > 3 ) ipol = 0 ;
1074          tcalUsed = tcalout[ipol] ;
1075        }
1076      }
1077
1078      Float meanoff;
1079      Float meandiff;
1080      if (noff && ndiff) {
1081         //Debug
1082         //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"<<endl;
1083         //LogIO os( LogOrigin( "STMath", "dototalpower()", WHERE ) ) ;
1084         //if(noff!=ndiff) os<<"noff and ndiff is not equal"<<LogIO::POST;
1085         meanoff = sum(spoff)/noff;
1086         meandiff = sum(spdiff)/ndiff;
1087         meantsys= (meanoff/meandiff )*tcalUsed + tcalUsed/2;
1088      }
1089      else {
1090         meantsys=1;
1091      }
1092
1093      tsysout[0] = Float(meantsys);
1094      MaskedArray<Float> mcaloff = maskedArray(specCaloff, flagCaloff);
1095      MaskedArray<Float> mcalon = maskedArray(specCalon, flagCalon);
1096      MaskedArray<Float> sig =   Float(0.5) * (mcaloff + mcalon);
1097      //uInt ncaloff = mcaloff.nelementsValid();
1098      //uInt ncalon = mcalon.nelementsValid();
1099
1100      outintCol.put(i, offint+onint);
1101      outspecCol.put(i, sig.getArray());
1102      outflagCol.put(i, flagsFromMA(sig));
1103      outtsysCol.put(i, tsysout);
1104    }
1105    ++sit;
1106    ++s2it;
1107  }
1108  return out;
1109}
1110
1111//dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch
1112// observatiions.
1113// input: sig and ref scantables, and an optional boxcar smoothing width(default width=0,
1114//        no smoothing).
1115// output: resultant scantable [= (sig-ref/ref)*tsys]
1116CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig,
1117                                          const CountedPtr < Scantable >& ref,
1118                                          int smoothref,
1119                                          casa::Float tsysv,
1120                                          casa::Float tau )
1121{
1122if ( ! ref->conformant(*sig) ) {
1123    throw(AipsError("'sig' and 'ref' scantables are not conformant."));
1124  }
1125  setInsitu(false);
1126  CountedPtr< Scantable > out = getScantable(sig, false);
1127  CountedPtr< Scantable > smref;
1128  if ( smoothref > 1 ) {
1129    float fsmoothref = static_cast<float>(smoothref);
1130    std::string inkernel = "boxcar";
1131    smref = smooth(ref, inkernel, fsmoothref );
1132    ostringstream oss;
1133    oss<<"Applied smoothing of "<<fsmoothref<<" on the reference."<<endl;
1134    pushLog(String(oss));
1135  }
1136  else {
1137    smref = ref;
1138  }
1139  Table& tout = out->table();
1140  const Table& tref = smref->table();
1141  if ( tout.nrow() != tref.nrow() ) {
1142    throw(AipsError("Mismatch in number of rows to form on-source and reference pair."));
1143  }
1144  // iteration by scanno? or cycle no.
1145  TableIterator sit(tout, "SCANNO");
1146  TableIterator s2it(tref, "SCANNO");
1147  while ( !sit.pastEnd() ) {
1148    Table ton = sit.table();
1149    Table t = s2it.table();
1150    ScalarColumn<Double> outintCol(ton, "INTERVAL");
1151    ArrayColumn<Float> outspecCol(ton, "SPECTRA");
1152    ArrayColumn<Float> outtsysCol(ton, "TSYS");
1153    ArrayColumn<uChar> outflagCol(ton, "FLAGTRA");
1154    ArrayColumn<Float> refspecCol(t, "SPECTRA");
1155    ROScalarColumn<Double> refintCol(t, "INTERVAL");
1156    ROArrayColumn<Float> reftsysCol(t, "TSYS");
1157    ArrayColumn<uChar> refflagCol(t, "FLAGTRA");
1158    ROScalarColumn<Float> refelevCol(t, "ELEVATION");
1159    for (uInt i=0; i < ton.nrow(); ++i) {
1160
1161      Double onint, refint;
1162      Vector<Float> specon, specref;
1163      // to store scalar (mean) tsys
1164      Vector<Float> tsysref;
1165      outintCol.get(i, onint);
1166      refintCol.get(i, refint);
1167      outspecCol.get(i, specon);
1168      refspecCol.get(i, specref);
1169      Vector<uChar> flagref, flagon;
1170      outflagCol.get(i, flagon);
1171      refflagCol.get(i, flagref);
1172      reftsysCol.get(i, tsysref);
1173
1174      Float tsysrefscalar;
1175      if ( tsysv > 0.0 ) {
1176        ostringstream oss;
1177        Float elev;
1178        refelevCol.get(i, elev);
1179        oss << "user specified Tsys = " << tsysv;
1180        // do recalc elevation if EL = 0
1181        if ( elev == 0 ) {
1182          throw(AipsError("EL=0, elevation data is missing."));
1183        } else {
1184          if ( tau <= 0.0 ) {
1185            throw(AipsError("Valid tau is not supplied."));
1186          } else {
1187            tsysrefscalar = tsysv * exp(tau/elev);
1188          }
1189        }
1190        oss << ", corrected (for El) tsys= "<<tsysrefscalar;
1191        pushLog(String(oss));
1192      }
1193      else {
1194        tsysrefscalar = tsysref[0];
1195      }
1196      //get quotient spectrum
1197      MaskedArray<Float> mref = maskedArray(specref, flagref);
1198      MaskedArray<Float> mon = maskedArray(specon, flagon);
1199      MaskedArray<Float> specres =   tsysrefscalar*((mon - mref)/mref);
1200      Double resint = onint*refint*smoothref/(onint+refint*smoothref);
1201
1202      //Debug
1203      //cerr<<"Tsys used="<<tsysrefscalar<<endl;
1204      //LogIO os( LogOrigin( "STMath", "dosigref", WHERE ) ) ;
1205      //os<<"Tsys used="<<tsysrefscalar<<LogIO::POST;
1206      // fill the result, replay signal tsys by reference tsys
1207      outintCol.put(i, resint);
1208      outspecCol.put(i, specres.getArray());
1209      outflagCol.put(i, flagsFromMA(specres));
1210      outtsysCol.put(i, tsysref);
1211    }
1212    ++sit;
1213    ++s2it;
1214  }
1215  return out;
1216}
1217
1218CountedPtr< Scantable > STMath::donod(const casa::CountedPtr<Scantable>& s,
1219                                     const std::vector<int>& scans,
1220                                     int smoothref,
1221                                     casa::Float tsysv,
1222                                     casa::Float tau,
1223                                     casa::Float tcal )
1224
1225{
1226  setInsitu(false);
1227  STSelector sel;
1228  std::vector<int> scan1, scan2, beams, types;
1229  std::vector< vector<int> > scanpair;
1230  //std::vector<string> calstate;
1231  std::vector<int> calstate;
1232  String msg;
1233
1234  CountedPtr< Scantable > s1b1on, s1b1off, s1b2on, s1b2off;
1235  CountedPtr< Scantable > s2b1on, s2b1off, s2b2on, s2b2off;
1236
1237  std::vector< CountedPtr< Scantable > > sctables;
1238  sctables.push_back(s1b1on);
1239  sctables.push_back(s1b1off);
1240  sctables.push_back(s1b2on);
1241  sctables.push_back(s1b2off);
1242  sctables.push_back(s2b1on);
1243  sctables.push_back(s2b1off);
1244  sctables.push_back(s2b2on);
1245  sctables.push_back(s2b2off);
1246
1247  //check scanlist
1248  int n=s->checkScanInfo(scans);
1249  if (n==1) {
1250     throw(AipsError("Incorrect scan pairs. "));
1251  }
1252
1253  // Assume scans contain only a pair of consecutive scan numbers.
1254  // It is assumed that first beam, b1,  is on target.
1255  // There is no check if the first beam is on or not.
1256  if ( scans.size()==1 ) {
1257    scan1.push_back(scans[0]);
1258    scan2.push_back(scans[0]+1);
1259  } else if ( scans.size()==2 ) {
1260   scan1.push_back(scans[0]);
1261   scan2.push_back(scans[1]);
1262  } else {
1263    if ( scans.size()%2 == 0 ) {
1264      for (uInt i=0; i<scans.size(); i++) {
1265        if (i%2 == 0) {
1266          scan1.push_back(scans[i]);
1267        }
1268        else {
1269          scan2.push_back(scans[i]);
1270        }
1271      }
1272    } else {
1273      throw(AipsError("Odd numbers of scans, cannot form pairs."));
1274    }
1275  }
1276  scanpair.push_back(scan1);
1277  scanpair.push_back(scan2);
1278  //calstate.push_back("*calon");
1279  //calstate.push_back("*[^calon]");
1280  calstate.push_back(SrcType::NODCAL);
1281  calstate.push_back(SrcType::NOD);
1282  CountedPtr< Scantable > ws = getScantable(s, false);
1283  uInt l=0;
1284  while ( l < sctables.size() ) {
1285    for (uInt i=0; i < 2; i++) {
1286      for (uInt j=0; j < 2; j++) {
1287        for (uInt k=0; k < 2; k++) {
1288          sel.reset();
1289          sel.setScans(scanpair[i]);
1290          //sel.setName(calstate[k]);
1291          types.clear();
1292          types.push_back(calstate[k]);
1293          sel.setTypes(types);
1294          beams.clear();
1295          beams.push_back(j);
1296          sel.setBeams(beams);
1297          ws->setSelection(sel);
1298          sctables[l]= getScantable(ws, false);
1299          l++;
1300        }
1301      }
1302    }
1303  }
1304
1305  // replace here by splitData or getData functionality
1306  CountedPtr< Scantable > sig1;
1307  CountedPtr< Scantable > ref1;
1308  CountedPtr< Scantable > sig2;
1309  CountedPtr< Scantable > ref2;
1310  CountedPtr< Scantable > calb1;
1311  CountedPtr< Scantable > calb2;
1312
1313  msg=String("Processing dototalpower for subset of the data");
1314  ostringstream oss1;
1315  oss1 << msg  << endl;
1316  pushLog(String(oss1));
1317  // Debug for IRC CS data
1318  //float tcal1=7.0;
1319  //float tcal2=4.0;
1320  sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal);
1321  ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal);
1322  ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal);
1323  sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal);
1324
1325  // correction of user-specified tsys for elevation here
1326
1327  // dosigref calibration
1328  msg=String("Processing dosigref for subset of the data");
1329  ostringstream oss2;
1330  oss2 << msg  << endl;
1331  pushLog(String(oss2));
1332  calb1=dosigref(sig1,ref2,smoothref,tsysv,tau);
1333  calb2=dosigref(sig2,ref1,smoothref,tsysv,tau);
1334
1335  // iteration by scanno or cycle no.
1336  Table& tcalb1 = calb1->table();
1337  Table& tcalb2 = calb2->table();
1338  TableIterator sit(tcalb1, "SCANNO");
1339  TableIterator s2it(tcalb2, "SCANNO");
1340  while ( !sit.pastEnd() ) {
1341    Table t1 = sit.table();
1342    Table t2= s2it.table();
1343    ArrayColumn<Float> outspecCol(t1, "SPECTRA");
1344    ArrayColumn<Float> outtsysCol(t1, "TSYS");
1345    ArrayColumn<uChar> outflagCol(t1, "FLAGTRA");
1346    ScalarColumn<Double> outintCol(t1, "INTERVAL");
1347    ArrayColumn<Float> t2specCol(t2, "SPECTRA");
1348    ROArrayColumn<Float> t2tsysCol(t2, "TSYS");
1349    ArrayColumn<uChar> t2flagCol(t2, "FLAGTRA");
1350    ROScalarColumn<Double> t2intCol(t2, "INTERVAL");
1351    for (uInt i=0; i < t1.nrow(); ++i) {
1352      Vector<Float> spec1, spec2;
1353      // to store scalar (mean) tsys
1354      Vector<Float> tsys1, tsys2;
1355      Vector<uChar> flag1, flag2;
1356      Double tint1, tint2;
1357      outspecCol.get(i, spec1);
1358      t2specCol.get(i, spec2);
1359      outflagCol.get(i, flag1);
1360      t2flagCol.get(i, flag2);
1361      outtsysCol.get(i, tsys1);
1362      t2tsysCol.get(i, tsys2);
1363      outintCol.get(i, tint1);
1364      t2intCol.get(i, tint2);
1365      // average
1366      // assume scalar tsys for weights
1367      Float wt1, wt2, tsyssq1, tsyssq2;
1368      tsyssq1 = tsys1[0]*tsys1[0];
1369      tsyssq2 = tsys2[0]*tsys2[0];
1370      wt1 = Float(tint1)/tsyssq1;
1371      wt2 = Float(tint2)/tsyssq2;
1372      Float invsumwt=1/(wt1+wt2);
1373      MaskedArray<Float> mspec1 = maskedArray(spec1, flag1);
1374      MaskedArray<Float> mspec2 = maskedArray(spec2, flag2);
1375      MaskedArray<Float> avspec =  invsumwt * (wt1*mspec1 + wt2*mspec2);
1376      //Array<Float> avtsys =  Float(0.5) * (tsys1 + tsys2);
1377      // cerr<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<endl;
1378      // LogIO os( LogOrigin( "STMath", "donod", WHERE ) ) ;
1379      // os<< "Tsys1="<<tsys1<<" Tsys2="<<tsys2<<LogIO::POST;
1380      tsys1[0] = sqrt(tsyssq1 + tsyssq2);
1381      Array<Float> avtsys =  tsys1;
1382
1383      outspecCol.put(i, avspec.getArray());
1384      outflagCol.put(i, flagsFromMA(avspec));
1385      outtsysCol.put(i, avtsys);
1386    }
1387    ++sit;
1388    ++s2it;
1389  }
1390  return calb1;
1391}
1392
1393//GBTIDL version of frequency switched data calibration
1394CountedPtr< Scantable > STMath::dofs( const CountedPtr< Scantable >& s,
1395                                      const std::vector<int>& scans,
1396                                      int smoothref,
1397                                      casa::Float tsysv,
1398                                      casa::Float tau,
1399                                      casa::Float tcal )
1400{
1401
1402
1403  STSelector sel;
1404  CountedPtr< Scantable > ws = getScantable(s, false);
1405  CountedPtr< Scantable > sig, sigwcal, ref, refwcal;
1406  CountedPtr< Scantable > calsig, calref, out, out1, out2;
1407  Bool nofold=False;
1408  vector<int> types ;
1409
1410  //split the data
1411  //sel.setName("*_fs");
1412  types.push_back( SrcType::FSON ) ;
1413  sel.setTypes( types ) ;
1414  ws->setSelection(sel);
1415  sig = getScantable(ws,false);
1416  sel.reset();
1417  types.clear() ;
1418  //sel.setName("*_fs_calon");
1419  types.push_back( SrcType::FONCAL ) ;
1420  sel.setTypes( types ) ;
1421  ws->setSelection(sel);
1422  sigwcal = getScantable(ws,false);
1423  sel.reset();
1424  types.clear() ;
1425  //sel.setName("*_fsr");
1426  types.push_back( SrcType::FSOFF ) ;
1427  sel.setTypes( types ) ;
1428  ws->setSelection(sel);
1429  ref = getScantable(ws,false);
1430  sel.reset();
1431  types.clear() ;
1432  //sel.setName("*_fsr_calon");
1433  types.push_back( SrcType::FOFFCAL ) ;
1434  sel.setTypes( types ) ;
1435  ws->setSelection(sel);
1436  refwcal = getScantable(ws,false);
1437  sel.reset() ;
1438  types.clear() ;
1439
1440  calsig = dototalpower(sigwcal, sig, tcal=tcal);
1441  calref = dototalpower(refwcal, ref, tcal=tcal);
1442
1443  out1=dosigref(calsig,calref,smoothref,tsysv,tau);
1444  out2=dosigref(calref,calsig,smoothref,tsysv,tau);
1445
1446  Table& tabout1=out1->table();
1447  Table& tabout2=out2->table();
1448  ROScalarColumn<uInt> freqidCol1(tabout1, "FREQ_ID");
1449  ScalarColumn<uInt> freqidCol2(tabout2, "FREQ_ID");
1450  ROArrayColumn<Float> specCol(tabout2, "SPECTRA");
1451  Vector<Float> spec; specCol.get(0, spec);
1452  uInt nchan = spec.nelements();
1453  uInt freqid1; freqidCol1.get(0,freqid1);
1454  uInt freqid2; freqidCol2.get(0,freqid2);
1455  Double rp1, rp2, rv1, rv2, inc1, inc2;
1456  out1->frequencies().getEntry(rp1, rv1, inc1, freqid1);
1457  out2->frequencies().getEntry(rp2, rv2, inc2, freqid2);
1458  //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ;
1459  //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1460  //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ;
1461  if (rp1==rp2) {
1462    Double foffset = rv1 - rv2;
1463    uInt choffset = static_cast<uInt>(foffset/abs(inc2));
1464    if (choffset >= nchan) {
1465      //cerr<<"out-band frequency switching, no folding"<<endl;
1466      LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ;
1467      os<<"out-band frequency switching, no folding"<<LogIO::POST;
1468      nofold = True;
1469    }
1470  }
1471
1472  if (nofold) {
1473    std::vector< CountedPtr< Scantable > > tabs;
1474    tabs.push_back(out1);
1475    tabs.push_back(out2);
1476    out = merge(tabs);
1477  }
1478  else {
1479    //out = out1;
1480    Double choffset = ( rv1 - rv2 ) / inc2 ;
1481    out = dofold( out1, out2, choffset ) ;
1482  }
1483   
1484  return out;
1485}
1486
1487CountedPtr<Scantable> STMath::dofold( const CountedPtr<Scantable> &sig,
1488                                      const CountedPtr<Scantable> &ref,
1489                                      Double choffset,
1490                                      Double choffset2 )
1491{
1492  LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ;
1493  os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ;
1494
1495  // output scantable
1496  CountedPtr<Scantable> out = getScantable( sig, false ) ;
1497
1498  // separate choffset to integer part and decimal part
1499  Int ioffset = (Int)choffset ;
1500  Double doffset = choffset - ioffset ;
1501  Int ioffset2 = (Int)choffset2 ;
1502  Double doffset2 = choffset2 - ioffset2 ;
1503  os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ;
1504  os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; 
1505
1506  // get column
1507  ROArrayColumn<Float> specCol1( sig->table(), "SPECTRA" ) ;
1508  ROArrayColumn<Float> specCol2( ref->table(), "SPECTRA" ) ;
1509  ROArrayColumn<Float> tsysCol1( sig->table(), "TSYS" ) ;
1510  ROArrayColumn<Float> tsysCol2( ref->table(), "TSYS" ) ;
1511  ROArrayColumn<uChar> flagCol1( sig->table(), "FLAGTRA" ) ;
1512  ROArrayColumn<uChar> flagCol2( ref->table(), "FLAGTRA" ) ;
1513  ROScalarColumn<Double> mjdCol1( sig->table(), "TIME" ) ;
1514  ROScalarColumn<Double> mjdCol2( ref->table(), "TIME" ) ;
1515  ROScalarColumn<Double> intervalCol1( sig->table(), "INTERVAL" ) ;
1516  ROScalarColumn<Double> intervalCol2( ref->table(), "INTERVAL" ) ;
1517
1518  // check
1519  if ( ioffset == 0 ) {
1520    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1521    os << "channel offset is zero, no folding" << LogIO::POST ;
1522    return out ;
1523  }
1524  int nchan = ref->nchan() ;
1525  if ( abs(ioffset) >= nchan ) {
1526    LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ;
1527    os << "out-band frequency switching, no folding" << LogIO::POST ;
1528    return out ;
1529  }
1530
1531  // attach column for output scantable
1532  ArrayColumn<Float> specColOut( out->table(), "SPECTRA" ) ;
1533  ArrayColumn<uChar> flagColOut( out->table(), "FLAGTRA" ) ;
1534  ArrayColumn<Float> tsysColOut( out->table(), "TSYS" ) ;
1535  ScalarColumn<Double> mjdColOut( out->table(), "TIME" ) ;
1536  ScalarColumn<Double> intervalColOut( out->table(), "INTERVAL" ) ;
1537  ScalarColumn<uInt> fidColOut( out->table(), "FREQ_ID" ) ;
1538
1539  // for each row
1540  // assume that the data order are same between sig and ref
1541  RowAccumulator acc( asap::W_TINTSYS ) ;
1542  for ( int i = 0 ; i < sig->nrow() ; i++ ) {
1543    // get values
1544    Vector<Float> spsig ;
1545    specCol1.get( i, spsig ) ;
1546    Vector<Float> spref ;
1547    specCol2.get( i, spref ) ;
1548    Vector<Float> tsyssig ;
1549    tsysCol1.get( i, tsyssig ) ;
1550    Vector<Float> tsysref ;
1551    tsysCol2.get( i, tsysref ) ;
1552    Vector<uChar> flagsig ;
1553    flagCol1.get( i, flagsig ) ;
1554    Vector<uChar> flagref ;
1555    flagCol2.get( i, flagref ) ;
1556    Double timesig ;
1557    mjdCol1.get( i, timesig ) ;
1558    Double timeref ;
1559    mjdCol2.get( i, timeref ) ;
1560    Double intsig ;
1561    intervalCol1.get( i, intsig ) ;
1562    Double intref ;
1563    intervalCol2.get( i, intref ) ;
1564
1565    // shift reference spectra
1566    int refchan = spref.nelements() ;
1567    Vector<Float> sspref( spref.nelements() ) ;
1568    Vector<Float> stsysref( tsysref.nelements() ) ;
1569    Vector<uChar> sflagref( flagref.nelements() ) ;
1570    if ( ioffset > 0 ) {
1571      // SPECTRA and FLAGTRA
1572      for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1573        sspref[j] = spref[j+ioffset] ;
1574        sflagref[j] = flagref[j+ioffset] ;
1575      }
1576      for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1577        sspref[j] = spref[j-refchan+ioffset] ;
1578        sflagref[j] = flagref[j-refchan+ioffset] ;
1579      }
1580      spref = sspref.copy() ;
1581      flagref = sflagref.copy() ;
1582      for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1583        sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ;
1584        sflagref[j] = flagref[j+1] + flagref[j] ;
1585      }
1586      sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ;
1587      sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ;
1588
1589      // TSYS
1590      if ( spref.nelements() == tsysref.nelements() ) {
1591        for ( int j = 0 ; j < refchan-ioffset ; j++ ) {
1592          stsysref[j] = tsysref[j+ioffset] ;
1593        }
1594        for ( int j = refchan-ioffset ; j < refchan ; j++ ) {
1595          stsysref[j] = tsysref[j-refchan+ioffset] ;
1596        }
1597        tsysref = stsysref.copy() ;
1598        for ( int j = 0 ; j < refchan - 1 ; j++ ) {
1599          stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ;
1600        }
1601        stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ;
1602      }
1603    }
1604    else {
1605      // SPECTRA and FLAGTRA
1606      for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1607        sspref[j] = spref[refchan+ioffset+j] ;
1608        sflagref[j] = flagref[refchan+ioffset+j] ;
1609      }
1610      for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1611        sspref[j] = spref[j+ioffset] ;
1612        sflagref[j] = flagref[j+ioffset] ;
1613      }
1614      spref = sspref.copy() ;
1615      flagref = sflagref.copy() ;
1616      sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ;
1617      sflagref[0] = flagref[0] + flagref[refchan-1] ;
1618      for ( int j = 1 ; j < refchan ; j++ ) {
1619        sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ;
1620        sflagref[j] = flagref[j-1] + flagref[j] ;
1621      }
1622      // TSYS
1623      if ( spref.nelements() == tsysref.nelements() ) {
1624        for ( int j = 0 ; j < abs(ioffset) ; j++ ) {
1625          stsysref[j] = tsysref[refchan+ioffset+j] ;
1626        }
1627        for ( int j = abs(ioffset) ; j < refchan ; j++ ) {
1628          stsysref[j] = tsysref[j+ioffset] ;
1629        }
1630        tsysref = stsysref.copy() ;
1631        stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ;
1632        for ( int j = 1 ; j < refchan ; j++ ) {
1633          stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ;
1634        }
1635      }
1636    }
1637
1638    // shift signal spectra if necessary (only for APEX?)
1639    if ( choffset2 != 0.0 ) {
1640      int sigchan = spsig.nelements() ;
1641      Vector<Float> sspsig( spsig.nelements() ) ;
1642      Vector<Float> stsyssig( tsyssig.nelements() ) ;
1643      Vector<uChar> sflagsig( flagsig.nelements() ) ;
1644      if ( ioffset2 > 0 ) {
1645        // SPECTRA and FLAGTRA
1646        for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1647          sspsig[j] = spsig[j+ioffset2] ;
1648          sflagsig[j] = flagsig[j+ioffset2] ;
1649        }
1650        for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1651          sspsig[j] = spsig[j-sigchan+ioffset2] ;
1652          sflagsig[j] = flagsig[j-sigchan+ioffset2] ;
1653        }
1654        spsig = sspsig.copy() ;
1655        flagsig = sflagsig.copy() ;
1656        for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1657          sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ;
1658          sflagsig[j] = flagsig[j+1] || flagsig[j] ;
1659        }
1660        sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ;
1661        sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ;
1662        // TSTS
1663        if ( spsig.nelements() == tsyssig.nelements() ) {
1664          for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) {
1665            stsyssig[j] = tsyssig[j+ioffset2] ;
1666          }
1667          for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) {
1668            stsyssig[j] = tsyssig[j-sigchan+ioffset2] ;
1669          }
1670          tsyssig = stsyssig.copy() ;
1671          for ( int j = 0 ; j < sigchan - 1 ; j++ ) {
1672            stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1673          }
1674          stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ;
1675        }
1676      }
1677      else {
1678        // SPECTRA and FLAGTRA
1679        for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1680          sspsig[j] = spsig[sigchan+ioffset2+j] ;
1681          sflagsig[j] = flagsig[sigchan+ioffset2+j] ;
1682        }
1683        for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1684          sspsig[j] = spsig[j+ioffset2] ;
1685          sflagsig[j] = flagsig[j+ioffset2] ;
1686        }
1687        spsig = sspsig.copy() ;
1688        flagsig = sflagsig.copy() ;
1689        sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ;
1690        sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ;
1691        for ( int j = 1 ; j < sigchan ; j++ ) {
1692          sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ;
1693          sflagsig[j] = flagsig[j-1] + flagsig[j] ;
1694        }
1695        // TSYS
1696        if ( spsig.nelements() == tsyssig.nelements() ) {
1697          for ( int j = 0 ; j < abs(ioffset2) ; j++ ) {
1698            stsyssig[j] = tsyssig[sigchan+ioffset2+j] ;
1699          }
1700          for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) {
1701            stsyssig[j] = tsyssig[j+ioffset2] ;
1702          }
1703          tsyssig = stsyssig.copy() ;
1704          stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ;
1705          for ( int j = 1 ; j < sigchan ; j++ ) {
1706            stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ;
1707          }
1708        }
1709      }
1710    }
1711
1712    // folding
1713    acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ;
1714    acc.add( sspref, !sflagref, stsysref, intref, timeref ) ;
1715   
1716    // put result
1717    specColOut.put( i, acc.getSpectrum() ) ;
1718    const Vector<Bool> &msk = acc.getMask() ;
1719    Vector<uChar> flg( msk.shape() ) ;
1720    convertArray( flg, !msk ) ;
1721    flagColOut.put( i, flg ) ;
1722    tsysColOut.put( i, acc.getTsys() ) ;
1723    intervalColOut.put( i, acc.getInterval() ) ;
1724    mjdColOut.put( i, acc.getTime() ) ;
1725    // change FREQ_ID to unshifted IF setting (only for APEX?)
1726    if ( choffset2 != 0.0 ) {
1727      uInt freqid = fidColOut( 0 ) ; // assume single-IF data
1728      double refpix, refval, increment ;
1729      out->frequencies().getEntry( refpix, refval, increment, freqid ) ;
1730      refval -= choffset * increment ;
1731      uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ;
1732      Vector<uInt> freqids = fidColOut.getColumn() ;
1733      for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) {
1734        if ( freqids[j] == freqid )
1735          freqids[j] = newfreqid ;
1736      }
1737      fidColOut.putColumn( freqids ) ;
1738    }
1739
1740    acc.reset() ;
1741  }
1742
1743  return out ;
1744}
1745
1746
1747CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in )
1748{
1749  // make copy or reference
1750  CountedPtr< Scantable > out = getScantable(in, false);
1751  Table& tout = out->table();
1752  Block<String> cols(4);
1753  cols[0] = String("SCANNO");
1754  cols[1] = String("CYCLENO");
1755  cols[2] = String("BEAMNO");
1756  cols[3] = String("POLNO");
1757  TableIterator iter(tout, cols);
1758  while (!iter.pastEnd()) {
1759    Table subt = iter.table();
1760    // this should leave us with two rows for the two IFs....if not ignore
1761    if (subt.nrow() != 2 ) {
1762      continue;
1763    }
1764    ArrayColumn<Float> specCol(subt, "SPECTRA");
1765    ArrayColumn<Float> tsysCol(subt, "TSYS");
1766    ArrayColumn<uChar> flagCol(subt, "FLAGTRA");
1767    Vector<Float> onspec,offspec, ontsys, offtsys;
1768    Vector<uChar> onflag, offflag;
1769    tsysCol.get(0, ontsys);   tsysCol.get(1, offtsys);
1770    specCol.get(0, onspec);   specCol.get(1, offspec);
1771    flagCol.get(0, onflag);   flagCol.get(1, offflag);
1772    MaskedArray<Float> on  = maskedArray(onspec, onflag);
1773    MaskedArray<Float> off = maskedArray(offspec, offflag);
1774    MaskedArray<Float> oncopy = on.copy();
1775
1776    on /= off; on -= 1.0f;
1777    on *= ontsys[0];
1778    off /= oncopy; off -= 1.0f;
1779    off *= offtsys[0];
1780    specCol.put(0, on.getArray());
1781    const Vector<Bool>& m0 = on.getMask();
1782    Vector<uChar> flags0(m0.shape());
1783    convertArray(flags0, !m0);
1784    flagCol.put(0, flags0);
1785
1786    specCol.put(1, off.getArray());
1787    const Vector<Bool>& m1 = off.getMask();
1788    Vector<uChar> flags1(m1.shape());
1789    convertArray(flags1, !m1);
1790    flagCol.put(1, flags1);
1791    ++iter;
1792  }
1793
1794  return out;
1795}
1796
1797std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in,
1798                                        const std::vector< bool > & mask,
1799                                        const std::string& which )
1800{
1801
1802  Vector<Bool> m(mask);
1803  const Table& tab = in->table();
1804  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1805  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1806  std::vector<float> out;
1807  for (uInt i=0; i < tab.nrow(); ++i ) {
1808    Vector<Float> spec; specCol.get(i, spec);
1809    Vector<uChar> flag; flagCol.get(i, flag);
1810    MaskedArray<Float> ma  = maskedArray(spec, flag);
1811    float outstat = 0.0;
1812    if ( spec.nelements() == m.nelements() ) {
1813      outstat = mathutil::statistics(which, ma(m));
1814    } else {
1815      outstat = mathutil::statistics(which, ma);
1816    }
1817    out.push_back(outstat);
1818  }
1819  return out;
1820}
1821
1822std::vector< float > STMath::statisticRow( const CountedPtr< Scantable > & in,
1823                                        const std::vector< bool > & mask,
1824                                        const std::string& which,
1825                                        int row )
1826{
1827
1828  Vector<Bool> m(mask);
1829  const Table& tab = in->table();
1830  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1831  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1832  std::vector<float> out;
1833
1834  Vector<Float> spec; specCol.get(row, spec);
1835  Vector<uChar> flag; flagCol.get(row, flag);
1836  MaskedArray<Float> ma  = maskedArray(spec, flag);
1837  float outstat = 0.0;
1838  if ( spec.nelements() == m.nelements() ) {
1839    outstat = mathutil::statistics(which, ma(m));
1840  } else {
1841    outstat = mathutil::statistics(which, ma);
1842  }
1843  out.push_back(outstat);
1844
1845  return out;
1846}
1847
1848std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in,
1849                                        const std::vector< bool > & mask,
1850                                        const std::string& which )
1851{
1852
1853  Vector<Bool> m(mask);
1854  const Table& tab = in->table();
1855  ROArrayColumn<Float> specCol(tab, "SPECTRA");
1856  ROArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1857  std::vector<int> out;
1858  for (uInt i=0; i < tab.nrow(); ++i ) {
1859    Vector<Float> spec; specCol.get(i, spec);
1860    Vector<uChar> flag; flagCol.get(i, flag);
1861    MaskedArray<Float> ma  = maskedArray(spec, flag);
1862    if (ma.ndim() != 1) {
1863      throw (ArrayError(
1864          "std::vector<int> STMath::minMaxChan("
1865          "ContedPtr<Scantable> &in, std::vector<bool> &mask, "
1866          " std::string &which)"
1867          " - MaskedArray is not 1D"));
1868    }
1869    IPosition outpos(1,0);
1870    if ( spec.nelements() == m.nelements() ) {
1871      outpos = mathutil::minMaxPos(which, ma(m));
1872    } else {
1873      outpos = mathutil::minMaxPos(which, ma);
1874    }
1875    out.push_back(outpos[0]);
1876  }
1877  return out;
1878}
1879
1880CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in,
1881                                     int width )
1882{
1883  if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data."));
1884  CountedPtr< Scantable > out = getScantable(in, false);
1885  Table& tout = out->table();
1886  out->frequencies().rescale(width, "BIN");
1887  ArrayColumn<Float> specCol(tout, "SPECTRA");
1888  ArrayColumn<uChar> flagCol(tout, "FLAGTRA");
1889  for (uInt i=0; i < tout.nrow(); ++i ) {
1890    MaskedArray<Float> main  = maskedArray(specCol(i), flagCol(i));
1891    MaskedArray<Float> maout;
1892    LatticeUtilities::bin(maout, main, 0, Int(width));
1893    /// @todo implement channel based tsys binning
1894    specCol.put(i, maout.getArray());
1895    flagCol.put(i, flagsFromMA(maout));
1896    // take only the first binned spectrum's length for the deprecated
1897    // global header item nChan
1898    if (i==0) tout.rwKeywordSet().define(String("nChan"),
1899                                       Int(maout.getArray().nelements()));
1900  }
1901  return out;
1902}
1903
1904CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in,
1905                                          const std::string& method,
1906                                          float width )
1907//
1908// Should add the possibility of width being specified in km/s. This means
1909// that for each freqID (SpectralCoordinate) we will need to convert to an
1910// average channel width (say at the reference pixel).  Then we would need
1911// to be careful to make sure each spectrum (of different freqID)
1912// is the same length.
1913//
1914{
1915  //InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1916  Int interpMethod(stringToIMethod(method));
1917
1918  CountedPtr< Scantable > out = getScantable(in, false);
1919  Table& tout = out->table();
1920
1921// Resample SpectralCoordinates (one per freqID)
1922  out->frequencies().rescale(width, "RESAMPLE");
1923  TableIterator iter(tout, "IFNO");
1924  TableRow row(tout);
1925  while ( !iter.pastEnd() ) {
1926    Table tab = iter.table();
1927    ArrayColumn<Float> specCol(tab, "SPECTRA");
1928    //ArrayColumn<Float> tsysCol(tout, "TSYS");
1929    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
1930    Vector<Float> spec;
1931    Vector<uChar> flag;
1932    specCol.get(0,spec); // the number of channels should be constant per IF
1933    uInt nChanIn = spec.nelements();
1934    Vector<Float> xIn(nChanIn); indgen(xIn);
1935    Int fac =  Int(nChanIn/width);
1936    Vector<Float> xOut(fac+10); // 10 to be safe - resize later
1937    uInt k = 0;
1938    Float x = 0.0;
1939    while (x < Float(nChanIn) ) {
1940      xOut(k) = x;
1941      k++;
1942      x += width;
1943    }
1944    uInt nChanOut = k;
1945    xOut.resize(nChanOut, True);
1946    // process all rows for this IFNO
1947    Vector<Float> specOut;
1948    Vector<Bool> maskOut;
1949    Vector<uChar> flagOut;
1950    for (uInt i=0; i < tab.nrow(); ++i) {
1951      specCol.get(i, spec);
1952      flagCol.get(i, flag);
1953      Vector<Bool> mask(flag.nelements());
1954      convertArray(mask, flag);
1955
1956      IPosition shapeIn(spec.shape());
1957      //sh.nchan = nChanOut;
1958      InterpolateArray1D<Float,Float>::interpolate(specOut, maskOut, xOut,
1959                                                   xIn, spec, mask,
1960                                                   interpMethod, True, True);
1961      /// @todo do the same for channel based Tsys
1962      flagOut.resize(maskOut.nelements());
1963      convertArray(flagOut, maskOut);
1964      specCol.put(i, specOut);
1965      flagCol.put(i, flagOut);
1966    }
1967    ++iter;
1968  }
1969
1970  return out;
1971}
1972
1973STMath::imethod STMath::stringToIMethod(const std::string& in)
1974{
1975  static STMath::imap lookup;
1976
1977  // initialize the lookup table if necessary
1978  if ( lookup.empty() ) {
1979    lookup["nearest"]   = InterpolateArray1D<Double,Float>::nearestNeighbour;
1980    lookup["linear"] = InterpolateArray1D<Double,Float>::linear;
1981    lookup["cubic"]  = InterpolateArray1D<Double,Float>::cubic;
1982    lookup["spline"]  = InterpolateArray1D<Double,Float>::spline;
1983  }
1984
1985  STMath::imap::const_iterator iter = lookup.find(in);
1986
1987  if ( lookup.end() == iter ) {
1988    std::string message = in;
1989    message += " is not a valid interpolation mode";
1990    throw(AipsError(message));
1991  }
1992  return iter->second;
1993}
1994
1995WeightType STMath::stringToWeight(const std::string& in)
1996{
1997  static std::map<std::string, WeightType> lookup;
1998
1999  // initialize the lookup table if necessary
2000  if ( lookup.empty() ) {
2001    lookup["NONE"]   = asap::W_NONE;
2002    lookup["TINT"] = asap::W_TINT;
2003    lookup["TINTSYS"]  = asap::W_TINTSYS;
2004    lookup["TSYS"]  = asap::W_TSYS;
2005    lookup["VAR"]  = asap::W_VAR;
2006  }
2007
2008  std::map<std::string, WeightType>::const_iterator iter = lookup.find(in);
2009
2010  if ( lookup.end() == iter ) {
2011    std::string message = in;
2012    message += " is not a valid weighting mode";
2013    throw(AipsError(message));
2014  }
2015  return iter->second;
2016}
2017
2018CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in,
2019                                               const vector< float > & coeff,
2020                                               const std::string & filename,
2021                                               const std::string& method)
2022{
2023  // Get elevation data from Scantable and convert to degrees
2024  CountedPtr< Scantable > out = getScantable(in, false);
2025  Table& tab = out->table();
2026  ROScalarColumn<Float> elev(tab, "ELEVATION");
2027  Vector<Float> x = elev.getColumn();
2028  x *= Float(180 / C::pi);                        // Degrees
2029
2030  Vector<Float> coeffs(coeff);
2031  const uInt nc = coeffs.nelements();
2032  if ( filename.length() > 0 && nc > 0 ) {
2033    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
2034  }
2035
2036  // Correct
2037  if ( nc > 0 || filename.length() == 0 ) {
2038    // Find instrument
2039    Bool throwit = True;
2040    Instrument inst =
2041      STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2042                                throwit);
2043
2044    // Set polynomial
2045    Polynomial<Float>* ppoly = 0;
2046    Vector<Float> coeff;
2047    String msg;
2048    if ( nc > 0 ) {
2049      ppoly = new Polynomial<Float>(nc-1);
2050      coeff = coeffs;
2051      msg = String("user");
2052    } else {
2053      STAttr sdAttr;
2054      coeff = sdAttr.gainElevationPoly(inst);
2055      ppoly = new Polynomial<Float>(coeff.nelements()-1);
2056      msg = String("built in");
2057    }
2058
2059    if ( coeff.nelements() > 0 ) {
2060      ppoly->setCoefficients(coeff);
2061    } else {
2062      delete ppoly;
2063      throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
2064    }
2065    ostringstream oss;
2066    oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
2067    oss << "   " <<  coeff;
2068    pushLog(String(oss));
2069    const uInt nrow = tab.nrow();
2070    Vector<Float> factor(nrow);
2071    for ( uInt i=0; i < nrow; ++i ) {
2072      factor[i] = 1.0 / (*ppoly)(x[i]);
2073    }
2074    delete ppoly;
2075    scaleByVector(tab, factor, true);
2076
2077  } else {
2078    // Read and correct
2079    pushLog("Making correction from ascii Table");
2080    scaleFromAsciiTable(tab, filename, method, x, true);
2081  }
2082  return out;
2083}
2084
2085void STMath::scaleFromAsciiTable(Table& in, const std::string& filename,
2086                                 const std::string& method,
2087                                 const Vector<Float>& xout, bool dotsys)
2088{
2089
2090// Read gain-elevation ascii file data into a Table.
2091
2092  String formatString;
2093  Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False);
2094  scaleFromTable(in, tbl, method, xout, dotsys);
2095}
2096
2097void STMath::scaleFromTable(Table& in,
2098                            const Table& table,
2099                            const std::string& method,
2100                            const Vector<Float>& xout, bool dotsys)
2101{
2102
2103  ROScalarColumn<Float> geElCol(table, "ELEVATION");
2104  ROScalarColumn<Float> geFacCol(table, "FACTOR");
2105  Vector<Float> xin = geElCol.getColumn();
2106  Vector<Float> yin = geFacCol.getColumn();
2107  Vector<Bool> maskin(xin.nelements(),True);
2108
2109  // Interpolate (and extrapolate) with desired method
2110
2111  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2112
2113   Vector<Float> yout;
2114   Vector<Bool> maskout;
2115   InterpolateArray1D<Float,Float>::interpolate(yout, maskout, xout,
2116                                                xin, yin, maskin, interp,
2117                                                True, True);
2118
2119   scaleByVector(in, Float(1.0)/yout, dotsys);
2120}
2121
2122void STMath::scaleByVector( Table& in,
2123                            const Vector< Float >& factor,
2124                            bool dotsys )
2125{
2126  uInt nrow = in.nrow();
2127  if ( factor.nelements() != nrow ) {
2128    throw(AipsError("factors.nelements() != table.nelements()"));
2129  }
2130  ArrayColumn<Float> specCol(in, "SPECTRA");
2131  ArrayColumn<uChar> flagCol(in, "FLAGTRA");
2132  ArrayColumn<Float> tsysCol(in, "TSYS");
2133  for (uInt i=0; i < nrow; ++i) {
2134    MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2135    ma *= factor[i];
2136    specCol.put(i, ma.getArray());
2137    flagCol.put(i, flagsFromMA(ma));
2138    if ( dotsys ) {
2139      Vector<Float> tsys = tsysCol(i);
2140      tsys *= factor[i];
2141      tsysCol.put(i,tsys);
2142    }
2143  }
2144}
2145
2146CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in,
2147                                             float d, float etaap,
2148                                             float jyperk )
2149{
2150  CountedPtr< Scantable > out = getScantable(in, false);
2151  Table& tab = in->table();
2152  Unit fluxUnit(tab.keywordSet().asString("FluxUnit"));
2153  Unit K(String("K"));
2154  Unit JY(String("Jy"));
2155
2156  bool tokelvin = true;
2157  Double cfac = 1.0;
2158
2159  if ( fluxUnit == JY ) {
2160    pushLog("Converting to K");
2161    Quantum<Double> t(1.0,fluxUnit);
2162    Quantum<Double> t2 = t.get(JY);
2163    cfac = (t2 / t).getValue();               // value to Jy
2164
2165    tokelvin = true;
2166    out->setFluxUnit("K");
2167  } else if ( fluxUnit == K ) {
2168    pushLog("Converting to Jy");
2169    Quantum<Double> t(1.0,fluxUnit);
2170    Quantum<Double> t2 = t.get(K);
2171    cfac = (t2 / t).getValue();              // value to K
2172
2173    tokelvin = false;
2174    out->setFluxUnit("Jy");
2175  } else {
2176    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
2177  }
2178  // Make sure input values are converted to either Jy or K first...
2179  Float factor = cfac;
2180
2181  // Select method
2182  if (jyperk > 0.0) {
2183    factor *= jyperk;
2184    if ( tokelvin ) factor = 1.0 / jyperk;
2185    ostringstream oss;
2186    oss << "Jy/K = " << jyperk;
2187    pushLog(String(oss));
2188    Vector<Float> factors(tab.nrow(), factor);
2189    scaleByVector(tab,factors, false);
2190  } else if ( etaap > 0.0) {
2191    if (d < 0) {
2192      Instrument inst =
2193        STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"),
2194                                  True);
2195      STAttr sda;
2196      d = sda.diameter(inst);
2197    }
2198    jyperk = STAttr::findJyPerK(etaap, d);
2199    ostringstream oss;
2200    oss << "Jy/K = " << jyperk;
2201    pushLog(String(oss));
2202    factor *= jyperk;
2203    if ( tokelvin ) {
2204      factor = 1.0 / factor;
2205    }
2206    Vector<Float> factors(tab.nrow(), factor);
2207    scaleByVector(tab, factors, False);
2208  } else {
2209
2210    // OK now we must deal with automatic look up of values.
2211    // We must also deal with the fact that the factors need
2212    // to be computed per IF and may be different and may
2213    // change per integration.
2214
2215    pushLog("Looking up conversion factors");
2216    convertBrightnessUnits(out, tokelvin, cfac);
2217  }
2218
2219  return out;
2220}
2221
2222void STMath::convertBrightnessUnits( CountedPtr<Scantable>& in,
2223                                     bool tokelvin, float cfac )
2224{
2225  Table& table = in->table();
2226  Instrument inst =
2227    STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True);
2228  TableIterator iter(table, "FREQ_ID");
2229  STFrequencies stfreqs = in->frequencies();
2230  STAttr sdAtt;
2231  while (!iter.pastEnd()) {
2232    Table tab = iter.table();
2233    ArrayColumn<Float> specCol(tab, "SPECTRA");
2234    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2235    ROScalarColumn<uInt> freqidCol(tab, "FREQ_ID");
2236    MEpoch::ROScalarColumn timeCol(tab, "TIME");
2237
2238    uInt freqid; freqidCol.get(0, freqid);
2239    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2240    // STAttr.JyPerK has a Vector interface... change sometime.
2241    Vector<Float> freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements()));
2242    for ( uInt i=0; i<tab.nrow(); ++i) {
2243      Float jyperk = (sdAtt.JyPerK(inst, timeCol(i), freqs))[0];
2244      Float factor = cfac * jyperk;
2245      if ( tokelvin ) factor = Float(1.0) / factor;
2246      MaskedArray<Float> ma  = maskedArray(specCol(i), flagCol(i));
2247      ma *= factor;
2248      specCol.put(i, ma.getArray());
2249      flagCol.put(i, flagsFromMA(ma));
2250    }
2251  ++iter;
2252  }
2253}
2254
2255CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in,
2256                                         const std::vector<float>& tau )
2257{
2258  CountedPtr< Scantable > out = getScantable(in, false);
2259
2260  Table outtab = out->table();
2261
2262  const Int ntau = uInt(tau.size());
2263  std::vector<float>::const_iterator tauit = tau.begin();
2264  AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()),
2265               AipsError);
2266  TableIterator iiter(outtab, "IFNO");
2267  while ( !iiter.pastEnd() ) {
2268    Table itab = iiter.table();
2269    TableIterator piter(outtab, "POLNO");
2270    while ( !piter.pastEnd() ) {
2271      Table tab = piter.table();
2272      ROScalarColumn<Float> elev(tab, "ELEVATION");
2273      ArrayColumn<Float> specCol(tab, "SPECTRA");
2274      ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2275      ArrayColumn<Float> tsysCol(tab, "TSYS");
2276      for ( uInt i=0; i<tab.nrow(); ++i) {
2277        Float zdist = Float(C::pi_2) - elev(i);
2278        Float factor = exp(*tauit/cos(zdist));
2279        MaskedArray<Float> ma = maskedArray(specCol(i), flagCol(i));
2280        ma *= factor;
2281        specCol.put(i, ma.getArray());
2282        flagCol.put(i, flagsFromMA(ma));
2283        Vector<Float> tsys;
2284        tsysCol.get(i, tsys);
2285        tsys *= factor;
2286        tsysCol.put(i, tsys);
2287      }
2288      if (ntau == in->nif()*in->npol() ) {
2289        tauit++;
2290      }
2291      piter++;
2292    }
2293    if (ntau >= in->nif() ) {
2294      tauit++;
2295    }
2296    iiter++;
2297  }
2298  return out;
2299}
2300
2301CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in,
2302                                             const std::string& kernel,
2303                                             float width, int order)
2304{
2305  CountedPtr< Scantable > out = getScantable(in, false);
2306  Table table = out->table();
2307
2308  TableIterator iter(table, "IFNO");
2309  while (!iter.pastEnd()) {
2310    Table tab = iter.table();
2311    ArrayColumn<Float> specCol(tab, "SPECTRA");
2312    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2313    Vector<Float> spec;
2314    Vector<uChar> flag;
2315    for (uInt i = 0; i < tab.nrow(); ++i) {
2316      specCol.get(i, spec);
2317      flagCol.get(i, flag);
2318      Vector<Bool> mask(flag.nelements());
2319      convertArray(mask, flag);
2320      Vector<Float> specout;
2321      Vector<Bool> maskout;
2322      if (kernel == "hanning") {
2323        mathutil::hanning(specout, maskout, spec, !mask);
2324        convertArray(flag, !maskout);
2325      } else if (kernel == "rmedian") {
2326        mathutil::runningMedian(specout, maskout, spec , mask, width);
2327        convertArray(flag, maskout);
2328      } else if (kernel == "poly") {
2329        mathutil::polyfit(specout, maskout, spec, !mask, width, order);
2330        convertArray(flag, !maskout);
2331      }
2332
2333      for (uInt j = 0; j < flag.nelements(); ++j) {
2334        uChar userFlag = 1 << 7;
2335        if (maskout[j]==True) userFlag = 0 << 7;
2336        flag(j) = userFlag;
2337      }
2338
2339      flagCol.put(i, flag);
2340      specCol.put(i, specout);
2341    }
2342  ++iter;
2343  }
2344  return out;
2345}
2346
2347CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in,
2348                                        const std::string& kernel, float width,
2349                                        int order)
2350{
2351  if (kernel == "rmedian"  || kernel == "hanning" || kernel == "poly") {
2352    return smoothOther(in, kernel, width, order);
2353  }
2354  CountedPtr< Scantable > out = getScantable(in, false);
2355  Table& table = out->table();
2356  VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel);
2357  // same IFNO should have same no of channels
2358  // this saves overhead
2359  TableIterator iter(table, "IFNO");
2360  while (!iter.pastEnd()) {
2361    Table tab = iter.table();
2362    ArrayColumn<Float> specCol(tab, "SPECTRA");
2363    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2364    Vector<Float> tmpspec; specCol.get(0, tmpspec);
2365    uInt nchan = tmpspec.nelements();
2366    Vector<Float> kvec = VectorKernel::make(type, width, nchan, True, False);
2367    Convolver<Float> conv(kvec, IPosition(1,nchan));
2368    Vector<Float> spec;
2369    Vector<uChar> flag;
2370    for ( uInt i=0; i<tab.nrow(); ++i) {
2371      specCol.get(i, spec);
2372      flagCol.get(i, flag);
2373      Vector<Bool> mask(flag.nelements());
2374      convertArray(mask, flag);
2375      Vector<Float> specout;
2376      mathutil::replaceMaskByZero(specout, mask);
2377      conv.linearConv(specout, spec);
2378      specCol.put(i, specout);
2379    }
2380    ++iter;
2381  }
2382  return out;
2383}
2384
2385CountedPtr< Scantable >
2386  STMath::merge( const std::vector< CountedPtr < Scantable > >& in )
2387{
2388  if ( in.size() < 2 ) {
2389    throw(AipsError("Need at least two scantables to perform a merge."));
2390  }
2391  std::vector<CountedPtr < Scantable > >::const_iterator it = in.begin();
2392  bool insitu = insitu_;
2393  setInsitu(false);
2394  CountedPtr< Scantable > out = getScantable(*it, false);
2395  setInsitu(insitu);
2396  Table& tout = out->table();
2397  ScalarColumn<uInt> freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID");
2398  ScalarColumn<uInt> scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID");
2399  // Renumber SCANNO to be 0-based
2400  Vector<uInt> scannos = scannocol.getColumn();
2401  uInt offset = min(scannos);
2402  scannos -= offset;
2403  scannocol.putColumn(scannos);
2404  uInt newscanno = max(scannos)+1;
2405  ++it;
2406  while ( it != in.end() ){
2407    if ( ! (*it)->conformant(*out) ) {
2408      // non conformant.
2409      //pushLog(String("Warning: Can't merge scantables as header info differs."));
2410      LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ;
2411      os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ;
2412    }
2413    out->appendToHistoryTable((*it)->history());
2414    const Table& tab = (*it)->table();
2415    TableIterator scanit(tab, "SCANNO");
2416    while (!scanit.pastEnd()) {
2417      TableIterator freqit(scanit.table(), "FREQ_ID");
2418      while ( !freqit.pastEnd() ) {
2419        Table thetab = freqit.table();
2420        uInt nrow = tout.nrow();
2421        tout.addRow(thetab.nrow());
2422        TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow());
2423        ROTableRow row(thetab);
2424        for ( uInt i=0; i<thetab.nrow(); ++i) {
2425          uInt k = nrow+i;
2426          scannocol.put(k, newscanno);
2427          const TableRecord& rec = row.get(i);
2428          Double rv,rp,inc;
2429          (*it)->frequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID"));
2430          uInt id;
2431          id = out->frequencies().addEntry(rp, rv, inc);
2432          freqidcol.put(k,id);
2433          //String name,fname;Double rf;
2434          Vector<String> name,fname;Vector<Double> rf;
2435          (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID"));
2436          id = out->molecules().addEntry(rf, name, fname);
2437          molidcol.put(k, id);
2438          Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp;
2439          (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand,
2440                                  fmount,fuser, fxy, fxyp,
2441                                  rec.asuInt("FOCUS_ID"));
2442          id = out->focus().addEntry(fpa, fax, ftan, frot, fhand,
2443                                     fmount,fuser, fxy, fxyp);
2444          focusidcol.put(k, id);
2445        }
2446        ++freqit;
2447      }
2448      ++newscanno;
2449      ++scanit;
2450    }
2451    ++it;
2452  }
2453  return out;
2454}
2455
2456CountedPtr< Scantable >
2457  STMath::invertPhase( const CountedPtr < Scantable >& in )
2458{
2459  return applyToPol(in, &STPol::invertPhase, Float(0.0));
2460}
2461
2462CountedPtr< Scantable >
2463  STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase )
2464{
2465   return applyToPol(in, &STPol::rotatePhase, Float(phase));
2466}
2467
2468CountedPtr< Scantable >
2469  STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase )
2470{
2471  return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase));
2472}
2473
2474CountedPtr< Scantable > STMath::applyToPol( const CountedPtr<Scantable>& in,
2475                                             STPol::polOperation fptr,
2476                                             Float phase )
2477{
2478  CountedPtr< Scantable > out = getScantable(in, false);
2479  Table& tout = out->table();
2480  Block<String> cols(4);
2481  cols[0] = String("SCANNO");
2482  cols[1] = String("BEAMNO");
2483  cols[2] = String("IFNO");
2484  cols[3] = String("CYCLENO");
2485  TableIterator iter(tout, cols);
2486  CountedPtr<STPol> stpol = STPol::getPolClass(out->factories_,
2487                                               out->getPolType() );
2488  while (!iter.pastEnd()) {
2489    Table t = iter.table();
2490    ArrayColumn<Float> speccol(t, "SPECTRA");
2491    ScalarColumn<uInt> focidcol(t, "FOCUS_ID");
2492    Matrix<Float> pols(speccol.getColumn());
2493    try {
2494      stpol->setSpectra(pols);
2495      Float fang,fhand;
2496      fang = in->focusTable_.getTotalAngle(focidcol(0));
2497      fhand = in->focusTable_.getFeedHand(focidcol(0));
2498      stpol->setPhaseCorrections(fang, fhand);
2499      // use a member function pointer in STPol.  This only works on
2500      // the STPol pointer itself, not the Counted Pointer so
2501      // derefernce it.
2502      (&(*(stpol))->*fptr)(phase);
2503      speccol.putColumn(stpol->getSpectra());
2504    } catch (AipsError& e) {
2505      //delete stpol;stpol=0;
2506      throw(e);
2507    }
2508    ++iter;
2509  }
2510  //delete stpol;stpol=0;
2511  return out;
2512}
2513
2514CountedPtr< Scantable >
2515  STMath::swapPolarisations( const CountedPtr< Scantable > & in )
2516{
2517  CountedPtr< Scantable > out = getScantable(in, false);
2518  Table& tout = out->table();
2519  Table t0 = tout(tout.col("POLNO") == 0);
2520  Table t1 = tout(tout.col("POLNO") == 1);
2521  if ( t0.nrow() != t1.nrow() )
2522    throw(AipsError("Inconsistent number of polarisations"));
2523  ArrayColumn<Float> speccol0(t0, "SPECTRA");
2524  ArrayColumn<uChar> flagcol0(t0, "FLAGTRA");
2525  ArrayColumn<Float> speccol1(t1, "SPECTRA");
2526  ArrayColumn<uChar> flagcol1(t1, "FLAGTRA");
2527  Matrix<Float> s0 = speccol0.getColumn();
2528  Matrix<uChar> f0 = flagcol0.getColumn();
2529  speccol0.putColumn(speccol1.getColumn());
2530  flagcol0.putColumn(flagcol1.getColumn());
2531  speccol1.putColumn(s0);
2532  flagcol1.putColumn(f0);
2533  return out;
2534}
2535
2536CountedPtr< Scantable >
2537  STMath::averagePolarisations( const CountedPtr< Scantable > & in,
2538                                const std::vector<bool>& mask,
2539                                const std::string& weight )
2540{
2541  if (in->npol() < 2 )
2542    throw(AipsError("averagePolarisations can only be applied to two or more"
2543                    "polarisations"));
2544  bool insitu = insitu_;
2545  setInsitu(false);
2546  CountedPtr< Scantable > pols = getScantable(in, true);
2547  setInsitu(insitu);
2548  Table& tout = pols->table();
2549  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
2550  Table tab = tableCommand(taql, in->table());
2551  if (tab.nrow() == 0 )
2552    throw(AipsError("Could not find  any rows with POLNO==0 and POLNO==1"));
2553  TableCopy::copyRows(tout, tab);
2554  TableVector<uInt> vec(tout, "POLNO");
2555  vec = 0;
2556  pols->table_.rwKeywordSet().define("nPol", Int(1));
2557  pols->table_.rwKeywordSet().define("POLTYPE", String("stokes"));
2558  //pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType());
2559  std::vector<CountedPtr<Scantable> > vpols;
2560  vpols.push_back(pols);
2561  CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN");
2562  return out;
2563}
2564
2565CountedPtr< Scantable >
2566  STMath::averageBeams( const CountedPtr< Scantable > & in,
2567                        const std::vector<bool>& mask,
2568                        const std::string& weight )
2569{
2570  bool insitu = insitu_;
2571  setInsitu(false);
2572  CountedPtr< Scantable > beams = getScantable(in, false);
2573  setInsitu(insitu);
2574  Table& tout = beams->table();
2575  // give all rows the same BEAMNO
2576  TableVector<uInt> vec(tout, "BEAMNO");
2577  vec = 0;
2578  beams->table_.rwKeywordSet().define("nBeam", Int(1));
2579  std::vector<CountedPtr<Scantable> > vbeams;
2580  vbeams.push_back(beams);
2581  CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN");
2582  return out;
2583}
2584
2585
2586CountedPtr< Scantable >
2587  asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in,
2588                                const std::string & refTime,
2589                                const std::string & method)
2590{
2591  // clone as this is not working insitu
2592  bool insitu = insitu_;
2593  setInsitu(false);
2594  CountedPtr< Scantable > out = getScantable(in, false);
2595  setInsitu(insitu);
2596  Table& tout = out->table();
2597  // Get reference Epoch to time of first row or given String
2598  Unit DAY(String("d"));
2599  MEpoch::Ref epochRef(in->getTimeReference());
2600  MEpoch refEpoch;
2601  if (refTime.length()>0) {
2602    Quantum<Double> qt;
2603    if (MVTime::read(qt,refTime)) {
2604      MVEpoch mv(qt);
2605      refEpoch = MEpoch(mv, epochRef);
2606   } else {
2607      throw(AipsError("Invalid format for Epoch string"));
2608   }
2609  } else {
2610    refEpoch = in->timeCol_(0);
2611  }
2612  MPosition refPos = in->getAntennaPosition();
2613
2614  InterpolateArray1D<Double,Float>::InterpolationMethod interp = stringToIMethod(method);
2615  /*
2616  // Comment from MV.
2617  // the following code has been commented out because different FREQ_IDs have to be aligned together even
2618  // if the frame doesn't change. So far, lack of this check didn't cause any problems.
2619  // test if user frame is different to base frame
2620  if ( in->frequencies().getFrameString(true)
2621       == in->frequencies().getFrameString(false) ) {
2622    throw(AipsError("Can't convert as no output frame has been set"
2623                    " (use set_freqframe) or it is aligned already."));
2624  }
2625  */
2626  MFrequency::Types system = in->frequencies().getFrame();
2627  MVTime mvt(refEpoch.getValue());
2628  String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")");
2629  ostringstream oss;
2630  oss << "Aligned at reference Epoch " << epochout
2631      << " in frame " << MFrequency::showType(system);
2632  pushLog(String(oss));
2633  // set up the iterator
2634  Block<String> cols(4);
2635  // select by constant direction
2636  cols[0] = String("SRCNAME");
2637  cols[1] = String("BEAMNO");
2638  // select by IF ( no of channels varies over this )
2639  cols[2] = String("IFNO");
2640  // select by restfrequency
2641  cols[3] = String("MOLECULE_ID");
2642  TableIterator iter(tout, cols);
2643  while ( !iter.pastEnd() ) {
2644    Table t = iter.table();
2645    MDirection::ROScalarColumn dirCol(t, "DIRECTION");
2646    TableIterator fiter(t, "FREQ_ID");
2647    // determine nchan from the first row. This should work as
2648    // we are iterating over BEAMNO and IFNO    // we should have constant direction
2649
2650    ROArrayColumn<Float> sCol(t, "SPECTRA");
2651    const MDirection direction = dirCol(0);
2652    const uInt nchan = sCol(0).nelements();
2653
2654    // skip operations if there is nothing to align
2655    if (fiter.pastEnd()) {
2656        continue;
2657    }
2658
2659    Table ftab = fiter.table();
2660    // align all frequency ids with respect to the first encountered id
2661    ScalarColumn<uInt> freqidCol(ftab, "FREQ_ID");
2662    // get the SpectralCoordinate for the freqid, which we are iterating over
2663    SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0));
2664    FrequencyAligner<Float> fa( sC, nchan, refEpoch,
2665                                direction, refPos, system );
2666    // realign the SpectralCoordinate and put into the output Scantable
2667    Vector<String> units(1);
2668    units = String("Hz");
2669    Bool linear=True;
2670    SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear);
2671    sc2.setWorldAxisUnits(units);
2672    const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0],
2673                                                sc2.referenceValue()[0],
2674                                                sc2.increment()[0]);
2675    while ( !fiter.pastEnd() ) {
2676      ftab = fiter.table();
2677      // spectral coordinate for the current FREQ_ID
2678      ScalarColumn<uInt> freqidCol2(ftab, "FREQ_ID");
2679      sC = in->frequencies().getSpectralCoordinate(freqidCol2(0));
2680      // create the "global" abcissa for alignment with same FREQ_ID
2681      Vector<Double> abc(nchan);
2682      for (uInt i=0; i<nchan; i++) {
2683           Double w;
2684           sC.toWorld(w,Double(i));
2685           abc[i] = w;
2686      }
2687      TableVector<uInt> tvec(ftab, "FREQ_ID");
2688      // assign new frequency id to all rows
2689      tvec = id;
2690      // cache abcissa for same time stamps, so iterate over those
2691      TableIterator timeiter(ftab, "TIME");
2692      while ( !timeiter.pastEnd() ) {
2693        Table tab = timeiter.table();
2694        ArrayColumn<Float> specCol(tab, "SPECTRA");
2695        ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2696        MEpoch::ROScalarColumn timeCol(tab, "TIME");
2697        // use align abcissa cache after the first row
2698        // these rows should be just be POLNO
2699        bool first = true;
2700        for (int i=0; i<int(tab.nrow()); ++i) {
2701          // input values
2702          Vector<uChar> flag = flagCol(i);
2703          Vector<Bool> mask(flag.shape());
2704          Vector<Float> specOut, spec;
2705          spec  = specCol(i);
2706          Vector<Bool> maskOut;Vector<uChar> flagOut;
2707          convertArray(mask, flag);
2708          // alignment
2709          Bool ok = fa.align(specOut, maskOut, abc, spec,
2710                             mask, timeCol(i), !first,
2711                             interp, False);
2712          // back into scantable
2713          flagOut.resize(maskOut.nelements());
2714          convertArray(flagOut, maskOut);
2715          flagCol.put(i, flagOut);
2716          specCol.put(i, specOut);
2717          // start abcissa caching
2718          first = false;
2719        }
2720        // next timestamp
2721        ++timeiter;
2722      }
2723      // next FREQ_ID
2724      ++fiter;
2725    }
2726    // next aligner
2727    ++iter;
2728  }
2729  // set this afterwards to ensure we are doing insitu correctly.
2730  out->frequencies().setFrame(system, true);
2731  return out;
2732}
2733
2734CountedPtr<Scantable>
2735  asap::STMath::convertPolarisation( const CountedPtr<Scantable>& in,
2736                                     const std::string & newtype )
2737{
2738  if (in->npol() != 2 && in->npol() != 4)
2739    throw(AipsError("Can only convert two or four polarisations."));
2740  if ( in->getPolType() == newtype )
2741    throw(AipsError("No need to convert."));
2742  if ( ! in->selector_.empty() )
2743    throw(AipsError("Can only convert whole scantable. Unset the selection."));
2744  bool insitu = insitu_;
2745  setInsitu(false);
2746  CountedPtr< Scantable > out = getScantable(in, true);
2747  setInsitu(insitu);
2748  Table& tout = out->table();
2749  tout.rwKeywordSet().define("POLTYPE", String(newtype));
2750
2751  Block<String> cols(4);
2752  cols[0] = "SCANNO";
2753  cols[1] = "CYCLENO";
2754  cols[2] = "BEAMNO";
2755  cols[3] = "IFNO";
2756  TableIterator it(in->originalTable_, cols);
2757  String basetype = in->getPolType();
2758  STPol* stpol = STPol::getPolClass(in->factories_, basetype);
2759  try {
2760    while ( !it.pastEnd() ) {
2761      Table tab = it.table();
2762      uInt row = tab.rowNumbers()[0];
2763      stpol->setSpectra(in->getPolMatrix(row));
2764      Float fang,fhand;
2765      fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row));
2766      fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row));
2767      stpol->setPhaseCorrections(fang, fhand);
2768      Int npolout = 0;
2769      for (uInt i=0; i<tab.nrow(); ++i) {
2770        Vector<Float> outvec = stpol->getSpectrum(i, newtype);
2771        if ( outvec.nelements() > 0 ) {
2772          tout.addRow();
2773          TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1);
2774          ArrayColumn<Float> sCol(tout,"SPECTRA");
2775          ScalarColumn<uInt> pCol(tout,"POLNO");
2776          sCol.put(tout.nrow()-1 ,outvec);
2777          pCol.put(tout.nrow()-1 ,uInt(npolout));
2778          npolout++;
2779       }
2780      }
2781      tout.rwKeywordSet().define("nPol", npolout);
2782      ++it;
2783    }
2784  } catch (AipsError& e) {
2785    delete stpol;
2786    throw(e);
2787  }
2788  delete stpol;
2789  return out;
2790}
2791
2792CountedPtr< Scantable >
2793  asap::STMath::mxExtract( const CountedPtr< Scantable > & in,
2794                           const std::string & scantype )
2795{
2796  bool insitu = insitu_;
2797  setInsitu(false);
2798  CountedPtr< Scantable > out = getScantable(in, true);
2799  setInsitu(insitu);
2800  Table& tout = out->table();
2801  std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO";
2802  if (scantype == "on") {
2803    taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO";
2804  }
2805  Table tab = tableCommand(taql, in->table());
2806  TableCopy::copyRows(tout, tab);
2807  if (scantype == "on") {
2808    // re-index SCANNO to 0
2809    TableVector<uInt> vec(tout, "SCANNO");
2810    vec = 0;
2811  }
2812  return out;
2813}
2814
2815CountedPtr< Scantable >
2816  asap::STMath::lagFlag( const CountedPtr< Scantable > & in,
2817                         double start, double end,
2818                         const std::string& mode)
2819{
2820  CountedPtr< Scantable > out = getScantable(in, false);
2821  Table& tout = out->table();
2822  TableIterator iter(tout, "FREQ_ID");
2823  FFTServer<Float,Complex> ffts;
2824  while ( !iter.pastEnd() ) {
2825    Table tab = iter.table();
2826    Double rp,rv,inc;
2827    ROTableRow row(tab);
2828    const TableRecord& rec = row.get(0);
2829    uInt freqid = rec.asuInt("FREQ_ID");
2830    out->frequencies().getEntry(rp, rv, inc, freqid);
2831    ArrayColumn<Float> specCol(tab, "SPECTRA");
2832    ArrayColumn<uChar> flagCol(tab, "FLAGTRA");
2833    for (int i=0; i<int(tab.nrow()); ++i) {
2834      Vector<Float> spec = specCol(i);
2835      Vector<uChar> flag = flagCol(i);
2836      int fstart = -1;
2837      int fend = -1;
2838      for (unsigned int k=0; k < flag.nelements(); ++k ) {
2839        if (flag[k] > 0) {
2840          fstart = k;
2841          while (flag[k] > 0 && k < flag.nelements()) {
2842            fend = k;
2843            k++;
2844          }
2845        }
2846        Float interp = 0.0;
2847        if (fstart-1 > 0 ) {
2848          interp = spec[fstart-1];
2849          if (fend+1 < Int(spec.nelements())) {
2850            interp = (interp+spec[fend+1])/2.0;
2851          }
2852        } else {
2853          interp = spec[fend+1];
2854        }
2855        if (fstart > -1 && fend > -1) {
2856          for (int j=fstart;j<=fend;++j) {
2857            spec[j] = interp;
2858          }
2859        }
2860        fstart =-1;
2861        fend = -1;
2862      }
2863      Vector<Complex> lags;
2864      ffts.fft0(lags, spec);
2865      Int lag0(start+0.5);
2866      Int lag1(end+0.5);
2867      if (mode == "frequency") {
2868        lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5);
2869        lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5);
2870      }
2871      Int lstart =  max(0, lag0);
2872      Int lend =  min(Int(lags.nelements()-1), lag1);
2873      if (lstart == lend) {
2874        lags[lstart] = Complex(0.0);
2875      } else {
2876        if (lstart > lend) {
2877          Int tmp = lend;
2878          lend = lstart;
2879          lstart = tmp;
2880        }
2881        for (int j=lstart; j <=lend ;++j) {
2882          lags[j] = Complex(0.0);
2883        }
2884      }
2885      ffts.fft0(spec, lags);
2886      specCol.put(i, spec);
2887    }
2888    ++iter;
2889  }
2890  return out;
2891}
2892
2893// Averaging spectra with different channel/resolution
2894CountedPtr<Scantable>
2895STMath::new_average( const std::vector<CountedPtr<Scantable> >& in,
2896                     const bool& compel,
2897                     const std::vector<bool>& mask,
2898                     const std::string& weight,
2899                     const std::string& avmode )
2900  throw ( casa::AipsError )
2901{
2902  LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ;
2903  if ( avmode == "SCAN" && in.size() != 1 )
2904    throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n"
2905                    "Use merge first."));
2906 
2907  // check if OTF observation
2908  String obstype = in[0]->getHeader().obstype ;
2909  Double tol = 0.0 ;
2910  if ( obstype.find( "OTF" ) != String::npos ) {
2911    tol = TOL_OTF ;
2912  }
2913  else {
2914    tol = TOL_POINT ;
2915  }
2916
2917  CountedPtr<Scantable> out ;     // processed result
2918  if ( compel ) {
2919    std::vector< CountedPtr<Scantable> > newin ; // input for average process
2920    uInt insize = in.size() ;    // number of input scantables
2921
2922    // TEST: do normal average in each table before IF grouping
2923    os << "Do preliminary averaging" << LogIO::POST ;
2924    vector< CountedPtr<Scantable> > tmpin( insize ) ;
2925    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2926      vector< CountedPtr<Scantable> > v( 1, in[itable] ) ;
2927      tmpin[itable] = average( v, mask, weight, avmode ) ;
2928    }
2929
2930    // warning
2931    os << "Average spectra with different spectral resolution" << LogIO::POST ;
2932
2933    // temporarily set coordinfo
2934    vector<string> oldinfo( insize ) ;
2935    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2936      vector<string> coordinfo = in[itable]->getCoordInfo() ;
2937      oldinfo[itable] = coordinfo[0] ;
2938      coordinfo[0] = "Hz" ;
2939      tmpin[itable]->setCoordInfo( coordinfo ) ;
2940    }
2941
2942    // columns
2943    ScalarColumn<uInt> freqIDCol ;
2944    ScalarColumn<uInt> ifnoCol ;
2945    ScalarColumn<uInt> scannoCol ;
2946
2947
2948    // check IF frequency coverage
2949    // freqid: list of FREQ_ID, which is used, in each table 
2950    // iffreq: list of minimum and maximum frequency for each FREQ_ID in
2951    //         each table
2952    // freqid[insize][numIF]
2953    // freqid: [[id00, id01, ...],
2954    //          [id10, id11, ...],
2955    //          ...
2956    //          [idn0, idn1, ...]]
2957    // iffreq[insize][numIF*2]
2958    // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...],
2959    //          [min_id10, max_id10, min_id11, max_id11, ...],
2960    //          ...
2961    //          [min_idn0, max_idn0, min_idn1, max_idn1, ...]]
2962    //os << "Check IF settings in each table" << LogIO::POST ;
2963    vector< vector<uInt> > freqid( insize );
2964    vector< vector<double> > iffreq( insize ) ;
2965    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
2966      uInt rows = tmpin[itable]->nrow() ;
2967      uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ;
2968      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
2969        if ( freqid[itable].size() == freqnrows ) {
2970          break ;
2971        }
2972        else {
2973          freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ;
2974          ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ;
2975          uInt id = freqIDCol( irow ) ;
2976          if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) {
2977            //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ;
2978            vector<double> abcissa = tmpin[itable]->getAbcissa( irow ) ;
2979            freqid[itable].push_back( id ) ;
2980            iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2981            iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ;
2982          }
2983        }
2984      }
2985    }
2986
2987    // debug
2988    //os << "IF settings summary:" << endl ;
2989    //for ( uInt i = 0 ; i < freqid.size() ; i++ ) {
2990    //os << "   Table" << i << endl ;
2991    //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) {
2992    //os << "      id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ;
2993    //}
2994    //}
2995    //os << endl ;
2996    //os.post() ;
2997
2998    // IF grouping based on their frequency coverage
2999    // ifgrp: list of table index and FREQ_ID for all members in each IF group
3000    // ifgfreq: list of minimum and maximum frequency in each IF group
3001    // ifgrp[numgrp][nummember*2]
3002    // ifgrp: [[table00, freqrow00, table01, freqrow01, ...],
3003    //         [table10, freqrow10, table11, freqrow11, ...],
3004    //         ...
3005    //         [tablen0, freqrown0, tablen1, freqrown1, ...]]
3006    // ifgfreq[numgrp*2]
3007    // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...]
3008    //os << "IF grouping based on their frequency coverage" << LogIO::POST ;
3009    vector< vector<uInt> > ifgrp ;
3010    vector<double> ifgfreq ;
3011
3012    // parameter for IF grouping
3013    // groupmode = OR    retrieve all region
3014    //             AND   only retrieve overlaped region
3015    //string groupmode = "AND" ;
3016    string groupmode = "OR" ;
3017    uInt sizecr = 0 ;
3018    if ( groupmode == "AND" )
3019      sizecr = 2 ;
3020    else if ( groupmode == "OR" )
3021      sizecr = 0 ;
3022
3023    vector<double> sortedfreq ;
3024    for ( uInt i = 0 ; i < iffreq.size() ; i++ ) {
3025      for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) {
3026        if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 )
3027          sortedfreq.push_back( iffreq[i][j] ) ;
3028      }
3029    }
3030    sort( sortedfreq.begin(), sortedfreq.end() ) ;
3031    for ( vector<double>::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) {
3032      ifgfreq.push_back( *i ) ;
3033      ifgfreq.push_back( *(i+1) ) ;
3034    }
3035    ifgrp.resize( ifgfreq.size()/2 ) ;
3036    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3037      for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) {
3038        double range0 = iffreq[itable][2*iif] ;
3039        double range1 = iffreq[itable][2*iif+1] ;
3040        for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) {
3041          double fmin = max( range0, ifgfreq[2*j] ) ;
3042          double fmax = min( range1, ifgfreq[2*j+1] ) ;
3043          if ( fmin < fmax ) {
3044            ifgrp[j].push_back( itable ) ;
3045            ifgrp[j].push_back( freqid[itable][iif] ) ;
3046          }
3047        }
3048      }
3049    }
3050    vector< vector<uInt> >::iterator fiter = ifgrp.begin() ;
3051    vector<double>::iterator giter = ifgfreq.begin() ;
3052    while( fiter != ifgrp.end() ) {
3053      if ( fiter->size() <= sizecr ) {
3054        fiter = ifgrp.erase( fiter ) ;
3055        giter = ifgfreq.erase( giter ) ;
3056        giter = ifgfreq.erase( giter ) ;
3057      }
3058      else {
3059        fiter++ ;
3060        advance( giter, 2 ) ;
3061      }
3062    }
3063
3064    // Grouping continuous IF groups (without frequency gap)
3065    // freqgrp: list of IF group indexes in each frequency group
3066    // freqrange: list of minimum and maximum frequency in each frequency group
3067    // freqgrp[numgrp][nummember]
3068    // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...],
3069    //           [ifgrp10, ifgrp11, ifgrp12, ...],
3070    //           ...
3071    //           [ifgrpn0, ifgrpn1, ifgrpn2, ...]]
3072    // freqrange[numgrp*2]
3073    // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...]
3074    vector< vector<uInt> > freqgrp ;
3075    double freqrange = 0.0 ;
3076    uInt grpnum = 0 ;
3077    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3078      // Assumed that ifgfreq was sorted
3079      if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) {
3080        freqgrp[grpnum-1].push_back( i ) ;
3081      }
3082      else {
3083        vector<uInt> grp0( 1, i ) ;
3084        freqgrp.push_back( grp0 ) ;
3085        grpnum++ ;
3086      }
3087      freqrange = ifgfreq[2*i+1] ;
3088    }
3089       
3090
3091    // print IF groups
3092    ostringstream oss ;
3093    oss << "IF Group summary: " << endl ;
3094    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3095    for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3096      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3097      for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3098        oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3099      }
3100      oss << endl ;
3101    }
3102    oss << endl ;
3103    os << oss.str() << LogIO::POST ;
3104   
3105    // print frequency group
3106    oss.str("") ;
3107    oss << "Frequency Group summary: " << endl ;
3108    oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ;
3109    for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3110      oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ;
3111      for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) {
3112        oss << freqgrp[i][j] << " " ;
3113      }
3114      oss << endl ;
3115    }
3116    oss << endl ;
3117    os << oss.str() << LogIO::POST ;
3118
3119    // membership check
3120    // groups: list of IF group indexes whose frequency range overlaps with
3121    //         that of each table and IF
3122    // groups[numtable][numIF][nummembership]
3123    // groups: [[[grp, grp,...], [grp, grp,...],...],
3124    //          [[grp, grp,...], [grp, grp,...],...],
3125    //          ...
3126    //          [[grp, grp,...], [grp, grp,...],...]]
3127    vector< vector< vector<uInt> > > groups( insize ) ;
3128    for ( uInt i = 0 ; i < insize ; i++ ) {
3129      groups[i].resize( freqid[i].size() ) ;
3130    }
3131    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3132      for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3133        uInt tableid = ifgrp[igrp][2*imem] ;
3134        vector<uInt>::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ;
3135        if ( iter != freqid[tableid].end() ) {
3136          uInt rowid = distance( freqid[tableid].begin(), iter ) ;
3137          groups[tableid][rowid].push_back( igrp ) ;
3138        }
3139      }
3140    }
3141
3142    // print membership
3143    //oss.str("") ;
3144    //for ( uInt i = 0 ; i < insize ; i++ ) {
3145    //oss << "Table " << i << endl ;
3146    //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) {
3147    //oss << "   FREQ_ID " <<  setw( 2 ) << freqid[i][j] << ": " ;
3148    //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) {
3149    //oss << setw( 2 ) << groups[i][j][k] << " " ;
3150    //}
3151    //oss << endl ;
3152    //}
3153    //}
3154    //os << oss.str() << LogIO::POST ;
3155
3156    // set back coordinfo
3157    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3158      vector<string> coordinfo = tmpin[itable]->getCoordInfo() ;
3159      coordinfo[0] = oldinfo[itable] ;
3160      tmpin[itable]->setCoordInfo( coordinfo ) ;
3161    }
3162
3163    // Create additional table if needed
3164    bool oldInsitu = insitu_ ;
3165    setInsitu( false ) ;
3166    vector< vector<uInt> > addrow( insize ) ;
3167    vector<uInt> addtable( insize, 0 ) ;
3168    vector<uInt> newtableids( insize ) ;
3169    vector<uInt> newifids( insize, 0 ) ;
3170    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3171      //os << "Table " << itable << ": " ;
3172      for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3173        addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ;
3174        //os << addrow[itable][ifrow] << " " ;
3175      }
3176      addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ;
3177      //os << "(" << addtable[itable] << ")" << LogIO::POST ;
3178    }
3179    newin.resize( insize ) ;
3180    copy( tmpin.begin(), tmpin.end(), newin.begin() ) ;
3181    for ( uInt i = 0 ; i < insize ; i++ ) {
3182      newtableids[i] = i ;
3183    }
3184    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3185      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3186        CountedPtr<Scantable> add = getScantable( newin[itable], false ) ;
3187        vector<int> freqidlist ;
3188        for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) {
3189          if ( groups[itable][i].size() > iadd + 1 ) {
3190            freqidlist.push_back( freqid[itable][i] ) ;
3191          }
3192        }
3193        stringstream taqlstream ;
3194        taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ;
3195        for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) {
3196          taqlstream << freqidlist[i] ;
3197          if ( i < freqidlist.size() - 1 )
3198            taqlstream << "," ;
3199          else
3200            taqlstream << "]" ;
3201        }
3202        string taql = taqlstream.str() ;
3203        //os << "taql = " << taql << LogIO::POST ;
3204        STSelector selector = STSelector() ;
3205        selector.setTaQL( taql ) ;
3206        add->setSelection( selector ) ;
3207        newin.push_back( add ) ;
3208        newtableids.push_back( itable ) ;
3209        newifids.push_back( iadd + 1 ) ;
3210      }
3211    }
3212
3213    // udpate ifgrp
3214    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3215      for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) {
3216        for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) {
3217          if ( groups[itable][ifrow].size() > iadd + 1 ) {
3218            uInt igrp = groups[itable][ifrow][iadd+1] ;
3219            for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3220              if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) {
3221                ifgrp[igrp][2*imem] = insize + iadd ;
3222              }
3223            }
3224          }
3225        }
3226      }
3227    }
3228
3229    // print IF groups again for debug
3230    //oss.str( "" ) ;
3231    //oss << "IF Group summary: " << endl ;
3232    //oss << "   GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ;
3233    //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) {
3234    //oss << "   GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ;
3235    //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) {
3236    //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ;
3237    //}
3238    //oss << endl ;
3239    //}
3240    //oss << endl ;
3241    //os << oss.str() << LogIO::POST ;
3242
3243    // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation
3244    os << "All scan number is set to 0" << LogIO::POST ;
3245    //os << "All IF number is set to IF group index" << LogIO::POST ;
3246    insize = newin.size() ;
3247    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3248      uInt rows = newin[itable]->nrow() ;
3249      Table &tmpt = newin[itable]->table() ;
3250      freqIDCol.attach( tmpt, "FREQ_ID" ) ;
3251      scannoCol.attach( tmpt, "SCANNO" ) ;
3252      ifnoCol.attach( tmpt, "IFNO" ) ;
3253      for ( uInt irow=0 ; irow < rows ; irow++ ) {
3254        scannoCol.put( irow, 0 ) ;
3255        uInt freqID = freqIDCol( irow ) ;
3256        vector<uInt>::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ;
3257        if ( iter != freqid[newtableids[itable]].end() ) {
3258          uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ;
3259          ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ;
3260        }
3261        else {
3262          throw(AipsError("IF grouping was wrong in additional tables.")) ;
3263        }
3264      }
3265    }
3266    oldinfo.resize( insize ) ;
3267    setInsitu( oldInsitu ) ;
3268
3269    // temporarily set coordinfo
3270    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3271      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3272      oldinfo[itable] = coordinfo[0] ;
3273      coordinfo[0] = "Hz" ;
3274      newin[itable]->setCoordInfo( coordinfo ) ;
3275    }
3276
3277    // save column values in the vector
3278    vector< vector<uInt> > freqTableIdVec( insize ) ;
3279    vector< vector<uInt> > freqIdVec( insize ) ;
3280    vector< vector<uInt> > ifNoVec( insize ) ;
3281    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3282      ScalarColumn<uInt> freqIDs ;
3283      freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ;
3284      ifnoCol.attach( newin[itable]->table(), "IFNO" ) ;
3285      freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ;
3286      for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) {
3287        freqTableIdVec[itable].push_back( freqIDs( irow ) ) ;
3288      }
3289      for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) {
3290        freqIdVec[itable].push_back( freqIDCol( irow ) ) ;
3291        ifNoVec[itable].push_back( ifnoCol( irow ) ) ;
3292      }
3293    }
3294
3295    // reset spectra and flagtra: pick up common part of frequency coverage
3296    //os << "Pick common frequency range and align resolution" << LogIO::POST ;
3297    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3298      uInt rows = newin[itable]->nrow() ;
3299      int nminchan = -1 ;
3300      int nmaxchan = -1 ;
3301      vector<uInt> freqIdUpdate ;
3302      for ( uInt irow = 0 ; irow < rows ; irow++ ) {
3303        uInt ifno = ifNoVec[itable][irow] ;  // IFNO is reset by group index
3304        double minfreq = ifgfreq[2*ifno] ;
3305        double maxfreq = ifgfreq[2*ifno+1] ;
3306        //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ;
3307        vector<double> abcissa = newin[itable]->getAbcissa( irow ) ;
3308        int nchan = abcissa.size() ;
3309        double resol = abcissa[1] - abcissa[0] ;
3310        //os << "abcissa range  : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ;
3311        if ( minfreq <= abcissa[0] )
3312          nminchan = 0 ;
3313        else {
3314          //double cfreq = ( minfreq - abcissa[0] ) / resol ;
3315          double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ;
3316          nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ;
3317        }
3318        if ( maxfreq >= abcissa[abcissa.size()-1] )
3319          nmaxchan = abcissa.size() - 1 ;
3320        else {
3321          //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ;
3322          double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ;
3323          nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ;
3324        }
3325        //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ;
3326        if ( nmaxchan > nminchan ) {
3327          newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ;
3328          int newchan = nmaxchan - nminchan + 1 ;
3329          if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan )
3330            freqIdUpdate.push_back( freqIdVec[itable][irow] ) ;
3331        }
3332        else {
3333          throw(AipsError("Failed to pick up common part of frequency range.")) ;
3334        }
3335      }
3336      for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) {
3337        uInt freqId = freqIdUpdate[i] ;
3338        Double refpix ;
3339        Double refval ;
3340        Double increment ;
3341       
3342        // update row
3343        newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ;
3344        refval = refval - ( refpix - nminchan ) * increment ;
3345        refpix = 0 ;
3346        newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ;
3347      }   
3348    }
3349
3350   
3351    // reset spectra and flagtra: align spectral resolution
3352    //os << "Align spectral resolution" << LogIO::POST ;
3353    // gmaxdnu: the coarsest frequency resolution in the frequency group
3354    // gmemid: member index that have a resolution equal to gmaxdnu
3355    // gmaxdnu[numfreqgrp]
3356    // gmaxdnu: [dnu0, dnu1, ...]
3357    // gmemid[numfreqgrp]
3358    // gmemid: [id0, id1, ...]
3359    vector<double> gmaxdnu( freqgrp.size(), 0.0 ) ;
3360    vector<uInt> gmemid( freqgrp.size(), 0 ) ;
3361    for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) {
3362      double maxdnu = 0.0 ;       // maximum (coarsest) frequency resolution
3363      int minchan = INT_MAX ;     // minimum channel number
3364      Double refpixref = -1 ;     // reference of 'reference pixel'
3365      Double refvalref = -1 ;     // reference of 'reference frequency'
3366      Double refinc = -1 ;        // reference frequency resolution
3367      uInt refreqid ;
3368      uInt reftable = INT_MAX;
3369      // process only if group member > 1
3370      if ( ifgrp[igrp].size() > 2 ) {
3371        // find minchan and maxdnu in each group
3372        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3373          uInt tableid = ifgrp[igrp][2*imem] ;
3374          uInt rowid = ifgrp[igrp][2*imem+1] ;
3375          vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3376          if ( iter != freqIdVec[tableid].end() ) {
3377            uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3378            vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3379            int nchan = abcissa.size() ;
3380            double dnu = abcissa[1] - abcissa[0] ;
3381            //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ;
3382            if ( nchan < minchan ) {
3383              minchan = nchan ;
3384              maxdnu = dnu ;
3385              newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ;
3386              refreqid = rowid ;
3387              reftable = tableid ;
3388            }
3389          }
3390        }
3391        // regrid spectra in each group
3392        os << "GROUP " << igrp << endl ;
3393        os << "   Channel number is adjusted to " << minchan << endl ;
3394        os << "   Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ;
3395        for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) {
3396          uInt tableid = ifgrp[igrp][2*imem] ;
3397          uInt rowid = ifgrp[igrp][2*imem+1] ;
3398          freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ;
3399          //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ;
3400          //os << "   regridChannel applied to " ;
3401          //if ( tableid != reftable )
3402          refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ;
3403          for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) {
3404            uInt tfreqid = freqIdVec[tableid][irow] ;
3405            if ( tfreqid == rowid ) {     
3406              //os << irow << " " ;
3407              newin[tableid]->regridChannel( minchan, maxdnu, irow ) ;
3408              freqIDCol.put( irow, refreqid ) ;
3409              freqIdVec[tableid][irow] = refreqid ;
3410            }
3411          }
3412          //os << LogIO::POST ;
3413        }
3414      }
3415      else {
3416        uInt tableid = ifgrp[igrp][0] ;
3417        uInt rowid = ifgrp[igrp][1] ;
3418        vector<uInt>::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ;
3419        if ( iter != freqIdVec[tableid].end() ) {
3420          uInt index = distance( freqIdVec[tableid].begin(), iter ) ;
3421          vector<double> abcissa = newin[tableid]->getAbcissa( index ) ;
3422          minchan = abcissa.size() ;
3423          maxdnu = abcissa[1] - abcissa[0] ;
3424        }
3425      }
3426      for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) {
3427        if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) {
3428          if ( maxdnu > gmaxdnu[i] ) {
3429            gmaxdnu[i] = maxdnu ;
3430            gmemid[i] = igrp ;
3431          }
3432          break ;
3433        }
3434      }
3435    }
3436
3437    // set back coordinfo
3438    for ( uInt itable = 0 ; itable < insize ; itable++ ) {
3439      vector<string> coordinfo = newin[itable]->getCoordInfo() ;
3440      coordinfo[0] = oldinfo[itable] ;
3441      newin[itable]->setCoordInfo( coordinfo ) ;
3442    }     
3443
3444    // accumulate all rows into the first table
3445    // NOTE: assumed in.size() = 1
3446    vector< CountedPtr<Scantable> > tmp( 1 ) ;
3447    if ( newin.size() == 1 )
3448      tmp[0] = newin[0] ;
3449    else
3450      tmp[0] = merge( newin ) ;
3451
3452    //return tmp[0] ;
3453
3454    // average
3455    CountedPtr<Scantable> tmpout = average( tmp, mask, weight, avmode ) ;
3456
3457    //return tmpout ;
3458
3459    // combine frequency group
3460    os << "Combine spectra based on frequency grouping" << LogIO::POST ;
3461    os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ;
3462    vector<string> coordinfo = tmpout->getCoordInfo() ;
3463    oldinfo[0] = coordinfo[0] ;
3464    coordinfo[0] = "Hz" ;
3465    tmpout->setCoordInfo( coordinfo ) ;
3466    // create proformas of output table
3467    stringstream taqlstream ;
3468    taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ;
3469    for ( uInt i = 0 ; i < gmemid.size() ; i++ ) {
3470      taqlstream << gmemid[i] ;
3471      if ( i < gmemid.size() - 1 )
3472        taqlstream << "," ;
3473      else
3474        taqlstream << "]" ;
3475    }
3476    string taql = taqlstream.str() ;
3477    //os << "taql = " << taql << LogIO::POST ;
3478    STSelector selector = STSelector() ;
3479    selector.setTaQL( taql ) ;
3480    oldInsitu = insitu_ ;
3481    setInsitu( false ) ;
3482    out = getScantable( tmpout, false ) ;
3483    setInsitu( oldInsitu ) ;
3484    out->setSelection( selector ) ;
3485    // regrid rows
3486    ifnoCol.attach( tmpout->table(), "IFNO" ) ;
3487    for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) {
3488      uInt ifno = ifnoCol( irow ) ;
3489      for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3490        if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) {
3491          vector<double> abcissa = tmpout->getAbcissa( irow ) ;
3492          double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ;
3493          int nchan = (int)( bw / gmaxdnu[igrp] ) ;
3494          tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ;
3495          break ;
3496        }
3497      }
3498    }
3499    // combine spectra
3500    ArrayColumn<Float> specColOut ;
3501    specColOut.attach( out->table(), "SPECTRA" ) ;
3502    ArrayColumn<uChar> flagColOut ;
3503    flagColOut.attach( out->table(), "FLAGTRA" ) ;
3504    ScalarColumn<uInt> ifnoColOut ;
3505    ifnoColOut.attach( out->table(), "IFNO" ) ;
3506    ScalarColumn<uInt> polnoColOut ;
3507    polnoColOut.attach( out->table(), "POLNO" ) ;
3508    ScalarColumn<uInt> freqidColOut ;
3509    freqidColOut.attach( out->table(), "FREQ_ID" ) ;
3510    MDirection::ScalarColumn dirColOut ;
3511    dirColOut.attach( out->table(), "DIRECTION" ) ;
3512    Table &tab = tmpout->table() ;
3513    Block<String> cols(1);
3514    cols[0] = String("POLNO") ;
3515    TableIterator iter( tab, cols ) ;
3516    bool done = false ;
3517    vector< vector<uInt> > sizes( freqgrp.size() ) ;
3518    while( !iter.pastEnd() ) {
3519      vector< vector<Float> > specout( freqgrp.size() ) ;
3520      vector< vector<uChar> > flagout( freqgrp.size() ) ;
3521      ArrayColumn<Float> specCols ;
3522      specCols.attach( iter.table(), "SPECTRA" ) ;
3523      ArrayColumn<uChar> flagCols ;
3524      flagCols.attach( iter.table(), "FLAGTRA" ) ;
3525      ifnoCol.attach( iter.table(), "IFNO" ) ;
3526      ScalarColumn<uInt> polnos ;
3527      polnos.attach( iter.table(), "POLNO" ) ;
3528      MDirection::ScalarColumn dircol ;
3529      dircol.attach( iter.table(), "DIRECTION" ) ;
3530      uInt polno = polnos( 0 ) ;
3531      //os << "POLNO iteration: " << polno << LogIO::POST ;
3532//       for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3533//      sizes[igrp].resize( freqgrp[igrp].size() ) ;
3534//      for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3535//        for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3536//          uInt ifno = ifnoCol( irow ) ;
3537//          if ( ifno == freqgrp[igrp][imem] ) {
3538//            Vector<Float> spec = specCols( irow ) ;
3539//            Vector<uChar> flag = flagCols( irow ) ;
3540//            vector<Float> svec ;
3541//            spec.tovector( svec ) ;
3542//            vector<uChar> fvec ;
3543//            flag.tovector( fvec ) ;
3544//            //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3545//            specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3546//            flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3547//            //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3548//            sizes[igrp][imem] = spec.nelements() ;
3549//          }
3550//        }
3551//      }
3552//      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3553//        uInt ifout = ifnoColOut( irow ) ;
3554//        uInt polout = polnoColOut( irow ) ;
3555//        if ( ifout == gmemid[igrp] && polout == polno ) {
3556//          // set SPECTRA and FRAGTRA
3557//          Vector<Float> newspec( specout[igrp] ) ;
3558//          Vector<uChar> newflag( flagout[igrp] ) ;
3559//          specColOut.put( irow, newspec ) ;
3560//          flagColOut.put( irow, newflag ) ;
3561//          // IFNO renumbering
3562//          ifnoColOut.put( irow, igrp ) ;
3563//        }
3564//      }
3565//       }
3566      // get a list of number of channels for each frequency group member
3567      if ( !done ) {
3568        for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3569          sizes[igrp].resize( freqgrp[igrp].size() ) ;
3570          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3571            for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) {
3572              uInt ifno = ifnoCol( irow ) ;
3573              if ( ifno == freqgrp[igrp][imem] ) {
3574                Vector<Float> spec = specCols( irow ) ;
3575                sizes[igrp][imem] = spec.nelements() ;
3576                break ;
3577              }               
3578            }
3579          }
3580        }
3581        done = true ;
3582      }
3583      // combine spectra
3584      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3585        uInt polout = polnoColOut( irow ) ;
3586        if ( polout == polno ) {
3587          uInt ifout = ifnoColOut( irow ) ;
3588          Vector<Double> direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ;
3589          uInt igrp ;
3590          for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) {
3591            if ( ifout == gmemid[jgrp] ) {
3592              igrp = jgrp ;
3593              break ;
3594            }
3595          }
3596          for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) {
3597            for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) {
3598              uInt ifno = ifnoCol( jrow ) ;
3599              Vector<Double> tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ;
3600              //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction  ) ) {
3601              Double dx = tdir[0] - direction[0] ;
3602              Double dy = tdir[1] - direction[1] ;
3603              Double dd = sqrt( dx * dx + dy * dy ) ;
3604              //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) {
3605              if ( ifno == freqgrp[igrp][imem] && dd <= tol ) {
3606                Vector<Float> spec = specCols( jrow ) ;
3607                Vector<uChar> flag = flagCols( jrow ) ;
3608                vector<Float> svec ;
3609                spec.tovector( svec ) ;
3610                vector<uChar> fvec ;
3611                flag.tovector( fvec ) ;
3612                //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ;
3613                specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ;
3614                flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ;
3615                //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ;
3616              }
3617            }
3618          }
3619          // set SPECTRA and FRAGTRA
3620          Vector<Float> newspec( specout[igrp] ) ;
3621          Vector<uChar> newflag( flagout[igrp] ) ;
3622          specColOut.put( irow, newspec ) ;
3623          flagColOut.put( irow, newflag ) ;
3624          // IFNO renumbering
3625          ifnoColOut.put( irow, igrp ) ;
3626        }
3627      }
3628      iter++ ;
3629    }
3630    // update FREQUENCIES subtable
3631    vector<bool> updated( freqgrp.size(), false ) ;
3632    for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) {
3633      uInt index = 0 ;
3634      uInt pixShift = 0 ;
3635      while ( freqgrp[igrp][index] != gmemid[igrp] ) {
3636        pixShift += sizes[igrp][index++] ;
3637      }
3638      for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) {
3639        if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) {
3640          uInt freqidOut = freqidColOut( irow ) ;
3641          //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ;
3642          double refpix ;
3643          double refval ;
3644          double increm ;
3645          out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ;
3646          refpix += pixShift ;
3647          out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ;
3648          updated[igrp] = true ;
3649        }
3650      }
3651    }
3652
3653    //out = tmpout ;
3654
3655    coordinfo = tmpout->getCoordInfo() ;
3656    coordinfo[0] = oldinfo[0] ;
3657    tmpout->setCoordInfo( coordinfo ) ;
3658  }
3659  else {
3660    // simple average
3661    out =  average( in, mask, weight, avmode ) ;
3662  }
3663 
3664  return out ;
3665}
3666
3667CountedPtr<Scantable> STMath::cwcal( const CountedPtr<Scantable>& s,
3668                                     const String calmode,
3669                                     const String antname )
3670{
3671  // frequency switch
3672  if ( calmode == "fs" ) {
3673    return cwcalfs( s, antname ) ;
3674  }
3675  else {
3676    vector<bool> masks = s->getMask( 0 ) ;
3677    vector<int> types ;
3678
3679    // sky scan
3680    STSelector sel = STSelector() ;
3681    types.push_back( SrcType::SKY ) ;
3682    sel.setTypes( types ) ;
3683    s->setSelection( sel ) ;
3684    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3685    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
3686    s->unsetSelection() ;
3687    sel.reset() ;
3688    types.clear() ;
3689
3690    // hot scan
3691    types.push_back( SrcType::HOT ) ;
3692    sel.setTypes( types ) ;
3693    s->setSelection( sel ) ;
3694    tmp.clear() ;
3695    tmp.push_back( getScantable( s, false ) ) ;
3696    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
3697    s->unsetSelection() ;
3698    sel.reset() ;
3699    types.clear() ;
3700   
3701    // cold scan
3702    CountedPtr<Scantable> acold ;
3703//     types.push_back( SrcType::COLD ) ;
3704//     sel.setTypes( types ) ;
3705//     s->setSelection( sel ) ;
3706//     tmp.clear() ;
3707//     tmp.push_back( getScantable( s, false ) ) ;
3708//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCNAN" ) ;
3709//     s->unsetSelection() ;
3710//     sel.reset() ;
3711//     types.clear() ;
3712
3713    // off scan
3714    types.push_back( SrcType::PSOFF ) ;
3715    sel.setTypes( types ) ;
3716    s->setSelection( sel ) ;
3717    tmp.clear() ;
3718    tmp.push_back( getScantable( s, false ) ) ;
3719    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3720    s->unsetSelection() ;
3721    sel.reset() ;
3722    types.clear() ;
3723   
3724    // on scan
3725    bool insitu = insitu_ ;
3726    insitu_ = false ;
3727    CountedPtr<Scantable> out = getScantable( s, true ) ;
3728    insitu_ = insitu ;
3729    types.push_back( SrcType::PSON ) ;
3730    sel.setTypes( types ) ;
3731    s->setSelection( sel ) ;
3732    TableCopy::copyRows( out->table(), s->table() ) ;
3733    s->unsetSelection() ;
3734    sel.reset() ;
3735    types.clear() ;
3736   
3737    // process each on scan
3738    ArrayColumn<Float> tsysCol ;
3739    tsysCol.attach( out->table(), "TSYS" ) ;
3740    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3741      vector<float> sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ;
3742      out->setSpectrum( sp, i ) ;
3743      string reftime = out->getTime( i ) ;
3744      vector<int> ii( 1, out->getIF( i ) ) ;
3745      vector<int> ib( 1, out->getBeam( i ) ) ;
3746      vector<int> ip( 1, out->getPol( i ) ) ;
3747      sel.setIFs( ii ) ;
3748      sel.setBeams( ib ) ;
3749      sel.setPolarizations( ip ) ;
3750      asky->setSelection( sel ) ;   
3751      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
3752      const Vector<Float> Vtsys( sptsys ) ;
3753      tsysCol.put( i, Vtsys ) ;
3754      asky->unsetSelection() ;
3755      sel.reset() ;
3756    }
3757
3758    // flux unit
3759    out->setFluxUnit( "K" ) ;
3760
3761    return out ;
3762  }
3763}
3764 
3765CountedPtr<Scantable> STMath::almacal( const CountedPtr<Scantable>& s,
3766                                       const String calmode )
3767{
3768  // frequency switch
3769  if ( calmode == "fs" ) {
3770    return almacalfs( s ) ;
3771  }
3772  else {
3773    vector<bool> masks = s->getMask( 0 ) ;
3774   
3775    // off scan
3776    STSelector sel = STSelector() ;
3777    vector<int> types ;
3778    types.push_back( SrcType::PSOFF ) ;
3779    sel.setTypes( types ) ;
3780    s->setSelection( sel ) ;
3781    // TODO 2010/01/08 TN
3782    // Grouping by time should be needed before averaging.
3783    // Each group must have own unique SCANNO (should be renumbered).
3784    // See PIPELINE/SDCalibration.py
3785    CountedPtr<Scantable> soff = getScantable( s, false ) ;
3786    Table ttab = soff->table() ;
3787    ROScalarColumn<Double> timeCol( ttab, "TIME" ) ;
3788    uInt nrow = timeCol.nrow() ;
3789    Vector<Double> timeSep( nrow - 1 ) ;
3790    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3791      timeSep[i] = timeCol(i+1) - timeCol(i) ;
3792    }
3793    ScalarColumn<Double> intervalCol( ttab, "INTERVAL" ) ;
3794    Vector<Double> interval = intervalCol.getColumn() ;
3795    interval /= 86400.0 ;
3796    ScalarColumn<uInt> scanCol( ttab, "SCANNO" ) ;
3797    vector<uInt> glist ;
3798    for ( uInt i = 0 ; i < nrow - 1 ; i++ ) {
3799      double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ;
3800      //cout << "gap[" << i << "]=" << setw(5) << gap << endl ;
3801      if ( gap > 1.1 ) {
3802        glist.push_back( i ) ;
3803      }
3804    }
3805    Vector<uInt> gaplist( glist ) ;
3806    //cout << "gaplist = " << gaplist << endl ;
3807    uInt newid = 0 ;
3808    for ( uInt i = 0 ; i < nrow ; i++ ) {
3809      scanCol.put( i, newid ) ;
3810      if ( i == gaplist[newid] ) {
3811        newid++ ;
3812      }
3813    }
3814    //cout << "new scancol = " << scanCol.getColumn() << endl ;
3815    vector< CountedPtr<Scantable> > tmp( 1, soff ) ;
3816    CountedPtr<Scantable> aoff = average( tmp, masks, "TINT", "SCAN" ) ;
3817    //cout << "aoff.nrow = " << aoff->nrow() << endl ;
3818    s->unsetSelection() ;
3819    sel.reset() ;
3820    types.clear() ;
3821   
3822    // on scan
3823    bool insitu = insitu_ ;
3824    insitu_ = false ;
3825    CountedPtr<Scantable> out = getScantable( s, true ) ;
3826    insitu_ = insitu ;
3827    types.push_back( SrcType::PSON ) ;
3828    sel.setTypes( types ) ;
3829    s->setSelection( sel ) ;
3830    TableCopy::copyRows( out->table(), s->table() ) ;
3831    s->unsetSelection() ;
3832    sel.reset() ;
3833    types.clear() ;
3834   
3835    // process each on scan
3836    ArrayColumn<Float> tsysCol ;
3837    tsysCol.attach( out->table(), "TSYS" ) ;
3838    for ( int i = 0 ; i < out->nrow() ; i++ ) {
3839      vector<float> sp = getCalibratedSpectra( out, aoff, i ) ;
3840      out->setSpectrum( sp, i ) ;
3841    }
3842
3843    // flux unit
3844    out->setFluxUnit( "K" ) ;
3845
3846    return out ;
3847  }
3848}
3849
3850CountedPtr<Scantable> STMath::cwcalfs( const CountedPtr<Scantable>& s,
3851                                       const String antname )
3852{
3853  vector<int> types ;
3854
3855  // APEX calibration mode
3856  int apexcalmode = 1 ;
3857 
3858  if ( antname.find( "APEX" ) != string::npos ) {
3859    // check if off scan exists or not
3860    STSelector sel = STSelector() ;
3861    //sel.setName( offstr1 ) ;
3862    types.push_back( SrcType::FLOOFF ) ;
3863    sel.setTypes( types ) ;
3864    try {
3865      s->setSelection( sel ) ;
3866    }
3867    catch ( AipsError &e ) {
3868      apexcalmode = 0 ;
3869    }
3870    sel.reset() ;
3871  }
3872  s->unsetSelection() ;
3873  types.clear() ;
3874
3875  vector<bool> masks = s->getMask( 0 ) ;
3876  CountedPtr<Scantable> ssig, sref ;
3877  CountedPtr<Scantable> out ;
3878
3879  if ( antname.find( "APEX" ) != string::npos ) {
3880    // APEX calibration
3881    // sky scan
3882    STSelector sel = STSelector() ;
3883    types.push_back( SrcType::FLOSKY ) ;
3884    sel.setTypes( types ) ;
3885    s->setSelection( sel ) ;
3886    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
3887    CountedPtr<Scantable> askylo = average( tmp, masks, "TINT", "SCAN" ) ;
3888    s->unsetSelection() ;
3889    sel.reset() ;
3890    types.clear() ;
3891    types.push_back( SrcType::FHISKY ) ;
3892    sel.setTypes( types ) ;
3893    s->setSelection( sel ) ;
3894    tmp.clear() ;
3895    tmp.push_back( getScantable( s, false ) ) ;
3896    CountedPtr<Scantable> askyhi = average( tmp, masks, "TINT", "SCAN" ) ;
3897    s->unsetSelection() ;
3898    sel.reset() ;
3899    types.clear() ;
3900   
3901    // hot scan
3902    types.push_back( SrcType::FLOHOT ) ;
3903    sel.setTypes( types ) ;
3904    s->setSelection( sel ) ;
3905    tmp.clear() ;
3906    tmp.push_back( getScantable( s, false ) ) ;
3907    CountedPtr<Scantable> ahotlo = average( tmp, masks, "TINT", "SCAN" ) ;
3908    s->unsetSelection() ;
3909    sel.reset() ;
3910    types.clear() ;
3911    types.push_back( SrcType::FHIHOT ) ;
3912    sel.setTypes( types ) ;
3913    s->setSelection( sel ) ;
3914    tmp.clear() ;
3915    tmp.push_back( getScantable( s, false ) ) ;
3916    CountedPtr<Scantable> ahothi = average( tmp, masks, "TINT", "SCAN" ) ;
3917    s->unsetSelection() ;
3918    sel.reset() ;
3919    types.clear() ;
3920   
3921    // cold scan
3922    CountedPtr<Scantable> acoldlo, acoldhi ;
3923//     types.push_back( SrcType::FLOCOLD ) ;
3924//     sel.setTypes( types ) ;
3925//     s->setSelection( sel ) ;
3926//     tmp.clear() ;
3927//     tmp.push_back( getScantable( s, false ) ) ;
3928//     CountedPtr<Scantable> acoldlo = average( tmp, masks, "TINT", "SCAN" ) ;
3929//     s->unsetSelection() ;
3930//     sel.reset() ;
3931//     types.clear() ;
3932//     types.push_back( SrcType::FHICOLD ) ;
3933//     sel.setTypes( types ) ;
3934//     s->setSelection( sel ) ;
3935//     tmp.clear() ;
3936//     tmp.push_back( getScantable( s, false ) ) ;
3937//     CountedPtr<Scantable> acoldhi = average( tmp, masks, "TINT", "SCAN" ) ;
3938//     s->unsetSelection() ;
3939//     sel.reset() ;
3940//     types.clear() ;
3941
3942    // ref scan
3943    bool insitu = insitu_ ;
3944    insitu_ = false ;
3945    sref = getScantable( s, true ) ;
3946    insitu_ = insitu ;
3947    types.push_back( SrcType::FSLO ) ;
3948    sel.setTypes( types ) ;
3949    s->setSelection( sel ) ;
3950    TableCopy::copyRows( sref->table(), s->table() ) ;
3951    s->unsetSelection() ;
3952    sel.reset() ;
3953    types.clear() ;
3954   
3955    // sig scan
3956    insitu_ = false ;
3957    ssig = getScantable( s, true ) ;
3958    insitu_ = insitu ;
3959    types.push_back( SrcType::FSHI ) ;
3960    sel.setTypes( types ) ;
3961    s->setSelection( sel ) ;
3962    TableCopy::copyRows( ssig->table(), s->table() ) ;
3963    s->unsetSelection() ;
3964    sel.reset() ; 
3965    types.clear() ;
3966         
3967    if ( apexcalmode == 0 ) {
3968      // APEX fs data without off scan
3969      // process each sig and ref scan
3970      ArrayColumn<Float> tsysCollo ;
3971      tsysCollo.attach( ssig->table(), "TSYS" ) ;
3972      ArrayColumn<Float> tsysColhi ;
3973      tsysColhi.attach( sref->table(), "TSYS" ) ;
3974      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
3975        vector< CountedPtr<Scantable> > sky( 2 ) ;
3976        sky[0] = askylo ;
3977        sky[1] = askyhi ;
3978        vector< CountedPtr<Scantable> > hot( 2 ) ;
3979        hot[0] = ahotlo ;
3980        hot[1] = ahothi ;
3981        vector< CountedPtr<Scantable> > cold( 2 ) ;
3982        //cold[0] = acoldlo ;
3983        //cold[1] = acoldhi ;
3984        vector<float> sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ;
3985        ssig->setSpectrum( sp, i ) ;
3986        string reftime = ssig->getTime( i ) ;
3987        vector<int> ii( 1, ssig->getIF( i ) ) ;
3988        vector<int> ib( 1, ssig->getBeam( i ) ) ;
3989        vector<int> ip( 1, ssig->getPol( i ) ) ;
3990        sel.setIFs( ii ) ;
3991        sel.setBeams( ib ) ;
3992        sel.setPolarizations( ip ) ;
3993        askylo->setSelection( sel ) ;
3994        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
3995        const Vector<Float> Vtsyslo( sptsys ) ;
3996        tsysCollo.put( i, Vtsyslo ) ;
3997        askylo->unsetSelection() ;
3998        sel.reset() ;
3999        sky[0] = askyhi ;
4000        sky[1] = askylo ;
4001        hot[0] = ahothi ;
4002        hot[1] = ahotlo ;
4003        cold[0] = acoldhi ;
4004        cold[1] = acoldlo ;
4005        sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ;
4006        sref->setSpectrum( sp, i ) ;
4007        reftime = sref->getTime( i ) ;
4008        ii[0] = sref->getIF( i )  ;
4009        ib[0] = sref->getBeam( i ) ;
4010        ip[0] = sref->getPol( i ) ;
4011        sel.setIFs( ii ) ;
4012        sel.setBeams( ib ) ;
4013        sel.setPolarizations( ip ) ;
4014        askyhi->setSelection( sel ) ;   
4015        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4016        const Vector<Float> Vtsyshi( sptsys ) ;
4017        tsysColhi.put( i, Vtsyshi ) ;
4018        askyhi->unsetSelection() ;
4019        sel.reset() ;
4020      }
4021    }
4022    else if ( apexcalmode == 1 ) {
4023      // APEX fs data with off scan
4024      // off scan
4025      types.push_back( SrcType::FLOOFF ) ;
4026      sel.setTypes( types ) ;
4027      s->setSelection( sel ) ;
4028      tmp.clear() ;
4029      tmp.push_back( getScantable( s, false ) ) ;
4030      CountedPtr<Scantable> aofflo = average( tmp, masks, "TINT", "SCAN" ) ;
4031      s->unsetSelection() ;
4032      sel.reset() ;
4033      types.clear() ;
4034      types.push_back( SrcType::FHIOFF ) ;
4035      sel.setTypes( types ) ;
4036      s->setSelection( sel ) ;
4037      tmp.clear() ;
4038      tmp.push_back( getScantable( s, false ) ) ;
4039      CountedPtr<Scantable> aoffhi = average( tmp, masks, "TINT", "SCAN" ) ;
4040      s->unsetSelection() ;
4041      sel.reset() ;
4042      types.clear() ;
4043     
4044      // process each sig and ref scan
4045      ArrayColumn<Float> tsysCollo ;
4046      tsysCollo.attach( ssig->table(), "TSYS" ) ;
4047      ArrayColumn<Float> tsysColhi ;
4048      tsysColhi.attach( sref->table(), "TSYS" ) ;
4049      for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4050        vector<float> sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ;
4051        ssig->setSpectrum( sp, i ) ;
4052        sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ;
4053        string reftime = ssig->getTime( i ) ;
4054        vector<int> ii( 1, ssig->getIF( i ) ) ;
4055        vector<int> ib( 1, ssig->getBeam( i ) ) ;
4056        vector<int> ip( 1, ssig->getPol( i ) ) ;
4057        sel.setIFs( ii ) ;
4058        sel.setBeams( ib ) ;
4059        sel.setPolarizations( ip ) ;
4060        askylo->setSelection( sel ) ;
4061        vector<float> sptsys = getTsysFromTime( reftime, askylo, "linear" ) ;
4062        const Vector<Float> Vtsyslo( sptsys ) ;
4063        tsysCollo.put( i, Vtsyslo ) ;
4064        askylo->unsetSelection() ;
4065        sel.reset() ;
4066        sref->setSpectrum( sp, i ) ;
4067        reftime = sref->getTime( i ) ;
4068        ii[0] = sref->getIF( i )  ;
4069        ib[0] = sref->getBeam( i ) ;
4070        ip[0] = sref->getPol( i ) ;
4071        sel.setIFs( ii ) ;
4072        sel.setBeams( ib ) ;
4073        sel.setPolarizations( ip ) ;
4074        askyhi->setSelection( sel ) ;   
4075        sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ;
4076        const Vector<Float> Vtsyshi( sptsys ) ;
4077        tsysColhi.put( i, Vtsyshi ) ;
4078        askyhi->unsetSelection() ;
4079        sel.reset() ;
4080      }
4081    }
4082  }
4083  else {
4084    // non-APEX fs data
4085    // sky scan
4086    STSelector sel = STSelector() ;
4087    types.push_back( SrcType::SKY ) ;
4088    sel.setTypes( types ) ;
4089    s->setSelection( sel ) ;
4090    vector< CountedPtr<Scantable> > tmp( 1, getScantable( s, false ) ) ;
4091    CountedPtr<Scantable> asky = average( tmp, masks, "TINT", "SCAN" ) ;
4092    s->unsetSelection() ;
4093    sel.reset() ;
4094    types.clear() ;
4095   
4096    // hot scan
4097    types.push_back( SrcType::HOT ) ;
4098    sel.setTypes( types ) ;
4099    s->setSelection( sel ) ;
4100    tmp.clear() ;
4101    tmp.push_back( getScantable( s, false ) ) ;
4102    CountedPtr<Scantable> ahot = average( tmp, masks, "TINT", "SCAN" ) ;
4103    s->unsetSelection() ;
4104    sel.reset() ;
4105    types.clear() ;
4106
4107    // cold scan
4108    CountedPtr<Scantable> acold ;
4109//     types.push_back( SrcType::COLD ) ;
4110//     sel.setTypes( types ) ;
4111//     s->setSelection( sel ) ;
4112//     tmp.clear() ;
4113//     tmp.push_back( getScantable( s, false ) ) ;
4114//     CountedPtr<Scantable> acold = average( tmp, masks, "TINT", "SCAN" ) ;
4115//     s->unsetSelection() ;
4116//     sel.reset() ;
4117//     types.clear() ;
4118   
4119    // ref scan
4120    bool insitu = insitu_ ;
4121    insitu_ = false ;
4122    sref = getScantable( s, true ) ;
4123    insitu_ = insitu ;
4124    types.push_back( SrcType::FSOFF ) ;
4125    sel.setTypes( types ) ;
4126    s->setSelection( sel ) ;
4127    TableCopy::copyRows( sref->table(), s->table() ) ;
4128    s->unsetSelection() ;
4129    sel.reset() ;
4130    types.clear() ;
4131   
4132    // sig scan
4133    insitu_ = false ;
4134    ssig = getScantable( s, true ) ;
4135    insitu_ = insitu ;
4136    types.push_back( SrcType::FSON ) ;
4137    sel.setTypes( types ) ;
4138    s->setSelection( sel ) ;
4139    TableCopy::copyRows( ssig->table(), s->table() ) ;
4140    s->unsetSelection() ;
4141    sel.reset() ;
4142    types.clear() ;
4143
4144    // process each sig and ref scan
4145    ArrayColumn<Float> tsysColsig ;
4146    tsysColsig.attach( ssig->table(), "TSYS" ) ;
4147    ArrayColumn<Float> tsysColref ;
4148    tsysColref.attach( ssig->table(), "TSYS" ) ;
4149    for ( int i = 0 ; i < ssig->nrow() ; i++ ) {
4150      vector<float> sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ;
4151      ssig->setSpectrum( sp, i ) ;
4152      string reftime = ssig->getTime( i ) ;
4153      vector<int> ii( 1, ssig->getIF( i ) ) ;
4154      vector<int> ib( 1, ssig->getBeam( i ) ) ;
4155      vector<int> ip( 1, ssig->getPol( i ) ) ;
4156      sel.setIFs( ii ) ;
4157      sel.setBeams( ib ) ;
4158      sel.setPolarizations( ip ) ;
4159      asky->setSelection( sel ) ;
4160      vector<float> sptsys = getTsysFromTime( reftime, asky, "linear" ) ;
4161      const Vector<Float> Vtsys( sptsys ) ;
4162      tsysColsig.put( i, Vtsys ) ;
4163      asky->unsetSelection() ;
4164      sel.reset() ;
4165      sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ;
4166      sref->setSpectrum( sp, i ) ;
4167      tsysColref.put( i, Vtsys ) ;
4168    }
4169  }
4170
4171  // do folding if necessary
4172  Table sigtab = ssig->table() ;
4173  Table reftab = sref->table() ;
4174  ScalarColumn<uInt> sigifnoCol ;
4175  ScalarColumn<uInt> refifnoCol ;
4176  ScalarColumn<uInt> sigfidCol ;
4177  ScalarColumn<uInt> reffidCol ;
4178  Int nchan = (Int)ssig->nchan() ;
4179  sigifnoCol.attach( sigtab, "IFNO" ) ;
4180  refifnoCol.attach( reftab, "IFNO" ) ;
4181  sigfidCol.attach( sigtab, "FREQ_ID" ) ;
4182  reffidCol.attach( reftab, "FREQ_ID" ) ;
4183  Vector<uInt> sfids( sigfidCol.getColumn() ) ;
4184  Vector<uInt> rfids( reffidCol.getColumn() ) ;
4185  vector<uInt> sfids_unique ;
4186  vector<uInt> rfids_unique ;
4187  vector<uInt> sifno_unique ;
4188  vector<uInt> rifno_unique ;
4189  for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) {
4190    if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) {
4191      sfids_unique.push_back( sfids[i] ) ;
4192      sifno_unique.push_back( ssig->getIF( i ) ) ;
4193    }
4194    if ( count( rfids_unique.begin(), rfids_unique.end(),  rfids[i] ) == 0 ) {
4195      rfids_unique.push_back( rfids[i] ) ;
4196      rifno_unique.push_back( sref->getIF( i ) ) ;
4197    }
4198  }
4199  double refpix_sig, refval_sig, increment_sig ;
4200  double refpix_ref, refval_ref, increment_ref ;
4201  vector< CountedPtr<Scantable> > tmp( sfids_unique.size() ) ;
4202  for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) {
4203    ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ;
4204    sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ;
4205    if ( refpix_sig == refpix_ref ) {
4206      double foffset = refval_ref - refval_sig ;
4207      int choffset = static_cast<int>(foffset/increment_sig) ;
4208      double doffset = foffset / increment_sig ;
4209      if ( abs(choffset) >= nchan ) {
4210        LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ;
4211        os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ;
4212        os << "Just return signal data" << LogIO::POST ;
4213        //std::vector< CountedPtr<Scantable> > tabs ;
4214        //tabs.push_back( ssig ) ;
4215        //tabs.push_back( sref ) ;
4216        //out = merge( tabs ) ;
4217        tmp[i] = ssig ;
4218      }
4219      else {
4220        STSelector sel = STSelector() ;
4221        vector<int> v( 1, sifno_unique[i] ) ;
4222        sel.setIFs( v ) ;
4223        ssig->setSelection( sel ) ;
4224        sel.reset() ;
4225        v[0] = rifno_unique[i] ;
4226        sel.setIFs( v ) ;
4227        sref->setSelection( sel ) ;
4228        sel.reset() ;
4229        if ( antname.find( "APEX" ) != string::npos ) {
4230          tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ;
4231          //tmp[i] = dofold( ssig, sref, doffset ) ;
4232        }
4233        else {
4234          tmp[i] = dofold( ssig, sref, doffset ) ;
4235        }
4236        ssig->unsetSelection() ;
4237        sref->unsetSelection() ;
4238      }
4239    }
4240  }
4241
4242  if ( tmp.size() > 1 ) {
4243    out = merge( tmp ) ;
4244  }
4245  else {
4246    out = tmp[0] ;
4247  }
4248
4249  // flux unit
4250  out->setFluxUnit( "K" ) ;
4251
4252  return out ;
4253}
4254
4255CountedPtr<Scantable> STMath::almacalfs( const CountedPtr<Scantable>& s )
4256{
4257  CountedPtr<Scantable> out ;
4258
4259  return out ;
4260}
4261
4262vector<float> STMath::getSpectrumFromTime( string reftime,
4263                                           CountedPtr<Scantable>& s,
4264                                           string mode )
4265{
4266  LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ;
4267  vector<float> sp ;
4268
4269  if ( s->nrow() == 0 ) {
4270    os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ;
4271    return sp ;
4272  }
4273  else if ( s->nrow() == 1 ) {
4274    //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ;
4275    return s->getSpectrum( 0 ) ;
4276  }
4277  else {
4278    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4279    if ( mode == "before" ) {
4280      int id = -1 ;
4281      if ( idx[0] != -1 ) {
4282        id = idx[0] ;
4283      }
4284      else if ( idx[1] != -1 ) {
4285        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4286        id = idx[1] ;
4287      }
4288      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4289      sp = s->getSpectrum( id ) ;
4290    }
4291    else if ( mode == "after" ) {
4292      int id = -1 ;
4293      if ( idx[1] != -1 ) {
4294        id = idx[1] ;
4295      }
4296      else if ( idx[0] != -1 ) {
4297        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4298        id = idx[1] ;
4299      }
4300      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4301      sp = s->getSpectrum( id ) ;
4302    }
4303    else if ( mode == "nearest" ) {
4304      int id = -1 ;
4305      if ( idx[0] == -1 ) {
4306        id = idx[1] ;
4307      }
4308      else if ( idx[1] == -1 ) {
4309        id = idx[0] ;
4310      }
4311      else if ( idx[0] == idx[1] ) {
4312        id = idx[0] ;
4313      }
4314      else {
4315        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4316        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4317        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4318        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4319        double tref = getMJD( reftime ) ;
4320        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4321          id = idx[1] ;
4322        }
4323        else {
4324          id = idx[0] ;
4325        }
4326      }
4327      //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4328      sp = s->getSpectrum( id ) ;     
4329    }
4330    else if ( mode == "linear" ) {
4331      if ( idx[0] == -1 ) {
4332        // use after
4333        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4334        int id = idx[1] ;
4335        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4336        sp = s->getSpectrum( id ) ;
4337      }
4338      else if ( idx[1] == -1 ) {
4339        // use before
4340        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4341        int id = idx[0] ;
4342        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4343        sp = s->getSpectrum( id ) ;
4344      }
4345      else if ( idx[0] == idx[1] ) {
4346        // use before
4347        //os << "No need to interporate." << LogIO::POST ;
4348        int id = idx[0] ;
4349        //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ;
4350        sp = s->getSpectrum( id ) ;
4351      }
4352      else {
4353        // do interpolation
4354        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4355        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4356        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4357        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4358        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4359        double tref = getMJD( reftime ) ;
4360        vector<float> sp0 = s->getSpectrum( idx[0] ) ;
4361        vector<float> sp1 = s->getSpectrum( idx[1] ) ;
4362        for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) {
4363          float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ;
4364          sp.push_back( v ) ;
4365        }
4366      }
4367    }
4368    else {
4369      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4370    }
4371    return sp ;
4372  }
4373}
4374
4375double STMath::getMJD( string strtime )
4376{
4377  if ( strtime.find("/") == string::npos ) {
4378    // MJD time string
4379    return atof( strtime.c_str() ) ;
4380  }
4381  else {
4382    // string in YYYY/MM/DD/HH:MM:SS format
4383    uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ;
4384    uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ;
4385    uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ;
4386    uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ;
4387    uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ;
4388    uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ;
4389    Time t( year, month, day, hour, minute, sec ) ;
4390    return t.modifiedJulianDay() ;
4391  }
4392}
4393
4394vector<int> STMath::getRowIdFromTime( string reftime, CountedPtr<Scantable> &s )
4395{
4396  double reft = getMJD( reftime ) ;
4397  double dtmin = 1.0e100 ;
4398  double dtmax = -1.0e100 ;
4399  vector<double> dt ;
4400  int just_before = -1 ;
4401  int just_after = -1 ;
4402  for ( int i = 0 ; i < s->nrow() ; i++ ) {
4403    dt.push_back( getMJD( s->getTime( i ) ) - reft ) ;
4404  }
4405  for ( unsigned int i = 0 ; i < dt.size() ; i++ ) {
4406    if ( dt[i] > 0.0 ) {
4407      // after reftime
4408      if ( dt[i] < dtmin ) {
4409        just_after = i ;
4410        dtmin = dt[i] ;
4411      }
4412    }
4413    else if ( dt[i] < 0.0 ) {
4414      // before reftime
4415      if ( dt[i] > dtmax ) {
4416        just_before = i ;
4417        dtmax = dt[i] ;
4418      }
4419    }
4420    else {
4421      // just a reftime
4422      just_before = i ;
4423      just_after = i ;
4424      dtmax = 0 ;
4425      dtmin = 0 ;
4426      break ;
4427    }
4428  }
4429
4430  vector<int> v ;
4431  v.push_back( just_before ) ;
4432  v.push_back( just_after ) ;
4433
4434  return v ;
4435}
4436
4437vector<float> STMath::getTcalFromTime( string reftime,
4438                                       CountedPtr<Scantable>& s,
4439                                       string mode )
4440{
4441  LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ;
4442  vector<float> tcal ;
4443  STTcal tcalTable = s->tcal() ;
4444  String time ;
4445  Vector<Float> tcalval ;
4446  if ( s->nrow() == 0 ) {
4447    os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ;
4448    return tcal ;
4449  }
4450  else if ( s->nrow() == 1 ) {
4451    uInt tcalid = s->getTcalId( 0 ) ;
4452    //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4453    tcalTable.getEntry( time, tcalval, tcalid ) ;
4454    tcalval.tovector( tcal ) ;
4455    return tcal ;
4456  }
4457  else {
4458    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4459    if ( mode == "before" ) {
4460      int id = -1 ;
4461      if ( idx[0] != -1 ) {
4462        id = idx[0] ;
4463      }
4464      else if ( idx[1] != -1 ) {
4465        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4466        id = idx[1] ;
4467      }
4468      uInt tcalid = s->getTcalId( id ) ;
4469      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4470      tcalTable.getEntry( time, tcalval, tcalid ) ;
4471      tcalval.tovector( tcal ) ;
4472    }
4473    else if ( mode == "after" ) {
4474      int id = -1 ;
4475      if ( idx[1] != -1 ) {
4476        id = idx[1] ;
4477      }
4478      else if ( idx[0] != -1 ) {
4479        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4480        id = idx[1] ;
4481      }
4482      uInt tcalid = s->getTcalId( id ) ;
4483      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4484      tcalTable.getEntry( time, tcalval, tcalid ) ;
4485      tcalval.tovector( tcal ) ;
4486    }
4487    else if ( mode == "nearest" ) {
4488      int id = -1 ;
4489      if ( idx[0] == -1 ) {
4490        id = idx[1] ;
4491      }
4492      else if ( idx[1] == -1 ) {
4493        id = idx[0] ;
4494      }
4495      else if ( idx[0] == idx[1] ) {
4496        id = idx[0] ;
4497      }
4498      else {
4499        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4500        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4501        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4502        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4503        double tref = getMJD( reftime ) ;
4504        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4505          id = idx[1] ;
4506        }
4507        else {
4508          id = idx[0] ;
4509        }
4510      }
4511      uInt tcalid = s->getTcalId( id ) ;
4512      //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4513      tcalTable.getEntry( time, tcalval, tcalid ) ;
4514      tcalval.tovector( tcal ) ;
4515    }
4516    else if ( mode == "linear" ) {
4517      if ( idx[0] == -1 ) {
4518        // use after
4519        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4520        int id = idx[1] ;
4521        uInt tcalid = s->getTcalId( id ) ;
4522        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4523        tcalTable.getEntry( time, tcalval, tcalid ) ;
4524        tcalval.tovector( tcal ) ;
4525      }
4526      else if ( idx[1] == -1 ) {
4527        // use before
4528        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4529        int id = idx[0] ;
4530        uInt tcalid = s->getTcalId( id ) ;
4531        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4532        tcalTable.getEntry( time, tcalval, tcalid ) ;
4533        tcalval.tovector( tcal ) ;
4534      }
4535      else if ( idx[0] == idx[1] ) {
4536        // use before
4537        //os << "No need to interporate." << LogIO::POST ;
4538        int id = idx[0] ;
4539        uInt tcalid = s->getTcalId( id ) ;
4540        //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ;
4541        tcalTable.getEntry( time, tcalval, tcalid ) ;
4542        tcalval.tovector( tcal ) ;
4543      }
4544      else {
4545        // do interpolation
4546        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4547        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4548        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4549        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4550        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4551        double tref = getMJD( reftime ) ;
4552        vector<float> tcal0 ;
4553        vector<float> tcal1 ;
4554        uInt tcalid0 = s->getTcalId( idx[0] ) ;
4555        uInt tcalid1 = s->getTcalId( idx[1] ) ;
4556        tcalTable.getEntry( time, tcalval, tcalid0 ) ;
4557        tcalval.tovector( tcal0 ) ;
4558        tcalTable.getEntry( time, tcalval, tcalid1 ) ;
4559        tcalval.tovector( tcal1 ) ;       
4560        for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) {
4561          float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ;
4562          tcal.push_back( v ) ;
4563        }
4564      }
4565    }
4566    else {
4567      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4568    }
4569    return tcal ;
4570  }
4571}
4572
4573vector<float> STMath::getTsysFromTime( string reftime,
4574                                       CountedPtr<Scantable>& s,
4575                                       string mode )
4576{
4577  LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ;
4578  ArrayColumn<Float> tsysCol ;
4579  tsysCol.attach( s->table(), "TSYS" ) ;
4580  vector<float> tsys ;
4581  String time ;
4582  Vector<Float> tsysval ;
4583  if ( s->nrow() == 0 ) {
4584    os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ;
4585    return tsys ;
4586  }
4587  else if ( s->nrow() == 1 ) {
4588    //os << "use row " << 0 << LogIO::POST ;
4589    tsysval = tsysCol( 0 ) ;
4590    tsysval.tovector( tsys ) ;
4591    return tsys ;
4592  }
4593  else {
4594    vector<int> idx = getRowIdFromTime( reftime, s ) ;
4595    if ( mode == "before" ) {
4596      int id = -1 ;
4597      if ( idx[0] != -1 ) {
4598        id = idx[0] ;
4599      }
4600      else if ( idx[1] != -1 ) {
4601        os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ;
4602        id = idx[1] ;
4603      }
4604      //os << "use row " << id << LogIO::POST ;
4605      tsysval = tsysCol( id ) ;
4606      tsysval.tovector( tsys ) ;
4607    }
4608    else if ( mode == "after" ) {
4609      int id = -1 ;
4610      if ( idx[1] != -1 ) {
4611        id = idx[1] ;
4612      }
4613      else if ( idx[0] != -1 ) {
4614        os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ;
4615        id = idx[1] ;
4616      }
4617      //os << "use row " << id << LogIO::POST ;
4618      tsysval = tsysCol( id ) ;
4619      tsysval.tovector( tsys ) ;
4620    }
4621    else if ( mode == "nearest" ) {
4622      int id = -1 ;
4623      if ( idx[0] == -1 ) {
4624        id = idx[1] ;
4625      }
4626      else if ( idx[1] == -1 ) {
4627        id = idx[0] ;
4628      }
4629      else if ( idx[0] == idx[1] ) {
4630        id = idx[0] ;
4631      }
4632      else {
4633        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4634        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4635        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4636        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4637        double tref = getMJD( reftime ) ;
4638        if ( abs( t0 - tref ) > abs( t1 - tref ) ) {
4639          id = idx[1] ;
4640        }
4641        else {
4642          id = idx[0] ;
4643        }
4644      }
4645      //os << "use row " << id << LogIO::POST ;
4646      tsysval = tsysCol( id ) ;
4647      tsysval.tovector( tsys ) ;
4648    }
4649    else if ( mode == "linear" ) {
4650      if ( idx[0] == -1 ) {
4651        // use after
4652        os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ;
4653        int id = idx[1] ;
4654        //os << "use row " << id << LogIO::POST ;
4655        tsysval = tsysCol( id ) ;
4656        tsysval.tovector( tsys ) ;
4657      }
4658      else if ( idx[1] == -1 ) {
4659        // use before
4660        os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ;
4661        int id = idx[0] ;
4662        //os << "use row " << id << LogIO::POST ;
4663        tsysval = tsysCol( id ) ;
4664        tsysval.tovector( tsys ) ;
4665      }
4666      else if ( idx[0] == idx[1] ) {
4667        // use before
4668        //os << "No need to interporate." << LogIO::POST ;
4669        int id = idx[0] ;
4670        //os << "use row " << id << LogIO::POST ;
4671        tsysval = tsysCol( id ) ;
4672        tsysval.tovector( tsys ) ;
4673      }
4674      else {
4675        // do interpolation
4676        //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ;
4677        //double t0 = getMJD( s->getTime( idx[0] ) ) ;
4678        //double t1 = getMJD( s->getTime( idx[1] ) ) ;
4679        double t0 = s->getEpoch( idx[0] ).get( Unit( "d" ) ).getValue() ;
4680        double t1 = s->getEpoch( idx[1] ).get( Unit( "d" ) ).getValue() ;
4681        double tref = getMJD( reftime ) ;
4682        vector<float> tsys0 ;
4683        vector<float> tsys1 ;
4684        tsysval = tsysCol( idx[0] ) ;
4685        tsysval.tovector( tsys0 ) ;
4686        tsysval = tsysCol( idx[1] ) ;
4687        tsysval.tovector( tsys1 ) ;       
4688        for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) {
4689          float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ;
4690          tsys.push_back( v ) ;
4691        }
4692      }
4693    }
4694    else {
4695      os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ;
4696    }
4697    return tsys ;
4698  }
4699}
4700
4701vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4702                                            CountedPtr<Scantable>& off,
4703                                            CountedPtr<Scantable>& sky,
4704                                            CountedPtr<Scantable>& hot,
4705                                            CountedPtr<Scantable>& cold,
4706                                            int index,
4707                                            string antname )
4708{
4709  string reftime = on->getTime( index ) ;
4710  vector<int> ii( 1, on->getIF( index ) ) ;
4711  vector<int> ib( 1, on->getBeam( index ) ) ;
4712  vector<int> ip( 1, on->getPol( index ) ) ;
4713  vector<int> ic( 1, on->getScan( index ) ) ;
4714  STSelector sel = STSelector() ;
4715  sel.setIFs( ii ) ;
4716  sel.setBeams( ib ) ;
4717  sel.setPolarizations( ip ) ;
4718  sky->setSelection( sel ) ;
4719  hot->setSelection( sel ) ;
4720  //cold->setSelection( sel ) ;
4721  off->setSelection( sel ) ;
4722  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4723  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4724  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4725  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4726  vector<float> spec = on->getSpectrum( index ) ;
4727  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4728  vector<float> sp( tcal.size() ) ;
4729  if ( antname.find( "APEX" ) != string::npos ) {
4730    // using gain array
4731    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4732      float v = ( ( spec[j] - spoff[j] ) / spoff[j] )
4733        * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ;
4734      sp[j] = v ;
4735    }
4736  }
4737  else {
4738    // Chopper-Wheel calibration (Ulich & Haas 1976)
4739    for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4740      float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ;
4741      sp[j] = v ;
4742    }
4743  }
4744  sel.reset() ;
4745  sky->unsetSelection() ;
4746  hot->unsetSelection() ;
4747  //cold->unsetSelection() ;
4748  off->unsetSelection() ;
4749
4750  return sp ;
4751}
4752
4753vector<float> STMath::getCalibratedSpectra( CountedPtr<Scantable>& on,
4754                                            CountedPtr<Scantable>& off,
4755                                            int index )
4756{
4757  string reftime = on->getTime( index ) ;
4758  vector<int> ii( 1, on->getIF( index ) ) ;
4759  vector<int> ib( 1, on->getBeam( index ) ) ;
4760  vector<int> ip( 1, on->getPol( index ) ) ;
4761  vector<int> ic( 1, on->getScan( index ) ) ;
4762  STSelector sel = STSelector() ;
4763  sel.setIFs( ii ) ;
4764  sel.setBeams( ib ) ;
4765  sel.setPolarizations( ip ) ;
4766  off->setSelection( sel ) ;
4767  vector<float> spoff = getSpectrumFromTime( reftime, off, "linear" ) ;
4768  vector<float> spec = on->getSpectrum( index ) ;
4769  //vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4770  //vector<float> tsys = on->getTsysVec( index ) ;
4771  ArrayColumn<Float> tsysCol( on->table(), "TSYS" ) ;
4772  Vector<Float> tsys = tsysCol( index ) ;
4773  vector<float> sp( spec.size() ) ;
4774  // ALMA Calibration
4775  //
4776  // Ta* = Tsys * ( ON - OFF ) / OFF
4777  //
4778  // 2010/01/07 Takeshi Nakazato
4779  unsigned int tsyssize = tsys.nelements() ;
4780  unsigned int spsize = sp.size() ;
4781  for ( unsigned int j = 0 ; j < sp.size() ; j++ ) {
4782    float tscale = 0.0 ;
4783    if ( tsyssize == spsize )
4784      tscale = tsys[j] ;
4785    else
4786      tscale = tsys[0] ;
4787    float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ;
4788    sp[j] = v ;
4789  }
4790  sel.reset() ;
4791  off->unsetSelection() ;
4792
4793  return sp ;
4794}
4795
4796vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4797                                              CountedPtr<Scantable>& ref,
4798                                              CountedPtr<Scantable>& sky,
4799                                              CountedPtr<Scantable>& hot,
4800                                              CountedPtr<Scantable>& cold,
4801                                              int index )
4802{
4803  string reftime = sig->getTime( index ) ;
4804  vector<int> ii( 1, sig->getIF( index ) ) ;
4805  vector<int> ib( 1, sig->getBeam( index ) ) ;
4806  vector<int> ip( 1, sig->getPol( index ) ) ;
4807  vector<int> ic( 1, sig->getScan( index ) ) ;
4808  STSelector sel = STSelector() ;
4809  sel.setIFs( ii ) ;
4810  sel.setBeams( ib ) ;
4811  sel.setPolarizations( ip ) ;
4812  sky->setSelection( sel ) ;
4813  hot->setSelection( sel ) ;
4814  //cold->setSelection( sel ) ;
4815  vector<float> spsky = getSpectrumFromTime( reftime, sky, "linear" ) ;
4816  vector<float> sphot = getSpectrumFromTime( reftime, hot, "linear" ) ;
4817  //vector<float> spcold = getSpectrumFromTime( reftime, cold, "linear" ) ;
4818  vector<float> spref = ref->getSpectrum( index ) ;
4819  vector<float> spsig = sig->getSpectrum( index ) ;
4820  vector<float> tcal = getTcalFromTime( reftime, sky, "linear" ) ;
4821  vector<float> sp( tcal.size() ) ;
4822  for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) {
4823    float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ;
4824    sp[j] = v ;
4825  }
4826  sel.reset() ;
4827  sky->unsetSelection() ;
4828  hot->unsetSelection() ;
4829  //cold->unsetSelection() ;
4830
4831  return sp ;
4832}
4833
4834vector<float> STMath::getFSCalibratedSpectra( CountedPtr<Scantable>& sig,
4835                                              CountedPtr<Scantable>& ref,
4836                                              vector< CountedPtr<Scantable> >& sky,
4837                                              vector< CountedPtr<Scantable> >& hot,
4838                                              vector< CountedPtr<Scantable> >& cold,
4839                                              int index )
4840{
4841  string reftime = sig->getTime( index ) ;
4842  vector<int> ii( 1, sig->getIF( index ) ) ;
4843  vector<int> ib( 1, sig->getBeam( index ) ) ;
4844  vector<int> ip( 1, sig->getPol( index ) ) ;
4845  vector<int> ic( 1, sig->getScan( index ) ) ;
4846  STSelector sel = STSelector() ;
4847  sel.setIFs( ii ) ;
4848  sel.setBeams( ib ) ;
4849  sel.setPolarizations( ip ) ;
4850  sky[0]->setSelection( sel ) ;
4851  hot[0]->setSelection( sel ) ;
4852  //cold[0]->setSelection( sel ) ;
4853  vector<float> spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ;
4854  vector<float> sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ;
4855  //vector<float> spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ;
4856  vector<float> tcals = getTcalFromTime( reftime, sky[0], "linear" ) ;
4857  sel.reset() ;
4858  ii[0] = ref->getIF( index ) ;
4859  sel.setIFs( ii ) ;
4860  sel.setBeams( ib ) ;
4861  sel.setPolarizations( ip ) ;
4862  sky[1]->setSelection( sel ) ;
4863  hot[1]->setSelection( sel ) ;
4864  //cold[1]->setSelection( sel ) ;
4865  vector<float> spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ;
4866  vector<float> sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ;
4867  //vector<float> spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ;
4868  vector<float> tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; 
4869  vector<float> spref = ref->getSpectrum( index ) ;
4870  vector<float> spsig = sig->getSpectrum( index ) ;
4871  vector<float> sp( tcals.size() ) ;
4872  for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) {
4873    float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ;
4874    sp[j] = v ;
4875  }
4876  sel.reset() ;
4877  sky[0]->unsetSelection() ;
4878  hot[0]->unsetSelection() ;
4879  //cold[0]->unsetSelection() ;
4880  sky[1]->unsetSelection() ;
4881  hot[1]->unsetSelection() ;
4882  //cold[1]->unsetSelection() ;
4883
4884  return sp ;
4885}
Note: See TracBrowser for help on using the repository browser.