// // C++ Implementation: STMath // // Description: // // // Author: Malte Marquarding , (C) 2006 // // Copyright: See COPYING file that comes with this distribution // // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "MathUtils.h" #include "RowAccumulator.h" #include "STAttr.h" #include "STSelector.h" #include "STMath.h" using namespace casa; using namespace asap; // tolerance for direction comparison (rad) #define TOL_OTF 1.0e-15 #define TOL_POINT 2.9088821e-4 // 1 arcmin STMath::STMath(bool insitu) : insitu_(insitu) { } STMath::~STMath() { } CountedPtr STMath::average( const std::vector >& in, const std::vector& mask, const std::string& weight, const std::string& avmode) { LogIO os( LogOrigin( "STMath", "average()", WHERE ) ) ; if ( avmode == "SCAN" && in.size() != 1 ) throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n" "Use merge first.")); WeightType wtype = stringToWeight(weight); // check if OTF observation String obstype = in[0]->getHeader().obstype ; Double tol = 0.0 ; if ( (obstype.find( "OTF" ) != String::npos) || (obstype.find( "OBSERVE_TARGET" ) != String::npos) ) { tol = TOL_OTF ; } else { tol = TOL_POINT ; } // output // clone as this is non insitu bool insitu = insitu_; setInsitu(false); CountedPtr< Scantable > out = getScantable(in[0], true); setInsitu(insitu); std::vector >::const_iterator stit = in.begin(); ++stit; while ( stit != in.end() ) { out->appendToHistoryTable((*stit)->history()); ++stit; } Table& tout = out->table(); /// @todo check if all scantables are conformant ArrayColumn specColOut(tout,"SPECTRA"); ArrayColumn flagColOut(tout,"FLAGTRA"); ArrayColumn tsysColOut(tout,"TSYS"); ScalarColumn mjdColOut(tout,"TIME"); ScalarColumn intColOut(tout,"INTERVAL"); ScalarColumn cycColOut(tout,"CYCLENO"); ScalarColumn scanColOut(tout,"SCANNO"); // set up the output table rows. These are based on the structure of the // FIRST scantable in the vector const Table& baset = in[0]->table(); Block cols(3); cols[0] = String("BEAMNO"); cols[1] = String("IFNO"); cols[2] = String("POLNO"); if ( avmode == "SOURCE" ) { cols.resize(4); cols[3] = String("SRCNAME"); } if ( avmode == "SCAN" && in.size() == 1) { //cols.resize(4); //cols[3] = String("SCANNO"); cols.resize(5); cols[3] = String("SRCNAME"); cols[4] = String("SCANNO"); } uInt outrowCount = 0; TableIterator iter(baset, cols); // int count = 0 ; while (!iter.pastEnd()) { Table subt = iter.table(); // // copy the first row of this selection into the new table // tout.addRow(); // TableCopy::copyRows(tout, subt, outrowCount, 0, 1); // // re-index to 0 // if ( avmode != "SCAN" && avmode != "SOURCE" ) { // scanColOut.put(outrowCount, uInt(0)); // } // ++outrowCount; MDirection::ScalarColumn dircol ; dircol.attach( subt, "DIRECTION" ) ; Int length = subt.nrow() ; vector< Vector > dirs ; vector indexes ; for ( Int i = 0 ; i < length ; i++ ) { Vector t = dircol(i).getAngle(Unit(String("rad"))).getValue() ; //os << << count++ << ": " ; //os << "[" << t[0] << "," << t[1] << "]" << LogIO::POST ; bool adddir = true ; for ( uInt j = 0 ; j < dirs.size() ; j++ ) { //if ( allTrue( t == dirs[j] ) ) { Double dx = t[0] - dirs[j][0] ; Double dy = t[1] - dirs[j][1] ; Double dd = sqrt( dx * dx + dy * dy ) ; //if ( allNearAbs( t, dirs[j], tol ) ) { if ( dd <= tol ) { adddir = false ; break ; } } if ( adddir ) { dirs.push_back( t ) ; indexes.push_back( i ) ; } } uInt rowNum = dirs.size() ; tout.addRow( rowNum ) ; for ( uInt i = 0 ; i < rowNum ; i++ ) { TableCopy::copyRows( tout, subt, outrowCount+i, indexes[i], 1 ) ; // re-index to 0 if ( avmode != "SCAN" && avmode != "SOURCE" ) { scanColOut.put(outrowCount+i, uInt(0)); } } outrowCount += rowNum ; ++iter; } RowAccumulator acc(wtype); Vector cmask(mask); acc.setUserMask(cmask); ROTableRow row(tout); ROArrayColumn specCol, tsysCol; ROArrayColumn flagCol; ROScalarColumn mjdCol, intCol; ROScalarColumn scanIDCol; Vector rowstodelete; for (uInt i=0; i < tout.nrow(); ++i) { for ( int j=0; j < int(in.size()); ++j ) { const Table& tin = in[j]->table(); const TableRecord& rec = row.get(i); ROScalarColumn tmp(tin, "TIME"); Double td;tmp.get(0,td); Table basesubt = tin(tin.col("BEAMNO") == Int(rec.asuInt("BEAMNO")) && tin.col("IFNO") == Int(rec.asuInt("IFNO")) && tin.col("POLNO") == Int(rec.asuInt("POLNO")) ); Table subt; if ( avmode == "SOURCE") { subt = basesubt( basesubt.col("SRCNAME") == rec.asString("SRCNAME") ); } else if (avmode == "SCAN") { //subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) ); subt = basesubt( basesubt.col("SCANNO") == Int(rec.asuInt("SCANNO")) && basesubt.col("SRCNAME") == rec.asString("SRCNAME") ); } else { subt = basesubt; } vector removeRows ; uInt nrsubt = subt.nrow() ; for ( uInt irow = 0 ; irow < nrsubt ; irow++ ) { //if ( !allTrue((subt.col("DIRECTION").getArrayDouble(TableExprId(irow)))==rec.asArrayDouble("DIRECTION")) ) { Vector x0 = (subt.col("DIRECTION").getArrayDouble(TableExprId(irow))) ; Vector x1 = rec.asArrayDouble("DIRECTION") ; double dx = x0[0] - x1[0] ; double dy = x0[0] - x1[0] ; Double dd = sqrt( dx * dx + dy * dy ) ; //if ( !allNearAbs((subt.col("DIRECTION").getArrayDouble(TableExprId(irow))), rec.asArrayDouble("DIRECTION"), tol ) ) { if ( dd > tol ) { removeRows.push_back( irow ) ; } } if ( removeRows.size() != 0 ) { subt.removeRow( removeRows ) ; } if ( nrsubt == removeRows.size() ) throw(AipsError("Averaging data is empty.")) ; specCol.attach(subt,"SPECTRA"); flagCol.attach(subt,"FLAGTRA"); tsysCol.attach(subt,"TSYS"); intCol.attach(subt,"INTERVAL"); mjdCol.attach(subt,"TIME"); Vector spec,tsys; Vector flag; Double inter,time; for (uInt k = 0; k < subt.nrow(); ++k ) { flagCol.get(k, flag); Vector bflag(flag.shape()); convertArray(bflag, flag); /* if ( allEQ(bflag, True) ) { continue;//don't accumulate } */ specCol.get(k, spec); tsysCol.get(k, tsys); intCol.get(k, inter); mjdCol.get(k, time); // spectrum has to be added last to enable weighting by the other values acc.add(spec, !bflag, tsys, inter, time); } } const Vector& msk = acc.getMask(); if ( allEQ(msk, False) ) { uint n = rowstodelete.nelements(); rowstodelete.resize(n+1, True); rowstodelete[n] = i; continue; } //write out if (acc.state()) { Vector flg(msk.shape()); convertArray(flg, !msk); flagColOut.put(i, flg); specColOut.put(i, acc.getSpectrum()); tsysColOut.put(i, acc.getTsys()); intColOut.put(i, acc.getInterval()); mjdColOut.put(i, acc.getTime()); // we should only have one cycle now -> reset it to be 0 // frequency switched data has different CYCLENO for different IFNO // which requires resetting this value cycColOut.put(i, uInt(0)); } else { ostringstream oss; oss << "For output row="< 0) { //cout << rowstodelete << endl; os << rowstodelete << LogIO::POST ; tout.removeRow(rowstodelete); if (tout.nrow() == 0) { throw(AipsError("Can't average fully flagged data.")); } } return out; } CountedPtr< Scantable > STMath::averageChannel( const CountedPtr < Scantable > & in, const std::string & mode, const std::string& avmode ) { // check if OTF observation String obstype = in->getHeader().obstype ; Double tol = 0.0 ; if ( obstype.find( "OTF" ) != String::npos ) { tol = TOL_OTF ; } else { tol = TOL_POINT ; } // clone as this is non insitu bool insitu = insitu_; setInsitu(false); CountedPtr< Scantable > out = getScantable(in, true); setInsitu(insitu); Table& tout = out->table(); ArrayColumn specColOut(tout,"SPECTRA"); ArrayColumn flagColOut(tout,"FLAGTRA"); ArrayColumn tsysColOut(tout,"TSYS"); ScalarColumn scanColOut(tout,"SCANNO"); ScalarColumn intColOut(tout, "INTERVAL"); Table tmp = in->table().sort("BEAMNO"); Block cols(3); cols[0] = String("BEAMNO"); cols[1] = String("IFNO"); cols[2] = String("POLNO"); if ( avmode == "SCAN") { cols.resize(4); cols[3] = String("SCANNO"); } uInt outrowCount = 0; uChar userflag = 1 << 7; TableIterator iter(tmp, cols); while (!iter.pastEnd()) { Table subt = iter.table(); ROArrayColumn specCol, tsysCol; ROArrayColumn flagCol; ROScalarColumn intCol(subt, "INTERVAL"); specCol.attach(subt,"SPECTRA"); flagCol.attach(subt,"FLAGTRA"); tsysCol.attach(subt,"TSYS"); // tout.addRow(); // TableCopy::copyRows(tout, subt, outrowCount, 0, 1); // if ( avmode != "SCAN") { // scanColOut.put(outrowCount, uInt(0)); // } // Vector tmp; // specCol.get(0, tmp); // uInt nchan = tmp.nelements(); // // have to do channel by channel here as MaskedArrMath // // doesn't have partialMedians // Vector flags = flagCol.getColumn(Slicer(Slice(0))); // Vector outspec(nchan); // Vector outflag(nchan,0); // Vector outtsys(1);/// @fixme when tsys is channel based // for (uInt i=0; i specs = specCol.getColumn(Slicer(Slice(i))); // MaskedArray ma = maskedArray(specs,flags); // outspec[i] = median(ma); // if ( allEQ(ma.getMask(), False) ) // outflag[i] = userflag;// flag data // } // outtsys[0] = median(tsysCol.getColumn()); // specColOut.put(outrowCount, outspec); // flagColOut.put(outrowCount, outflag); // tsysColOut.put(outrowCount, outtsys); // Double intsum = sum(intCol.getColumn()); // intColOut.put(outrowCount, intsum); // ++outrowCount; // ++iter; MDirection::ScalarColumn dircol ; dircol.attach( subt, "DIRECTION" ) ; Int length = subt.nrow() ; vector< Vector > dirs ; vector indexes ; for ( Int i = 0 ; i < length ; i++ ) { Vector t = dircol(i).getAngle(Unit(String("rad"))).getValue() ; bool adddir = true ; for ( uInt j = 0 ; j < dirs.size() ; j++ ) { //if ( allTrue( t == dirs[j] ) ) { Double dx = t[0] - dirs[j][0] ; Double dy = t[1] - dirs[j][1] ; Double dd = sqrt( dx * dx + dy * dy ) ; //if ( allNearAbs( t, dirs[j], tol ) ) { if ( dd <= tol ) { adddir = false ; break ; } } if ( adddir ) { dirs.push_back( t ) ; indexes.push_back( i ) ; } } uInt rowNum = dirs.size() ; tout.addRow( rowNum ); for ( uInt i = 0 ; i < rowNum ; i++ ) { TableCopy::copyRows(tout, subt, outrowCount+i, indexes[i], 1) ; if ( avmode != "SCAN") { //scanColOut.put(outrowCount+i, uInt(0)); } } MDirection::ScalarColumn dircolOut ; dircolOut.attach( tout, "DIRECTION" ) ; for ( uInt irow = 0 ; irow < rowNum ; irow++ ) { Vector t = dircolOut(outrowCount+irow).getAngle(Unit(String("rad"))).getValue() ; Vector tmp; specCol.get(0, tmp); uInt nchan = tmp.nelements(); // have to do channel by channel here as MaskedArrMath // doesn't have partialMedians Vector flags = flagCol.getColumn(Slicer(Slice(0))); // mask spectra for different DIRECTION for ( uInt jrow = 0 ; jrow < subt.nrow() ; jrow++ ) { Vector direction = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ; //if ( t[0] != direction[0] || t[1] != direction[1] ) { Double dx = t[0] - direction[0] ; Double dy = t[1] - direction[1] ; Double dd = sqrt( dx * dx + dy * dy ) ; //if ( !allNearAbs( t, direction, tol ) ) { if ( dd > tol ) { flags[jrow] = userflag ; } } Vector outspec(nchan); Vector outflag(nchan,0); Vector outtsys(1);/// @fixme when tsys is channel based for (uInt i=0; i specs = specCol.getColumn(Slicer(Slice(i))); MaskedArray ma = maskedArray(specs,flags); outspec[i] = median(ma); if ( allEQ(ma.getMask(), False) ) outflag[i] = userflag;// flag data } outtsys[0] = median(tsysCol.getColumn()); specColOut.put(outrowCount+irow, outspec); flagColOut.put(outrowCount+irow, outflag); tsysColOut.put(outrowCount+irow, outtsys); Vector integ = intCol.getColumn() ; MaskedArray mi = maskedArray( integ, flags ) ; Double intsum = sum(mi); intColOut.put(outrowCount+irow, intsum); } outrowCount += rowNum ; ++iter; } return out; } CountedPtr< Scantable > STMath::getScantable(const CountedPtr< Scantable >& in, bool droprows) { if (insitu_) { return in; } else { // clone return CountedPtr(new Scantable(*in, Bool(droprows))); } } CountedPtr< Scantable > STMath::unaryOperate( const CountedPtr< Scantable >& in, float val, const std::string& mode, bool tsys ) { CountedPtr< Scantable > out = getScantable(in, false); Table& tab = out->table(); ArrayColumn specCol(tab,"SPECTRA"); ArrayColumn tsysCol(tab,"TSYS"); for (uInt i=0; i spec; Vector ts; specCol.get(i, spec); tsysCol.get(i, ts); if (mode == "MUL" || mode == "DIV") { if (mode == "DIV") val = 1.0/val; spec *= val; specCol.put(i, spec); if ( tsys ) { ts *= val; tsysCol.put(i, ts); } } else if ( mode == "ADD" || mode == "SUB") { if (mode == "SUB") val *= -1.0; spec += val; specCol.put(i, spec); if ( tsys ) { ts += val; tsysCol.put(i, ts); } } } return out; } CountedPtr< Scantable > STMath::arrayOperate( const CountedPtr< Scantable >& in, const std::vector val, const std::string& mode, const std::string& opmode, bool tsys ) { CountedPtr< Scantable > out ; if ( opmode == "channel" ) { out = arrayOperateChannel( in, val, mode, tsys ) ; } else if ( opmode == "row" ) { out = arrayOperateRow( in, val, mode, tsys ) ; } else { throw( AipsError( "Unknown array operation mode." ) ) ; } return out ; } CountedPtr< Scantable > STMath::arrayOperateChannel( const CountedPtr< Scantable >& in, const std::vector val, const std::string& mode, bool tsys ) { if ( val.size() == 1 ){ return unaryOperate( in, val[0], mode, tsys ) ; } // conformity of SPECTRA and TSYS if ( tsys ) { TableIterator titer(in->table(), "IFNO"); while ( !titer.pastEnd() ) { ArrayColumn specCol( in->table(), "SPECTRA" ) ; ArrayColumn tsysCol( in->table(), "TSYS" ) ; Array spec = specCol.getColumn() ; Array ts = tsysCol.getColumn() ; if ( !spec.conform( ts ) ) { throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ; } titer.next() ; } } // check if all spectra in the scantable have the same number of channel vector nchans; vector ifnos = in->getIFNos() ; for ( uInt i = 0 ; i < ifnos.size() ; i++ ) { nchans.push_back( in->nchan( ifnos[i] ) ) ; } Vector mchans( nchans ) ; if ( anyNE( mchans, mchans[0] ) ) { throw( AipsError("All spectra in the input scantable must have the same number of channel for vector operation." ) ) ; } // check if vector size is equal to nchan Vector fact( val ) ; if ( fact.nelements() != mchans[0] ) { throw( AipsError("Vector size must be 1 or be same as number of channel.") ) ; } // check divided by zero if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) { throw( AipsError("Divided by zero is not recommended." ) ) ; } CountedPtr< Scantable > out = getScantable(in, false); Table& tab = out->table(); ArrayColumn specCol(tab,"SPECTRA"); ArrayColumn tsysCol(tab,"TSYS"); for (uInt i=0; i spec; Vector ts; specCol.get(i, spec); tsysCol.get(i, ts); if (mode == "MUL" || mode == "DIV") { if (mode == "DIV") fact = (float)1.0 / fact; spec *= fact; specCol.put(i, spec); if ( tsys ) { ts *= fact; tsysCol.put(i, ts); } } else if ( mode == "ADD" || mode == "SUB") { if (mode == "SUB") fact *= (float)-1.0 ; spec += fact; specCol.put(i, spec); if ( tsys ) { ts += fact; tsysCol.put(i, ts); } } } return out; } CountedPtr< Scantable > STMath::arrayOperateRow( const CountedPtr< Scantable >& in, const std::vector val, const std::string& mode, bool tsys ) { if ( val.size() == 1 ) { return unaryOperate( in, val[0], mode, tsys ) ; } // conformity of SPECTRA and TSYS if ( tsys ) { TableIterator titer(in->table(), "IFNO"); while ( !titer.pastEnd() ) { ArrayColumn specCol( in->table(), "SPECTRA" ) ; ArrayColumn tsysCol( in->table(), "TSYS" ) ; Array spec = specCol.getColumn() ; Array ts = tsysCol.getColumn() ; if ( !spec.conform( ts ) ) { throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ; } titer.next() ; } } // check if vector size is equal to nrow Vector fact( val ) ; if ( fact.nelements() != in->nrow() ) { throw( AipsError("Vector size must be 1 or be same as number of row.") ) ; } // check divided by zero if ( ( mode == "DIV" ) && anyEQ( fact, (float)0.0 ) ) { throw( AipsError("Divided by zero is not recommended." ) ) ; } CountedPtr< Scantable > out = getScantable(in, false); Table& tab = out->table(); ArrayColumn specCol(tab,"SPECTRA"); ArrayColumn tsysCol(tab,"TSYS"); if (mode == "DIV") fact = (float)1.0 / fact; if (mode == "SUB") fact *= (float)-1.0 ; for (uInt i=0; i spec; Vector ts; specCol.get(i, spec); tsysCol.get(i, ts); if (mode == "MUL" || mode == "DIV") { spec *= fact[i]; specCol.put(i, spec); if ( tsys ) { ts *= fact[i]; tsysCol.put(i, ts); } } else if ( mode == "ADD" || mode == "SUB") { spec += fact[i]; specCol.put(i, spec); if ( tsys ) { ts += fact[i]; tsysCol.put(i, ts); } } } return out; } CountedPtr< Scantable > STMath::array2dOperate( const CountedPtr< Scantable >& in, const std::vector< std::vector > val, const std::string& mode, bool tsys ) { // conformity of SPECTRA and TSYS if ( tsys ) { TableIterator titer(in->table(), "IFNO"); while ( !titer.pastEnd() ) { ArrayColumn specCol( in->table(), "SPECTRA" ) ; ArrayColumn tsysCol( in->table(), "TSYS" ) ; Array spec = specCol.getColumn() ; Array ts = tsysCol.getColumn() ; if ( !spec.conform( ts ) ) { throw( AipsError( "SPECTRA and TSYS must conform in shape if you want to apply operation on Tsys." ) ) ; } titer.next() ; } } // some checks vector nchans; for ( uInt i = 0 ; i < in->nrow() ; i++ ) { nchans.push_back( (in->getSpectrum( i )).size() ) ; } //Vector mchans( nchans ) ; vector< Vector > facts ; for ( uInt i = 0 ; i < nchans.size() ; i++ ) { Vector tmp( val[i] ) ; // check divided by zero if ( ( mode == "DIV" ) && anyEQ( tmp, (float)0.0 ) ) { throw( AipsError("Divided by zero is not recommended." ) ) ; } // conformity check if ( tmp.nelements() != nchans[i] ) { stringstream ss ; ss << "Row " << i << ": Vector size must be same as number of channel." ; throw( AipsError( ss.str() ) ) ; } facts.push_back( tmp ) ; } CountedPtr< Scantable > out = getScantable(in, false); Table& tab = out->table(); ArrayColumn specCol(tab,"SPECTRA"); ArrayColumn tsysCol(tab,"TSYS"); for (uInt i=0; i fact = facts[i] ; Vector spec; Vector ts; specCol.get(i, spec); tsysCol.get(i, ts); if (mode == "MUL" || mode == "DIV") { if (mode == "DIV") fact = (float)1.0 / fact; spec *= fact; specCol.put(i, spec); if ( tsys ) { ts *= fact; tsysCol.put(i, ts); } } else if ( mode == "ADD" || mode == "SUB") { if (mode == "SUB") fact *= (float)-1.0 ; spec += fact; specCol.put(i, spec); if ( tsys ) { ts += fact; tsysCol.put(i, ts); } } } return out; } CountedPtr STMath::binaryOperate(const CountedPtr& left, const CountedPtr& right, const std::string& mode) { bool insitu = insitu_; if ( ! left->conformant(*right) ) { throw(AipsError("'left' and 'right' scantables are not conformant.")); } setInsitu(false); CountedPtr< Scantable > out = getScantable(left, false); setInsitu(insitu); Table& tout = out->table(); Block coln(5); coln[0] = "SCANNO"; coln[1] = "CYCLENO"; coln[2] = "BEAMNO"; coln[3] = "IFNO"; coln[4] = "POLNO"; Table tmpl = tout.sort(coln); Table tmpr = right->table().sort(coln); ArrayColumn lspecCol(tmpl,"SPECTRA"); ROArrayColumn rspecCol(tmpr,"SPECTRA"); ArrayColumn lflagCol(tmpl,"FLAGTRA"); ROArrayColumn rflagCol(tmpr,"FLAGTRA"); for (uInt i=0; i lspecvec, rspecvec; Vector lflagvec, rflagvec; lspecvec = lspecCol(i); rspecvec = rspecCol(i); lflagvec = lflagCol(i); rflagvec = rflagCol(i); MaskedArray mleft = maskedArray(lspecvec, lflagvec); MaskedArray mright = maskedArray(rspecvec, rflagvec); if (mode == "ADD") { mleft += mright; } else if ( mode == "SUB") { mleft -= mright; } else if ( mode == "MUL") { mleft *= mright; } else if ( mode == "DIV") { mleft /= mright; } else { throw(AipsError("Illegal binary operator")); } lspecCol.put(i, mleft.getArray()); } return out; } MaskedArray STMath::maskedArray( const Vector& s, const Vector& f) { Vector mask; mask.resize(f.shape()); convertArray(mask, f); return MaskedArray(s,!mask); } MaskedArray STMath::maskedArray( const Vector& s, const Vector& f) { Vector mask; mask.resize(f.shape()); convertArray(mask, f); return MaskedArray(s,!mask); } Vector STMath::flagsFromMA(const MaskedArray& ma) { const Vector& m = ma.getMask(); Vector flags(m.shape()); convertArray(flags, !m); return flags; } CountedPtr< Scantable > STMath::autoQuotient( const CountedPtr< Scantable >& in, const std::string & mode, bool preserve ) { /// @todo make other modes available /// modes should be "nearest", "pair" // make this operation non insitu const Table& tin = in->table(); Table ons = tin(tin.col("SRCTYPE") == Int(SrcType::PSON)); Table offs = tin(tin.col("SRCTYPE") == Int(SrcType::PSOFF)); if ( offs.nrow() == 0 ) throw(AipsError("No 'off' scans present.")); // put all "on" scans into output table bool insitu = insitu_; setInsitu(false); CountedPtr< Scantable > out = getScantable(in, true); setInsitu(insitu); Table& tout = out->table(); TableCopy::copyRows(tout, ons); TableRow row(tout); ROScalarColumn offtimeCol(offs, "TIME"); ArrayColumn outspecCol(tout, "SPECTRA"); ROArrayColumn outtsysCol(tout, "TSYS"); ArrayColumn outflagCol(tout, "FLAGTRA"); for (uInt i=0; i < tout.nrow(); ++i) { const TableRecord& rec = row.get(i); Double ontime = rec.asDouble("TIME"); Table presel = offs(offs.col("BEAMNO") == Int(rec.asuInt("BEAMNO")) && offs.col("IFNO") == Int(rec.asuInt("IFNO")) && offs.col("POLNO") == Int(rec.asuInt("POLNO")) ); ROScalarColumn offtimeCol(presel, "TIME"); Double mindeltat = min(abs(offtimeCol.getColumn() - ontime)); // Timestamp may vary within a cycle ???!!! // increase this by 0.01 sec in case of rounding errors... // There might be a better way to do this. // fix to this fix. TIME is MJD, so 1.0d not 1.0s mindeltat += 0.01/24./60./60.; Table sel = presel( abs(presel.col("TIME")-ontime) <= mindeltat); if ( sel.nrow() < 1 ) { throw(AipsError("No closest in time found... This could be a rounding " "issue. Try quotient instead.")); } TableRow offrow(sel); const TableRecord& offrec = offrow.get(0);//should only be one row RORecordFieldPtr< Array > specoff(offrec, "SPECTRA"); RORecordFieldPtr< Array > tsysoff(offrec, "TSYS"); RORecordFieldPtr< Array > flagoff(offrec, "FLAGTRA"); /// @fixme this assumes tsys is a scalar not vector Float tsysoffscalar = (*tsysoff)(IPosition(1,0)); Vector specon, tsyson; outtsysCol.get(i, tsyson); outspecCol.get(i, specon); Vector flagon; outflagCol.get(i, flagon); MaskedArray mon = maskedArray(specon, flagon); MaskedArray moff = maskedArray(*specoff, *flagoff); MaskedArray quot = (tsysoffscalar * mon / moff); if (preserve) { quot -= tsysoffscalar; } else { quot -= tsyson[0]; } outspecCol.put(i, quot.getArray()); outflagCol.put(i, flagsFromMA(quot)); } // renumber scanno TableIterator it(tout, "SCANNO"); uInt i = 0; while ( !it.pastEnd() ) { Table t = it.table(); TableVector vec(t, "SCANNO"); vec = i; ++i; ++it; } return out; } CountedPtr< Scantable > STMath::quotient( const CountedPtr< Scantable > & on, const CountedPtr< Scantable > & off, bool preserve ) { bool insitu = insitu_; if ( ! on->conformant(*off) ) { throw(AipsError("'on' and 'off' scantables are not conformant.")); } setInsitu(false); CountedPtr< Scantable > out = getScantable(on, false); setInsitu(insitu); Table& tout = out->table(); const Table& toff = off->table(); TableIterator sit(tout, "SCANNO"); TableIterator s2it(toff, "SCANNO"); while ( !sit.pastEnd() ) { Table ton = sit.table(); TableRow row(ton); Table t = s2it.table(); ArrayColumn outspecCol(ton, "SPECTRA"); ROArrayColumn outtsysCol(ton, "TSYS"); ArrayColumn outflagCol(ton, "FLAGTRA"); for (uInt i=0; i < ton.nrow(); ++i) { const TableRecord& rec = row.get(i); Table offsel = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO")) && t.col("IFNO") == Int(rec.asuInt("IFNO")) && t.col("POLNO") == Int(rec.asuInt("POLNO")) ); if ( offsel.nrow() == 0 ) throw AipsError("STMath::quotient: no matching off"); TableRow offrow(offsel); const TableRecord& offrec = offrow.get(0);//should be ncycles - take first RORecordFieldPtr< Array > specoff(offrec, "SPECTRA"); RORecordFieldPtr< Array > tsysoff(offrec, "TSYS"); RORecordFieldPtr< Array > flagoff(offrec, "FLAGTRA"); Float tsysoffscalar = (*tsysoff)(IPosition(1,0)); Vector specon, tsyson; outtsysCol.get(i, tsyson); outspecCol.get(i, specon); Vector flagon; outflagCol.get(i, flagon); MaskedArray mon = maskedArray(specon, flagon); MaskedArray moff = maskedArray(*specoff, *flagoff); MaskedArray quot = (tsysoffscalar * mon / moff); if (preserve) { quot -= tsysoffscalar; } else { quot -= tsyson[0]; } outspecCol.put(i, quot.getArray()); outflagCol.put(i, flagsFromMA(quot)); } ++sit; ++s2it; // take the first off for each on scan which doesn't have a // matching off scan // non <= noff: matching pairs, non > noff matching pairs then first off if ( s2it.pastEnd() ) s2it.reset(); } return out; } // dototalpower (migration of GBTIDL procedure dototalpower.pro) // calibrate the CAL on-off pair. It calculate Tsys and average CAL on-off subintegrations // do it for each cycles in a specific scan. CountedPtr< Scantable > STMath::dototalpower( const CountedPtr< Scantable >& calon, const CountedPtr< Scantable >& caloff, Float tcal ) { if ( ! calon->conformant(*caloff) ) { throw(AipsError("'CAL on' and 'CAL off' scantables are not conformant.")); } setInsitu(false); CountedPtr< Scantable > out = getScantable(caloff, false); Table& tout = out->table(); const Table& tcon = calon->table(); Vector tcalout; Vector tcalout2; //debug if ( tout.nrow() != tcon.nrow() ) { throw(AipsError("Mismatch in number of rows to form cal on - off pair.")); } // iteration by scanno or cycle no. TableIterator sit(tout, "SCANNO"); TableIterator s2it(tcon, "SCANNO"); while ( !sit.pastEnd() ) { Table toff = sit.table(); TableRow row(toff); Table t = s2it.table(); ScalarColumn outintCol(toff, "INTERVAL"); ArrayColumn outspecCol(toff, "SPECTRA"); ArrayColumn outtsysCol(toff, "TSYS"); ArrayColumn outflagCol(toff, "FLAGTRA"); ROScalarColumn outtcalIdCol(toff, "TCAL_ID"); ROScalarColumn outpolCol(toff, "POLNO"); ROScalarColumn onintCol(t, "INTERVAL"); ROArrayColumn onspecCol(t, "SPECTRA"); ROArrayColumn ontsysCol(t, "TSYS"); ROArrayColumn onflagCol(t, "FLAGTRA"); //ROScalarColumn ontcalIdCol(t, "TCAL_ID"); for (uInt i=0; i < toff.nrow(); ++i) { //skip these checks -> assumes the data order are the same between the cal on off pairs // Vector specCalon, specCaloff; // to store scalar (mean) tsys Vector tsysout(1); uInt tcalId, polno; Double offint, onint; outpolCol.get(i, polno); outspecCol.get(i, specCaloff); onspecCol.get(i, specCalon); Vector flagCaloff, flagCalon; outflagCol.get(i, flagCaloff); onflagCol.get(i, flagCalon); outtcalIdCol.get(i, tcalId); outintCol.get(i, offint); onintCol.get(i, onint); // caluculate mean Tsys uInt nchan = specCaloff.nelements(); // percentage of edge cut off uInt pc = 10; uInt bchan = nchan/pc; uInt echan = nchan-bchan; Slicer chansl(IPosition(1,bchan-1), IPosition(1,echan-1), IPosition(1,1),Slicer::endIsLast); Vector testsubsp = specCaloff(chansl); MaskedArray spoff = maskedArray( specCaloff(chansl),flagCaloff(chansl) ); MaskedArray spon = maskedArray( specCalon(chansl),flagCalon(chansl) ); MaskedArray spdiff = spon-spoff; uInt noff = spoff.nelementsValid(); //uInt non = spon.nelementsValid(); uInt ndiff = spdiff.nelementsValid(); Float meantsys; /** Double subspec, subdiff; uInt usednchan; subspec = 0; subdiff = 0; usednchan = 0; for(uInt k=(bchan-1); k(specCalon[k]-specCaloff[k]); ++usednchan; } **/ // get tcal if input tcal <= 0 String tcalt; Float tcalUsed; tcalUsed = tcal; if ( tcal <= 0.0 ) { caloff->tcal().getEntry(tcalt, tcalout, tcalId); if (polno<=3) { tcalUsed = tcalout[polno]; } else { tcalUsed = tcalout[0]; } } Float meanoff; Float meandiff; if (noff && ndiff) { //Debug //if(noff!=ndiff) cerr<<"noff and ndiff is not equal"< mcaloff = maskedArray(specCaloff, flagCaloff); MaskedArray mcalon = maskedArray(specCalon, flagCalon); MaskedArray sig = Float(0.5) * (mcaloff + mcalon); //uInt ncaloff = mcaloff.nelementsValid(); //uInt ncalon = mcalon.nelementsValid(); outintCol.put(i, offint+onint); outspecCol.put(i, sig.getArray()); outflagCol.put(i, flagsFromMA(sig)); outtsysCol.put(i, tsysout); } ++sit; ++s2it; } return out; } //dosigref - migrated from GBT IDL's dosigref.pro, do calibration of position switch // observatiions. // input: sig and ref scantables, and an optional boxcar smoothing width(default width=0, // no smoothing). // output: resultant scantable [= (sig-ref/ref)*tsys] CountedPtr< Scantable > STMath::dosigref( const CountedPtr < Scantable >& sig, const CountedPtr < Scantable >& ref, int smoothref, casa::Float tsysv, casa::Float tau ) { if ( ! ref->conformant(*sig) ) { throw(AipsError("'sig' and 'ref' scantables are not conformant.")); } setInsitu(false); CountedPtr< Scantable > out = getScantable(sig, false); CountedPtr< Scantable > smref; if ( smoothref > 1 ) { float fsmoothref = static_cast(smoothref); std::string inkernel = "boxcar"; smref = smooth(ref, inkernel, fsmoothref ); ostringstream oss; oss<<"Applied smoothing of "<table(); const Table& tref = smref->table(); if ( tout.nrow() != tref.nrow() ) { throw(AipsError("Mismatch in number of rows to form on-source and reference pair.")); } // iteration by scanno? or cycle no. TableIterator sit(tout, "SCANNO"); TableIterator s2it(tref, "SCANNO"); while ( !sit.pastEnd() ) { Table ton = sit.table(); Table t = s2it.table(); ScalarColumn outintCol(ton, "INTERVAL"); ArrayColumn outspecCol(ton, "SPECTRA"); ArrayColumn outtsysCol(ton, "TSYS"); ArrayColumn outflagCol(ton, "FLAGTRA"); ArrayColumn refspecCol(t, "SPECTRA"); ROScalarColumn refintCol(t, "INTERVAL"); ROArrayColumn reftsysCol(t, "TSYS"); ArrayColumn refflagCol(t, "FLAGTRA"); ROScalarColumn refelevCol(t, "ELEVATION"); for (uInt i=0; i < ton.nrow(); ++i) { Double onint, refint; Vector specon, specref; // to store scalar (mean) tsys Vector tsysref; outintCol.get(i, onint); refintCol.get(i, refint); outspecCol.get(i, specon); refspecCol.get(i, specref); Vector flagref, flagon; outflagCol.get(i, flagon); refflagCol.get(i, flagref); reftsysCol.get(i, tsysref); Float tsysrefscalar; if ( tsysv > 0.0 ) { ostringstream oss; Float elev; refelevCol.get(i, elev); oss << "user specified Tsys = " << tsysv; // do recalc elevation if EL = 0 if ( elev == 0 ) { throw(AipsError("EL=0, elevation data is missing.")); } else { if ( tau <= 0.0 ) { throw(AipsError("Valid tau is not supplied.")); } else { tsysrefscalar = tsysv * exp(tau/elev); } } oss << ", corrected (for El) tsys= "< mref = maskedArray(specref, flagref); MaskedArray mon = maskedArray(specon, flagon); MaskedArray specres = tsysrefscalar*((mon - mref)/mref); Double resint = onint*refint*smoothref/(onint+refint*smoothref); //Debug //cerr<<"Tsys used="< ws = getScantable(s, false); uInt l=0; while ( l < sctables.size() ) { for (uInt i=0; i < 2; i++) { for (uInt j=0; j < 2; j++) { for (uInt k=0; k < 2; k++) { sel.reset(); sel.setScans(scanpair[i]); //sel.setName(calstate[k]); types.clear(); types.push_back(calstate[k]); sel.setTypes(types); beams.clear(); beams.push_back(j); sel.setBeams(beams); ws->setSelection(sel); sctables[l]= getScantable(ws, false); l++; } } } } // replace here by splitData or getData functionality CountedPtr< Scantable > sig1; CountedPtr< Scantable > ref1; CountedPtr< Scantable > sig2; CountedPtr< Scantable > ref2; CountedPtr< Scantable > calb1; CountedPtr< Scantable > calb2; msg=String("Processing dototalpower for subset of the data"); ostringstream oss1; oss1 << msg << endl; pushLog(String(oss1)); // Debug for IRC CS data //float tcal1=7.0; //float tcal2=4.0; sig1 = dototalpower(sctables[0], sctables[1], tcal=tcal); ref1 = dototalpower(sctables[2], sctables[3], tcal=tcal); ref2 = dototalpower(sctables[4], sctables[5], tcal=tcal); sig2 = dototalpower(sctables[6], sctables[7], tcal=tcal); // correction of user-specified tsys for elevation here // dosigref calibration msg=String("Processing dosigref for subset of the data"); ostringstream oss2; oss2 << msg << endl; pushLog(String(oss2)); calb1=dosigref(sig1,ref2,smoothref,tsysv,tau); calb2=dosigref(sig2,ref1,smoothref,tsysv,tau); // iteration by scanno or cycle no. Table& tcalb1 = calb1->table(); Table& tcalb2 = calb2->table(); TableIterator sit(tcalb1, "SCANNO"); TableIterator s2it(tcalb2, "SCANNO"); while ( !sit.pastEnd() ) { Table t1 = sit.table(); Table t2= s2it.table(); ArrayColumn outspecCol(t1, "SPECTRA"); ArrayColumn outtsysCol(t1, "TSYS"); ArrayColumn outflagCol(t1, "FLAGTRA"); ScalarColumn outintCol(t1, "INTERVAL"); ArrayColumn t2specCol(t2, "SPECTRA"); ROArrayColumn t2tsysCol(t2, "TSYS"); ArrayColumn t2flagCol(t2, "FLAGTRA"); ROScalarColumn t2intCol(t2, "INTERVAL"); for (uInt i=0; i < t1.nrow(); ++i) { Vector spec1, spec2; // to store scalar (mean) tsys Vector tsys1, tsys2; Vector flag1, flag2; Double tint1, tint2; outspecCol.get(i, spec1); t2specCol.get(i, spec2); outflagCol.get(i, flag1); t2flagCol.get(i, flag2); outtsysCol.get(i, tsys1); t2tsysCol.get(i, tsys2); outintCol.get(i, tint1); t2intCol.get(i, tint2); // average // assume scalar tsys for weights Float wt1, wt2, tsyssq1, tsyssq2; tsyssq1 = tsys1[0]*tsys1[0]; tsyssq2 = tsys2[0]*tsys2[0]; wt1 = Float(tint1)/tsyssq1; wt2 = Float(tint2)/tsyssq2; Float invsumwt=1/(wt1+wt2); MaskedArray mspec1 = maskedArray(spec1, flag1); MaskedArray mspec2 = maskedArray(spec2, flag2); MaskedArray avspec = invsumwt * (wt1*mspec1 + wt2*mspec2); //Array avtsys = Float(0.5) * (tsys1 + tsys2); // cerr<< "Tsys1="<setSelection(sel); sig = getScantable(ws,false); sel.reset(); types.clear() ; //sel.setName("*_fs_calon"); types.push_back( SrcType::FONCAL ) ; sel.setTypes( types ) ; ws->setSelection(sel); sigwcal = getScantable(ws,false); sel.reset(); types.clear() ; //sel.setName("*_fsr"); types.push_back( SrcType::FSOFF ) ; sel.setTypes( types ) ; ws->setSelection(sel); ref = getScantable(ws,false); sel.reset(); types.clear() ; //sel.setName("*_fsr_calon"); types.push_back( SrcType::FOFFCAL ) ; sel.setTypes( types ) ; ws->setSelection(sel); refwcal = getScantable(ws,false); sel.reset() ; types.clear() ; calsig = dototalpower(sigwcal, sig, tcal=tcal); calref = dototalpower(refwcal, ref, tcal=tcal); out1=dosigref(calsig,calref,smoothref,tsysv,tau); out2=dosigref(calref,calsig,smoothref,tsysv,tau); Table& tabout1=out1->table(); Table& tabout2=out2->table(); ROScalarColumn freqidCol1(tabout1, "FREQ_ID"); ScalarColumn freqidCol2(tabout2, "FREQ_ID"); ROArrayColumn specCol(tabout2, "SPECTRA"); Vector spec; specCol.get(0, spec); uInt nchan = spec.nelements(); uInt freqid1; freqidCol1.get(0,freqid1); uInt freqid2; freqidCol2.get(0,freqid2); Double rp1, rp2, rv1, rv2, inc1, inc2; out1->frequencies().getEntry(rp1, rv1, inc1, freqid1); out2->frequencies().getEntry(rp2, rv2, inc2, freqid2); //cerr << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << endl ; //LogIO os( LogOrigin( "STMath", "dofs()", WHERE ) ) ; //os << out1->frequencies().table().nrow() << " " << out2->frequencies().table().nrow() << LogIO::POST ; if (rp1==rp2) { Double foffset = rv1 - rv2; uInt choffset = static_cast(foffset/abs(inc2)); if (choffset >= nchan) { //cerr<<"out-band frequency switching, no folding"< > tabs; tabs.push_back(out1); tabs.push_back(out2); out = merge(tabs); } else { //out = out1; Double choffset = ( rv1 - rv2 ) / inc2 ; out = dofold( out1, out2, choffset ) ; } return out; } CountedPtr STMath::dofold( const CountedPtr &sig, const CountedPtr &ref, Double choffset, Double choffset2 ) { LogIO os( LogOrigin( "STMath", "dofold", WHERE ) ) ; os << "choffset=" << choffset << " choffset2=" << choffset2 << LogIO::POST ; // output scantable CountedPtr out = getScantable( sig, false ) ; // separate choffset to integer part and decimal part Int ioffset = (Int)choffset ; Double doffset = choffset - ioffset ; Int ioffset2 = (Int)choffset2 ; Double doffset2 = choffset2 - ioffset2 ; os << "ioffset=" << ioffset << " doffset=" << doffset << LogIO::POST ; os << "ioffset2=" << ioffset2 << " doffset2=" << doffset2 << LogIO::POST ; // get column ROArrayColumn specCol1( sig->table(), "SPECTRA" ) ; ROArrayColumn specCol2( ref->table(), "SPECTRA" ) ; ROArrayColumn tsysCol1( sig->table(), "TSYS" ) ; ROArrayColumn tsysCol2( ref->table(), "TSYS" ) ; ROArrayColumn flagCol1( sig->table(), "FLAGTRA" ) ; ROArrayColumn flagCol2( ref->table(), "FLAGTRA" ) ; ROScalarColumn mjdCol1( sig->table(), "TIME" ) ; ROScalarColumn mjdCol2( ref->table(), "TIME" ) ; ROScalarColumn intervalCol1( sig->table(), "INTERVAL" ) ; ROScalarColumn intervalCol2( ref->table(), "INTERVAL" ) ; // check if ( ioffset == 0 ) { LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ; os << "channel offset is zero, no folding" << LogIO::POST ; return out ; } int nchan = ref->nchan() ; if ( abs(ioffset) >= nchan ) { LogIO os( LogOrigin( "STMath", "dofold()", WHERE ) ) ; os << "out-band frequency switching, no folding" << LogIO::POST ; return out ; } // attach column for output scantable ArrayColumn specColOut( out->table(), "SPECTRA" ) ; ArrayColumn flagColOut( out->table(), "FLAGTRA" ) ; ArrayColumn tsysColOut( out->table(), "TSYS" ) ; ScalarColumn mjdColOut( out->table(), "TIME" ) ; ScalarColumn intervalColOut( out->table(), "INTERVAL" ) ; ScalarColumn fidColOut( out->table(), "FREQ_ID" ) ; // for each row // assume that the data order are same between sig and ref RowAccumulator acc( asap::W_TINTSYS ) ; for ( int i = 0 ; i < sig->nrow() ; i++ ) { // get values Vector spsig ; specCol1.get( i, spsig ) ; Vector spref ; specCol2.get( i, spref ) ; Vector tsyssig ; tsysCol1.get( i, tsyssig ) ; Vector tsysref ; tsysCol2.get( i, tsysref ) ; Vector flagsig ; flagCol1.get( i, flagsig ) ; Vector flagref ; flagCol2.get( i, flagref ) ; Double timesig ; mjdCol1.get( i, timesig ) ; Double timeref ; mjdCol2.get( i, timeref ) ; Double intsig ; intervalCol1.get( i, intsig ) ; Double intref ; intervalCol2.get( i, intref ) ; // shift reference spectra int refchan = spref.nelements() ; Vector sspref( spref.nelements() ) ; Vector stsysref( tsysref.nelements() ) ; Vector sflagref( flagref.nelements() ) ; if ( ioffset > 0 ) { // SPECTRA and FLAGTRA for ( int j = 0 ; j < refchan-ioffset ; j++ ) { sspref[j] = spref[j+ioffset] ; sflagref[j] = flagref[j+ioffset] ; } for ( int j = refchan-ioffset ; j < refchan ; j++ ) { sspref[j] = spref[j-refchan+ioffset] ; sflagref[j] = flagref[j-refchan+ioffset] ; } spref = sspref.copy() ; flagref = sflagref.copy() ; for ( int j = 0 ; j < refchan - 1 ; j++ ) { sspref[j] = doffset * spref[j+1] + ( 1.0 - doffset ) * spref[j] ; sflagref[j] = flagref[j+1] + flagref[j] ; } sspref[refchan-1] = doffset * spref[0] + ( 1.0 - doffset ) * spref[refchan-1] ; sflagref[refchan-1] = flagref[0] + flagref[refchan-1] ; // TSYS if ( spref.nelements() == tsysref.nelements() ) { for ( int j = 0 ; j < refchan-ioffset ; j++ ) { stsysref[j] = tsysref[j+ioffset] ; } for ( int j = refchan-ioffset ; j < refchan ; j++ ) { stsysref[j] = tsysref[j-refchan+ioffset] ; } tsysref = stsysref.copy() ; for ( int j = 0 ; j < refchan - 1 ; j++ ) { stsysref[j] = doffset * tsysref[j+1] + ( 1.0 - doffset ) * tsysref[j] ; } stsysref[refchan-1] = doffset * tsysref[0] + ( 1.0 - doffset ) * tsysref[refchan-1] ; } } else { // SPECTRA and FLAGTRA for ( int j = 0 ; j < abs(ioffset) ; j++ ) { sspref[j] = spref[refchan+ioffset+j] ; sflagref[j] = flagref[refchan+ioffset+j] ; } for ( int j = abs(ioffset) ; j < refchan ; j++ ) { sspref[j] = spref[j+ioffset] ; sflagref[j] = flagref[j+ioffset] ; } spref = sspref.copy() ; flagref = sflagref.copy() ; sspref[0] = doffset * spref[refchan-1] + ( 1.0 - doffset ) * spref[0] ; sflagref[0] = flagref[0] + flagref[refchan-1] ; for ( int j = 1 ; j < refchan ; j++ ) { sspref[j] = doffset * spref[j-1] + ( 1.0 - doffset ) * spref[j] ; sflagref[j] = flagref[j-1] + flagref[j] ; } // TSYS if ( spref.nelements() == tsysref.nelements() ) { for ( int j = 0 ; j < abs(ioffset) ; j++ ) { stsysref[j] = tsysref[refchan+ioffset+j] ; } for ( int j = abs(ioffset) ; j < refchan ; j++ ) { stsysref[j] = tsysref[j+ioffset] ; } tsysref = stsysref.copy() ; stsysref[0] = doffset * tsysref[refchan-1] + ( 1.0 - doffset ) * tsysref[0] ; for ( int j = 1 ; j < refchan ; j++ ) { stsysref[j] = doffset * tsysref[j-1] + ( 1.0 - doffset ) * tsysref[j] ; } } } // shift signal spectra if necessary (only for APEX?) if ( choffset2 != 0.0 ) { int sigchan = spsig.nelements() ; Vector sspsig( spsig.nelements() ) ; Vector stsyssig( tsyssig.nelements() ) ; Vector sflagsig( flagsig.nelements() ) ; if ( ioffset2 > 0 ) { // SPECTRA and FLAGTRA for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) { sspsig[j] = spsig[j+ioffset2] ; sflagsig[j] = flagsig[j+ioffset2] ; } for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) { sspsig[j] = spsig[j-sigchan+ioffset2] ; sflagsig[j] = flagsig[j-sigchan+ioffset2] ; } spsig = sspsig.copy() ; flagsig = sflagsig.copy() ; for ( int j = 0 ; j < sigchan - 1 ; j++ ) { sspsig[j] = doffset2 * spsig[j+1] + ( 1.0 - doffset2 ) * spsig[j] ; sflagsig[j] = flagsig[j+1] || flagsig[j] ; } sspsig[sigchan-1] = doffset2 * spsig[0] + ( 1.0 - doffset2 ) * spsig[sigchan-1] ; sflagsig[sigchan-1] = flagsig[0] || flagsig[sigchan-1] ; // TSTS if ( spsig.nelements() == tsyssig.nelements() ) { for ( int j = 0 ; j < sigchan-ioffset2 ; j++ ) { stsyssig[j] = tsyssig[j+ioffset2] ; } for ( int j = sigchan-ioffset2 ; j < sigchan ; j++ ) { stsyssig[j] = tsyssig[j-sigchan+ioffset2] ; } tsyssig = stsyssig.copy() ; for ( int j = 0 ; j < sigchan - 1 ; j++ ) { stsyssig[j] = doffset2 * tsyssig[j+1] + ( 1.0 - doffset2 ) * tsyssig[j] ; } stsyssig[sigchan-1] = doffset2 * tsyssig[0] + ( 1.0 - doffset2 ) * tsyssig[sigchan-1] ; } } else { // SPECTRA and FLAGTRA for ( int j = 0 ; j < abs(ioffset2) ; j++ ) { sspsig[j] = spsig[sigchan+ioffset2+j] ; sflagsig[j] = flagsig[sigchan+ioffset2+j] ; } for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) { sspsig[j] = spsig[j+ioffset2] ; sflagsig[j] = flagsig[j+ioffset2] ; } spsig = sspsig.copy() ; flagsig = sflagsig.copy() ; sspsig[0] = doffset2 * spsig[sigchan-1] + ( 1.0 - doffset2 ) * spsig[0] ; sflagsig[0] = flagsig[0] + flagsig[sigchan-1] ; for ( int j = 1 ; j < sigchan ; j++ ) { sspsig[j] = doffset2 * spsig[j-1] + ( 1.0 - doffset2 ) * spsig[j] ; sflagsig[j] = flagsig[j-1] + flagsig[j] ; } // TSYS if ( spsig.nelements() == tsyssig.nelements() ) { for ( int j = 0 ; j < abs(ioffset2) ; j++ ) { stsyssig[j] = tsyssig[sigchan+ioffset2+j] ; } for ( int j = abs(ioffset2) ; j < sigchan ; j++ ) { stsyssig[j] = tsyssig[j+ioffset2] ; } tsyssig = stsyssig.copy() ; stsyssig[0] = doffset2 * tsyssig[sigchan-1] + ( 1.0 - doffset2 ) * tsyssig[0] ; for ( int j = 1 ; j < sigchan ; j++ ) { stsyssig[j] = doffset2 * tsyssig[j-1] + ( 1.0 - doffset2 ) * tsyssig[j] ; } } } } // folding acc.add( spsig, !flagsig, tsyssig, intsig, timesig ) ; acc.add( sspref, !sflagref, stsysref, intref, timeref ) ; // put result specColOut.put( i, acc.getSpectrum() ) ; const Vector &msk = acc.getMask() ; Vector flg( msk.shape() ) ; convertArray( flg, !msk ) ; flagColOut.put( i, flg ) ; tsysColOut.put( i, acc.getTsys() ) ; intervalColOut.put( i, acc.getInterval() ) ; mjdColOut.put( i, acc.getTime() ) ; // change FREQ_ID to unshifted IF setting (only for APEX?) if ( choffset2 != 0.0 ) { uInt freqid = fidColOut( 0 ) ; // assume single-IF data double refpix, refval, increment ; out->frequencies().getEntry( refpix, refval, increment, freqid ) ; refval -= choffset * increment ; uInt newfreqid = out->frequencies().addEntry( refpix, refval, increment ) ; Vector freqids = fidColOut.getColumn() ; for ( uInt j = 0 ; j < freqids.nelements() ; j++ ) { if ( freqids[j] == freqid ) freqids[j] = newfreqid ; } fidColOut.putColumn( freqids ) ; } acc.reset() ; } return out ; } CountedPtr< Scantable > STMath::freqSwitch( const CountedPtr< Scantable >& in ) { // make copy or reference CountedPtr< Scantable > out = getScantable(in, false); Table& tout = out->table(); Block cols(4); cols[0] = String("SCANNO"); cols[1] = String("CYCLENO"); cols[2] = String("BEAMNO"); cols[3] = String("POLNO"); TableIterator iter(tout, cols); while (!iter.pastEnd()) { Table subt = iter.table(); // this should leave us with two rows for the two IFs....if not ignore if (subt.nrow() != 2 ) { continue; } ArrayColumn specCol(subt, "SPECTRA"); ArrayColumn tsysCol(subt, "TSYS"); ArrayColumn flagCol(subt, "FLAGTRA"); Vector onspec,offspec, ontsys, offtsys; Vector onflag, offflag; tsysCol.get(0, ontsys); tsysCol.get(1, offtsys); specCol.get(0, onspec); specCol.get(1, offspec); flagCol.get(0, onflag); flagCol.get(1, offflag); MaskedArray on = maskedArray(onspec, onflag); MaskedArray off = maskedArray(offspec, offflag); MaskedArray oncopy = on.copy(); on /= off; on -= 1.0f; on *= ontsys[0]; off /= oncopy; off -= 1.0f; off *= offtsys[0]; specCol.put(0, on.getArray()); const Vector& m0 = on.getMask(); Vector flags0(m0.shape()); convertArray(flags0, !m0); flagCol.put(0, flags0); specCol.put(1, off.getArray()); const Vector& m1 = off.getMask(); Vector flags1(m1.shape()); convertArray(flags1, !m1); flagCol.put(1, flags1); ++iter; } return out; } std::vector< float > STMath::statistic( const CountedPtr< Scantable > & in, const std::vector< bool > & mask, const std::string& which ) { Vector m(mask); const Table& tab = in->table(); ROArrayColumn specCol(tab, "SPECTRA"); ROArrayColumn flagCol(tab, "FLAGTRA"); std::vector out; for (uInt i=0; i < tab.nrow(); ++i ) { Vector spec; specCol.get(i, spec); Vector flag; flagCol.get(i, flag); MaskedArray ma = maskedArray(spec, flag); float outstat = 0.0; if ( spec.nelements() == m.nelements() ) { outstat = mathutil::statistics(which, ma(m)); } else { outstat = mathutil::statistics(which, ma); } out.push_back(outstat); } return out; } std::vector< int > STMath::minMaxChan( const CountedPtr< Scantable > & in, const std::vector< bool > & mask, const std::string& which ) { Vector m(mask); const Table& tab = in->table(); ROArrayColumn specCol(tab, "SPECTRA"); ROArrayColumn flagCol(tab, "FLAGTRA"); std::vector out; for (uInt i=0; i < tab.nrow(); ++i ) { Vector spec; specCol.get(i, spec); Vector flag; flagCol.get(i, flag); MaskedArray ma = maskedArray(spec, flag); if (ma.ndim() != 1) { throw (ArrayError( "std::vector STMath::minMaxChan(" "ContedPtr &in, std::vector &mask, " " std::string &which)" " - MaskedArray is not 1D")); } IPosition outpos(1,0); if ( spec.nelements() == m.nelements() ) { outpos = mathutil::minMaxPos(which, ma(m)); } else { outpos = mathutil::minMaxPos(which, ma); } out.push_back(outpos[0]); } return out; } CountedPtr< Scantable > STMath::bin( const CountedPtr< Scantable > & in, int width ) { if ( !in->getSelection().empty() ) throw(AipsError("Can't bin subset of the data.")); CountedPtr< Scantable > out = getScantable(in, false); Table& tout = out->table(); out->frequencies().rescale(width, "BIN"); ArrayColumn specCol(tout, "SPECTRA"); ArrayColumn flagCol(tout, "FLAGTRA"); for (uInt i=0; i < tout.nrow(); ++i ) { MaskedArray main = maskedArray(specCol(i), flagCol(i)); MaskedArray maout; LatticeUtilities::bin(maout, main, 0, Int(width)); /// @todo implement channel based tsys binning specCol.put(i, maout.getArray()); flagCol.put(i, flagsFromMA(maout)); // take only the first binned spectrum's length for the deprecated // global header item nChan if (i==0) tout.rwKeywordSet().define(String("nChan"), Int(maout.getArray().nelements())); } return out; } CountedPtr< Scantable > STMath::resample( const CountedPtr< Scantable >& in, const std::string& method, float width ) // // Should add the possibility of width being specified in km/s. This means // that for each freqID (SpectralCoordinate) we will need to convert to an // average channel width (say at the reference pixel). Then we would need // to be careful to make sure each spectrum (of different freqID) // is the same length. // { //InterpolateArray1D::InterpolationMethod interp; Int interpMethod(stringToIMethod(method)); CountedPtr< Scantable > out = getScantable(in, false); Table& tout = out->table(); // Resample SpectralCoordinates (one per freqID) out->frequencies().rescale(width, "RESAMPLE"); TableIterator iter(tout, "IFNO"); TableRow row(tout); while ( !iter.pastEnd() ) { Table tab = iter.table(); ArrayColumn specCol(tab, "SPECTRA"); //ArrayColumn tsysCol(tout, "TSYS"); ArrayColumn flagCol(tab, "FLAGTRA"); Vector spec; Vector flag; specCol.get(0,spec); // the number of channels should be constant per IF uInt nChanIn = spec.nelements(); Vector xIn(nChanIn); indgen(xIn); Int fac = Int(nChanIn/width); Vector xOut(fac+10); // 10 to be safe - resize later uInt k = 0; Float x = 0.0; while (x < Float(nChanIn) ) { xOut(k) = x; k++; x += width; } uInt nChanOut = k; xOut.resize(nChanOut, True); // process all rows for this IFNO Vector specOut; Vector maskOut; Vector flagOut; for (uInt i=0; i < tab.nrow(); ++i) { specCol.get(i, spec); flagCol.get(i, flag); Vector mask(flag.nelements()); convertArray(mask, flag); IPosition shapeIn(spec.shape()); //sh.nchan = nChanOut; InterpolateArray1D::interpolate(specOut, maskOut, xOut, xIn, spec, mask, interpMethod, True, True); /// @todo do the same for channel based Tsys flagOut.resize(maskOut.nelements()); convertArray(flagOut, maskOut); specCol.put(i, specOut); flagCol.put(i, flagOut); } ++iter; } return out; } STMath::imethod STMath::stringToIMethod(const std::string& in) { static STMath::imap lookup; // initialize the lookup table if necessary if ( lookup.empty() ) { lookup["nearest"] = InterpolateArray1D::nearestNeighbour; lookup["linear"] = InterpolateArray1D::linear; lookup["cubic"] = InterpolateArray1D::cubic; lookup["spline"] = InterpolateArray1D::spline; } STMath::imap::const_iterator iter = lookup.find(in); if ( lookup.end() == iter ) { std::string message = in; message += " is not a valid interpolation mode"; throw(AipsError(message)); } return iter->second; } WeightType STMath::stringToWeight(const std::string& in) { static std::map lookup; // initialize the lookup table if necessary if ( lookup.empty() ) { lookup["NONE"] = asap::W_NONE; lookup["TINT"] = asap::W_TINT; lookup["TINTSYS"] = asap::W_TINTSYS; lookup["TSYS"] = asap::W_TSYS; lookup["VAR"] = asap::W_VAR; } std::map::const_iterator iter = lookup.find(in); if ( lookup.end() == iter ) { std::string message = in; message += " is not a valid weighting mode"; throw(AipsError(message)); } return iter->second; } CountedPtr< Scantable > STMath::gainElevation( const CountedPtr< Scantable >& in, const vector< float > & coeff, const std::string & filename, const std::string& method) { // Get elevation data from Scantable and convert to degrees CountedPtr< Scantable > out = getScantable(in, false); Table& tab = out->table(); ROScalarColumn elev(tab, "ELEVATION"); Vector x = elev.getColumn(); x *= Float(180 / C::pi); // Degrees Vector coeffs(coeff); const uInt nc = coeffs.nelements(); if ( filename.length() > 0 && nc > 0 ) { throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both")); } // Correct if ( nc > 0 || filename.length() == 0 ) { // Find instrument Bool throwit = True; Instrument inst = STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"), throwit); // Set polynomial Polynomial* ppoly = 0; Vector coeff; String msg; if ( nc > 0 ) { ppoly = new Polynomial(nc-1); coeff = coeffs; msg = String("user"); } else { STAttr sdAttr; coeff = sdAttr.gainElevationPoly(inst); ppoly = new Polynomial(coeff.nelements()-1); msg = String("built in"); } if ( coeff.nelements() > 0 ) { ppoly->setCoefficients(coeff); } else { delete ppoly; throw(AipsError("There is no known gain-elevation polynomial known for this instrument")); } ostringstream oss; oss << "Making polynomial correction with " << msg << " coefficients:" << endl; oss << " " << coeff; pushLog(String(oss)); const uInt nrow = tab.nrow(); Vector factor(nrow); for ( uInt i=0; i < nrow; ++i ) { factor[i] = 1.0 / (*ppoly)(x[i]); } delete ppoly; scaleByVector(tab, factor, true); } else { // Read and correct pushLog("Making correction from ascii Table"); scaleFromAsciiTable(tab, filename, method, x, true); } return out; } void STMath::scaleFromAsciiTable(Table& in, const std::string& filename, const std::string& method, const Vector& xout, bool dotsys) { // Read gain-elevation ascii file data into a Table. String formatString; Table tbl = readAsciiTable(formatString, Table::Memory, filename, "", "", False); scaleFromTable(in, tbl, method, xout, dotsys); } void STMath::scaleFromTable(Table& in, const Table& table, const std::string& method, const Vector& xout, bool dotsys) { ROScalarColumn geElCol(table, "ELEVATION"); ROScalarColumn geFacCol(table, "FACTOR"); Vector xin = geElCol.getColumn(); Vector yin = geFacCol.getColumn(); Vector maskin(xin.nelements(),True); // Interpolate (and extrapolate) with desired method InterpolateArray1D::InterpolationMethod interp = stringToIMethod(method); Vector yout; Vector maskout; InterpolateArray1D::interpolate(yout, maskout, xout, xin, yin, maskin, interp, True, True); scaleByVector(in, Float(1.0)/yout, dotsys); } void STMath::scaleByVector( Table& in, const Vector< Float >& factor, bool dotsys ) { uInt nrow = in.nrow(); if ( factor.nelements() != nrow ) { throw(AipsError("factors.nelements() != table.nelements()")); } ArrayColumn specCol(in, "SPECTRA"); ArrayColumn flagCol(in, "FLAGTRA"); ArrayColumn tsysCol(in, "TSYS"); for (uInt i=0; i < nrow; ++i) { MaskedArray ma = maskedArray(specCol(i), flagCol(i)); ma *= factor[i]; specCol.put(i, ma.getArray()); flagCol.put(i, flagsFromMA(ma)); if ( dotsys ) { Vector tsys = tsysCol(i); tsys *= factor[i]; tsysCol.put(i,tsys); } } } CountedPtr< Scantable > STMath::convertFlux( const CountedPtr< Scantable >& in, float d, float etaap, float jyperk ) { CountedPtr< Scantable > out = getScantable(in, false); Table& tab = in->table(); Unit fluxUnit(tab.keywordSet().asString("FluxUnit")); Unit K(String("K")); Unit JY(String("Jy")); bool tokelvin = true; Double cfac = 1.0; if ( fluxUnit == JY ) { pushLog("Converting to K"); Quantum t(1.0,fluxUnit); Quantum t2 = t.get(JY); cfac = (t2 / t).getValue(); // value to Jy tokelvin = true; out->setFluxUnit("K"); } else if ( fluxUnit == K ) { pushLog("Converting to Jy"); Quantum t(1.0,fluxUnit); Quantum t2 = t.get(K); cfac = (t2 / t).getValue(); // value to K tokelvin = false; out->setFluxUnit("Jy"); } else { throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K")); } // Make sure input values are converted to either Jy or K first... Float factor = cfac; // Select method if (jyperk > 0.0) { factor *= jyperk; if ( tokelvin ) factor = 1.0 / jyperk; ostringstream oss; oss << "Jy/K = " << jyperk; pushLog(String(oss)); Vector factors(tab.nrow(), factor); scaleByVector(tab,factors, false); } else if ( etaap > 0.0) { if (d < 0) { Instrument inst = STAttr::convertInstrument(tab.keywordSet().asString("AntennaName"), True); STAttr sda; d = sda.diameter(inst); } jyperk = STAttr::findJyPerK(etaap, d); ostringstream oss; oss << "Jy/K = " << jyperk; pushLog(String(oss)); factor *= jyperk; if ( tokelvin ) { factor = 1.0 / factor; } Vector factors(tab.nrow(), factor); scaleByVector(tab, factors, False); } else { // OK now we must deal with automatic look up of values. // We must also deal with the fact that the factors need // to be computed per IF and may be different and may // change per integration. pushLog("Looking up conversion factors"); convertBrightnessUnits(out, tokelvin, cfac); } return out; } void STMath::convertBrightnessUnits( CountedPtr& in, bool tokelvin, float cfac ) { Table& table = in->table(); Instrument inst = STAttr::convertInstrument(table.keywordSet().asString("AntennaName"), True); TableIterator iter(table, "FREQ_ID"); STFrequencies stfreqs = in->frequencies(); STAttr sdAtt; while (!iter.pastEnd()) { Table tab = iter.table(); ArrayColumn specCol(tab, "SPECTRA"); ArrayColumn flagCol(tab, "FLAGTRA"); ROScalarColumn freqidCol(tab, "FREQ_ID"); MEpoch::ROScalarColumn timeCol(tab, "TIME"); uInt freqid; freqidCol.get(0, freqid); Vector tmpspec; specCol.get(0, tmpspec); // STAttr.JyPerK has a Vector interface... change sometime. Vector freqs(1,stfreqs.getRefFreq(freqid, tmpspec.nelements())); for ( uInt i=0; i ma = maskedArray(specCol(i), flagCol(i)); ma *= factor; specCol.put(i, ma.getArray()); flagCol.put(i, flagsFromMA(ma)); } ++iter; } } CountedPtr< Scantable > STMath::opacity( const CountedPtr< Scantable > & in, const std::vector& tau ) { CountedPtr< Scantable > out = getScantable(in, false); Table outtab = out->table(); const uInt ntau = uInt(tau.size()); std::vector::const_iterator tauit = tau.begin(); AlwaysAssert((ntau == 1 || ntau == in->nif() || ntau == in->nif() * in->npol()), AipsError); TableIterator iiter(outtab, "IFNO"); while ( !iiter.pastEnd() ) { Table itab = iiter.table(); TableIterator piter(outtab, "POLNO"); while ( !piter.pastEnd() ) { Table tab = piter.table(); ROScalarColumn elev(tab, "ELEVATION"); ArrayColumn specCol(tab, "SPECTRA"); ArrayColumn flagCol(tab, "FLAGTRA"); ArrayColumn tsysCol(tab, "TSYS"); for ( uInt i=0; i ma = maskedArray(specCol(i), flagCol(i)); ma *= factor; specCol.put(i, ma.getArray()); flagCol.put(i, flagsFromMA(ma)); Vector tsys; tsysCol.get(i, tsys); tsys *= factor; tsysCol.put(i, tsys); } if (ntau == in->nif()*in->npol() ) { tauit++; } piter++; } if (ntau >= in->nif() ) { tauit++; } iiter++; } return out; } CountedPtr< Scantable > STMath::smoothOther( const CountedPtr< Scantable >& in, const std::string& kernel, float width, int order) { CountedPtr< Scantable > out = getScantable(in, false); Table& table = out->table(); ArrayColumn specCol(table, "SPECTRA"); ArrayColumn flagCol(table, "FLAGTRA"); Vector spec; Vector flag; for ( uInt i=0; i mask(flag.nelements()); convertArray(mask, flag); Vector specout; Vector maskout; if ( kernel == "hanning" ) { mathutil::hanning(specout, maskout, spec , !mask); convertArray(flag, !maskout); } else if ( kernel == "rmedian" ) { mathutil::runningMedian(specout, maskout, spec , mask, width); convertArray(flag, maskout); } else if ( kernel == "poly" ) { mathutil::polyfit(specout, maskout, spec, !mask, width, order); convertArray(flag, !maskout); } flagCol.put(i, flag); specCol.put(i, specout); } return out; } CountedPtr< Scantable > STMath::smooth( const CountedPtr< Scantable >& in, const std::string& kernel, float width, int order) { if (kernel == "rmedian" || kernel == "hanning" || kernel == "poly") { return smoothOther(in, kernel, width, order); } CountedPtr< Scantable > out = getScantable(in, false); Table& table = out->table(); VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernel); // same IFNO should have same no of channels // this saves overhead TableIterator iter(table, "IFNO"); while (!iter.pastEnd()) { Table tab = iter.table(); ArrayColumn specCol(tab, "SPECTRA"); ArrayColumn flagCol(tab, "FLAGTRA"); Vector tmpspec; specCol.get(0, tmpspec); uInt nchan = tmpspec.nelements(); Vector kvec = VectorKernel::make(type, width, nchan, True, False); Convolver conv(kvec, IPosition(1,nchan)); Vector spec; Vector flag; for ( uInt i=0; i mask(flag.nelements()); convertArray(mask, flag); Vector specout; mathutil::replaceMaskByZero(specout, mask); conv.linearConv(specout, spec); specCol.put(i, specout); } ++iter; } return out; } CountedPtr< Scantable > STMath::merge( const std::vector< CountedPtr < Scantable > >& in ) { if ( in.size() < 2 ) { throw(AipsError("Need at least two scantables to perform a merge.")); } std::vector >::const_iterator it = in.begin(); bool insitu = insitu_; setInsitu(false); CountedPtr< Scantable > out = getScantable(*it, false); setInsitu(insitu); Table& tout = out->table(); ScalarColumn freqidcol(tout,"FREQ_ID"), molidcol(tout, "MOLECULE_ID"); ScalarColumn scannocol(tout,"SCANNO"), focusidcol(tout,"FOCUS_ID"); // Renumber SCANNO to be 0-based Vector scannos = scannocol.getColumn(); uInt offset = min(scannos); scannos -= offset; scannocol.putColumn(scannos); uInt newscanno = max(scannos)+1; ++it; while ( it != in.end() ){ if ( ! (*it)->conformant(*out) ) { // non conformant. //pushLog(String("Warning: Can't merge scantables as header info differs.")); LogIO os( LogOrigin( "STMath", "merge()", WHERE ) ) ; os << LogIO::SEVERE << "Can't merge scantables as header informations (any one of AntennaName, Equinox, and FluxUnit) differ." << LogIO::EXCEPTION ; } out->appendToHistoryTable((*it)->history()); const Table& tab = (*it)->table(); TableIterator scanit(tab, "SCANNO"); while (!scanit.pastEnd()) { TableIterator freqit(scanit.table(), "FREQ_ID"); while ( !freqit.pastEnd() ) { Table thetab = freqit.table(); uInt nrow = tout.nrow(); tout.addRow(thetab.nrow()); TableCopy::copyRows(tout, thetab, nrow, 0, thetab.nrow()); ROTableRow row(thetab); for ( uInt i=0; ifrequencies().getEntry(rp, rv, inc, rec.asuInt("FREQ_ID")); uInt id; id = out->frequencies().addEntry(rp, rv, inc); freqidcol.put(k,id); //String name,fname;Double rf; Vector name,fname;Vector rf; (*it)->molecules().getEntry(rf, name, fname, rec.asuInt("MOLECULE_ID")); id = out->molecules().addEntry(rf, name, fname); molidcol.put(k, id); Float fpa,frot,fax,ftan,fhand,fmount,fuser, fxy, fxyp; (*it)->focus().getEntry(fpa, fax, ftan, frot, fhand, fmount,fuser, fxy, fxyp, rec.asuInt("FOCUS_ID")); id = out->focus().addEntry(fpa, fax, ftan, frot, fhand, fmount,fuser, fxy, fxyp); focusidcol.put(k, id); } ++freqit; } ++newscanno; ++scanit; } ++it; } return out; } CountedPtr< Scantable > STMath::invertPhase( const CountedPtr < Scantable >& in ) { return applyToPol(in, &STPol::invertPhase, Float(0.0)); } CountedPtr< Scantable > STMath::rotateXYPhase( const CountedPtr < Scantable >& in, float phase ) { return applyToPol(in, &STPol::rotatePhase, Float(phase)); } CountedPtr< Scantable > STMath::rotateLinPolPhase( const CountedPtr < Scantable >& in, float phase ) { return applyToPol(in, &STPol::rotateLinPolPhase, Float(phase)); } CountedPtr< Scantable > STMath::applyToPol( const CountedPtr& in, STPol::polOperation fptr, Float phase ) { CountedPtr< Scantable > out = getScantable(in, false); Table& tout = out->table(); Block cols(4); cols[0] = String("SCANNO"); cols[1] = String("BEAMNO"); cols[2] = String("IFNO"); cols[3] = String("CYCLENO"); TableIterator iter(tout, cols); CountedPtr stpol = STPol::getPolClass(out->factories_, out->getPolType() ); while (!iter.pastEnd()) { Table t = iter.table(); ArrayColumn speccol(t, "SPECTRA"); ScalarColumn focidcol(t, "FOCUS_ID"); Matrix pols(speccol.getColumn()); try { stpol->setSpectra(pols); Float fang,fhand; fang = in->focusTable_.getTotalAngle(focidcol(0)); fhand = in->focusTable_.getFeedHand(focidcol(0)); stpol->setPhaseCorrections(fang, fhand); // use a member function pointer in STPol. This only works on // the STPol pointer itself, not the Counted Pointer so // derefernce it. (&(*(stpol))->*fptr)(phase); speccol.putColumn(stpol->getSpectra()); } catch (AipsError& e) { //delete stpol;stpol=0; throw(e); } ++iter; } //delete stpol;stpol=0; return out; } CountedPtr< Scantable > STMath::swapPolarisations( const CountedPtr< Scantable > & in ) { CountedPtr< Scantable > out = getScantable(in, false); Table& tout = out->table(); Table t0 = tout(tout.col("POLNO") == 0); Table t1 = tout(tout.col("POLNO") == 1); if ( t0.nrow() != t1.nrow() ) throw(AipsError("Inconsistent number of polarisations")); ArrayColumn speccol0(t0, "SPECTRA"); ArrayColumn flagcol0(t0, "FLAGTRA"); ArrayColumn speccol1(t1, "SPECTRA"); ArrayColumn flagcol1(t1, "FLAGTRA"); Matrix s0 = speccol0.getColumn(); Matrix f0 = flagcol0.getColumn(); speccol0.putColumn(speccol1.getColumn()); flagcol0.putColumn(flagcol1.getColumn()); speccol1.putColumn(s0); flagcol1.putColumn(f0); return out; } CountedPtr< Scantable > STMath::averagePolarisations( const CountedPtr< Scantable > & in, const std::vector& mask, const std::string& weight ) { if (in->npol() < 2 ) throw(AipsError("averagePolarisations can only be applied to two or more" "polarisations")); bool insitu = insitu_; setInsitu(false); CountedPtr< Scantable > pols = getScantable(in, true); setInsitu(insitu); Table& tout = pols->table(); std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]"; Table tab = tableCommand(taql, in->table()); if (tab.nrow() == 0 ) throw(AipsError("Could not find any rows with POLNO==0 and POLNO==1")); TableCopy::copyRows(tout, tab); TableVector vec(tout, "POLNO"); vec = 0; pols->table_.rwKeywordSet().define("nPol", Int(1)); //pols->table_.rwKeywordSet().define("POLTYPE", String("stokes")); pols->table_.rwKeywordSet().define("POLTYPE", in->getPolType()); std::vector > vpols; vpols.push_back(pols); CountedPtr< Scantable > out = average(vpols, mask, weight, "SCAN"); return out; } CountedPtr< Scantable > STMath::averageBeams( const CountedPtr< Scantable > & in, const std::vector& mask, const std::string& weight ) { bool insitu = insitu_; setInsitu(false); CountedPtr< Scantable > beams = getScantable(in, false); setInsitu(insitu); Table& tout = beams->table(); // give all rows the same BEAMNO TableVector vec(tout, "BEAMNO"); vec = 0; beams->table_.rwKeywordSet().define("nBeam", Int(1)); std::vector > vbeams; vbeams.push_back(beams); CountedPtr< Scantable > out = average(vbeams, mask, weight, "SCAN"); return out; } CountedPtr< Scantable > asap::STMath::frequencyAlign( const CountedPtr< Scantable > & in, const std::string & refTime, const std::string & method) { // clone as this is not working insitu bool insitu = insitu_; setInsitu(false); CountedPtr< Scantable > out = getScantable(in, false); setInsitu(insitu); Table& tout = out->table(); // Get reference Epoch to time of first row or given String Unit DAY(String("d")); MEpoch::Ref epochRef(in->getTimeReference()); MEpoch refEpoch; if (refTime.length()>0) { Quantum qt; if (MVTime::read(qt,refTime)) { MVEpoch mv(qt); refEpoch = MEpoch(mv, epochRef); } else { throw(AipsError("Invalid format for Epoch string")); } } else { refEpoch = in->timeCol_(0); } MPosition refPos = in->getAntennaPosition(); InterpolateArray1D::InterpolationMethod interp = stringToIMethod(method); /* // Comment from MV. // the following code has been commented out because different FREQ_IDs have to be aligned together even // if the frame doesn't change. So far, lack of this check didn't cause any problems. // test if user frame is different to base frame if ( in->frequencies().getFrameString(true) == in->frequencies().getFrameString(false) ) { throw(AipsError("Can't convert as no output frame has been set" " (use set_freqframe) or it is aligned already.")); } */ MFrequency::Types system = in->frequencies().getFrame(); MVTime mvt(refEpoch.getValue()); String epochout = mvt.string(MVTime::YMD) + String(" (") + refEpoch.getRefString() + String(")"); ostringstream oss; oss << "Aligned at reference Epoch " << epochout << " in frame " << MFrequency::showType(system); pushLog(String(oss)); // set up the iterator Block cols(4); // select by constant direction cols[0] = String("SRCNAME"); cols[1] = String("BEAMNO"); // select by IF ( no of channels varies over this ) cols[2] = String("IFNO"); // select by restfrequency cols[3] = String("MOLECULE_ID"); TableIterator iter(tout, cols); while ( !iter.pastEnd() ) { Table t = iter.table(); MDirection::ROScalarColumn dirCol(t, "DIRECTION"); TableIterator fiter(t, "FREQ_ID"); // determine nchan from the first row. This should work as // we are iterating over BEAMNO and IFNO // we should have constant direction ROArrayColumn sCol(t, "SPECTRA"); const MDirection direction = dirCol(0); const uInt nchan = sCol(0).nelements(); // skip operations if there is nothing to align if (fiter.pastEnd()) { continue; } Table ftab = fiter.table(); // align all frequency ids with respect to the first encountered id ScalarColumn freqidCol(ftab, "FREQ_ID"); // get the SpectralCoordinate for the freqid, which we are iterating over SpectralCoordinate sC = in->frequencies().getSpectralCoordinate(freqidCol(0)); FrequencyAligner fa( sC, nchan, refEpoch, direction, refPos, system ); // realign the SpectralCoordinate and put into the output Scantable Vector units(1); units = String("Hz"); Bool linear=True; SpectralCoordinate sc2 = fa.alignedSpectralCoordinate(linear); sc2.setWorldAxisUnits(units); const uInt id = out->frequencies().addEntry(sc2.referencePixel()[0], sc2.referenceValue()[0], sc2.increment()[0]); while ( !fiter.pastEnd() ) { ftab = fiter.table(); // spectral coordinate for the current FREQ_ID ScalarColumn freqidCol2(ftab, "FREQ_ID"); sC = in->frequencies().getSpectralCoordinate(freqidCol2(0)); // create the "global" abcissa for alignment with same FREQ_ID Vector abc(nchan); for (uInt i=0; i tvec(ftab, "FREQ_ID"); // assign new frequency id to all rows tvec = id; // cache abcissa for same time stamps, so iterate over those TableIterator timeiter(ftab, "TIME"); while ( !timeiter.pastEnd() ) { Table tab = timeiter.table(); ArrayColumn specCol(tab, "SPECTRA"); ArrayColumn flagCol(tab, "FLAGTRA"); MEpoch::ROScalarColumn timeCol(tab, "TIME"); // use align abcissa cache after the first row // these rows should be just be POLNO bool first = true; for (int i=0; i flag = flagCol(i); Vector mask(flag.shape()); Vector specOut, spec; spec = specCol(i); Vector maskOut;Vector flagOut; convertArray(mask, flag); // alignment Bool ok = fa.align(specOut, maskOut, abc, spec, mask, timeCol(i), !first, interp, False); // back into scantable flagOut.resize(maskOut.nelements()); convertArray(flagOut, maskOut); flagCol.put(i, flagOut); specCol.put(i, specOut); // start abcissa caching first = false; } // next timestamp ++timeiter; } // next FREQ_ID ++fiter; } // next aligner ++iter; } // set this afterwards to ensure we are doing insitu correctly. out->frequencies().setFrame(system, true); return out; } CountedPtr asap::STMath::convertPolarisation( const CountedPtr& in, const std::string & newtype ) { if (in->npol() != 2 && in->npol() != 4) throw(AipsError("Can only convert two or four polarisations.")); if ( in->getPolType() == newtype ) throw(AipsError("No need to convert.")); if ( ! in->selector_.empty() ) throw(AipsError("Can only convert whole scantable. Unset the selection.")); bool insitu = insitu_; setInsitu(false); CountedPtr< Scantable > out = getScantable(in, true); setInsitu(insitu); Table& tout = out->table(); tout.rwKeywordSet().define("POLTYPE", String(newtype)); Block cols(4); cols[0] = "SCANNO"; cols[1] = "CYCLENO"; cols[2] = "BEAMNO"; cols[3] = "IFNO"; TableIterator it(in->originalTable_, cols); String basetype = in->getPolType(); STPol* stpol = STPol::getPolClass(in->factories_, basetype); try { while ( !it.pastEnd() ) { Table tab = it.table(); uInt row = tab.rowNumbers()[0]; stpol->setSpectra(in->getPolMatrix(row)); Float fang,fhand; fang = in->focusTable_.getTotalAngle(in->mfocusidCol_(row)); fhand = in->focusTable_.getFeedHand(in->mfocusidCol_(row)); stpol->setPhaseCorrections(fang, fhand); Int npolout = 0; for (uInt i=0; i outvec = stpol->getSpectrum(i, newtype); if ( outvec.nelements() > 0 ) { tout.addRow(); TableCopy::copyRows(tout, tab, tout.nrow()-1, 0, 1); ArrayColumn sCol(tout,"SPECTRA"); ScalarColumn pCol(tout,"POLNO"); sCol.put(tout.nrow()-1 ,outvec); pCol.put(tout.nrow()-1 ,uInt(npolout)); npolout++; } } tout.rwKeywordSet().define("nPol", npolout); ++it; } } catch (AipsError& e) { delete stpol; throw(e); } delete stpol; return out; } CountedPtr< Scantable > asap::STMath::mxExtract( const CountedPtr< Scantable > & in, const std::string & scantype ) { bool insitu = insitu_; setInsitu(false); CountedPtr< Scantable > out = getScantable(in, true); setInsitu(insitu); Table& tout = out->table(); std::string taql = "SELECT FROM $1 WHERE BEAMNO != REFBEAMNO"; if (scantype == "on") { taql = "SELECT FROM $1 WHERE BEAMNO == REFBEAMNO"; } Table tab = tableCommand(taql, in->table()); TableCopy::copyRows(tout, tab); if (scantype == "on") { // re-index SCANNO to 0 TableVector vec(tout, "SCANNO"); vec = 0; } return out; } CountedPtr< Scantable > asap::STMath::lagFlag( const CountedPtr< Scantable > & in, double start, double end, const std::string& mode) { CountedPtr< Scantable > out = getScantable(in, false); Table& tout = out->table(); TableIterator iter(tout, "FREQ_ID"); FFTServer ffts; while ( !iter.pastEnd() ) { Table tab = iter.table(); Double rp,rv,inc; ROTableRow row(tab); const TableRecord& rec = row.get(0); uInt freqid = rec.asuInt("FREQ_ID"); out->frequencies().getEntry(rp, rv, inc, freqid); ArrayColumn specCol(tab, "SPECTRA"); ArrayColumn flagCol(tab, "FLAGTRA"); for (int i=0; i spec = specCol(i); Vector flag = flagCol(i); int fstart = -1; int fend = -1; for (unsigned int k=0; k < flag.nelements(); ++k ) { if (flag[k] > 0) { fstart = k; while (flag[k] > 0 && k < flag.nelements()) { fend = k; k++; } } Float interp = 0.0; if (fstart-1 > 0 ) { interp = spec[fstart-1]; if (fend+1 < spec.nelements()) { interp = (interp+spec[fend+1])/2.0; } } else { interp = spec[fend+1]; } if (fstart > -1 && fend > -1) { for (int j=fstart;j<=fend;++j) { spec[j] = interp; } } fstart =-1; fend = -1; } Vector lags; ffts.fft0(lags, spec); Int lag0(start+0.5); Int lag1(end+0.5); if (mode == "frequency") { lag0 = Int(spec.nelements()*abs(inc)/(start)+0.5); lag1 = Int(spec.nelements()*abs(inc)/(end)+0.5); } Int lstart = max(0, lag0); Int lend = min(Int(lags.nelements()-1), lag1); if (lstart == lend) { lags[lstart] = Complex(0.0); } else { if (lstart > lend) { Int tmp = lend; lend = lstart; lstart = tmp; } for (int j=lstart; j <=lend ;++j) { lags[j] = Complex(0.0); } } ffts.fft0(spec, lags); specCol.put(i, spec); } ++iter; } return out; } // Averaging spectra with different channel/resolution CountedPtr STMath::new_average( const std::vector >& in, const bool& compel, const std::vector& mask, const std::string& weight, const std::string& avmode ) throw ( casa::AipsError ) { LogIO os( LogOrigin( "STMath", "new_average()", WHERE ) ) ; if ( avmode == "SCAN" && in.size() != 1 ) throw(AipsError("Can't perform 'SCAN' averaging on multiple tables.\n" "Use merge first.")); // check if OTF observation String obstype = in[0]->getHeader().obstype ; Double tol = 0.0 ; if ( obstype.find( "OTF" ) != String::npos ) { tol = TOL_OTF ; } else { tol = TOL_POINT ; } CountedPtr out ; // processed result if ( compel ) { std::vector< CountedPtr > newin ; // input for average process uInt insize = in.size() ; // number of input scantables // TEST: do normal average in each table before IF grouping os << "Do preliminary averaging" << LogIO::POST ; vector< CountedPtr > tmpin( insize ) ; for ( uInt itable = 0 ; itable < insize ; itable++ ) { vector< CountedPtr > v( 1, in[itable] ) ; tmpin[itable] = average( v, mask, weight, avmode ) ; } // warning os << "Average spectra with different spectral resolution" << LogIO::POST ; // temporarily set coordinfo vector oldinfo( insize ) ; for ( uInt itable = 0 ; itable < insize ; itable++ ) { vector coordinfo = in[itable]->getCoordInfo() ; oldinfo[itable] = coordinfo[0] ; coordinfo[0] = "Hz" ; tmpin[itable]->setCoordInfo( coordinfo ) ; } // columns ScalarColumn freqIDCol ; ScalarColumn ifnoCol ; ScalarColumn scannoCol ; // check IF frequency coverage // freqid: list of FREQ_ID, which is used, in each table // iffreq: list of minimum and maximum frequency for each FREQ_ID in // each table // freqid[insize][numIF] // freqid: [[id00, id01, ...], // [id10, id11, ...], // ... // [idn0, idn1, ...]] // iffreq[insize][numIF*2] // iffreq: [[min_id00, max_id00, min_id01, max_id01, ...], // [min_id10, max_id10, min_id11, max_id11, ...], // ... // [min_idn0, max_idn0, min_idn1, max_idn1, ...]] //os << "Check IF settings in each table" << LogIO::POST ; vector< vector > freqid( insize ); vector< vector > iffreq( insize ) ; for ( uInt itable = 0 ; itable < insize ; itable++ ) { uInt rows = tmpin[itable]->nrow() ; uInt freqnrows = tmpin[itable]->frequencies().table().nrow() ; for ( uInt irow = 0 ; irow < rows ; irow++ ) { if ( freqid[itable].size() == freqnrows ) { break ; } else { freqIDCol.attach( tmpin[itable]->table(), "FREQ_ID" ) ; ifnoCol.attach( tmpin[itable]->table(), "IFNO" ) ; uInt id = freqIDCol( irow ) ; if ( freqid[itable].size() == 0 || count( freqid[itable].begin(), freqid[itable].end(), id ) == 0 ) { //os << "itable = " << itable << ": IF " << id << " is included in the list" << LogIO::POST ; vector abcissa = tmpin[itable]->getAbcissa( irow ) ; freqid[itable].push_back( id ) ; iffreq[itable].push_back( abcissa[0] - 0.5 * ( abcissa[1] - abcissa[0] ) ) ; iffreq[itable].push_back( abcissa[abcissa.size()-1] + 0.5 * ( abcissa[1] - abcissa[0] ) ) ; } } } } // debug //os << "IF settings summary:" << endl ; //for ( uInt i = 0 ; i < freqid.size() ; i++ ) { //os << " Table" << i << endl ; //for ( uInt j = 0 ; j < freqid[i].size() ; j++ ) { //os << " id = " << freqid[i][j] << " (min,max) = (" << iffreq[i][2*j] << "," << iffreq[i][2*j+1] << ")" << endl ; //} //} //os << endl ; //os.post() ; // IF grouping based on their frequency coverage // ifgrp: list of table index and FREQ_ID for all members in each IF group // ifgfreq: list of minimum and maximum frequency in each IF group // ifgrp[numgrp][nummember*2] // ifgrp: [[table00, freqrow00, table01, freqrow01, ...], // [table10, freqrow10, table11, freqrow11, ...], // ... // [tablen0, freqrown0, tablen1, freqrown1, ...]] // ifgfreq[numgrp*2] // ifgfreq: [min0_grp0, max0_grp0, min1_grp1, max1_grp1, ...] //os << "IF grouping based on their frequency coverage" << LogIO::POST ; vector< vector > ifgrp ; vector ifgfreq ; // parameter for IF grouping // groupmode = OR retrieve all region // AND only retrieve overlaped region //string groupmode = "AND" ; string groupmode = "OR" ; uInt sizecr = 0 ; if ( groupmode == "AND" ) sizecr = 2 ; else if ( groupmode == "OR" ) sizecr = 0 ; vector sortedfreq ; for ( uInt i = 0 ; i < iffreq.size() ; i++ ) { for ( uInt j = 0 ; j < iffreq[i].size() ; j++ ) { if ( count( sortedfreq.begin(), sortedfreq.end(), iffreq[i][j] ) == 0 ) sortedfreq.push_back( iffreq[i][j] ) ; } } sort( sortedfreq.begin(), sortedfreq.end() ) ; for ( vector::iterator i = sortedfreq.begin() ; i != sortedfreq.end()-1 ; i++ ) { ifgfreq.push_back( *i ) ; ifgfreq.push_back( *(i+1) ) ; } ifgrp.resize( ifgfreq.size()/2 ) ; for ( uInt itable = 0 ; itable < insize ; itable++ ) { for ( uInt iif = 0 ; iif < freqid[itable].size() ; iif++ ) { double range0 = iffreq[itable][2*iif] ; double range1 = iffreq[itable][2*iif+1] ; for ( uInt j = 0 ; j < ifgrp.size() ; j++ ) { double fmin = max( range0, ifgfreq[2*j] ) ; double fmax = min( range1, ifgfreq[2*j+1] ) ; if ( fmin < fmax ) { ifgrp[j].push_back( itable ) ; ifgrp[j].push_back( freqid[itable][iif] ) ; } } } } vector< vector >::iterator fiter = ifgrp.begin() ; vector::iterator giter = ifgfreq.begin() ; while( fiter != ifgrp.end() ) { if ( fiter->size() <= sizecr ) { fiter = ifgrp.erase( fiter ) ; giter = ifgfreq.erase( giter ) ; giter = ifgfreq.erase( giter ) ; } else { fiter++ ; advance( giter, 2 ) ; } } // Grouping continuous IF groups (without frequency gap) // freqgrp: list of IF group indexes in each frequency group // freqrange: list of minimum and maximum frequency in each frequency group // freqgrp[numgrp][nummember] // freqgrp: [[ifgrp00, ifgrp01, ifgrp02, ...], // [ifgrp10, ifgrp11, ifgrp12, ...], // ... // [ifgrpn0, ifgrpn1, ifgrpn2, ...]] // freqrange[numgrp*2] // freqrange: [min_grp0, max_grp0, min_grp1, max_grp1, ...] vector< vector > freqgrp ; double freqrange = 0.0 ; uInt grpnum = 0 ; for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) { // Assumed that ifgfreq was sorted if ( grpnum != 0 && freqrange == ifgfreq[2*i] ) { freqgrp[grpnum-1].push_back( i ) ; } else { vector grp0( 1, i ) ; freqgrp.push_back( grp0 ) ; grpnum++ ; } freqrange = ifgfreq[2*i+1] ; } // print IF groups ostringstream oss ; oss << "IF Group summary: " << endl ; oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ; for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) { oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ; for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) { oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ; } oss << endl ; } oss << endl ; os << oss.str() << LogIO::POST ; // print frequency group oss.str("") ; oss << "Frequency Group summary: " << endl ; oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: IF_GROUP_ID" << endl ; for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) { oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*freqgrp[i][0]] << "," << ifgfreq[2*freqgrp[i][freqgrp[i].size()-1]+1] << "]: " ; for ( uInt j = 0 ; j < freqgrp[i].size() ; j++ ) { oss << freqgrp[i][j] << " " ; } oss << endl ; } oss << endl ; os << oss.str() << LogIO::POST ; // membership check // groups: list of IF group indexes whose frequency range overlaps with // that of each table and IF // groups[numtable][numIF][nummembership] // groups: [[[grp, grp,...], [grp, grp,...],...], // [[grp, grp,...], [grp, grp,...],...], // ... // [[grp, grp,...], [grp, grp,...],...]] vector< vector< vector > > groups( insize ) ; for ( uInt i = 0 ; i < insize ; i++ ) { groups[i].resize( freqid[i].size() ) ; } for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) { for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) { uInt tableid = ifgrp[igrp][2*imem] ; vector::iterator iter = find( freqid[tableid].begin(), freqid[tableid].end(), ifgrp[igrp][2*imem+1] ) ; if ( iter != freqid[tableid].end() ) { uInt rowid = distance( freqid[tableid].begin(), iter ) ; groups[tableid][rowid].push_back( igrp ) ; } } } // print membership //oss.str("") ; //for ( uInt i = 0 ; i < insize ; i++ ) { //oss << "Table " << i << endl ; //for ( uInt j = 0 ; j < groups[i].size() ; j++ ) { //oss << " FREQ_ID " << setw( 2 ) << freqid[i][j] << ": " ; //for ( uInt k = 0 ; k < groups[i][j].size() ; k++ ) { //oss << setw( 2 ) << groups[i][j][k] << " " ; //} //oss << endl ; //} //} //os << oss.str() << LogIO::POST ; // set back coordinfo for ( uInt itable = 0 ; itable < insize ; itable++ ) { vector coordinfo = tmpin[itable]->getCoordInfo() ; coordinfo[0] = oldinfo[itable] ; tmpin[itable]->setCoordInfo( coordinfo ) ; } // Create additional table if needed bool oldInsitu = insitu_ ; setInsitu( false ) ; vector< vector > addrow( insize ) ; vector addtable( insize, 0 ) ; vector newtableids( insize ) ; vector newifids( insize, 0 ) ; for ( uInt itable = 0 ; itable < insize ; itable++ ) { //os << "Table " << itable << ": " ; for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) { addrow[itable].push_back( groups[itable][ifrow].size()-1 ) ; //os << addrow[itable][ifrow] << " " ; } addtable[itable] = *max_element( addrow[itable].begin(), addrow[itable].end() ) ; //os << "(" << addtable[itable] << ")" << LogIO::POST ; } newin.resize( insize ) ; copy( tmpin.begin(), tmpin.end(), newin.begin() ) ; for ( uInt i = 0 ; i < insize ; i++ ) { newtableids[i] = i ; } for ( uInt itable = 0 ; itable < insize ; itable++ ) { for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) { CountedPtr add = getScantable( newin[itable], false ) ; vector freqidlist ; for ( uInt i = 0 ; i < groups[itable].size() ; i++ ) { if ( groups[itable][i].size() > iadd + 1 ) { freqidlist.push_back( freqid[itable][i] ) ; } } stringstream taqlstream ; taqlstream << "SELECT FROM $1 WHERE FREQ_ID IN [" ; for ( uInt i = 0 ; i < freqidlist.size() ; i++ ) { taqlstream << i ; if ( i < freqidlist.size() - 1 ) taqlstream << "," ; else taqlstream << "]" ; } string taql = taqlstream.str() ; //os << "taql = " << taql << LogIO::POST ; STSelector selector = STSelector() ; selector.setTaQL( taql ) ; add->setSelection( selector ) ; newin.push_back( add ) ; newtableids.push_back( itable ) ; newifids.push_back( iadd + 1 ) ; } } // udpate ifgrp for ( uInt itable = 0 ; itable < insize ; itable++ ) { for ( uInt iadd = 0 ; iadd < addtable[itable] ; iadd++ ) { for ( uInt ifrow = 0 ; ifrow < groups[itable].size() ; ifrow++ ) { if ( groups[itable][ifrow].size() > iadd + 1 ) { uInt igrp = groups[itable][ifrow][iadd+1] ; for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) { if ( ifgrp[igrp][2*imem] == newtableids[iadd+insize] && ifgrp[igrp][2*imem+1] == freqid[newtableids[iadd+insize]][ifrow] ) { ifgrp[igrp][2*imem] = insize + iadd ; } } } } } } // print IF groups again for debug //oss.str( "" ) ; //oss << "IF Group summary: " << endl ; //oss << " GROUP_ID [FREQ_MIN, FREQ_MAX]: (TABLE_ID, FREQ_ID)" << endl ; //for ( uInt i = 0 ; i < ifgrp.size() ; i++ ) { //oss << " GROUP " << setw( 2 ) << i << " [" << ifgfreq[2*i] << "," << ifgfreq[2*i+1] << "]: " ; //for ( uInt j = 0 ; j < ifgrp[i].size()/2 ; j++ ) { //oss << "(" << ifgrp[i][2*j] << "," << ifgrp[i][2*j+1] << ") " ; //} //oss << endl ; //} //oss << endl ; //os << oss.str() << LogIO::POST ; // reset SCANNO and IFNO/FREQ_ID: IF is reset by the result of sortation os << "All scan number is set to 0" << LogIO::POST ; //os << "All IF number is set to IF group index" << LogIO::POST ; insize = newin.size() ; for ( uInt itable = 0 ; itable < insize ; itable++ ) { uInt rows = newin[itable]->nrow() ; Table &tmpt = newin[itable]->table() ; freqIDCol.attach( tmpt, "FREQ_ID" ) ; scannoCol.attach( tmpt, "SCANNO" ) ; ifnoCol.attach( tmpt, "IFNO" ) ; for ( uInt irow=0 ; irow < rows ; irow++ ) { scannoCol.put( irow, 0 ) ; uInt freqID = freqIDCol( irow ) ; vector::iterator iter = find( freqid[newtableids[itable]].begin(), freqid[newtableids[itable]].end(), freqID ) ; if ( iter != freqid[newtableids[itable]].end() ) { uInt index = distance( freqid[newtableids[itable]].begin(), iter ) ; ifnoCol.put( irow, groups[newtableids[itable]][index][newifids[itable]] ) ; } else { throw(AipsError("IF grouping was wrong in additional tables.")) ; } } } oldinfo.resize( insize ) ; setInsitu( oldInsitu ) ; // temporarily set coordinfo for ( uInt itable = 0 ; itable < insize ; itable++ ) { vector coordinfo = newin[itable]->getCoordInfo() ; oldinfo[itable] = coordinfo[0] ; coordinfo[0] = "Hz" ; newin[itable]->setCoordInfo( coordinfo ) ; } // save column values in the vector vector< vector > freqTableIdVec( insize ) ; vector< vector > freqIdVec( insize ) ; vector< vector > ifNoVec( insize ) ; for ( uInt itable = 0 ; itable < insize ; itable++ ) { ScalarColumn freqIDs ; freqIDs.attach( newin[itable]->frequencies().table(), "ID" ) ; ifnoCol.attach( newin[itable]->table(), "IFNO" ) ; freqIDCol.attach( newin[itable]->table(), "FREQ_ID" ) ; for ( uInt irow = 0 ; irow < newin[itable]->frequencies().table().nrow() ; irow++ ) { freqTableIdVec[itable].push_back( freqIDs( irow ) ) ; } for ( uInt irow = 0 ; irow < newin[itable]->table().nrow() ; irow++ ) { freqIdVec[itable].push_back( freqIDCol( irow ) ) ; ifNoVec[itable].push_back( ifnoCol( irow ) ) ; } } // reset spectra and flagtra: pick up common part of frequency coverage //os << "Pick common frequency range and align resolution" << LogIO::POST ; for ( uInt itable = 0 ; itable < insize ; itable++ ) { uInt rows = newin[itable]->nrow() ; int nminchan = -1 ; int nmaxchan = -1 ; vector freqIdUpdate ; for ( uInt irow = 0 ; irow < rows ; irow++ ) { uInt ifno = ifNoVec[itable][irow] ; // IFNO is reset by group index double minfreq = ifgfreq[2*ifno] ; double maxfreq = ifgfreq[2*ifno+1] ; //os << "frequency range: [" << minfreq << "," << maxfreq << "]" << LogIO::POST ; vector abcissa = newin[itable]->getAbcissa( irow ) ; int nchan = abcissa.size() ; double resol = abcissa[1] - abcissa[0] ; //os << "abcissa range : [" << abcissa[0] << "," << abcissa[nchan-1] << "]" << LogIO::POST ; if ( minfreq <= abcissa[0] ) nminchan = 0 ; else { //double cfreq = ( minfreq - abcissa[0] ) / resol ; double cfreq = ( minfreq - abcissa[0] + 0.5 * resol ) / resol ; nminchan = int(cfreq) + ( ( cfreq - int(cfreq) <= 0.5 ) ? 0 : 1 ) ; } if ( maxfreq >= abcissa[abcissa.size()-1] ) nmaxchan = abcissa.size() - 1 ; else { //double cfreq = ( abcissa[abcissa.size()-1] - maxfreq ) / resol ; double cfreq = ( abcissa[abcissa.size()-1] - maxfreq + 0.5 * resol ) / resol ; nmaxchan = abcissa.size() - 1 - int(cfreq) - ( ( cfreq - int(cfreq) >= 0.5 ) ? 1 : 0 ) ; } //os << "channel range (" << irow << "): [" << nminchan << "," << nmaxchan << "]" << LogIO::POST ; if ( nmaxchan > nminchan ) { newin[itable]->reshapeSpectrum( nminchan, nmaxchan, irow ) ; int newchan = nmaxchan - nminchan + 1 ; if ( count( freqIdUpdate.begin(), freqIdUpdate.end(), freqIdVec[itable][irow] ) == 0 && newchan < nchan ) freqIdUpdate.push_back( freqIdVec[itable][irow] ) ; } else { throw(AipsError("Failed to pick up common part of frequency range.")) ; } } for ( uInt i = 0 ; i < freqIdUpdate.size() ; i++ ) { uInt freqId = freqIdUpdate[i] ; Double refpix ; Double refval ; Double increment ; // update row newin[itable]->frequencies().getEntry( refpix, refval, increment, freqId ) ; refval = refval - ( refpix - nminchan ) * increment ; refpix = 0 ; newin[itable]->frequencies().setEntry( refpix, refval, increment, freqId ) ; } } // reset spectra and flagtra: align spectral resolution //os << "Align spectral resolution" << LogIO::POST ; // gmaxdnu: the coarsest frequency resolution in the frequency group // gmemid: member index that have a resolution equal to gmaxdnu // gmaxdnu[numfreqgrp] // gmaxdnu: [dnu0, dnu1, ...] // gmemid[numfreqgrp] // gmemid: [id0, id1, ...] vector gmaxdnu( freqgrp.size(), 0.0 ) ; vector gmemid( freqgrp.size(), 0 ) ; for ( uInt igrp = 0 ; igrp < ifgrp.size() ; igrp++ ) { double maxdnu = 0.0 ; // maximum (coarsest) frequency resolution int minchan = INT_MAX ; // minimum channel number Double refpixref = -1 ; // reference of 'reference pixel' Double refvalref = -1 ; // reference of 'reference frequency' Double refinc = -1 ; // reference frequency resolution uInt refreqid ; uInt reftable = INT_MAX; // process only if group member > 1 if ( ifgrp[igrp].size() > 2 ) { // find minchan and maxdnu in each group for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) { uInt tableid = ifgrp[igrp][2*imem] ; uInt rowid = ifgrp[igrp][2*imem+1] ; vector::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ; if ( iter != freqIdVec[tableid].end() ) { uInt index = distance( freqIdVec[tableid].begin(), iter ) ; vector abcissa = newin[tableid]->getAbcissa( index ) ; int nchan = abcissa.size() ; double dnu = abcissa[1] - abcissa[0] ; //os << "GROUP " << igrp << " (" << tableid << "," << rowid << "): nchan = " << nchan << " (minchan = " << minchan << ")" << LogIO::POST ; if ( nchan < minchan ) { minchan = nchan ; maxdnu = dnu ; newin[tableid]->frequencies().getEntry( refpixref, refvalref, refinc, rowid ) ; refreqid = rowid ; reftable = tableid ; } } } // regrid spectra in each group os << "GROUP " << igrp << endl ; os << " Channel number is adjusted to " << minchan << endl ; os << " Corresponding frequency resolution is " << maxdnu << "Hz" << LogIO::POST ; for ( uInt imem = 0 ; imem < ifgrp[igrp].size()/2 ; imem++ ) { uInt tableid = ifgrp[igrp][2*imem] ; uInt rowid = ifgrp[igrp][2*imem+1] ; freqIDCol.attach( newin[tableid]->table(), "FREQ_ID" ) ; //os << "tableid = " << tableid << " rowid = " << rowid << ": " << LogIO::POST ; //os << " regridChannel applied to " ; if ( tableid != reftable ) refreqid = newin[tableid]->frequencies().addEntry( refpixref, refvalref, refinc ) ; for ( uInt irow = 0 ; irow < newin[tableid]->table().nrow() ; irow++ ) { uInt tfreqid = freqIdVec[tableid][irow] ; if ( tfreqid == rowid ) { //os << irow << " " ; newin[tableid]->regridChannel( minchan, maxdnu, irow ) ; freqIDCol.put( irow, refreqid ) ; freqIdVec[tableid][irow] = refreqid ; } } //os << LogIO::POST ; } } else { uInt tableid = ifgrp[igrp][0] ; uInt rowid = ifgrp[igrp][1] ; vector::iterator iter = find( freqIdVec[tableid].begin(), freqIdVec[tableid].end(), rowid ) ; if ( iter != freqIdVec[tableid].end() ) { uInt index = distance( freqIdVec[tableid].begin(), iter ) ; vector abcissa = newin[tableid]->getAbcissa( index ) ; minchan = abcissa.size() ; maxdnu = abcissa[1] - abcissa[0] ; } } for ( uInt i = 0 ; i < freqgrp.size() ; i++ ) { if ( count( freqgrp[i].begin(), freqgrp[i].end(), igrp ) > 0 ) { if ( maxdnu > gmaxdnu[i] ) { gmaxdnu[i] = maxdnu ; gmemid[i] = igrp ; } break ; } } } // set back coordinfo for ( uInt itable = 0 ; itable < insize ; itable++ ) { vector coordinfo = newin[itable]->getCoordInfo() ; coordinfo[0] = oldinfo[itable] ; newin[itable]->setCoordInfo( coordinfo ) ; } // accumulate all rows into the first table // NOTE: assumed in.size() = 1 vector< CountedPtr > tmp( 1 ) ; if ( newin.size() == 1 ) tmp[0] = newin[0] ; else tmp[0] = merge( newin ) ; //return tmp[0] ; // average CountedPtr tmpout = average( tmp, mask, weight, avmode ) ; //return tmpout ; // combine frequency group os << "Combine spectra based on frequency grouping" << LogIO::POST ; os << "IFNO is renumbered as frequency group ID (see above)" << LogIO::POST ; vector coordinfo = tmpout->getCoordInfo() ; oldinfo[0] = coordinfo[0] ; coordinfo[0] = "Hz" ; tmpout->setCoordInfo( coordinfo ) ; // create proformas of output table stringstream taqlstream ; taqlstream << "SELECT FROM $1 WHERE IFNO IN [" ; for ( uInt i = 0 ; i < gmemid.size() ; i++ ) { taqlstream << gmemid[i] ; if ( i < gmemid.size() - 1 ) taqlstream << "," ; else taqlstream << "]" ; } string taql = taqlstream.str() ; //os << "taql = " << taql << LogIO::POST ; STSelector selector = STSelector() ; selector.setTaQL( taql ) ; oldInsitu = insitu_ ; setInsitu( false ) ; out = getScantable( tmpout, false ) ; setInsitu( oldInsitu ) ; out->setSelection( selector ) ; // regrid rows ifnoCol.attach( tmpout->table(), "IFNO" ) ; for ( uInt irow = 0 ; irow < tmpout->table().nrow() ; irow++ ) { uInt ifno = ifnoCol( irow ) ; for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) { if ( count( freqgrp[igrp].begin(), freqgrp[igrp].end(), ifno ) > 0 ) { vector abcissa = tmpout->getAbcissa( irow ) ; double bw = ( abcissa[1] - abcissa[0] ) * abcissa.size() ; int nchan = (int)( bw / gmaxdnu[igrp] ) ; tmpout->regridChannel( nchan, gmaxdnu[igrp], irow ) ; break ; } } } // combine spectra ArrayColumn specColOut ; specColOut.attach( out->table(), "SPECTRA" ) ; ArrayColumn flagColOut ; flagColOut.attach( out->table(), "FLAGTRA" ) ; ScalarColumn ifnoColOut ; ifnoColOut.attach( out->table(), "IFNO" ) ; ScalarColumn polnoColOut ; polnoColOut.attach( out->table(), "POLNO" ) ; ScalarColumn freqidColOut ; freqidColOut.attach( out->table(), "FREQ_ID" ) ; MDirection::ScalarColumn dirColOut ; dirColOut.attach( out->table(), "DIRECTION" ) ; Table &tab = tmpout->table() ; Block cols(1); cols[0] = String("POLNO") ; TableIterator iter( tab, cols ) ; bool done = false ; vector< vector > sizes( freqgrp.size() ) ; while( !iter.pastEnd() ) { vector< vector > specout( freqgrp.size() ) ; vector< vector > flagout( freqgrp.size() ) ; ArrayColumn specCols ; specCols.attach( iter.table(), "SPECTRA" ) ; ArrayColumn flagCols ; flagCols.attach( iter.table(), "FLAGTRA" ) ; ifnoCol.attach( iter.table(), "IFNO" ) ; ScalarColumn polnos ; polnos.attach( iter.table(), "POLNO" ) ; MDirection::ScalarColumn dircol ; dircol.attach( iter.table(), "DIRECTION" ) ; uInt polno = polnos( 0 ) ; //os << "POLNO iteration: " << polno << LogIO::POST ; // for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) { // sizes[igrp].resize( freqgrp[igrp].size() ) ; // for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) { // for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) { // uInt ifno = ifnoCol( irow ) ; // if ( ifno == freqgrp[igrp][imem] ) { // Vector spec = specCols( irow ) ; // Vector flag = flagCols( irow ) ; // vector svec ; // spec.tovector( svec ) ; // vector fvec ; // flag.tovector( fvec ) ; // //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ; // specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ; // flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ; // //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ; // sizes[igrp][imem] = spec.nelements() ; // } // } // } // for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) { // uInt ifout = ifnoColOut( irow ) ; // uInt polout = polnoColOut( irow ) ; // if ( ifout == gmemid[igrp] && polout == polno ) { // // set SPECTRA and FRAGTRA // Vector newspec( specout[igrp] ) ; // Vector newflag( flagout[igrp] ) ; // specColOut.put( irow, newspec ) ; // flagColOut.put( irow, newflag ) ; // // IFNO renumbering // ifnoColOut.put( irow, igrp ) ; // } // } // } // get a list of number of channels for each frequency group member if ( !done ) { for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) { sizes[igrp].resize( freqgrp[igrp].size() ) ; for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) { for ( uInt irow = 0 ; irow < iter.table().nrow() ; irow++ ) { uInt ifno = ifnoCol( irow ) ; if ( ifno == freqgrp[igrp][imem] ) { Vector spec = specCols( irow ) ; sizes[igrp][imem] = spec.nelements() ; break ; } } } } done = true ; } // combine spectra for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) { uInt polout = polnoColOut( irow ) ; if ( polout == polno ) { uInt ifout = ifnoColOut( irow ) ; Vector direction = dirColOut(irow).getAngle(Unit(String("rad"))).getValue() ; uInt igrp ; for ( uInt jgrp = 0 ; jgrp < freqgrp.size() ; jgrp++ ) { if ( ifout == gmemid[jgrp] ) { igrp = jgrp ; break ; } } for ( uInt imem = 0 ; imem < freqgrp[igrp].size() ; imem++ ) { for ( uInt jrow = 0 ; jrow < iter.table().nrow() ; jrow++ ) { uInt ifno = ifnoCol( jrow ) ; Vector tdir = dircol(jrow).getAngle(Unit(String("rad"))).getValue() ; //if ( ifno == freqgrp[igrp][imem] && allTrue( tdir == direction ) ) { Double dx = tdir[0] - direction[0] ; Double dy = tdir[1] - direction[1] ; Double dd = sqrt( dx * dx + dy * dy ) ; //if ( ifno == freqgrp[igrp][imem] && allNearAbs( tdir, direction, tol ) ) { if ( ifno == freqgrp[igrp][imem] && dd <= tol ) { Vector spec = specCols( jrow ) ; Vector flag = flagCols( jrow ) ; vector svec ; spec.tovector( svec ) ; vector fvec ; flag.tovector( fvec ) ; //os << "spec.size() = " << svec.size() << " fvec.size() = " << fvec.size() << LogIO::POST ; specout[igrp].insert( specout[igrp].end(), svec.begin(), svec.end() ) ; flagout[igrp].insert( flagout[igrp].end(), fvec.begin(), fvec.end() ) ; //os << "specout[" << igrp << "].size() = " << specout[igrp].size() << LogIO::POST ; } } } // set SPECTRA and FRAGTRA Vector newspec( specout[igrp] ) ; Vector newflag( flagout[igrp] ) ; specColOut.put( irow, newspec ) ; flagColOut.put( irow, newflag ) ; // IFNO renumbering ifnoColOut.put( irow, igrp ) ; } } iter++ ; } // update FREQUENCIES subtable vector updated( freqgrp.size(), false ) ; for ( uInt igrp = 0 ; igrp < freqgrp.size() ; igrp++ ) { uInt index = 0 ; uInt pixShift = 0 ; while ( freqgrp[igrp][index] != gmemid[igrp] ) { pixShift += sizes[igrp][index++] ; } for ( uInt irow = 0 ; irow < out->table().nrow() ; irow++ ) { if ( ifnoColOut( irow ) == gmemid[igrp] && !updated[igrp] ) { uInt freqidOut = freqidColOut( irow ) ; //os << "freqgrp " << igrp << " freqidOut = " << freqidOut << LogIO::POST ; double refpix ; double refval ; double increm ; out->frequencies().getEntry( refpix, refval, increm, freqidOut ) ; refpix += pixShift ; out->frequencies().setEntry( refpix, refval, increm, freqidOut ) ; updated[igrp] = true ; } } } //out = tmpout ; coordinfo = tmpout->getCoordInfo() ; coordinfo[0] = oldinfo[0] ; tmpout->setCoordInfo( coordinfo ) ; } else { // simple average out = average( in, mask, weight, avmode ) ; } return out ; } CountedPtr STMath::cwcal( const CountedPtr& s, const String calmode, const String antname ) { // frequency switch if ( calmode == "fs" ) { return cwcalfs( s, antname ) ; } else { vector masks = s->getMask( 0 ) ; vector types ; // sky scan STSelector sel = STSelector() ; types.push_back( SrcType::SKY ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; vector< CountedPtr > tmp( 1, getScantable( s, false ) ) ; CountedPtr asky = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // hot scan types.push_back( SrcType::HOT ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; tmp.clear() ; tmp.push_back( getScantable( s, false ) ) ; CountedPtr ahot = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // cold scan CountedPtr acold ; // types.push_back( SrcType::COLD ) ; // sel.setTypes( types ) ; // s->setSelection( sel ) ; // tmp.clear() ; // tmp.push_back( getScantable( s, false ) ) ; // CountedPtr acold = average( tmp, masks, "TINT", "SCNAN" ) ; // s->unsetSelection() ; // sel.reset() ; // types.clear() ; // off scan types.push_back( SrcType::PSOFF ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; tmp.clear() ; tmp.push_back( getScantable( s, false ) ) ; CountedPtr aoff = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // on scan bool insitu = insitu_ ; insitu_ = false ; CountedPtr out = getScantable( s, true ) ; insitu_ = insitu ; types.push_back( SrcType::PSON ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; TableCopy::copyRows( out->table(), s->table() ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // process each on scan ArrayColumn tsysCol ; tsysCol.attach( out->table(), "TSYS" ) ; for ( int i = 0 ; i < out->nrow() ; i++ ) { vector sp = getCalibratedSpectra( out, aoff, asky, ahot, acold, i, antname ) ; out->setSpectrum( sp, i ) ; string reftime = out->getTime( i ) ; vector ii( 1, out->getIF( i ) ) ; vector ib( 1, out->getBeam( i ) ) ; vector ip( 1, out->getPol( i ) ) ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; asky->setSelection( sel ) ; vector sptsys = getTsysFromTime( reftime, asky, "linear" ) ; const Vector Vtsys( sptsys ) ; tsysCol.put( i, Vtsys ) ; asky->unsetSelection() ; sel.reset() ; } // flux unit out->setFluxUnit( "K" ) ; return out ; } } CountedPtr STMath::almacal( const CountedPtr& s, const String calmode ) { // frequency switch if ( calmode == "fs" ) { return almacalfs( s ) ; } else { vector masks = s->getMask( 0 ) ; // off scan STSelector sel = STSelector() ; vector types ; types.push_back( SrcType::PSOFF ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; // TODO 2010/01/08 TN // Grouping by time should be needed before averaging. // Each group must have own unique SCANNO (should be renumbered). // See PIPELINE/SDCalibration.py CountedPtr soff = getScantable( s, false ) ; Table ttab = soff->table() ; ROScalarColumn timeCol( ttab, "TIME" ) ; uInt nrow = timeCol.nrow() ; Vector timeSep( nrow - 1 ) ; for ( uInt i = 0 ; i < nrow - 1 ; i++ ) { timeSep[i] = timeCol(i+1) - timeCol(i) ; } ScalarColumn intervalCol( ttab, "INTERVAL" ) ; Vector interval = intervalCol.getColumn() ; interval /= 86400.0 ; ScalarColumn scanCol( ttab, "SCANNO" ) ; vector glist ; for ( uInt i = 0 ; i < nrow - 1 ; i++ ) { double gap = 2.0 * timeSep[i] / ( interval[i] + interval[i+1] ) ; //cout << "gap[" << i << "]=" << setw(5) << gap << endl ; if ( gap > 1.1 ) { glist.push_back( i ) ; } } Vector gaplist( glist ) ; //cout << "gaplist = " << gaplist << endl ; uInt newid = 0 ; for ( uInt i = 0 ; i < nrow ; i++ ) { scanCol.put( i, newid ) ; if ( i == gaplist[newid] ) { newid++ ; } } //cout << "new scancol = " << scanCol.getColumn() << endl ; vector< CountedPtr > tmp( 1, soff ) ; CountedPtr aoff = average( tmp, masks, "TINT", "SCAN" ) ; //cout << "aoff.nrow = " << aoff->nrow() << endl ; s->unsetSelection() ; sel.reset() ; types.clear() ; // on scan bool insitu = insitu_ ; insitu_ = false ; CountedPtr out = getScantable( s, true ) ; insitu_ = insitu ; types.push_back( SrcType::PSON ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; TableCopy::copyRows( out->table(), s->table() ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // process each on scan ArrayColumn tsysCol ; tsysCol.attach( out->table(), "TSYS" ) ; for ( int i = 0 ; i < out->nrow() ; i++ ) { vector sp = getCalibratedSpectra( out, aoff, i ) ; out->setSpectrum( sp, i ) ; } // flux unit out->setFluxUnit( "K" ) ; return out ; } } CountedPtr STMath::cwcalfs( const CountedPtr& s, const String antname ) { vector types ; // APEX calibration mode int apexcalmode = 1 ; if ( antname.find( "APEX" ) != string::npos ) { // check if off scan exists or not STSelector sel = STSelector() ; //sel.setName( offstr1 ) ; types.push_back( SrcType::FLOOFF ) ; sel.setTypes( types ) ; try { s->setSelection( sel ) ; } catch ( AipsError &e ) { apexcalmode = 0 ; } sel.reset() ; } s->unsetSelection() ; types.clear() ; vector masks = s->getMask( 0 ) ; CountedPtr ssig, sref ; CountedPtr out ; if ( antname.find( "APEX" ) != string::npos ) { // APEX calibration // sky scan STSelector sel = STSelector() ; types.push_back( SrcType::FLOSKY ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; vector< CountedPtr > tmp( 1, getScantable( s, false ) ) ; CountedPtr askylo = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; types.push_back( SrcType::FHISKY ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; tmp.clear() ; tmp.push_back( getScantable( s, false ) ) ; CountedPtr askyhi = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // hot scan types.push_back( SrcType::FLOHOT ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; tmp.clear() ; tmp.push_back( getScantable( s, false ) ) ; CountedPtr ahotlo = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; types.push_back( SrcType::FHIHOT ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; tmp.clear() ; tmp.push_back( getScantable( s, false ) ) ; CountedPtr ahothi = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // cold scan CountedPtr acoldlo, acoldhi ; // types.push_back( SrcType::FLOCOLD ) ; // sel.setTypes( types ) ; // s->setSelection( sel ) ; // tmp.clear() ; // tmp.push_back( getScantable( s, false ) ) ; // CountedPtr acoldlo = average( tmp, masks, "TINT", "SCAN" ) ; // s->unsetSelection() ; // sel.reset() ; // types.clear() ; // types.push_back( SrcType::FHICOLD ) ; // sel.setTypes( types ) ; // s->setSelection( sel ) ; // tmp.clear() ; // tmp.push_back( getScantable( s, false ) ) ; // CountedPtr acoldhi = average( tmp, masks, "TINT", "SCAN" ) ; // s->unsetSelection() ; // sel.reset() ; // types.clear() ; // ref scan bool insitu = insitu_ ; insitu_ = false ; sref = getScantable( s, true ) ; insitu_ = insitu ; types.push_back( SrcType::FSLO ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; TableCopy::copyRows( sref->table(), s->table() ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // sig scan insitu_ = false ; ssig = getScantable( s, true ) ; insitu_ = insitu ; types.push_back( SrcType::FSHI ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; TableCopy::copyRows( ssig->table(), s->table() ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; if ( apexcalmode == 0 ) { // APEX fs data without off scan // process each sig and ref scan ArrayColumn tsysCollo ; tsysCollo.attach( ssig->table(), "TSYS" ) ; ArrayColumn tsysColhi ; tsysColhi.attach( sref->table(), "TSYS" ) ; for ( int i = 0 ; i < ssig->nrow() ; i++ ) { vector< CountedPtr > sky( 2 ) ; sky[0] = askylo ; sky[1] = askyhi ; vector< CountedPtr > hot( 2 ) ; hot[0] = ahotlo ; hot[1] = ahothi ; vector< CountedPtr > cold( 2 ) ; //cold[0] = acoldlo ; //cold[1] = acoldhi ; vector sp = getFSCalibratedSpectra( ssig, sref, sky, hot, cold, i ) ; ssig->setSpectrum( sp, i ) ; string reftime = ssig->getTime( i ) ; vector ii( 1, ssig->getIF( i ) ) ; vector ib( 1, ssig->getBeam( i ) ) ; vector ip( 1, ssig->getPol( i ) ) ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; askylo->setSelection( sel ) ; vector sptsys = getTsysFromTime( reftime, askylo, "linear" ) ; const Vector Vtsyslo( sptsys ) ; tsysCollo.put( i, Vtsyslo ) ; askylo->unsetSelection() ; sel.reset() ; sky[0] = askyhi ; sky[1] = askylo ; hot[0] = ahothi ; hot[1] = ahotlo ; cold[0] = acoldhi ; cold[1] = acoldlo ; sp = getFSCalibratedSpectra( sref, ssig, sky, hot, cold, i ) ; sref->setSpectrum( sp, i ) ; reftime = sref->getTime( i ) ; ii[0] = sref->getIF( i ) ; ib[0] = sref->getBeam( i ) ; ip[0] = sref->getPol( i ) ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; askyhi->setSelection( sel ) ; sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ; const Vector Vtsyshi( sptsys ) ; tsysColhi.put( i, Vtsyshi ) ; askyhi->unsetSelection() ; sel.reset() ; } } else if ( apexcalmode == 1 ) { // APEX fs data with off scan // off scan types.push_back( SrcType::FLOOFF ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; tmp.clear() ; tmp.push_back( getScantable( s, false ) ) ; CountedPtr aofflo = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; types.push_back( SrcType::FHIOFF ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; tmp.clear() ; tmp.push_back( getScantable( s, false ) ) ; CountedPtr aoffhi = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // process each sig and ref scan ArrayColumn tsysCollo ; tsysCollo.attach( ssig->table(), "TSYS" ) ; ArrayColumn tsysColhi ; tsysColhi.attach( sref->table(), "TSYS" ) ; for ( int i = 0 ; i < ssig->nrow() ; i++ ) { vector sp = getCalibratedSpectra( ssig, aofflo, askylo, ahotlo, acoldlo, i, antname ) ; ssig->setSpectrum( sp, i ) ; sp = getCalibratedSpectra( sref, aoffhi, askyhi, ahothi, acoldhi, i, antname ) ; string reftime = ssig->getTime( i ) ; vector ii( 1, ssig->getIF( i ) ) ; vector ib( 1, ssig->getBeam( i ) ) ; vector ip( 1, ssig->getPol( i ) ) ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; askylo->setSelection( sel ) ; vector sptsys = getTsysFromTime( reftime, askylo, "linear" ) ; const Vector Vtsyslo( sptsys ) ; tsysCollo.put( i, Vtsyslo ) ; askylo->unsetSelection() ; sel.reset() ; sref->setSpectrum( sp, i ) ; reftime = sref->getTime( i ) ; ii[0] = sref->getIF( i ) ; ib[0] = sref->getBeam( i ) ; ip[0] = sref->getPol( i ) ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; askyhi->setSelection( sel ) ; sptsys = getTsysFromTime( reftime, askyhi, "linear" ) ; const Vector Vtsyshi( sptsys ) ; tsysColhi.put( i, Vtsyshi ) ; askyhi->unsetSelection() ; sel.reset() ; } } } else { // non-APEX fs data // sky scan STSelector sel = STSelector() ; types.push_back( SrcType::SKY ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; vector< CountedPtr > tmp( 1, getScantable( s, false ) ) ; CountedPtr asky = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // hot scan types.push_back( SrcType::HOT ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; tmp.clear() ; tmp.push_back( getScantable( s, false ) ) ; CountedPtr ahot = average( tmp, masks, "TINT", "SCAN" ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // cold scan CountedPtr acold ; // types.push_back( SrcType::COLD ) ; // sel.setTypes( types ) ; // s->setSelection( sel ) ; // tmp.clear() ; // tmp.push_back( getScantable( s, false ) ) ; // CountedPtr acold = average( tmp, masks, "TINT", "SCAN" ) ; // s->unsetSelection() ; // sel.reset() ; // types.clear() ; // ref scan bool insitu = insitu_ ; insitu_ = false ; sref = getScantable( s, true ) ; insitu_ = insitu ; types.push_back( SrcType::FSOFF ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; TableCopy::copyRows( sref->table(), s->table() ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // sig scan insitu_ = false ; ssig = getScantable( s, true ) ; insitu_ = insitu ; types.push_back( SrcType::FSON ) ; sel.setTypes( types ) ; s->setSelection( sel ) ; TableCopy::copyRows( ssig->table(), s->table() ) ; s->unsetSelection() ; sel.reset() ; types.clear() ; // process each sig and ref scan ArrayColumn tsysColsig ; tsysColsig.attach( ssig->table(), "TSYS" ) ; ArrayColumn tsysColref ; tsysColref.attach( ssig->table(), "TSYS" ) ; for ( int i = 0 ; i < ssig->nrow() ; i++ ) { vector sp = getFSCalibratedSpectra( ssig, sref, asky, ahot, acold, i ) ; ssig->setSpectrum( sp, i ) ; string reftime = ssig->getTime( i ) ; vector ii( 1, ssig->getIF( i ) ) ; vector ib( 1, ssig->getBeam( i ) ) ; vector ip( 1, ssig->getPol( i ) ) ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; asky->setSelection( sel ) ; vector sptsys = getTsysFromTime( reftime, asky, "linear" ) ; const Vector Vtsys( sptsys ) ; tsysColsig.put( i, Vtsys ) ; asky->unsetSelection() ; sel.reset() ; sp = getFSCalibratedSpectra( sref, ssig, asky, ahot, acold, i ) ; sref->setSpectrum( sp, i ) ; tsysColref.put( i, Vtsys ) ; } } // do folding if necessary Table sigtab = ssig->table() ; Table reftab = sref->table() ; ScalarColumn sigifnoCol ; ScalarColumn refifnoCol ; ScalarColumn sigfidCol ; ScalarColumn reffidCol ; Int nchan = (Int)ssig->nchan() ; sigifnoCol.attach( sigtab, "IFNO" ) ; refifnoCol.attach( reftab, "IFNO" ) ; sigfidCol.attach( sigtab, "FREQ_ID" ) ; reffidCol.attach( reftab, "FREQ_ID" ) ; Vector sfids( sigfidCol.getColumn() ) ; Vector rfids( reffidCol.getColumn() ) ; vector sfids_unique ; vector rfids_unique ; vector sifno_unique ; vector rifno_unique ; for ( uInt i = 0 ; i < sfids.nelements() ; i++ ) { if ( count( sfids_unique.begin(), sfids_unique.end(), sfids[i] ) == 0 ) { sfids_unique.push_back( sfids[i] ) ; sifno_unique.push_back( ssig->getIF( i ) ) ; } if ( count( rfids_unique.begin(), rfids_unique.end(), rfids[i] ) == 0 ) { rfids_unique.push_back( rfids[i] ) ; rifno_unique.push_back( sref->getIF( i ) ) ; } } double refpix_sig, refval_sig, increment_sig ; double refpix_ref, refval_ref, increment_ref ; vector< CountedPtr > tmp( sfids_unique.size() ) ; for ( uInt i = 0 ; i < sfids_unique.size() ; i++ ) { ssig->frequencies().getEntry( refpix_sig, refval_sig, increment_sig, sfids_unique[i] ) ; sref->frequencies().getEntry( refpix_ref, refval_ref, increment_ref, rfids_unique[i] ) ; if ( refpix_sig == refpix_ref ) { double foffset = refval_ref - refval_sig ; int choffset = static_cast(foffset/increment_sig) ; double doffset = foffset / increment_sig ; if ( abs(choffset) >= nchan ) { LogIO os( LogOrigin( "STMath", "cwcalfs", WHERE ) ) ; os << "FREQ_ID=[" << sfids_unique[i] << "," << rfids_unique[i] << "]: out-band frequency switching, no folding" << LogIO::POST ; os << "Just return signal data" << LogIO::POST ; //std::vector< CountedPtr > tabs ; //tabs.push_back( ssig ) ; //tabs.push_back( sref ) ; //out = merge( tabs ) ; tmp[i] = ssig ; } else { STSelector sel = STSelector() ; vector v( 1, sifno_unique[i] ) ; sel.setIFs( v ) ; ssig->setSelection( sel ) ; sel.reset() ; v[0] = rifno_unique[i] ; sel.setIFs( v ) ; sref->setSelection( sel ) ; sel.reset() ; if ( antname.find( "APEX" ) != string::npos ) { tmp[i] = dofold( ssig, sref, 0.5*doffset, -0.5*doffset ) ; //tmp[i] = dofold( ssig, sref, doffset ) ; } else { tmp[i] = dofold( ssig, sref, doffset ) ; } ssig->unsetSelection() ; sref->unsetSelection() ; } } } if ( tmp.size() > 1 ) { out = merge( tmp ) ; } else { out = tmp[0] ; } // flux unit out->setFluxUnit( "K" ) ; return out ; } CountedPtr STMath::almacalfs( const CountedPtr& s ) { CountedPtr out ; return out ; } vector STMath::getSpectrumFromTime( string reftime, CountedPtr& s, string mode ) { LogIO os( LogOrigin( "STMath", "getSpectrumFromTime", WHERE ) ) ; vector sp ; if ( s->nrow() == 0 ) { os << LogIO::SEVERE << "No spectra in the input scantable. Return empty spectrum." << LogIO::POST ; return sp ; } else if ( s->nrow() == 1 ) { //os << "use row " << 0 << " (scanno = " << s->getScan( 0 ) << ")" << LogIO::POST ; return s->getSpectrum( 0 ) ; } else { vector idx = getRowIdFromTime( reftime, s ) ; if ( mode == "before" ) { int id = -1 ; if ( idx[0] != -1 ) { id = idx[0] ; } else if ( idx[1] != -1 ) { os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ; id = idx[1] ; } //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ; sp = s->getSpectrum( id ) ; } else if ( mode == "after" ) { int id = -1 ; if ( idx[1] != -1 ) { id = idx[1] ; } else if ( idx[0] != -1 ) { os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ; id = idx[1] ; } //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ; sp = s->getSpectrum( id ) ; } else if ( mode == "nearest" ) { int id = -1 ; if ( idx[0] == -1 ) { id = idx[1] ; } else if ( idx[1] == -1 ) { id = idx[0] ; } else if ( idx[0] == idx[1] ) { id = idx[0] ; } else { double t0 = getMJD( s->getTime( idx[0] ) ) ; double t1 = getMJD( s->getTime( idx[1] ) ) ; double tref = getMJD( reftime ) ; if ( abs( t0 - tref ) > abs( t1 - tref ) ) { id = idx[1] ; } else { id = idx[0] ; } } //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ; sp = s->getSpectrum( id ) ; } else if ( mode == "linear" ) { if ( idx[0] == -1 ) { // use after os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ; int id = idx[1] ; //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ; sp = s->getSpectrum( id ) ; } else if ( idx[1] == -1 ) { // use before os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ; int id = idx[0] ; //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ; sp = s->getSpectrum( id ) ; } else if ( idx[0] == idx[1] ) { // use before //os << "No need to interporate." << LogIO::POST ; int id = idx[0] ; //os << "use row " << id << " (scanno = " << s->getScan( id ) << ")" << LogIO::POST ; sp = s->getSpectrum( id ) ; } else { // do interpolation //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ; double t0 = getMJD( s->getTime( idx[0] ) ) ; double t1 = getMJD( s->getTime( idx[1] ) ) ; double tref = getMJD( reftime ) ; vector sp0 = s->getSpectrum( idx[0] ) ; vector sp1 = s->getSpectrum( idx[1] ) ; for ( unsigned int i = 0 ; i < sp0.size() ; i++ ) { float v = ( sp1[i] - sp0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + sp0[i] ; sp.push_back( v ) ; } } } else { os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ; } return sp ; } } double STMath::getMJD( string strtime ) { if ( strtime.find("/") == string::npos ) { // MJD time string return atof( strtime.c_str() ) ; } else { // string in YYYY/MM/DD/HH:MM:SS format uInt year = atoi( strtime.substr( 0, 4 ).c_str() ) ; uInt month = atoi( strtime.substr( 5, 2 ).c_str() ) ; uInt day = atoi( strtime.substr( 8, 2 ).c_str() ) ; uInt hour = atoi( strtime.substr( 11, 2 ).c_str() ) ; uInt minute = atoi( strtime.substr( 14, 2 ).c_str() ) ; uInt sec = atoi( strtime.substr( 17, 2 ).c_str() ) ; Time t( year, month, day, hour, minute, sec ) ; return t.modifiedJulianDay() ; } } vector STMath::getRowIdFromTime( string reftime, CountedPtr &s ) { double reft = getMJD( reftime ) ; double dtmin = 1.0e100 ; double dtmax = -1.0e100 ; vector dt ; int just_before = -1 ; int just_after = -1 ; for ( int i = 0 ; i < s->nrow() ; i++ ) { dt.push_back( getMJD( s->getTime( i ) ) - reft ) ; } for ( unsigned int i = 0 ; i < dt.size() ; i++ ) { if ( dt[i] > 0.0 ) { // after reftime if ( dt[i] < dtmin ) { just_after = i ; dtmin = dt[i] ; } } else if ( dt[i] < 0.0 ) { // before reftime if ( dt[i] > dtmax ) { just_before = i ; dtmax = dt[i] ; } } else { // just a reftime just_before = i ; just_after = i ; dtmax = 0 ; dtmin = 0 ; break ; } } vector v ; v.push_back( just_before ) ; v.push_back( just_after ) ; return v ; } vector STMath::getTcalFromTime( string reftime, CountedPtr& s, string mode ) { LogIO os( LogOrigin( "STMath", "getTcalFromTime", WHERE ) ) ; vector tcal ; STTcal tcalTable = s->tcal() ; String time ; Vector tcalval ; if ( s->nrow() == 0 ) { os << LogIO::SEVERE << "No row in the input scantable. Return empty tcal." << LogIO::POST ; return tcal ; } else if ( s->nrow() == 1 ) { uInt tcalid = s->getTcalId( 0 ) ; //os << "use row " << 0 << " (tcalid = " << tcalid << ")" << LogIO::POST ; tcalTable.getEntry( time, tcalval, tcalid ) ; tcalval.tovector( tcal ) ; return tcal ; } else { vector idx = getRowIdFromTime( reftime, s ) ; if ( mode == "before" ) { int id = -1 ; if ( idx[0] != -1 ) { id = idx[0] ; } else if ( idx[1] != -1 ) { os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ; id = idx[1] ; } uInt tcalid = s->getTcalId( id ) ; //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ; tcalTable.getEntry( time, tcalval, tcalid ) ; tcalval.tovector( tcal ) ; } else if ( mode == "after" ) { int id = -1 ; if ( idx[1] != -1 ) { id = idx[1] ; } else if ( idx[0] != -1 ) { os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ; id = idx[1] ; } uInt tcalid = s->getTcalId( id ) ; //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ; tcalTable.getEntry( time, tcalval, tcalid ) ; tcalval.tovector( tcal ) ; } else if ( mode == "nearest" ) { int id = -1 ; if ( idx[0] == -1 ) { id = idx[1] ; } else if ( idx[1] == -1 ) { id = idx[0] ; } else if ( idx[0] == idx[1] ) { id = idx[0] ; } else { double t0 = getMJD( s->getTime( idx[0] ) ) ; double t1 = getMJD( s->getTime( idx[1] ) ) ; double tref = getMJD( reftime ) ; if ( abs( t0 - tref ) > abs( t1 - tref ) ) { id = idx[1] ; } else { id = idx[0] ; } } uInt tcalid = s->getTcalId( id ) ; //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ; tcalTable.getEntry( time, tcalval, tcalid ) ; tcalval.tovector( tcal ) ; } else if ( mode == "linear" ) { if ( idx[0] == -1 ) { // use after os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ; int id = idx[1] ; uInt tcalid = s->getTcalId( id ) ; //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ; tcalTable.getEntry( time, tcalval, tcalid ) ; tcalval.tovector( tcal ) ; } else if ( idx[1] == -1 ) { // use before os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ; int id = idx[0] ; uInt tcalid = s->getTcalId( id ) ; //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ; tcalTable.getEntry( time, tcalval, tcalid ) ; tcalval.tovector( tcal ) ; } else if ( idx[0] == idx[1] ) { // use before //os << "No need to interporate." << LogIO::POST ; int id = idx[0] ; uInt tcalid = s->getTcalId( id ) ; //os << "use row " << id << " (tcalid = " << tcalid << ")" << LogIO::POST ; tcalTable.getEntry( time, tcalval, tcalid ) ; tcalval.tovector( tcal ) ; } else { // do interpolation //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ; double t0 = getMJD( s->getTime( idx[0] ) ) ; double t1 = getMJD( s->getTime( idx[1] ) ) ; double tref = getMJD( reftime ) ; vector tcal0 ; vector tcal1 ; uInt tcalid0 = s->getTcalId( idx[0] ) ; uInt tcalid1 = s->getTcalId( idx[1] ) ; tcalTable.getEntry( time, tcalval, tcalid0 ) ; tcalval.tovector( tcal0 ) ; tcalTable.getEntry( time, tcalval, tcalid1 ) ; tcalval.tovector( tcal1 ) ; for ( unsigned int i = 0 ; i < tcal0.size() ; i++ ) { float v = ( tcal1[i] - tcal0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tcal0[i] ; tcal.push_back( v ) ; } } } else { os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ; } return tcal ; } } vector STMath::getTsysFromTime( string reftime, CountedPtr& s, string mode ) { LogIO os( LogOrigin( "STMath", "getTsysFromTime", WHERE ) ) ; ArrayColumn tsysCol ; tsysCol.attach( s->table(), "TSYS" ) ; vector tsys ; String time ; Vector tsysval ; if ( s->nrow() == 0 ) { os << LogIO::SEVERE << "No row in the input scantable. Return empty tsys." << LogIO::POST ; return tsys ; } else if ( s->nrow() == 1 ) { //os << "use row " << 0 << LogIO::POST ; tsysval = tsysCol( 0 ) ; tsysval.tovector( tsys ) ; return tsys ; } else { vector idx = getRowIdFromTime( reftime, s ) ; if ( mode == "before" ) { int id = -1 ; if ( idx[0] != -1 ) { id = idx[0] ; } else if ( idx[1] != -1 ) { os << LogIO::WARN << "Failed to find a scan before reftime. return a spectrum just after the reftime." << LogIO::POST ; id = idx[1] ; } //os << "use row " << id << LogIO::POST ; tsysval = tsysCol( id ) ; tsysval.tovector( tsys ) ; } else if ( mode == "after" ) { int id = -1 ; if ( idx[1] != -1 ) { id = idx[1] ; } else if ( idx[0] != -1 ) { os << LogIO::WARN << "Failed to find a scan after reftime. return a spectrum just before the reftime." << LogIO::POST ; id = idx[1] ; } //os << "use row " << id << LogIO::POST ; tsysval = tsysCol( id ) ; tsysval.tovector( tsys ) ; } else if ( mode == "nearest" ) { int id = -1 ; if ( idx[0] == -1 ) { id = idx[1] ; } else if ( idx[1] == -1 ) { id = idx[0] ; } else if ( idx[0] == idx[1] ) { id = idx[0] ; } else { double t0 = getMJD( s->getTime( idx[0] ) ) ; double t1 = getMJD( s->getTime( idx[1] ) ) ; double tref = getMJD( reftime ) ; if ( abs( t0 - tref ) > abs( t1 - tref ) ) { id = idx[1] ; } else { id = idx[0] ; } } //os << "use row " << id << LogIO::POST ; tsysval = tsysCol( id ) ; tsysval.tovector( tsys ) ; } else if ( mode == "linear" ) { if ( idx[0] == -1 ) { // use after os << LogIO::WARN << "Failed to interpolate. return a spectrum just after the reftime." << LogIO::POST ; int id = idx[1] ; //os << "use row " << id << LogIO::POST ; tsysval = tsysCol( id ) ; tsysval.tovector( tsys ) ; } else if ( idx[1] == -1 ) { // use before os << LogIO::WARN << "Failed to interpolate. return a spectrum just before the reftime." << LogIO::POST ; int id = idx[0] ; //os << "use row " << id << LogIO::POST ; tsysval = tsysCol( id ) ; tsysval.tovector( tsys ) ; } else if ( idx[0] == idx[1] ) { // use before //os << "No need to interporate." << LogIO::POST ; int id = idx[0] ; //os << "use row " << id << LogIO::POST ; tsysval = tsysCol( id ) ; tsysval.tovector( tsys ) ; } else { // do interpolation //os << "interpolate between " << idx[0] << " and " << idx[1] << " (scanno: " << s->getScan( idx[0] ) << ", " << s->getScan( idx[1] ) << ")" << LogIO::POST ; double t0 = getMJD( s->getTime( idx[0] ) ) ; double t1 = getMJD( s->getTime( idx[1] ) ) ; double tref = getMJD( reftime ) ; vector tsys0 ; vector tsys1 ; tsysval = tsysCol( idx[0] ) ; tsysval.tovector( tsys0 ) ; tsysval = tsysCol( idx[1] ) ; tsysval.tovector( tsys1 ) ; for ( unsigned int i = 0 ; i < tsys0.size() ; i++ ) { float v = ( tsys1[i] - tsys0[i] ) / ( t1 - t0 ) * ( tref - t0 ) + tsys0[i] ; tsys.push_back( v ) ; } } } else { os << LogIO::SEVERE << "Unknown mode" << LogIO::POST ; } return tsys ; } } vector STMath::getCalibratedSpectra( CountedPtr& on, CountedPtr& off, CountedPtr& sky, CountedPtr& hot, CountedPtr& cold, int index, string antname ) { string reftime = on->getTime( index ) ; vector ii( 1, on->getIF( index ) ) ; vector ib( 1, on->getBeam( index ) ) ; vector ip( 1, on->getPol( index ) ) ; vector ic( 1, on->getScan( index ) ) ; STSelector sel = STSelector() ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; sky->setSelection( sel ) ; hot->setSelection( sel ) ; //cold->setSelection( sel ) ; off->setSelection( sel ) ; vector spsky = getSpectrumFromTime( reftime, sky, "linear" ) ; vector sphot = getSpectrumFromTime( reftime, hot, "linear" ) ; //vector spcold = getSpectrumFromTime( reftime, cold, "linear" ) ; vector spoff = getSpectrumFromTime( reftime, off, "linear" ) ; vector spec = on->getSpectrum( index ) ; vector tcal = getTcalFromTime( reftime, sky, "linear" ) ; vector sp( tcal.size() ) ; if ( antname.find( "APEX" ) != string::npos ) { // using gain array for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) { float v = ( ( spec[j] - spoff[j] ) / spoff[j] ) * ( spsky[j] / ( sphot[j] - spsky[j] ) ) * tcal[j] ; sp[j] = v ; } } else { // Chopper-Wheel calibration (Ulich & Haas 1976) for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) { float v = ( spec[j] - spoff[j] ) / ( sphot[j] - spsky[j] ) * tcal[j] ; sp[j] = v ; } } sel.reset() ; sky->unsetSelection() ; hot->unsetSelection() ; //cold->unsetSelection() ; off->unsetSelection() ; return sp ; } vector STMath::getCalibratedSpectra( CountedPtr& on, CountedPtr& off, int index ) { string reftime = on->getTime( index ) ; vector ii( 1, on->getIF( index ) ) ; vector ib( 1, on->getBeam( index ) ) ; vector ip( 1, on->getPol( index ) ) ; vector ic( 1, on->getScan( index ) ) ; STSelector sel = STSelector() ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; off->setSelection( sel ) ; vector spoff = getSpectrumFromTime( reftime, off, "linear" ) ; vector spec = on->getSpectrum( index ) ; //vector tcal = getTcalFromTime( reftime, sky, "linear" ) ; //vector tsys = on->getTsysVec( index ) ; ArrayColumn tsysCol( on->table(), "TSYS" ) ; Vector tsys = tsysCol( index ) ; vector sp( spec.size() ) ; // ALMA Calibration // // Ta* = Tsys * ( ON - OFF ) / OFF // // 2010/01/07 Takeshi Nakazato unsigned int tsyssize = tsys.nelements() ; unsigned int spsize = sp.size() ; for ( unsigned int j = 0 ; j < sp.size() ; j++ ) { float tscale = 0.0 ; if ( tsyssize == spsize ) tscale = tsys[j] ; else tscale = tsys[0] ; float v = tscale * ( spec[j] - spoff[j] ) / spoff[j] ; sp[j] = v ; } sel.reset() ; off->unsetSelection() ; return sp ; } vector STMath::getFSCalibratedSpectra( CountedPtr& sig, CountedPtr& ref, CountedPtr& sky, CountedPtr& hot, CountedPtr& cold, int index ) { string reftime = sig->getTime( index ) ; vector ii( 1, sig->getIF( index ) ) ; vector ib( 1, sig->getBeam( index ) ) ; vector ip( 1, sig->getPol( index ) ) ; vector ic( 1, sig->getScan( index ) ) ; STSelector sel = STSelector() ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; sky->setSelection( sel ) ; hot->setSelection( sel ) ; //cold->setSelection( sel ) ; vector spsky = getSpectrumFromTime( reftime, sky, "linear" ) ; vector sphot = getSpectrumFromTime( reftime, hot, "linear" ) ; //vector spcold = getSpectrumFromTime( reftime, cold, "linear" ) ; vector spref = ref->getSpectrum( index ) ; vector spsig = sig->getSpectrum( index ) ; vector tcal = getTcalFromTime( reftime, sky, "linear" ) ; vector sp( tcal.size() ) ; for ( unsigned int j = 0 ; j < tcal.size() ; j++ ) { float v = tcal[j] * spsky[j] / ( sphot[j] - spsky[j] ) * ( spsig[j] - spref[j] ) / spref[j] ; sp[j] = v ; } sel.reset() ; sky->unsetSelection() ; hot->unsetSelection() ; //cold->unsetSelection() ; return sp ; } vector STMath::getFSCalibratedSpectra( CountedPtr& sig, CountedPtr& ref, vector< CountedPtr >& sky, vector< CountedPtr >& hot, vector< CountedPtr >& cold, int index ) { string reftime = sig->getTime( index ) ; vector ii( 1, sig->getIF( index ) ) ; vector ib( 1, sig->getBeam( index ) ) ; vector ip( 1, sig->getPol( index ) ) ; vector ic( 1, sig->getScan( index ) ) ; STSelector sel = STSelector() ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; sky[0]->setSelection( sel ) ; hot[0]->setSelection( sel ) ; //cold[0]->setSelection( sel ) ; vector spskys = getSpectrumFromTime( reftime, sky[0], "linear" ) ; vector sphots = getSpectrumFromTime( reftime, hot[0], "linear" ) ; //vector spcolds = getSpectrumFromTime( reftime, cold[0], "linear" ) ; vector tcals = getTcalFromTime( reftime, sky[0], "linear" ) ; sel.reset() ; ii[0] = ref->getIF( index ) ; sel.setIFs( ii ) ; sel.setBeams( ib ) ; sel.setPolarizations( ip ) ; sky[1]->setSelection( sel ) ; hot[1]->setSelection( sel ) ; //cold[1]->setSelection( sel ) ; vector spskyr = getSpectrumFromTime( reftime, sky[1], "linear" ) ; vector sphotr = getSpectrumFromTime( reftime, hot[1], "linear" ) ; //vector spcoldr = getSpectrumFromTime( reftime, cold[1], "linear" ) ; vector tcalr = getTcalFromTime( reftime, sky[1], "linear" ) ; vector spref = ref->getSpectrum( index ) ; vector spsig = sig->getSpectrum( index ) ; vector sp( tcals.size() ) ; for ( unsigned int j = 0 ; j < tcals.size() ; j++ ) { float v = tcals[j] * spsig[j] / ( sphots[j] - spskys[j] ) - tcalr[j] * spref[j] / ( sphotr[j] - spskyr[j] ) ; sp[j] = v ; } sel.reset() ; sky[0]->unsetSelection() ; hot[0]->unsetSelection() ; //cold[0]->unsetSelection() ; sky[1]->unsetSelection() ; hot[1]->unsetSelection() ; //cold[1]->unsetSelection() ; return sp ; }