| 1 | //#--------------------------------------------------------------------------- | 
|---|
| 2 | //# pks_maths.cc: Mathematical functions for Parkes single-dish data reduction | 
|---|
| 3 | //#--------------------------------------------------------------------------- | 
|---|
| 4 | //# livedata - processing pipeline for single-dish, multibeam spectral data. | 
|---|
| 5 | //# Copyright (C) 2004-2009, Australia Telescope National Facility, CSIRO | 
|---|
| 6 | //# | 
|---|
| 7 | //# This file is part of livedata. | 
|---|
| 8 | //# | 
|---|
| 9 | //# livedata is free software: you can redistribute it and/or modify it under | 
|---|
| 10 | //# the terms of the GNU General Public License as published by the Free | 
|---|
| 11 | //# Software Foundation, either version 3 of the License, or (at your option) | 
|---|
| 12 | //# any later version. | 
|---|
| 13 | //# | 
|---|
| 14 | //# livedata is distributed in the hope that it will be useful, but WITHOUT | 
|---|
| 15 | //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|---|
| 16 | //# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|---|
| 17 | //# more details. | 
|---|
| 18 | //# | 
|---|
| 19 | //# You should have received a copy of the GNU General Public License along | 
|---|
| 20 | //# with livedata.  If not, see <http://www.gnu.org/licenses/>. | 
|---|
| 21 | //# | 
|---|
| 22 | //# Correspondence concerning livedata may be directed to: | 
|---|
| 23 | //#        Internet email: mcalabre@atnf.csiro.au | 
|---|
| 24 | //#        Postal address: Dr. Mark Calabretta | 
|---|
| 25 | //#                        Australia Telescope National Facility, CSIRO | 
|---|
| 26 | //#                        PO Box 76 | 
|---|
| 27 | //#                        Epping NSW 1710 | 
|---|
| 28 | //#                        AUSTRALIA | 
|---|
| 29 | //# | 
|---|
| 30 | //# http://www.atnf.csiro.au/computing/software/livedata.html | 
|---|
| 31 | //# $Id: pks_maths.cc,v 1.7 2009-09-29 07:45:02 cal103 Exp $ | 
|---|
| 32 | //#--------------------------------------------------------------------------- | 
|---|
| 33 | //# Original: 2004/07/16 Mark Calabretta | 
|---|
| 34 | //#--------------------------------------------------------------------------- | 
|---|
| 35 |  | 
|---|
| 36 | // AIPS++ includes. | 
|---|
| 37 | #include <casa/aips.h> | 
|---|
| 38 | #include <casa/math.h> | 
|---|
| 39 | #include <casa/Arrays/ArrayMath.h> | 
|---|
| 40 | #include <casa/Arrays/Vector.h> | 
|---|
| 41 | #include <casa/BasicSL/Constants.h> | 
|---|
| 42 | #include <casa/Utilities/GenSort.h> | 
|---|
| 43 |  | 
|---|
| 44 | // Parkes includes. | 
|---|
| 45 | #include <atnf/pks/pks_maths.h> | 
|---|
| 46 |  | 
|---|
| 47 |  | 
|---|
| 48 | //----------------------------------------------------------------------- nint | 
|---|
| 49 |  | 
|---|
| 50 | // Nearest integral value; halfway cases are rounded to the integral value | 
|---|
| 51 | // larger in value.  No check is made for integer overflow. | 
|---|
| 52 |  | 
|---|
| 53 | Int nint(Double v) | 
|---|
| 54 | { | 
|---|
| 55 | return Int(floor(v + 0.5)); | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 | //---------------------------------------------------------------------- anint | 
|---|
| 59 |  | 
|---|
| 60 | // Nearest integral value; halfway cases are rounded to the integral value | 
|---|
| 61 | // larger in value. | 
|---|
| 62 |  | 
|---|
| 63 | Double anint(Double v) | 
|---|
| 64 | { | 
|---|
| 65 | return floor(v + 0.5); | 
|---|
| 66 | } | 
|---|
| 67 |  | 
|---|
| 68 | //---------------------------------------------------------------------- round | 
|---|
| 69 |  | 
|---|
| 70 | // Round value v to the nearest integral multiple of precision p. | 
|---|
| 71 |  | 
|---|
| 72 | Double round(Double v, Double p) | 
|---|
| 73 | { | 
|---|
| 74 | return p * floor(v/p + 0.5); | 
|---|
| 75 | } | 
|---|
| 76 |  | 
|---|
| 77 | //--------------------------------------------------------------------- median | 
|---|
| 78 |  | 
|---|
| 79 | // Compute the weighted median value of an array. | 
|---|
| 80 |  | 
|---|
| 81 | Float median(const Vector<Float> &v, const Vector<Float> &wgt) | 
|---|
| 82 | { | 
|---|
| 83 | uInt nElem = v.nelements(); | 
|---|
| 84 | if (nElem == 0) return 0.0f; | 
|---|
| 85 |  | 
|---|
| 86 | // Generate the sort index. | 
|---|
| 87 | Vector<uInt> sortindex(nElem); | 
|---|
| 88 | GenSortIndirect<Float>::sort(sortindex, v); | 
|---|
| 89 |  | 
|---|
| 90 | // Find the middle weight. | 
|---|
| 91 | Float wgt_2 = sum(wgt)/2.0f; | 
|---|
| 92 |  | 
|---|
| 93 | // Find the corresponding vector element. | 
|---|
| 94 | Float weight = 0.0f; | 
|---|
| 95 | Float accwgt = 0.0f; | 
|---|
| 96 | uInt j1 = 0; | 
|---|
| 97 | uInt j2; | 
|---|
| 98 | for (j2 = 0; j2 < nElem; j2++) { | 
|---|
| 99 | weight = wgt(sortindex(j2)); | 
|---|
| 100 | if (weight == 0.0f) { | 
|---|
| 101 | // Ignore zero-weight data; | 
|---|
| 102 | continue; | 
|---|
| 103 | } | 
|---|
| 104 |  | 
|---|
| 105 | // The accumulated weight. | 
|---|
| 106 | accwgt += weight; | 
|---|
| 107 |  | 
|---|
| 108 | if (accwgt <= wgt_2) { | 
|---|
| 109 | // Keep looping. | 
|---|
| 110 | j1 = j2; | 
|---|
| 111 | } else { | 
|---|
| 112 | break; | 
|---|
| 113 | } | 
|---|
| 114 | } | 
|---|
| 115 |  | 
|---|
| 116 | // Compute weighted median. | 
|---|
| 117 | Float v1 = v(sortindex(j1)); | 
|---|
| 118 | Float v2 = v(sortindex(j2)); | 
|---|
| 119 |  | 
|---|
| 120 | // Compute pro-rata value from below. | 
|---|
| 121 | Float dw = wgt_2 - (accwgt - weight); | 
|---|
| 122 | v1 += (v2 - v1) * dw / weight; | 
|---|
| 123 |  | 
|---|
| 124 | // Find next non-zero-weight value. | 
|---|
| 125 | for (j2++ ; j2 < nElem; j2++) { | 
|---|
| 126 | weight = wgt(sortindex(j2)); | 
|---|
| 127 | if (weight != 0.0f) { | 
|---|
| 128 | break; | 
|---|
| 129 | } | 
|---|
| 130 | } | 
|---|
| 131 |  | 
|---|
| 132 | if (j2 < nElem) { | 
|---|
| 133 | // Compute pro-rata value from above. | 
|---|
| 134 | Float v3 = v(sortindex(j2)); | 
|---|
| 135 |  | 
|---|
| 136 | v2 += (v3 - v2) * dw / weight; | 
|---|
| 137 | } | 
|---|
| 138 |  | 
|---|
| 139 | return (v1 + v2)/2.0f; | 
|---|
| 140 | } | 
|---|
| 141 |  | 
|---|
| 142 | //---------------------------------------------------------------- angularDist | 
|---|
| 143 |  | 
|---|
| 144 | // Determine the angular distance between two directions (angles in radians). | 
|---|
| 145 |  | 
|---|
| 146 | Double angularDist(Double lng0, Double lat0, Double lng, Double lat) | 
|---|
| 147 | { | 
|---|
| 148 | Double costheta = sin(lat0)*sin(lat) + cos(lat0)*cos(lat)*cos(lng0-lng); | 
|---|
| 149 | return acos(costheta); | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | //--------------------------------------------------------------------- distPA | 
|---|
| 153 |  | 
|---|
| 154 | void distPA(Double lng0, Double lat0, Double lng, Double lat, Double &dist, | 
|---|
| 155 | Double &pa) | 
|---|
| 156 |  | 
|---|
| 157 | // Determine the generalized position angle of the field point (lng,lat) from | 
|---|
| 158 | // the reference point (lng0,lat0) and the angular distance between them | 
|---|
| 159 | // (angles in radians). | 
|---|
| 160 |  | 
|---|
| 161 | { | 
|---|
| 162 | // Euler angles which rotate the coordinate frame so that (lng0,lat0) is | 
|---|
| 163 | // at the pole of the new system, with the pole of the old system at zero | 
|---|
| 164 | // longitude in the new. | 
|---|
| 165 | Double phi0  =  C::pi_2 + lng0; | 
|---|
| 166 | Double theta =  C::pi_2 - lat0; | 
|---|
| 167 | Double phi   = -C::pi_2; | 
|---|
| 168 |  | 
|---|
| 169 | // Rotate the field point to the new system. | 
|---|
| 170 | Double alpha, beta; | 
|---|
| 171 | eulerx(lng, lat, phi0, theta, phi, alpha, beta); | 
|---|
| 172 |  | 
|---|
| 173 | dist = C::pi_2 - beta; | 
|---|
| 174 | pa   = -alpha; | 
|---|
| 175 | if (pa < -C::pi) pa = pa + C::_2pi; | 
|---|
| 176 | } | 
|---|
| 177 |  | 
|---|
| 178 | //--------------------------------------------------------------------- eulerx | 
|---|
| 179 |  | 
|---|
| 180 | void eulerx(Double lng0, Double lat0, Double phi0, Double theta, Double phi, | 
|---|
| 181 | Double &lng1, Double &lat1) | 
|---|
| 182 |  | 
|---|
| 183 | // Applies the Euler angle based transformation of spherical coordinates. | 
|---|
| 184 | // | 
|---|
| 185 | //     phi0  Longitude of the ascending node in the old system, radians.  The | 
|---|
| 186 | //           ascending node is the point of intersection of the equators of | 
|---|
| 187 | //           the two systems such that the equator of the new system crosses | 
|---|
| 188 | //           from south to north as viewed in the old system. | 
|---|
| 189 | // | 
|---|
| 190 | //    theta  Angle between the poles of the two systems, radians.  THETA is | 
|---|
| 191 | //           positive for a positive rotation about the ascending node. | 
|---|
| 192 | // | 
|---|
| 193 | //      phi  Longitude of the ascending node in the new system, radians. | 
|---|
| 194 |  | 
|---|
| 195 | { | 
|---|
| 196 | // Compute intermediaries. | 
|---|
| 197 | Double lng0p  = lng0 - phi0; | 
|---|
| 198 | Double slng0p = sin(lng0p); | 
|---|
| 199 | Double clng0p = cos(lng0p); | 
|---|
| 200 | Double slat0  = sin(lat0); | 
|---|
| 201 | Double clat0  = cos(lat0); | 
|---|
| 202 | Double ctheta = cos(theta); | 
|---|
| 203 | Double stheta = sin(theta); | 
|---|
| 204 |  | 
|---|
| 205 | Double x = clat0*clng0p; | 
|---|
| 206 | Double y = clat0*slng0p*ctheta + slat0*stheta; | 
|---|
| 207 |  | 
|---|
| 208 | // Longitude in the new system. | 
|---|
| 209 | if (x != 0.0 || y != 0.0) { | 
|---|
| 210 | lng1 = phi + atan2(y, x); | 
|---|
| 211 | } else { | 
|---|
| 212 | // Longitude at the poles in the new system is consistent with that | 
|---|
| 213 | // specified in the old system. | 
|---|
| 214 | lng1 = phi + lng0p; | 
|---|
| 215 | } | 
|---|
| 216 | lng1 = fmod(lng1, C::_2pi); | 
|---|
| 217 | if (lng1 < 0.0) lng1 += C::_2pi; | 
|---|
| 218 |  | 
|---|
| 219 | lat1 = asin(slat0*ctheta - clat0*stheta*slng0p); | 
|---|
| 220 | } | 
|---|
| 221 |  | 
|---|
| 222 | //------------------------------------------------------------------------ sol | 
|---|
| 223 |  | 
|---|
| 224 | // Low precision coordinates of the Sun (accurate to 1 arcmin between 1800 and | 
|---|
| 225 | // 2200) from http://aa.usno.navy.mil/faq/docs/SunApprox.html matches closely | 
|---|
| 226 | // that in the Astronomical Almanac. | 
|---|
| 227 |  | 
|---|
| 228 | void sol(Double mjd, Double &elng, Double &ra, Double &dec) | 
|---|
| 229 | { | 
|---|
| 230 | Double d2r = C::pi/180.0; | 
|---|
| 231 |  | 
|---|
| 232 | // Number of days since J2000.0. | 
|---|
| 233 | Double d = mjd - 51544.5; | 
|---|
| 234 |  | 
|---|
| 235 | // Mean longitude and mean anomaly of the Sun (deg). | 
|---|
| 236 | Double L = 280.459 + 0.98564736*d; | 
|---|
| 237 | Double g = 357.529 + 0.98560028*d; | 
|---|
| 238 |  | 
|---|
| 239 | // Apparent ecliptic longitude corrected for aberration (deg). | 
|---|
| 240 | g *= d2r; | 
|---|
| 241 | elng = L + 1.915*sin(g) + 0.020*sin(g+g); | 
|---|
| 242 | elng = fmod(elng, 360.0); | 
|---|
| 243 | if (elng < 0.0) elng += 360.0; | 
|---|
| 244 |  | 
|---|
| 245 | // Obliquity of the ecliptic (deg). | 
|---|
| 246 | Double epsilon = 23.439 - 0.00000036*d; | 
|---|
| 247 |  | 
|---|
| 248 | // Transform ecliptic to equatorial coordinates. | 
|---|
| 249 | elng *= d2r; | 
|---|
| 250 | epsilon *= d2r; | 
|---|
| 251 | ra  = atan2(cos(epsilon)*sin(elng), cos(elng)); | 
|---|
| 252 | dec = asin(sin(epsilon)*sin(elng)); | 
|---|
| 253 | if (ra < 0.0) ra += C::_2pi; | 
|---|
| 254 | } | 
|---|
| 255 |  | 
|---|
| 256 | //------------------------------------------------------------------------ gst | 
|---|
| 257 |  | 
|---|
| 258 | // Greenwich mean sidereal time, and low precision Greenwich apparent sidereal | 
|---|
| 259 | // time, both in radian, from http://aa.usno.navy.mil/faq/docs/GAST.html.  UT1 | 
|---|
| 260 | // is given in MJD form. | 
|---|
| 261 |  | 
|---|
| 262 | void gst(Double ut1, Double &gmst, Double &gast) | 
|---|
| 263 | { | 
|---|
| 264 | Double d2r = C::pi/180.0; | 
|---|
| 265 |  | 
|---|
| 266 | Double d  = ut1 - 51544.5; | 
|---|
| 267 | Double d0 = int(ut1) - 51544.5; | 
|---|
| 268 | Double h = 24.0*(d - d0); | 
|---|
| 269 | Double t = d / 35625.0; | 
|---|
| 270 |  | 
|---|
| 271 | // GMST (hr). | 
|---|
| 272 | gmst = 6.697374558 + 0.06570982441908*d0 + 1.00273790935*h + 0.000026*t*t; | 
|---|
| 273 | gmst = fmod(gmst, 24.0); | 
|---|
| 274 |  | 
|---|
| 275 | // Longitude of the ascending node of the Moon (deg). | 
|---|
| 276 | Double Omega = 125.04 - 0.052954*d; | 
|---|
| 277 |  | 
|---|
| 278 | // Mean Longitude of the Sun (deg). | 
|---|
| 279 | Double L = 280.47 + 0.98565*d; | 
|---|
| 280 |  | 
|---|
| 281 | // Obliquity of the ecliptic (deg). | 
|---|
| 282 | Double epsilon = 23.4393 - 0.0000004*d; | 
|---|
| 283 |  | 
|---|
| 284 | // Approximate nutation in longitude (hr). | 
|---|
| 285 | Double dpsi = -0.000319*sin(Omega*d2r) - 0.000024*sin((L+L)*d2r); | 
|---|
| 286 |  | 
|---|
| 287 | // Equation of the equinoxes (hr). | 
|---|
| 288 | Double eqeq = dpsi*cos(epsilon*d2r); | 
|---|
| 289 |  | 
|---|
| 290 | // GAST (hr). | 
|---|
| 291 | gast = gmst + eqeq; | 
|---|
| 292 | gast = fmod(gast, 24.0); | 
|---|
| 293 |  | 
|---|
| 294 | // Convert to radian. | 
|---|
| 295 | gmst *= C::pi/12.0; | 
|---|
| 296 | gast *= C::pi/12.0; | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 | //----------------------------------------------------------------------- azel | 
|---|
| 300 |  | 
|---|
| 301 | // Convert (ra,dec) to (az,el).  Position as a Cartesian triplet in m, UT1 in | 
|---|
| 302 | // MJD form, and all angles in radian. | 
|---|
| 303 |  | 
|---|
| 304 | void azel(const Vector<Double> position, Double ut1, Double ra, Double dec, | 
|---|
| 305 | Double &az, Double &el) | 
|---|
| 306 | { | 
|---|
| 307 | // Get geocentric longitude and latitude (rad). | 
|---|
| 308 | Double x = position(0); | 
|---|
| 309 | Double y = position(1); | 
|---|
| 310 | Double z = position(2); | 
|---|
| 311 | Double r = sqrt(x*x + y*y + z*z); | 
|---|
| 312 | Double lng = atan2(y, x); | 
|---|
| 313 | Double lat = asin(z/r); | 
|---|
| 314 |  | 
|---|
| 315 | // Get GAST (rad). | 
|---|
| 316 | Double gast, gmst; | 
|---|
| 317 | gst(ut1, gmst, gast); | 
|---|
| 318 |  | 
|---|
| 319 | // Local hour angle (rad). | 
|---|
| 320 | Double ha = (gast + lng) - ra; | 
|---|
| 321 |  | 
|---|
| 322 | // Azimuth and elevation (rad). | 
|---|
| 323 | az = atan2(-cos(dec)*sin(ha), | 
|---|
| 324 | sin(dec)*cos(lat) - cos(dec)*sin(lat)*cos(ha)); | 
|---|
| 325 | el = asin(sin(dec)*sin(lat) + cos(dec)*cos(lat)*cos(ha)); | 
|---|
| 326 |  | 
|---|
| 327 | if (az < 0.0) az += C::_2pi; | 
|---|
| 328 | } | 
|---|
| 329 |  | 
|---|
| 330 | //---------------------------------------------------------------------- solel | 
|---|
| 331 |  | 
|---|
| 332 | // Compute the Solar elevation using the above functions. | 
|---|
| 333 |  | 
|---|
| 334 | Double solel(const Vector<Double> position, Double ut1) | 
|---|
| 335 | { | 
|---|
| 336 | Double az, dec, el, elng, gast, gmst, ra; | 
|---|
| 337 | sol(ut1, elng, ra, dec); | 
|---|
| 338 | gst(ut1, gmst, gast); | 
|---|
| 339 | azel(position, ut1, ra, dec, az, el); | 
|---|
| 340 | return el; | 
|---|
| 341 | } | 
|---|