| 1 | //#---------------------------------------------------------------------------
 | 
|---|
| 2 | //# pks_maths.cc: Mathematical functions for Parkes single-dish data reduction
 | 
|---|
| 3 | //#---------------------------------------------------------------------------
 | 
|---|
| 4 | //# livedata - processing pipeline for single-dish, multibeam spectral data.
 | 
|---|
| 5 | //# Copyright (C) 2004-2009, Australia Telescope National Facility, CSIRO
 | 
|---|
| 6 | //#
 | 
|---|
| 7 | //# This file is part of livedata.
 | 
|---|
| 8 | //#
 | 
|---|
| 9 | //# livedata is free software: you can redistribute it and/or modify it under
 | 
|---|
| 10 | //# the terms of the GNU General Public License as published by the Free
 | 
|---|
| 11 | //# Software Foundation, either version 3 of the License, or (at your option)
 | 
|---|
| 12 | //# any later version.
 | 
|---|
| 13 | //#
 | 
|---|
| 14 | //# livedata is distributed in the hope that it will be useful, but WITHOUT
 | 
|---|
| 15 | //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
|---|
| 16 | //# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
|---|
| 17 | //# more details.
 | 
|---|
| 18 | //#
 | 
|---|
| 19 | //# You should have received a copy of the GNU General Public License along
 | 
|---|
| 20 | //# with livedata.  If not, see <http://www.gnu.org/licenses/>.
 | 
|---|
| 21 | //#
 | 
|---|
| 22 | //# Correspondence concerning livedata may be directed to:
 | 
|---|
| 23 | //#        Internet email: mcalabre@atnf.csiro.au
 | 
|---|
| 24 | //#        Postal address: Dr. Mark Calabretta
 | 
|---|
| 25 | //#                        Australia Telescope National Facility, CSIRO
 | 
|---|
| 26 | //#                        PO Box 76
 | 
|---|
| 27 | //#                        Epping NSW 1710
 | 
|---|
| 28 | //#                        AUSTRALIA
 | 
|---|
| 29 | //#
 | 
|---|
| 30 | //# http://www.atnf.csiro.au/computing/software/livedata.html
 | 
|---|
| 31 | //# $Id: pks_maths.cc,v 1.7 2009-09-29 07:45:02 cal103 Exp $
 | 
|---|
| 32 | //#---------------------------------------------------------------------------
 | 
|---|
| 33 | //# Original: 2004/07/16 Mark Calabretta
 | 
|---|
| 34 | //#---------------------------------------------------------------------------
 | 
|---|
| 35 | 
 | 
|---|
| 36 | // AIPS++ includes.
 | 
|---|
| 37 | #include <casa/aips.h>
 | 
|---|
| 38 | #include <casa/math.h>
 | 
|---|
| 39 | #include <casa/Arrays/ArrayMath.h>
 | 
|---|
| 40 | #include <casa/Arrays/Vector.h>
 | 
|---|
| 41 | #include <casa/BasicSL/Constants.h>
 | 
|---|
| 42 | #include <casa/Utilities/GenSort.h>
 | 
|---|
| 43 | 
 | 
|---|
| 44 | // Parkes includes.
 | 
|---|
| 45 | #include <atnf/pks/pks_maths.h>
 | 
|---|
| 46 | 
 | 
|---|
| 47 | 
 | 
|---|
| 48 | //----------------------------------------------------------------------- nint
 | 
|---|
| 49 | 
 | 
|---|
| 50 | // Nearest integral value; halfway cases are rounded to the integral value
 | 
|---|
| 51 | // larger in value.  No check is made for integer overflow.
 | 
|---|
| 52 | 
 | 
|---|
| 53 | Int nint(Double v)
 | 
|---|
| 54 | {
 | 
|---|
| 55 |   return Int(floor(v + 0.5));
 | 
|---|
| 56 | }
 | 
|---|
| 57 | 
 | 
|---|
| 58 | //---------------------------------------------------------------------- anint
 | 
|---|
| 59 | 
 | 
|---|
| 60 | // Nearest integral value; halfway cases are rounded to the integral value
 | 
|---|
| 61 | // larger in value.
 | 
|---|
| 62 | 
 | 
|---|
| 63 | Double anint(Double v)
 | 
|---|
| 64 | {
 | 
|---|
| 65 |   return floor(v + 0.5);
 | 
|---|
| 66 | }
 | 
|---|
| 67 | 
 | 
|---|
| 68 | //---------------------------------------------------------------------- round
 | 
|---|
| 69 | 
 | 
|---|
| 70 | // Round value v to the nearest integral multiple of precision p.
 | 
|---|
| 71 | 
 | 
|---|
| 72 | Double round(Double v, Double p)
 | 
|---|
| 73 | {
 | 
|---|
| 74 |   return p * floor(v/p + 0.5);
 | 
|---|
| 75 | }
 | 
|---|
| 76 | 
 | 
|---|
| 77 | //--------------------------------------------------------------------- median
 | 
|---|
| 78 | 
 | 
|---|
| 79 | // Compute the weighted median value of an array.
 | 
|---|
| 80 | 
 | 
|---|
| 81 | Float median(const Vector<Float> &v, const Vector<Float> &wgt)
 | 
|---|
| 82 | {
 | 
|---|
| 83 |   uInt nElem = v.nelements();
 | 
|---|
| 84 |   if (nElem == 0) return 0.0f;
 | 
|---|
| 85 | 
 | 
|---|
| 86 |   // Generate the sort index.
 | 
|---|
| 87 |   Vector<uInt> sortindex(nElem);
 | 
|---|
| 88 |   GenSortIndirect<Float>::sort(sortindex, v);
 | 
|---|
| 89 | 
 | 
|---|
| 90 |   // Find the middle weight.
 | 
|---|
| 91 |   Float wgt_2 = sum(wgt)/2.0f;
 | 
|---|
| 92 | 
 | 
|---|
| 93 |   // Find the corresponding vector element.
 | 
|---|
| 94 |   Float weight = 0.0f;
 | 
|---|
| 95 |   Float accwgt = 0.0f;
 | 
|---|
| 96 |   uInt j1 = 0;
 | 
|---|
| 97 |   uInt j2;
 | 
|---|
| 98 |   for (j2 = 0; j2 < nElem; j2++) {
 | 
|---|
| 99 |     weight = wgt(sortindex(j2));
 | 
|---|
| 100 |     if (weight == 0.0f) {
 | 
|---|
| 101 |       // Ignore zero-weight data;
 | 
|---|
| 102 |       continue;
 | 
|---|
| 103 |     }
 | 
|---|
| 104 | 
 | 
|---|
| 105 |     // The accumulated weight.
 | 
|---|
| 106 |     accwgt += weight;
 | 
|---|
| 107 | 
 | 
|---|
| 108 |     if (accwgt <= wgt_2) {
 | 
|---|
| 109 |       // Keep looping.
 | 
|---|
| 110 |       j1 = j2;
 | 
|---|
| 111 |     } else {
 | 
|---|
| 112 |       break;
 | 
|---|
| 113 |     }
 | 
|---|
| 114 |   }
 | 
|---|
| 115 | 
 | 
|---|
| 116 |   // Compute weighted median.
 | 
|---|
| 117 |   Float v1 = v(sortindex(j1));
 | 
|---|
| 118 |   Float v2 = v(sortindex(j2));
 | 
|---|
| 119 | 
 | 
|---|
| 120 |   // Compute pro-rata value from below.
 | 
|---|
| 121 |   Float dw = wgt_2 - (accwgt - weight);
 | 
|---|
| 122 |   v1 += (v2 - v1) * dw / weight;
 | 
|---|
| 123 | 
 | 
|---|
| 124 |   // Find next non-zero-weight value.
 | 
|---|
| 125 |   for (j2++ ; j2 < nElem; j2++) {
 | 
|---|
| 126 |     weight = wgt(sortindex(j2));
 | 
|---|
| 127 |     if (weight != 0.0f) {
 | 
|---|
| 128 |       break;
 | 
|---|
| 129 |     }
 | 
|---|
| 130 |   }
 | 
|---|
| 131 | 
 | 
|---|
| 132 |   if (j2 < nElem) {
 | 
|---|
| 133 |     // Compute pro-rata value from above.
 | 
|---|
| 134 |     Float v3 = v(sortindex(j2));
 | 
|---|
| 135 | 
 | 
|---|
| 136 |     v2 += (v3 - v2) * dw / weight;
 | 
|---|
| 137 |   }
 | 
|---|
| 138 | 
 | 
|---|
| 139 |   return (v1 + v2)/2.0f;
 | 
|---|
| 140 | }
 | 
|---|
| 141 | 
 | 
|---|
| 142 | //---------------------------------------------------------------- angularDist
 | 
|---|
| 143 | 
 | 
|---|
| 144 | // Determine the angular distance between two directions (angles in radians).
 | 
|---|
| 145 | 
 | 
|---|
| 146 | Double angularDist(Double lng0, Double lat0, Double lng, Double lat)
 | 
|---|
| 147 | {
 | 
|---|
| 148 |   Double costheta = sin(lat0)*sin(lat) + cos(lat0)*cos(lat)*cos(lng0-lng);
 | 
|---|
| 149 |   return acos(costheta);
 | 
|---|
| 150 | }
 | 
|---|
| 151 | 
 | 
|---|
| 152 | //--------------------------------------------------------------------- distPA
 | 
|---|
| 153 | 
 | 
|---|
| 154 | void distPA(Double lng0, Double lat0, Double lng, Double lat, Double &dist,
 | 
|---|
| 155 |             Double &pa)
 | 
|---|
| 156 | 
 | 
|---|
| 157 | // Determine the generalized position angle of the field point (lng,lat) from
 | 
|---|
| 158 | // the reference point (lng0,lat0) and the angular distance between them
 | 
|---|
| 159 | // (angles in radians).
 | 
|---|
| 160 | 
 | 
|---|
| 161 | {
 | 
|---|
| 162 |   // Euler angles which rotate the coordinate frame so that (lng0,lat0) is
 | 
|---|
| 163 |   // at the pole of the new system, with the pole of the old system at zero
 | 
|---|
| 164 |   // longitude in the new.
 | 
|---|
| 165 |   Double phi0  =  C::pi_2 + lng0;
 | 
|---|
| 166 |   Double theta =  C::pi_2 - lat0;
 | 
|---|
| 167 |   Double phi   = -C::pi_2;
 | 
|---|
| 168 | 
 | 
|---|
| 169 |   // Rotate the field point to the new system.
 | 
|---|
| 170 |   Double alpha, beta;
 | 
|---|
| 171 |   eulerx(lng, lat, phi0, theta, phi, alpha, beta);
 | 
|---|
| 172 | 
 | 
|---|
| 173 |   dist = C::pi_2 - beta;
 | 
|---|
| 174 |   pa   = -alpha;
 | 
|---|
| 175 |   if (pa < -C::pi) pa = pa + C::_2pi;
 | 
|---|
| 176 | }
 | 
|---|
| 177 | 
 | 
|---|
| 178 | //--------------------------------------------------------------------- eulerx
 | 
|---|
| 179 | 
 | 
|---|
| 180 | void eulerx(Double lng0, Double lat0, Double phi0, Double theta, Double phi,
 | 
|---|
| 181 |             Double &lng1, Double &lat1)
 | 
|---|
| 182 | 
 | 
|---|
| 183 | // Applies the Euler angle based transformation of spherical coordinates.
 | 
|---|
| 184 | //
 | 
|---|
| 185 | //     phi0  Longitude of the ascending node in the old system, radians.  The
 | 
|---|
| 186 | //           ascending node is the point of intersection of the equators of
 | 
|---|
| 187 | //           the two systems such that the equator of the new system crosses
 | 
|---|
| 188 | //           from south to north as viewed in the old system.
 | 
|---|
| 189 | //
 | 
|---|
| 190 | //    theta  Angle between the poles of the two systems, radians.  THETA is
 | 
|---|
| 191 | //           positive for a positive rotation about the ascending node.
 | 
|---|
| 192 | //
 | 
|---|
| 193 | //      phi  Longitude of the ascending node in the new system, radians.
 | 
|---|
| 194 | 
 | 
|---|
| 195 | {
 | 
|---|
| 196 |   // Compute intermediaries.
 | 
|---|
| 197 |   Double lng0p  = lng0 - phi0;
 | 
|---|
| 198 |   Double slng0p = sin(lng0p);
 | 
|---|
| 199 |   Double clng0p = cos(lng0p);
 | 
|---|
| 200 |   Double slat0  = sin(lat0);
 | 
|---|
| 201 |   Double clat0  = cos(lat0);
 | 
|---|
| 202 |   Double ctheta = cos(theta);
 | 
|---|
| 203 |   Double stheta = sin(theta);
 | 
|---|
| 204 | 
 | 
|---|
| 205 |   Double x = clat0*clng0p;
 | 
|---|
| 206 |   Double y = clat0*slng0p*ctheta + slat0*stheta;
 | 
|---|
| 207 | 
 | 
|---|
| 208 |   // Longitude in the new system.
 | 
|---|
| 209 |   if (x != 0.0 || y != 0.0) {
 | 
|---|
| 210 |     lng1 = phi + atan2(y, x);
 | 
|---|
| 211 |   } else {
 | 
|---|
| 212 |     // Longitude at the poles in the new system is consistent with that
 | 
|---|
| 213 |     // specified in the old system.
 | 
|---|
| 214 |     lng1 = phi + lng0p;
 | 
|---|
| 215 |   }
 | 
|---|
| 216 |   lng1 = fmod(lng1, C::_2pi);
 | 
|---|
| 217 |   if (lng1 < 0.0) lng1 += C::_2pi;
 | 
|---|
| 218 | 
 | 
|---|
| 219 |   lat1 = asin(slat0*ctheta - clat0*stheta*slng0p);
 | 
|---|
| 220 | }
 | 
|---|
| 221 | 
 | 
|---|
| 222 | //------------------------------------------------------------------------ sol
 | 
|---|
| 223 | 
 | 
|---|
| 224 | // Low precision coordinates of the Sun (accurate to 1 arcmin between 1800 and
 | 
|---|
| 225 | // 2200) from http://aa.usno.navy.mil/faq/docs/SunApprox.html matches closely
 | 
|---|
| 226 | // that in the Astronomical Almanac.
 | 
|---|
| 227 | 
 | 
|---|
| 228 | void sol(Double mjd, Double &elng, Double &ra, Double &dec)
 | 
|---|
| 229 | {
 | 
|---|
| 230 |   Double d2r = C::pi/180.0;
 | 
|---|
| 231 | 
 | 
|---|
| 232 |   // Number of days since J2000.0.
 | 
|---|
| 233 |   Double d = mjd - 51544.5;
 | 
|---|
| 234 | 
 | 
|---|
| 235 |   // Mean longitude and mean anomaly of the Sun (deg).
 | 
|---|
| 236 |   Double L = 280.459 + 0.98564736*d;
 | 
|---|
| 237 |   Double g = 357.529 + 0.98560028*d;
 | 
|---|
| 238 | 
 | 
|---|
| 239 |   // Apparent ecliptic longitude corrected for aberration (deg).
 | 
|---|
| 240 |   g *= d2r;
 | 
|---|
| 241 |   elng = L + 1.915*sin(g) + 0.020*sin(g+g);
 | 
|---|
| 242 |   elng = fmod(elng, 360.0);
 | 
|---|
| 243 |   if (elng < 0.0) elng += 360.0;
 | 
|---|
| 244 | 
 | 
|---|
| 245 |   // Obliquity of the ecliptic (deg).
 | 
|---|
| 246 |   Double epsilon = 23.439 - 0.00000036*d;
 | 
|---|
| 247 | 
 | 
|---|
| 248 |   // Transform ecliptic to equatorial coordinates.
 | 
|---|
| 249 |   elng *= d2r;
 | 
|---|
| 250 |   epsilon *= d2r;
 | 
|---|
| 251 |   ra  = atan2(cos(epsilon)*sin(elng), cos(elng));
 | 
|---|
| 252 |   dec = asin(sin(epsilon)*sin(elng));
 | 
|---|
| 253 |   if (ra < 0.0) ra += C::_2pi;
 | 
|---|
| 254 | }
 | 
|---|
| 255 | 
 | 
|---|
| 256 | //------------------------------------------------------------------------ gst
 | 
|---|
| 257 | 
 | 
|---|
| 258 | // Greenwich mean sidereal time, and low precision Greenwich apparent sidereal
 | 
|---|
| 259 | // time, both in radian, from http://aa.usno.navy.mil/faq/docs/GAST.html.  UT1
 | 
|---|
| 260 | // is given in MJD form.
 | 
|---|
| 261 | 
 | 
|---|
| 262 | void gst(Double ut1, Double &gmst, Double &gast)
 | 
|---|
| 263 | {
 | 
|---|
| 264 |   Double d2r = C::pi/180.0;
 | 
|---|
| 265 | 
 | 
|---|
| 266 |   Double d  = ut1 - 51544.5;
 | 
|---|
| 267 |   Double d0 = int(ut1) - 51544.5;
 | 
|---|
| 268 |   Double h = 24.0*(d - d0);
 | 
|---|
| 269 |   Double t = d / 35625.0;
 | 
|---|
| 270 | 
 | 
|---|
| 271 |   // GMST (hr).
 | 
|---|
| 272 |   gmst = 6.697374558 + 0.06570982441908*d0 + 1.00273790935*h + 0.000026*t*t;
 | 
|---|
| 273 |   gmst = fmod(gmst, 24.0);
 | 
|---|
| 274 | 
 | 
|---|
| 275 |   // Longitude of the ascending node of the Moon (deg).
 | 
|---|
| 276 |   Double Omega = 125.04 - 0.052954*d;
 | 
|---|
| 277 | 
 | 
|---|
| 278 |   // Mean Longitude of the Sun (deg).
 | 
|---|
| 279 |   Double L = 280.47 + 0.98565*d;
 | 
|---|
| 280 | 
 | 
|---|
| 281 |   // Obliquity of the ecliptic (deg).
 | 
|---|
| 282 |   Double epsilon = 23.4393 - 0.0000004*d;
 | 
|---|
| 283 | 
 | 
|---|
| 284 |   // Approximate nutation in longitude (hr).
 | 
|---|
| 285 |   Double dpsi = -0.000319*sin(Omega*d2r) - 0.000024*sin((L+L)*d2r);
 | 
|---|
| 286 | 
 | 
|---|
| 287 |   // Equation of the equinoxes (hr).
 | 
|---|
| 288 |   Double eqeq = dpsi*cos(epsilon*d2r);
 | 
|---|
| 289 | 
 | 
|---|
| 290 |   // GAST (hr).
 | 
|---|
| 291 |   gast = gmst + eqeq;
 | 
|---|
| 292 |   gast = fmod(gast, 24.0);
 | 
|---|
| 293 | 
 | 
|---|
| 294 |   // Convert to radian.
 | 
|---|
| 295 |   gmst *= C::pi/12.0;
 | 
|---|
| 296 |   gast *= C::pi/12.0;
 | 
|---|
| 297 | }
 | 
|---|
| 298 | 
 | 
|---|
| 299 | //----------------------------------------------------------------------- azel
 | 
|---|
| 300 | 
 | 
|---|
| 301 | // Convert (ra,dec) to (az,el).  Position as a Cartesian triplet in m, UT1 in
 | 
|---|
| 302 | // MJD form, and all angles in radian.
 | 
|---|
| 303 | 
 | 
|---|
| 304 | void azel(const Vector<Double> position, Double ut1, Double ra, Double dec,
 | 
|---|
| 305 |           Double &az, Double &el)
 | 
|---|
| 306 | {
 | 
|---|
| 307 |   // Get geocentric longitude and latitude (rad).
 | 
|---|
| 308 |   Double x = position(0);
 | 
|---|
| 309 |   Double y = position(1);
 | 
|---|
| 310 |   Double z = position(2);
 | 
|---|
| 311 |   Double r = sqrt(x*x + y*y + z*z);
 | 
|---|
| 312 |   Double lng = atan2(y, x);
 | 
|---|
| 313 |   Double lat = asin(z/r);
 | 
|---|
| 314 | 
 | 
|---|
| 315 |   // Get GAST (rad).
 | 
|---|
| 316 |   Double gast, gmst;
 | 
|---|
| 317 |   gst(ut1, gmst, gast);
 | 
|---|
| 318 | 
 | 
|---|
| 319 |   // Local hour angle (rad).
 | 
|---|
| 320 |   Double ha = (gast + lng) - ra;
 | 
|---|
| 321 | 
 | 
|---|
| 322 |   // Azimuth and elevation (rad).
 | 
|---|
| 323 |   az = atan2(-cos(dec)*sin(ha),
 | 
|---|
| 324 |             sin(dec)*cos(lat) - cos(dec)*sin(lat)*cos(ha));
 | 
|---|
| 325 |   el = asin(sin(dec)*sin(lat) + cos(dec)*cos(lat)*cos(ha));
 | 
|---|
| 326 | 
 | 
|---|
| 327 |   if (az < 0.0) az += C::_2pi;
 | 
|---|
| 328 | }
 | 
|---|
| 329 | 
 | 
|---|
| 330 | //---------------------------------------------------------------------- solel
 | 
|---|
| 331 | 
 | 
|---|
| 332 | // Compute the Solar elevation using the above functions.
 | 
|---|
| 333 | 
 | 
|---|
| 334 | Double solel(const Vector<Double> position, Double ut1)
 | 
|---|
| 335 | {
 | 
|---|
| 336 |   Double az, dec, el, elng, gast, gmst, ra;
 | 
|---|
| 337 |   sol(ut1, elng, ra, dec);
 | 
|---|
| 338 |   gst(ut1, gmst, gast);
 | 
|---|
| 339 |   azel(position, ut1, ra, dec, az, el);
 | 
|---|
| 340 |   return el;
 | 
|---|
| 341 | }
 | 
|---|