//#---------------------------------------------------------------------------
//# PKSMS2reader.cc: Class to read Parkes Multibeam data from a v2 MS.
//#---------------------------------------------------------------------------
//# livedata - processing pipeline for single-dish, multibeam spectral data.
//# Copyright (C) 2000-2009, Australia Telescope National Facility, CSIRO
//#
//# This file is part of livedata.
//#
//# livedata is free software: you can redistribute it and/or modify it under
//# the terms of the GNU General Public License as published by the Free
//# Software Foundation, either version 3 of the License, or (at your option)
//# any later version.
//#
//# livedata is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
//# more details.
//#
//# You should have received a copy of the GNU General Public License along
//# with livedata. If not, see .
//#
//# Correspondence concerning livedata may be directed to:
//# Internet email: mcalabre@atnf.csiro.au
//# Postal address: Dr. Mark Calabretta
//# Australia Telescope National Facility, CSIRO
//# PO Box 76
//# Epping NSW 1710
//# AUSTRALIA
//#
//# http://www.atnf.csiro.au/computing/software/livedata.html
//# $Id: PKSMS2reader.cc,v 19.23 2009-09-29 07:33:38 cal103 Exp $
//#---------------------------------------------------------------------------
//# Original: 2000/08/03, Mark Calabretta, ATNF
//#---------------------------------------------------------------------------
#include
#include
#include
#include
#include
#include
#include
#include
#include
//------------------------------------------------- PKSMS2reader::PKSMS2reader
// Default constructor.
PKSMS2reader::PKSMS2reader()
{
cMSopen = False;
// By default, messages are written to stderr.
initMsg();
}
//------------------------------------------------ PKSMS2reader::~PKSMS2reader
PKSMS2reader::~PKSMS2reader()
{
close();
}
//--------------------------------------------------------- PKSMS2reader::open
// Open the MS for reading.
Int PKSMS2reader::open(
const String msName,
Vector &beams,
Vector &IFs,
Vector &nChan,
Vector &nPol,
Vector &haveXPol,
Bool &haveBase,
Bool &haveSpectra)
{
// Check that MS is readable.
if (!MS::isReadable(msName)) {
return 1;
}
if (cMSopen) {
close();
}
cPKSMS = MeasurementSet(msName);
cIdx = 0;
cNRow = cPKSMS.nrow();
cMSopen = True;
// Lock the table for read access.
cPKSMS.lock(False);
// Main MS table and subtable column access.
ROMSMainColumns msCols(cPKSMS);
ROMSDataDescColumns dataDescCols(cPKSMS.dataDescription());
ROMSFeedColumns feedCols(cPKSMS.feed());
ROMSFieldColumns fieldCols(cPKSMS.field());
ROMSPointingColumns pointingCols(cPKSMS.pointing());
ROMSPolarizationColumns polarizationCols(cPKSMS.polarization());
ROMSSourceColumns sourceCols(cPKSMS.source());
ROMSSpWindowColumns spWinCols(cPKSMS.spectralWindow());
ROMSStateColumns stateCols(cPKSMS.state());
ROMSSysCalColumns sysCalCols(cPKSMS.sysCal());
ROMSWeatherColumns weatherCols(cPKSMS.weather());
// Column accessors for required columns.
cScanNoCol.reference(msCols.scanNumber());
cTimeCol.reference(msCols.time());
cIntervalCol.reference(msCols.interval());
cFieldIdCol.reference(msCols.fieldId());
cFieldNameCol.reference(fieldCols.name());
cSrcIdCol.reference(fieldCols.sourceId());
cSrcNameCol.reference(sourceCols.name());
cSrcDirCol.reference(sourceCols.direction());
cSrcPMCol.reference(sourceCols.properMotion());
cSrcRestFrqCol.reference(sourceCols.restFrequency());
cStateIdCol.reference(msCols.stateId());
cObsModeCol.reference(stateCols.obsMode());
cDataDescIdCol.reference(msCols.dataDescId());
cChanFreqCol.reference(spWinCols.chanFreq());
cWeatherTimeCol.reference(weatherCols.time());
cTemperatureCol.reference(weatherCols.temperature());
cPressureCol.reference(weatherCols.pressure());
cHumidityCol.reference(weatherCols.relHumidity());
cBeamNoCol.reference(msCols.feed1());
cPointingCol.reference(pointingCols.direction());
cSigmaCol.reference(msCols.sigma());
cNumReceptorCol.reference(feedCols.numReceptors());
// Optional columns.
if ((cHaveSrcVel = cPKSMS.source().tableDesc().isColumn("SYSVEL"))) {
cSrcVelCol.attach(cPKSMS.source(), "SYSVEL");
}
if ((cHaveTsys = cPKSMS.sysCal().tableDesc().isColumn("TSYS"))) {
cTsysCol.attach(cPKSMS.sysCal(), "TSYS");
}
if ((cHaveCalFctr = cPKSMS.tableDesc().isColumn("CALFCTR"))) {
cCalFctrCol.attach(cPKSMS, "CALFCTR");
}
if ((cHaveBaseLin = cPKSMS.tableDesc().isColumn("BASELIN"))) {
cBaseLinCol.attach(cPKSMS, "BASELIN");
cBaseSubCol.attach(cPKSMS, "BASESUB");
}
// Spectral data should always be present.
haveSpectra = True;
cFloatDataCol.reference(msCols.floatData());
cFlagCol.reference(msCols.flag());
if ((cGetXPol = cPKSMS.isColumn(MSMainEnums::DATA))) {
if ((cHaveXCalFctr = cPKSMS.tableDesc().isColumn("XCALFCTR"))) {
cXCalFctrCol.attach(cPKSMS, "XCALFCTR");
}
cDataCol.reference(msCols.data());
}
// Find which beams are present in the data.
Vector beamNos = cBeamNoCol.getColumn();
Int maxBeamNo = max(beamNos) + 1;
beams.resize(maxBeamNo);
beams = False;
for (uInt irow = 0; irow < beamNos.nelements(); irow++) {
beams(beamNos(irow)) = True;
}
// Number of IFs.
uInt nIF = dataDescCols.nrow();
IFs.resize(nIF);
IFs = True;
// Number of polarizations and channels in each IF.
ROScalarColumn spWinIdCol(dataDescCols.spectralWindowId());
ROScalarColumn numChanCol(spWinCols.numChan());
ROScalarColumn polIdCol(dataDescCols.polarizationId());
ROScalarColumn numPolCol(polarizationCols.numCorr());
nChan.resize(nIF);
nPol.resize(nIF);
for (uInt iIF = 0; iIF < nIF; iIF++) {
nChan(iIF) = numChanCol(spWinIdCol(iIF));
nPol(iIF) = numPolCol(polIdCol(iIF));
}
// Cross-polarization data present?
haveXPol.resize(nIF);
haveXPol = False;
if (cGetXPol) {
for (Int irow = 0; irow < cNRow; irow++) {
if (cDataCol.isDefined(irow)) {
Int iIF = cDataDescIdCol(irow);
haveXPol(iIF) = True;
}
}
}
// Initialize member data.
cBeams.assign(beams);
cIFs.assign(IFs);
cNChan.assign(nChan);
cNPol.assign(nPol);
cHaveXPol.assign(haveXPol);
// Default channel range selection.
cStartChan.resize(nIF);
cEndChan.resize(nIF);
cRefChan.resize(nIF);
for (uInt iIF = 0; iIF < nIF; iIF++) {
cStartChan(iIF) = 1;
cEndChan(iIF) = cNChan(iIF);
cRefChan(iIF) = cNChan(iIF)/2 + 1;
}
Slice all;
cDataSel.resize(nIF);
cDataSel = Slicer(all, all);
cScanNo = 0;
cCycleNo = 1;
cTime = cTimeCol(0);
return 0;
}
//---------------------------------------------------- PKSMS2reader::getHeader
// Get parameters describing the data.
Int PKSMS2reader::getHeader(
String &observer,
String &project,
String &antName,
Vector &antPosition,
String &obsType,
String &bunit,
Float &equinox,
String &dopplerFrame,
Double &mjd,
Double &refFreq,
Double &bandwidth)
{
if (!cMSopen) {
return 1;
}
// Observer and project.
ROMSObservationColumns observationCols(cPKSMS.observation());
observer = observationCols.observer()(0);
project = observationCols.project()(0);
// Antenna name and ITRF coordinates.
ROMSAntennaColumns antennaCols(cPKSMS.antenna());
antName = antennaCols.name()(0);
antPosition = antennaCols.position()(0);
// Observation type.
if (cObsModeCol.nrow()) {
obsType = cObsModeCol(0);
if (obsType == "\0") obsType = "RF";
} else {
obsType = "RF";
}
// Brightness units.
bunit = cPKSMS.unit(MSMainEnums::FLOAT_DATA);
// Coordinate equinox.
ROMSPointingColumns pointingCols(cPKSMS.pointing());
String dirref = pointingCols.direction().keywordSet().asRecord("MEASINFO").
asString("Ref");
sscanf(dirref.chars()+1, "%f", &equinox);
// Frequency/velocity reference frame.
ROMSSpWindowColumns spWinCols(cPKSMS.spectralWindow());
dopplerFrame = MFrequency::showType(spWinCols.measFreqRef()(0));
// Translate to FITS standard names.
if (dopplerFrame == "TOPO") {
dopplerFrame = "TOPOCENT";
} else if (dopplerFrame == "GEO") {
dopplerFrame = "GEOCENTR";
} else if (dopplerFrame == "BARY") {
dopplerFrame = "BARYCENT";
} else if (dopplerFrame == "GALACTO") {
dopplerFrame = "GALACTOC";
} else if (dopplerFrame == "LGROUP") {
dopplerFrame = "LOCALGRP";
} else if (dopplerFrame == "CMB") {
dopplerFrame = "CMBDIPOL";
} else if (dopplerFrame == "REST") {
dopplerFrame = "SOURCE";
}
// MJD at start of observation.
mjd = cTimeCol(0)/86400.0;
// Reference frequency and bandwidth.
refFreq = spWinCols.refFrequency()(0);
bandwidth = spWinCols.totalBandwidth()(0);
return 0;
}
//-------------------------------------------------- PKSMS2reader::getFreqInfo
// Get frequency parameters for each IF.
Int PKSMS2reader::getFreqInfo(
Vector &startFreq,
Vector &endFreq)
{
uInt nIF = cIFs.nelements();
startFreq.resize(nIF);
endFreq.resize(nIF);
for (uInt iIF = 0; iIF < nIF; iIF++) {
Vector chanFreq = cChanFreqCol(iIF);
Int nChan = chanFreq.nelements();
startFreq(iIF) = chanFreq(0);
endFreq(iIF) = chanFreq(nChan-1);
}
return 0;
}
//------------------------------------------------------- PKSMS2reader::select
// Set data selection by beam number and channel.
uInt PKSMS2reader::select(
const Vector beamSel,
const Vector IFsel,
const Vector startChan,
const Vector endChan,
const Vector refChan,
const Bool getSpectra,
const Bool getXPol,
const Int coordSys)
{
if (!cMSopen) {
return 1;
}
// Beam selection.
uInt nBeam = cBeams.nelements();
uInt nBeamSel = beamSel.nelements();
for (uInt ibeam = 0; ibeam < nBeam; ibeam++) {
if (ibeam < nBeamSel) {
cBeams(ibeam) = beamSel(ibeam);
} else {
cBeams(ibeam) = False;
}
}
uInt nIF = cIFs.nelements();
uInt maxNChan = 0;
for (uInt iIF = 0; iIF < nIF; iIF++) {
// IF selection.
if (iIF < IFsel.nelements()) {
cIFs(iIF) = IFsel(iIF);
} else {
cIFs(iIF) = False;
}
if (!cIFs(iIF)) continue;
// Channel selection.
if (iIF < startChan.nelements()) {
cStartChan(iIF) = startChan(iIF);
if (cStartChan(iIF) <= 0) {
cStartChan(iIF) += cNChan(iIF);
} else if (cStartChan(iIF) > Int(cNChan(iIF))) {
cStartChan(iIF) = cNChan(iIF);
}
}
if (iIF < endChan.nelements()) {
cEndChan(iIF) = endChan(iIF);
if (cEndChan(iIF) <= 0) {
cEndChan(iIF) += cNChan(iIF);
} else if (cEndChan(iIF) > Int(cNChan(iIF))) {
cEndChan(iIF) = cNChan(iIF);
}
}
if (iIF < refChan.nelements()) {
cRefChan(iIF) = refChan(iIF);
} else {
cRefChan(iIF) = cStartChan(iIF);
if (cStartChan(iIF) <= cEndChan(iIF)) {
cRefChan(iIF) += (cEndChan(iIF) - cStartChan(iIF) + 1)/2;
} else {
cRefChan(iIF) -= (cStartChan(iIF) - cEndChan(iIF) + 1)/2;
}
}
uInt nChan = abs(cEndChan(iIF) - cStartChan(iIF)) + 1;
if (maxNChan < nChan) {
maxNChan = nChan;
}
// Inverted Slices are not allowed.
Slice outPols;
Slice outChans(min(cStartChan(iIF),cEndChan(iIF))-1, nChan);
cDataSel(iIF) = Slicer(outPols, outChans);
}
// Get spectral data?
cGetSpectra = getSpectra;
// Get cross-polarization data?
cGetXPol = cGetXPol && getXPol;
// Coordinate system? (Only equatorial available.)
cCoordSys = 0;
return maxNChan;
}
//---------------------------------------------------- PKSMS2reader::findRange
// Find the range of the data in time and position.
Int PKSMS2reader::findRange(
Int &nRow,
Int &nSel,
Vector &timeSpan,
Matrix &positions)
{
if (!cMSopen) {
return 1;
}
nRow = cNRow;
// Find the number of rows selected.
nSel = 0;
Vector sel(nRow);
for (Int irow = 0; irow < nRow; irow++) {
if ((sel(irow) = cBeams(cBeamNoCol(irow)) &&
cIFs(cDataDescIdCol(irow)))) {
nSel++;
}
}
// Find the time range (s).
timeSpan.resize(2);
timeSpan(0) = cTimeCol(0);
timeSpan(1) = cTimeCol(nRow-1);
// Retrieve positions for selected data.
Int isel = 0;
positions.resize(2,nSel);
for (Int irow = 0; irow < nRow; irow++) {
if (sel(irow)) {
Matrix pointingDir = cPointingCol(cFieldIdCol(irow));
positions.column(isel++) = pointingDir.column(0);
}
}
return 0;
}
//--------------------------------------------------------- PKSMS2reader::read
// Read the next data record.
Int PKSMS2reader::read(PKSrecord &pksrec)
{
if (!cMSopen) {
return 1;
}
// Check for EOF.
if (cIdx >= cNRow) {
return -1;
}
// Find the next selected beam and IF.
Int ibeam;
Int iIF;
while (True) {
ibeam = cBeamNoCol(cIdx);
iIF = cDataDescIdCol(cIdx);
if (cBeams(ibeam) && cIFs(iIF)) {
break;
}
// Check for EOF.
if (++cIdx >= cNRow) {
return -1;
}
}
// Renumerate scan no. Here still is 1-based
pksrec.scanNo = cScanNoCol(cIdx) - cScanNoCol(0) + 1;
if (pksrec.scanNo != cScanNo) {
// Start of new scan.
cScanNo = pksrec.scanNo;
cCycleNo = 1;
cTime = cTimeCol(cIdx);
}
Double time = cTimeCol(cIdx);
pksrec.mjd = time/86400.0;
pksrec.interval = cIntervalCol(cIdx);
// Reconstruct the integration cycle number; due to small latencies the
// integration time is usually slightly less than the time between cycles,
// resetting cTime will prevent the difference from accumulating.
cCycleNo += nint((time - cTime)/pksrec.interval);
pksrec.cycleNo = cCycleNo;
cTime = time;
Int fieldId = cFieldIdCol(cIdx);
pksrec.fieldName = cFieldNameCol(fieldId);
Int srcId = cSrcIdCol(fieldId);
pksrec.srcName = cSrcNameCol(srcId);
pksrec.srcDir = cSrcDirCol(srcId);
pksrec.srcPM = cSrcPMCol(srcId);
// Systemic velocity.
if (!cHaveSrcVel) {
pksrec.srcVel = 0.0f;
} else {
pksrec.srcVel = cSrcVelCol(srcId)(IPosition(1,0));
}
// Observation type.
Int stateId = cStateIdCol(cIdx);
pksrec.obsType = cObsModeCol(stateId);
pksrec.IFno = iIF + 1;
Int nChan = abs(cEndChan(iIF) - cStartChan(iIF)) + 1;
// Minimal handling on continuum data.
Vector chanFreq = cChanFreqCol(iIF);
if (nChan == 1) {
cout << "The input is continuum data. "<< endl;
pksrec.freqInc = chanFreq(0);
pksrec.refFreq = chanFreq(0);
pksrec.restFreq = 0.0f;
} else {
if (cStartChan(iIF) <= cEndChan(iIF)) {
pksrec.freqInc = chanFreq(1) - chanFreq(0);
} else {
pksrec.freqInc = chanFreq(0) - chanFreq(1);
}
pksrec.refFreq = chanFreq(cRefChan(iIF)-1);
pksrec.restFreq = cSrcRestFrqCol(srcId)(IPosition(1,0));
}
pksrec.bandwidth = abs(pksrec.freqInc * nChan);
pksrec.tcal.resize(cNPol(iIF));
pksrec.tcal = 0.0f;
pksrec.tcalTime = "";
pksrec.azimuth = 0.0f;
pksrec.elevation = 0.0f;
pksrec.parAngle = 0.0f;
pksrec.focusAxi = 0.0f;
pksrec.focusTan = 0.0f;
pksrec.focusRot = 0.0f;
// Find the appropriate entry in the WEATHER subtable.
Vector wTimes = cWeatherTimeCol.getColumn();
Int weatherIdx;
for (weatherIdx = wTimes.nelements()-1; weatherIdx >= 0; weatherIdx--) {
if (cWeatherTimeCol(weatherIdx) <= time) {
break;
}
}
if (weatherIdx < 0) {
// No appropriate WEATHER entry.
pksrec.temperature = 0.0f;
pksrec.pressure = 0.0f;
pksrec.humidity = 0.0f;
} else {
pksrec.temperature = cTemperatureCol(weatherIdx);
pksrec.pressure = cPressureCol(weatherIdx);
pksrec.humidity = cHumidityCol(weatherIdx);
}
pksrec.windSpeed = 0.0f;
pksrec.windAz = 0.0f;
pksrec.refBeam = 0;
pksrec.beamNo = ibeam + 1;
Matrix pointingDir = cPointingCol(fieldId);
pksrec.direction = pointingDir.column(0);
pksrec.pCode = 0;
pksrec.rateAge = 0.0f;
uInt ncols = pointingDir.ncolumn();
if (ncols == 1) {
pksrec.scanRate = 0.0f;
} else {
pksrec.scanRate(0) = pointingDir.column(1)(0);
pksrec.scanRate(1) = pointingDir.column(1)(1);
}
pksrec.paRate = 0.0f;
// Get Tsys assuming that entries in the SYSCAL table match the main table.
if (cHaveTsys) {
Int nTsysColRow = cTsysCol.nrow();
if (nTsysColRow != cNRow) {
cHaveTsys=0;
}
}
if (cHaveTsys) {
cTsysCol.get(cIdx, pksrec.tsys, True);
} else {
Int numReceptor;
cNumReceptorCol.get(0, numReceptor);
pksrec.tsys.resize(numReceptor);
pksrec.tsys = 1.0f;
}
cSigmaCol.get(cIdx, pksrec.sigma, True);
// Calibration factors (if available).
pksrec.calFctr.resize(cNPol(iIF));
if (cHaveCalFctr) {
cCalFctrCol.get(cIdx, pksrec.calFctr);
} else {
pksrec.calFctr = 0.0f;
}
// Baseline parameters (if available).
if (cHaveBaseLin) {
pksrec.baseLin.resize(2,cNPol(iIF));
cBaseLinCol.get(cIdx, pksrec.baseLin);
pksrec.baseSub.resize(24,cNPol(iIF));
cBaseSubCol.get(cIdx, pksrec.baseSub);
} else {
pksrec.baseLin.resize(0,0);
pksrec.baseSub.resize(0,0);
}
// Get spectral data.
if (cGetSpectra) {
Matrix tmpData;
Matrix tmpFlag;
cFloatDataCol.getSlice(cIdx, cDataSel(iIF), tmpData, True);
cFlagCol.getSlice(cIdx, cDataSel(iIF), tmpFlag, True);
// Transpose spectra.
Int nPol = tmpData.nrow();
pksrec.spectra.resize(nChan, nPol);
pksrec.flagged.resize(nChan, nPol);
if (cEndChan(iIF) >= cStartChan(iIF)) {
// Simple transposition.
for (Int ipol = 0; ipol < nPol; ipol++) {
for (Int ichan = 0; ichan < nChan; ichan++) {
pksrec.spectra(ichan,ipol) = tmpData(ipol,ichan);
pksrec.flagged(ichan,ipol) = tmpFlag(ipol,ichan);
}
}
} else {
// Transpose with inversion.
Int jchan = nChan - 1;
for (Int ipol = 0; ipol < nPol; ipol++) {
for (Int ichan = 0; ichan < nChan; ichan++, jchan--) {
pksrec.spectra(ichan,ipol) = tmpData(ipol,jchan);
pksrec.flagged(ichan,ipol) = tmpFlag(ipol,jchan);
}
}
}
}
// Get cross-polarization data.
if (cGetXPol) {
if (cHaveXCalFctr) {
cXCalFctrCol.get(cIdx, pksrec.xCalFctr);
} else {
pksrec.xCalFctr = Complex(0.0f, 0.0f);
}
cDataCol.get(cIdx, pksrec.xPol, True);
if (cEndChan(iIF) < cStartChan(iIF)) {
Complex ctmp;
Int jchan = nChan - 1;
for (Int ichan = 0; ichan < nChan/2; ichan++, jchan--) {
ctmp = pksrec.xPol(ichan);
pksrec.xPol(ichan) = pksrec.xPol(jchan);
pksrec.xPol(jchan) = ctmp;
}
}
}
cIdx++;
return 0;
}
//-------------------------------------------------------- PKSMS2reader::close
// Close the MS.
void PKSMS2reader::close()
{
cPKSMS = MeasurementSet();
cMSopen = False;
}