[297] | 1 | //#---------------------------------------------------------------------------
|
---|
[881] | 2 | //# STLineFinder.cc: A class for automated spectral line search
|
---|
[297] | 3 | //#--------------------------------------------------------------------------
|
---|
| 4 | //# Copyright (C) 2004
|
---|
| 5 | //# ATNF
|
---|
| 6 | //#
|
---|
| 7 | //# This program is free software; you can redistribute it and/or modify it
|
---|
| 8 | //# under the terms of the GNU General Public License as published by the Free
|
---|
| 9 | //# Software Foundation; either version 2 of the License, or (at your option)
|
---|
| 10 | //# any later version.
|
---|
| 11 | //#
|
---|
| 12 | //# This program is distributed in the hope that it will be useful, but
|
---|
| 13 | //# WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
---|
| 15 | //# Public License for more details.
|
---|
| 16 | //#
|
---|
| 17 | //# You should have received a copy of the GNU General Public License along
|
---|
| 18 | //# with this program; if not, write to the Free Software Foundation, Inc.,
|
---|
| 19 | //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
|
---|
| 20 | //#
|
---|
| 21 | //# Correspondence concerning this software should be addressed as follows:
|
---|
| 22 | //# Internet email: Malte.Marquarding@csiro.au
|
---|
| 23 | //# Postal address: Malte Marquarding,
|
---|
| 24 | //# Australia Telescope National Facility,
|
---|
| 25 | //# P.O. Box 76,
|
---|
| 26 | //# Epping, NSW, 2121,
|
---|
| 27 | //# AUSTRALIA
|
---|
| 28 | //#
|
---|
[890] | 29 | //# $Id: STLineFinder.cpp 1757 2010-06-09 09:03:06Z KanaSugimoto $
|
---|
[297] | 30 | //#---------------------------------------------------------------------------
|
---|
| 31 |
|
---|
| 32 |
|
---|
| 33 | // ASAP
|
---|
[894] | 34 | #include "STLineFinder.h"
|
---|
| 35 | #include "STFitter.h"
|
---|
[1757] | 36 | #include "IndexedCompare.h"
|
---|
[297] | 37 |
|
---|
| 38 | // STL
|
---|
[343] | 39 | #include <functional>
|
---|
| 40 | #include <algorithm>
|
---|
[297] | 41 | #include <iostream>
|
---|
[351] | 42 | #include <fstream>
|
---|
[297] | 43 |
|
---|
| 44 | using namespace asap;
|
---|
| 45 | using namespace casa;
|
---|
| 46 | using namespace std;
|
---|
| 47 |
|
---|
[344] | 48 | namespace asap {
|
---|
| 49 |
|
---|
[343] | 50 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 51 | //
|
---|
[881] | 52 | // RunningBox - a running box calculator. This class implements
|
---|
[1315] | 53 | // iterations over the specified spectrum and calculates
|
---|
[351] | 54 | // running box filter statistics.
|
---|
[343] | 55 | //
|
---|
| 56 |
|
---|
[351] | 57 | class RunningBox {
|
---|
[331] | 58 | // The input data to work with. Use reference symantics to avoid
|
---|
[881] | 59 | // an unnecessary copying
|
---|
[331] | 60 | const casa::Vector<casa::Float> &spectrum; // a buffer for the spectrum
|
---|
| 61 | const casa::Vector<casa::Bool> &mask; // associated mask
|
---|
| 62 | const std::pair<int,int> &edge; // start and stop+1 channels
|
---|
| 63 | // to work with
|
---|
[881] | 64 |
|
---|
[351] | 65 | // statistics for running box filtering
|
---|
| 66 | casa::Float sumf; // sum of fluxes
|
---|
| 67 | casa::Float sumf2; // sum of squares of fluxes
|
---|
| 68 | casa::Float sumch; // sum of channel numbers (for linear fit)
|
---|
| 69 | casa::Float sumch2; // sum of squares of channel numbers (for linear fit)
|
---|
| 70 | casa::Float sumfch; // sum of flux*(channel number) (for linear fit)
|
---|
[881] | 71 |
|
---|
[331] | 72 | int box_chan_cntr; // actual number of channels in the box
|
---|
| 73 | int max_box_nchan; // maximum allowed number of channels in the box
|
---|
| 74 | // (calculated from boxsize and actual spectrum size)
|
---|
[351] | 75 | // cache for derivative statistics
|
---|
| 76 | mutable casa::Bool need2recalculate; // if true, values of the statistics
|
---|
| 77 | // below are invalid
|
---|
| 78 | mutable casa::Float linmean; // a value of the linear fit to the
|
---|
| 79 | // points in the running box
|
---|
| 80 | mutable casa::Float linvariance; // the same for variance
|
---|
| 81 | int cur_channel; // the number of the current channel
|
---|
| 82 | int start_advance; // number of channel from which the box can
|
---|
| 83 | // be moved (the middle of the box, if there is no
|
---|
[996] | 84 | // masking)
|
---|
[351] | 85 | public:
|
---|
| 86 | // set up the object with the references to actual data
|
---|
| 87 | // as well as the number of channels in the running box
|
---|
| 88 | RunningBox(const casa::Vector<casa::Float> &in_spectrum,
|
---|
| 89 | const casa::Vector<casa::Bool> &in_mask,
|
---|
[996] | 90 | const std::pair<int,int> &in_edge,
|
---|
| 91 | int in_max_box_nchan) throw(AipsError);
|
---|
[881] | 92 |
|
---|
[351] | 93 | // access to the statistics
|
---|
| 94 | const casa::Float& getLinMean() const throw(AipsError);
|
---|
| 95 | const casa::Float& getLinVariance() const throw(AipsError);
|
---|
| 96 | const casa::Float aboveMean() const throw(AipsError);
|
---|
| 97 | int getChannel() const throw();
|
---|
[881] | 98 |
|
---|
[351] | 99 | // actual number of channels in the box (max_box_nchan, if no channels
|
---|
| 100 | // are masked)
|
---|
| 101 | int getNumberOfBoxPoints() const throw();
|
---|
[297] | 102 |
|
---|
[351] | 103 | // next channel
|
---|
| 104 | void next() throw(AipsError);
|
---|
| 105 |
|
---|
| 106 | // checking whether there are still elements
|
---|
| 107 | casa::Bool haveMore() const throw();
|
---|
| 108 |
|
---|
| 109 | // go to start
|
---|
| 110 | void rewind() throw(AipsError);
|
---|
[881] | 111 |
|
---|
[351] | 112 | protected:
|
---|
[1757] | 113 | // supplementary function to control running mean/median calculations.
|
---|
| 114 | // It adds a specified channel to the running box and
|
---|
[351] | 115 | // removes (ch-maxboxnchan+1)'th channel from there
|
---|
| 116 | // Channels, for which the mask is false or index is beyond the
|
---|
| 117 | // allowed range, are ignored
|
---|
| 118 | void advanceRunningBox(int ch) throw(casa::AipsError);
|
---|
| 119 |
|
---|
| 120 | // calculate derivative statistics. This function is const, because
|
---|
| 121 | // it updates the cache only
|
---|
| 122 | void updateDerivativeStatistics() const throw(AipsError);
|
---|
| 123 | };
|
---|
| 124 |
|
---|
| 125 | //
|
---|
| 126 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 127 |
|
---|
| 128 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 129 | //
|
---|
| 130 | // LFAboveThreshold An algorithm for line detection using running box
|
---|
| 131 | // statistics. Line is detected if it is above the
|
---|
| 132 | // specified threshold at the specified number of
|
---|
| 133 | // consequtive channels. Prefix LF stands for Line Finder
|
---|
| 134 | //
|
---|
[352] | 135 | class LFAboveThreshold : protected LFLineListOperations {
|
---|
[331] | 136 | // temporary line edge channels and flag, which is True if the line
|
---|
| 137 | // was detected in the previous channels.
|
---|
| 138 | std::pair<int,int> cur_line;
|
---|
| 139 | casa::Bool is_detected_before;
|
---|
| 140 | int min_nchan; // A minimum number of consequtive
|
---|
| 141 | // channels, which should satisfy
|
---|
[996] | 142 | // the detection criterion, to be
|
---|
| 143 | // a detection
|
---|
[881] | 144 | casa::Float threshold; // detection threshold - the
|
---|
[331] | 145 | // minimal signal to noise ratio
|
---|
[351] | 146 | std::list<pair<int,int> > &lines; // list where detections are saved
|
---|
| 147 | // (pair: start and stop+1 channel)
|
---|
| 148 | RunningBox *running_box; // running box filter
|
---|
[551] | 149 | casa::Vector<Int> signs; // An array to store the signs of
|
---|
| 150 | // the value - current mean
|
---|
[996] | 151 | // (used to search wings)
|
---|
[907] | 152 | casa::Int last_sign; // a sign (+1, -1 or 0) of the
|
---|
| 153 | // last point of the detected line
|
---|
| 154 | //
|
---|
[1757] | 155 | bool itsUseMedian; // true if median statistics is used
|
---|
| 156 | // to determine the noise level, otherwise
|
---|
| 157 | // it is the mean of the lowest 80% of deviations
|
---|
| 158 | // (default)
|
---|
| 159 | int itsNoiseSampleSize; // sample size used to estimate the noise statistics
|
---|
| 160 | // Negative value means the whole spectrum is used (default)
|
---|
[331] | 161 | public:
|
---|
[351] | 162 |
|
---|
| 163 | // set up the detection criterion
|
---|
| 164 | LFAboveThreshold(std::list<pair<int,int> > &in_lines,
|
---|
| 165 | int in_min_nchan = 3,
|
---|
[1757] | 166 | casa::Float in_threshold = 5,
|
---|
| 167 | bool use_median = false,
|
---|
| 168 | int noise_sample_size = -1) throw();
|
---|
[351] | 169 | virtual ~LFAboveThreshold() throw();
|
---|
[881] | 170 |
|
---|
[331] | 171 | // replace the detection criterion
|
---|
| 172 | void setCriterion(int in_min_nchan, casa::Float in_threshold) throw();
|
---|
[297] | 173 |
|
---|
[551] | 174 | // return the array with signs of the value-current mean
|
---|
| 175 | // An element is +1 if value>mean, -1 if less, 0 if equal.
|
---|
| 176 | // This array is updated each time the findLines method is called and
|
---|
| 177 | // is used to search the line wings
|
---|
| 178 | const casa::Vector<Int>& getSigns() const throw();
|
---|
| 179 |
|
---|
[331] | 180 | // find spectral lines and add them into list
|
---|
[344] | 181 | // if statholder is not NULL, the accumulate function of it will be
|
---|
| 182 | // called for each channel to save statistics
|
---|
[351] | 183 | // spectrum, mask and edge - reference to the data
|
---|
| 184 | // max_box_nchan - number of channels in the running box
|
---|
| 185 | void findLines(const casa::Vector<casa::Float> &spectrum,
|
---|
[996] | 186 | const casa::Vector<casa::Bool> &mask,
|
---|
| 187 | const std::pair<int,int> &edge,
|
---|
| 188 | int max_box_nchan) throw(casa::AipsError);
|
---|
[351] | 189 |
|
---|
[331] | 190 | protected:
|
---|
[297] | 191 |
|
---|
[331] | 192 | // process a channel: update curline and is_detected before and
|
---|
| 193 | // add a new line to the list, if necessary using processCurLine()
|
---|
[351] | 194 | // detect=true indicates that the current channel satisfies the criterion
|
---|
| 195 | void processChannel(Bool detect, const casa::Vector<casa::Bool> &mask)
|
---|
| 196 | throw(casa::AipsError);
|
---|
[297] | 197 |
|
---|
[331] | 198 | // process the interval of channels stored in curline
|
---|
| 199 | // if it satisfies the criterion, add this interval as a new line
|
---|
[351] | 200 | void processCurLine(const casa::Vector<casa::Bool> &mask)
|
---|
| 201 | throw(casa::AipsError);
|
---|
[924] | 202 |
|
---|
[907] | 203 | // get the sign of runningBox->aboveMean(). The RunningBox pointer
|
---|
| 204 | // should be defined
|
---|
| 205 | casa::Int getAboveMeanSign() const throw();
|
---|
[331] | 206 | };
|
---|
[344] | 207 |
|
---|
| 208 | //
|
---|
| 209 | ///////////////////////////////////////////////////////////////////////////////
|
---|
[351] | 210 |
|
---|
[1757] | 211 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 212 | //
|
---|
| 213 | // LFNoiseEstimator a helper class designed to estimate off-line variance
|
---|
| 214 | // using statistics depending on the distribution of
|
---|
| 215 | // values (e.g. like a median)
|
---|
| 216 | //
|
---|
| 217 | // Two statistics are supported: median and an average of
|
---|
| 218 | // 80% of smallest values.
|
---|
| 219 | //
|
---|
| 220 |
|
---|
| 221 | struct LFNoiseEstimator {
|
---|
| 222 | // construct an object
|
---|
| 223 | // size - maximum sample size. After a size number of elements is processed
|
---|
| 224 | // any new samples would cause the algorithm to drop the oldest samples in the
|
---|
| 225 | // buffer.
|
---|
| 226 | explicit LFNoiseEstimator(size_t size);
|
---|
| 227 |
|
---|
| 228 | // add a new sample
|
---|
| 229 | // in - the new value
|
---|
| 230 | void add(float in);
|
---|
| 231 |
|
---|
| 232 | // median of the distribution
|
---|
| 233 | float median() const;
|
---|
| 234 |
|
---|
| 235 | // mean of lowest 80% of the samples
|
---|
| 236 | float meanLowest80Percent() const;
|
---|
| 237 |
|
---|
| 238 | // return true if the buffer is full (i.e. statistics are representative)
|
---|
| 239 | inline bool filledToCapacity() const { return itsBufferFull;}
|
---|
| 240 |
|
---|
| 241 | protected:
|
---|
| 242 | // update cache of sorted indices
|
---|
| 243 | // (it is assumed that itsSampleNumber points to the newly
|
---|
| 244 | // replaced element)
|
---|
| 245 | void updateSortedCache() const;
|
---|
| 246 |
|
---|
| 247 | // build sorted cache from the scratch
|
---|
| 248 | void buildSortedCache() const;
|
---|
| 249 |
|
---|
| 250 | // number of samples accumulated so far
|
---|
| 251 | // (can be less than the buffer size)
|
---|
| 252 | size_t numberOfSamples() const;
|
---|
| 253 |
|
---|
| 254 | // this helper method builds the cache if
|
---|
| 255 | // necessary using one of the methods
|
---|
| 256 | void fillCacheIfNecessary() const;
|
---|
| 257 |
|
---|
| 258 | private:
|
---|
| 259 | // buffer with samples (unsorted)
|
---|
| 260 | std::vector<float> itsVariances;
|
---|
| 261 | // current sample number (<=itsVariances.size())
|
---|
| 262 | size_t itsSampleNumber;
|
---|
| 263 | // true, if the buffer all values in the sample buffer are used
|
---|
| 264 | bool itsBufferFull;
|
---|
| 265 | // cached indices into vector of samples
|
---|
| 266 | mutable std::vector<size_t> itsSortedIndices;
|
---|
| 267 | // true if any of the statistics have been obtained at least
|
---|
| 268 | // once. This flag allows to implement a more efficient way of
|
---|
| 269 | // calculating statistics, if they are needed at once and not
|
---|
| 270 | // after each addition of a new element
|
---|
| 271 | mutable bool itsStatisticsAccessed;
|
---|
| 272 | };
|
---|
| 273 |
|
---|
| 274 | //
|
---|
| 275 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 276 |
|
---|
| 277 |
|
---|
[331] | 278 | } // namespace asap
|
---|
[297] | 279 |
|
---|
[344] | 280 | ///////////////////////////////////////////////////////////////////////////////
|
---|
[343] | 281 | //
|
---|
[1757] | 282 | // LFNoiseEstimator a helper class designed to estimate off-line variance
|
---|
| 283 | // using statistics depending on the distribution of
|
---|
| 284 | // values (e.g. like a median)
|
---|
| 285 | //
|
---|
| 286 | // Two statistics are supported: median and an average of
|
---|
| 287 | // 80% of smallest values.
|
---|
| 288 | //
|
---|
| 289 |
|
---|
| 290 | // construct an object
|
---|
| 291 | // size - maximum sample size. After a size number of elements is processed
|
---|
| 292 | // any new samples would cause the algorithm to drop the oldest samples in the
|
---|
| 293 | // buffer.
|
---|
| 294 | LFNoiseEstimator::LFNoiseEstimator(size_t size) : itsVariances(size),
|
---|
| 295 | itsSampleNumber(0), itsBufferFull(false), itsSortedIndices(size),
|
---|
| 296 | itsStatisticsAccessed(false)
|
---|
| 297 | {
|
---|
| 298 | AlwaysAssert(size>0,AipsError);
|
---|
| 299 | }
|
---|
| 300 |
|
---|
| 301 |
|
---|
| 302 | // add a new sample
|
---|
| 303 | // in - the new value
|
---|
| 304 | void LFNoiseEstimator::add(float in)
|
---|
| 305 | {
|
---|
| 306 | if (isnan(in)) {
|
---|
| 307 | // normally it shouldn't happen
|
---|
| 308 | return;
|
---|
| 309 | }
|
---|
| 310 | itsVariances[itsSampleNumber] = in;
|
---|
| 311 |
|
---|
| 312 | if (itsStatisticsAccessed) {
|
---|
| 313 | // only do element by element addition if on-the-fly
|
---|
| 314 | // statistics are needed
|
---|
| 315 | updateSortedCache();
|
---|
| 316 | }
|
---|
| 317 |
|
---|
| 318 | // advance itsSampleNumber now
|
---|
| 319 | ++itsSampleNumber;
|
---|
| 320 | if (itsSampleNumber == itsVariances.size()) {
|
---|
| 321 | itsSampleNumber = 0;
|
---|
| 322 | itsBufferFull = true;
|
---|
| 323 | }
|
---|
| 324 | AlwaysAssert(itsSampleNumber<itsVariances.size(),AipsError);
|
---|
| 325 | }
|
---|
| 326 |
|
---|
| 327 | // number of samples accumulated so far
|
---|
| 328 | // (can be less than the buffer size)
|
---|
| 329 | size_t LFNoiseEstimator::numberOfSamples() const
|
---|
| 330 | {
|
---|
| 331 | // the number of samples accumulated so far may be less than the
|
---|
| 332 | // buffer size
|
---|
| 333 | const size_t nSamples = itsBufferFull ? itsVariances.size(): itsSampleNumber;
|
---|
| 334 | AlwaysAssert( (nSamples > 0) && (nSamples <= itsVariances.size()), AipsError);
|
---|
| 335 | return nSamples;
|
---|
| 336 | }
|
---|
| 337 |
|
---|
| 338 | // this helper method builds the cache if
|
---|
| 339 | // necessary using one of the methods
|
---|
| 340 | void LFNoiseEstimator::fillCacheIfNecessary() const
|
---|
| 341 | {
|
---|
| 342 | if (!itsStatisticsAccessed) {
|
---|
| 343 | if ((itsSampleNumber!=0) || itsBufferFull) {
|
---|
| 344 | // build the whole cache efficiently
|
---|
| 345 | buildSortedCache();
|
---|
| 346 | } else {
|
---|
| 347 | updateSortedCache();
|
---|
| 348 | }
|
---|
| 349 | itsStatisticsAccessed = true;
|
---|
| 350 | } // otherwise, it is updated in 'add' using on-the-fly method
|
---|
| 351 | }
|
---|
| 352 |
|
---|
| 353 | // median of the distribution
|
---|
| 354 | float LFNoiseEstimator::median() const
|
---|
| 355 | {
|
---|
| 356 | fillCacheIfNecessary();
|
---|
| 357 | // the number of samples accumulated so far may be less than the
|
---|
| 358 | // buffer size
|
---|
| 359 | const size_t nSamples = numberOfSamples();
|
---|
| 360 | const size_t medSample = nSamples / 2;
|
---|
| 361 | AlwaysAssert(medSample < itsSortedIndices.size(), AipsError);
|
---|
| 362 | return itsVariances[itsSortedIndices[medSample]];
|
---|
| 363 | }
|
---|
| 364 |
|
---|
| 365 | // mean of lowest 80% of the samples
|
---|
| 366 | float LFNoiseEstimator::meanLowest80Percent() const
|
---|
| 367 | {
|
---|
| 368 | fillCacheIfNecessary();
|
---|
| 369 | // the number of samples accumulated so far may be less than the
|
---|
| 370 | // buffer size
|
---|
| 371 | const size_t nSamples = numberOfSamples();
|
---|
| 372 | float result = 0;
|
---|
| 373 | size_t numpt=size_t(0.8*nSamples);
|
---|
| 374 | if (!numpt) {
|
---|
| 375 | numpt=nSamples; // no much else left,
|
---|
| 376 | // although it is very inaccurate
|
---|
| 377 | }
|
---|
| 378 | AlwaysAssert( (numpt > 0) && (numpt<itsSortedIndices.size()), AipsError);
|
---|
| 379 | for (size_t ch=0; ch<numpt; ++ch) {
|
---|
| 380 | result += itsVariances[itsSortedIndices[ch]];
|
---|
| 381 | }
|
---|
| 382 | result /= float(numpt);
|
---|
| 383 | return result;
|
---|
| 384 | }
|
---|
| 385 |
|
---|
| 386 | // update cache of sorted indices
|
---|
| 387 | // (it is assumed that itsSampleNumber points to the newly
|
---|
| 388 | // replaced element)
|
---|
| 389 | void LFNoiseEstimator::updateSortedCache() const
|
---|
| 390 | {
|
---|
| 391 | // the number of samples accumulated so far may be less than the
|
---|
| 392 | // buffer size
|
---|
| 393 | const size_t nSamples = numberOfSamples();
|
---|
| 394 |
|
---|
| 395 | if (itsBufferFull) {
|
---|
| 396 | // first find the index of the element which is being replaced
|
---|
| 397 | size_t index = nSamples;
|
---|
| 398 | for (size_t i=0; i<nSamples; ++i) {
|
---|
| 399 | AlwaysAssert(i < itsSortedIndices.size(), AipsError);
|
---|
| 400 | if (itsSortedIndices[i] == itsSampleNumber) {
|
---|
| 401 | index = i;
|
---|
| 402 | break;
|
---|
| 403 | }
|
---|
| 404 | }
|
---|
| 405 | AlwaysAssert( index < nSamples, AipsError);
|
---|
| 406 |
|
---|
| 407 | const vector<size_t>::iterator indStart = itsSortedIndices.begin();
|
---|
| 408 | // merge this element with preceeding block first
|
---|
| 409 | if (index != 0) {
|
---|
| 410 | // merge indices on the basis of variances
|
---|
| 411 | inplace_merge(indStart,indStart+index,indStart+index+1,
|
---|
| 412 | indexedCompare<size_t>(itsVariances.begin()));
|
---|
| 413 | }
|
---|
| 414 | // merge with the following block
|
---|
| 415 | if (index + 1 != nSamples) {
|
---|
| 416 | // merge indices on the basis of variances
|
---|
| 417 | inplace_merge(indStart,indStart+index+1,indStart+nSamples,
|
---|
| 418 | indexedCompare<size_t>(itsVariances.begin()));
|
---|
| 419 | }
|
---|
| 420 | } else {
|
---|
| 421 | // itsSampleNumber is the index of the new element
|
---|
| 422 | AlwaysAssert(itsSampleNumber < itsSortedIndices.size(), AipsError);
|
---|
| 423 | itsSortedIndices[itsSampleNumber] = itsSampleNumber;
|
---|
| 424 | if (itsSampleNumber >= 1) {
|
---|
| 425 | // we have to place this new sample in
|
---|
| 426 | const vector<size_t>::iterator indStart = itsSortedIndices.begin();
|
---|
| 427 | // merge indices on the basis of variances
|
---|
| 428 | inplace_merge(indStart,indStart+itsSampleNumber,indStart+itsSampleNumber+1,
|
---|
| 429 | indexedCompare<size_t>(itsVariances.begin()));
|
---|
| 430 | }
|
---|
| 431 | }
|
---|
| 432 | }
|
---|
| 433 |
|
---|
| 434 | // build sorted cache from the scratch
|
---|
| 435 | void LFNoiseEstimator::buildSortedCache() const
|
---|
| 436 | {
|
---|
| 437 | // the number of samples accumulated so far may be less than the
|
---|
| 438 | // buffer size
|
---|
| 439 | const size_t nSamples = numberOfSamples();
|
---|
| 440 | AlwaysAssert(nSamples <= itsSortedIndices.size(), AipsError);
|
---|
| 441 | for (size_t i=0; i<nSamples; ++i) {
|
---|
| 442 | itsSortedIndices[i]=i;
|
---|
| 443 | }
|
---|
| 444 |
|
---|
| 445 | // sort indices, but check the array of variances
|
---|
| 446 | const vector<size_t>::iterator indStart = itsSortedIndices.begin();
|
---|
| 447 | stable_sort(indStart,indStart+nSamples, indexedCompare<size_t>(itsVariances.begin()));
|
---|
| 448 | }
|
---|
| 449 |
|
---|
| 450 | //
|
---|
| 451 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 452 |
|
---|
| 453 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 454 | //
|
---|
[881] | 455 | // RunningBox - a running box calculator. This class implements
|
---|
[351] | 456 | // interations over the specified spectrum and calculates
|
---|
| 457 | // running box filter statistics.
|
---|
[331] | 458 | //
|
---|
[297] | 459 |
|
---|
[331] | 460 | // set up the object with the references to actual data
|
---|
| 461 | // and the number of channels in the running box
|
---|
[351] | 462 | RunningBox::RunningBox(const casa::Vector<casa::Float> &in_spectrum,
|
---|
| 463 | const casa::Vector<casa::Bool> &in_mask,
|
---|
[996] | 464 | const std::pair<int,int> &in_edge,
|
---|
| 465 | int in_max_box_nchan) throw(AipsError) :
|
---|
[331] | 466 | spectrum(in_spectrum), mask(in_mask), edge(in_edge),
|
---|
[996] | 467 | max_box_nchan(in_max_box_nchan)
|
---|
[351] | 468 | {
|
---|
| 469 | rewind();
|
---|
| 470 | }
|
---|
[331] | 471 |
|
---|
[351] | 472 | void RunningBox::rewind() throw(AipsError) {
|
---|
| 473 | // fill statistics for initial box
|
---|
| 474 | box_chan_cntr=0; // no channels are currently in the box
|
---|
| 475 | sumf=0.; // initialize statistics
|
---|
| 476 | sumf2=0.;
|
---|
| 477 | sumch=0.;
|
---|
| 478 | sumch2=0.;
|
---|
| 479 | sumfch=0.;
|
---|
| 480 | int initial_box_ch=edge.first;
|
---|
| 481 | for (;initial_box_ch<edge.second && box_chan_cntr<max_box_nchan;
|
---|
| 482 | ++initial_box_ch)
|
---|
| 483 | advanceRunningBox(initial_box_ch);
|
---|
[881] | 484 |
|
---|
| 485 | if (initial_box_ch==edge.second)
|
---|
[351] | 486 | throw AipsError("RunningBox::rewind - too much channels are masked");
|
---|
| 487 |
|
---|
| 488 | cur_channel=edge.first;
|
---|
[881] | 489 | start_advance=initial_box_ch-max_box_nchan/2;
|
---|
[351] | 490 | }
|
---|
| 491 |
|
---|
| 492 | // access to the statistics
|
---|
| 493 | const casa::Float& RunningBox::getLinMean() const throw(AipsError)
|
---|
[331] | 494 | {
|
---|
[351] | 495 | DebugAssert(cur_channel<edge.second, AipsError);
|
---|
| 496 | if (need2recalculate) updateDerivativeStatistics();
|
---|
| 497 | return linmean;
|
---|
[297] | 498 | }
|
---|
| 499 |
|
---|
[351] | 500 | const casa::Float& RunningBox::getLinVariance() const throw(AipsError)
|
---|
| 501 | {
|
---|
| 502 | DebugAssert(cur_channel<edge.second, AipsError);
|
---|
| 503 | if (need2recalculate) updateDerivativeStatistics();
|
---|
| 504 | return linvariance;
|
---|
| 505 | }
|
---|
[331] | 506 |
|
---|
[351] | 507 | const casa::Float RunningBox::aboveMean() const throw(AipsError)
|
---|
| 508 | {
|
---|
| 509 | DebugAssert(cur_channel<edge.second, AipsError);
|
---|
| 510 | if (need2recalculate) updateDerivativeStatistics();
|
---|
| 511 | return spectrum[cur_channel]-linmean;
|
---|
| 512 | }
|
---|
| 513 |
|
---|
| 514 | int RunningBox::getChannel() const throw()
|
---|
| 515 | {
|
---|
| 516 | return cur_channel;
|
---|
| 517 | }
|
---|
| 518 |
|
---|
| 519 | // actual number of channels in the box (max_box_nchan, if no channels
|
---|
| 520 | // are masked)
|
---|
| 521 | int RunningBox::getNumberOfBoxPoints() const throw()
|
---|
| 522 | {
|
---|
| 523 | return box_chan_cntr;
|
---|
| 524 | }
|
---|
| 525 |
|
---|
[1757] | 526 | // supplementary function to control running mean/median calculations.
|
---|
| 527 | // It adds a specified channel to the running box and
|
---|
[297] | 528 | // removes (ch-max_box_nchan+1)'th channel from there
|
---|
| 529 | // Channels, for which the mask is false or index is beyond the
|
---|
| 530 | // allowed range, are ignored
|
---|
[351] | 531 | void RunningBox::advanceRunningBox(int ch) throw(AipsError)
|
---|
[297] | 532 | {
|
---|
| 533 | if (ch>=edge.first && ch<edge.second)
|
---|
| 534 | if (mask[ch]) { // ch is a valid channel
|
---|
| 535 | ++box_chan_cntr;
|
---|
[351] | 536 | sumf+=spectrum[ch];
|
---|
| 537 | sumf2+=square(spectrum[ch]);
|
---|
[996] | 538 | sumch+=Float(ch);
|
---|
| 539 | sumch2+=square(Float(ch));
|
---|
| 540 | sumfch+=spectrum[ch]*Float(ch);
|
---|
| 541 | need2recalculate=True;
|
---|
[297] | 542 | }
|
---|
| 543 | int ch2remove=ch-max_box_nchan;
|
---|
| 544 | if (ch2remove>=edge.first && ch2remove<edge.second)
|
---|
| 545 | if (mask[ch2remove]) { // ch2remove is a valid channel
|
---|
| 546 | --box_chan_cntr;
|
---|
[351] | 547 | sumf-=spectrum[ch2remove];
|
---|
[881] | 548 | sumf2-=square(spectrum[ch2remove]);
|
---|
[996] | 549 | sumch-=Float(ch2remove);
|
---|
| 550 | sumch2-=square(Float(ch2remove));
|
---|
| 551 | sumfch-=spectrum[ch2remove]*Float(ch2remove);
|
---|
| 552 | need2recalculate=True;
|
---|
[297] | 553 | }
|
---|
| 554 | }
|
---|
| 555 |
|
---|
[351] | 556 | // next channel
|
---|
| 557 | void RunningBox::next() throw(AipsError)
|
---|
[297] | 558 | {
|
---|
[351] | 559 | AlwaysAssert(cur_channel<edge.second,AipsError);
|
---|
| 560 | ++cur_channel;
|
---|
| 561 | if (cur_channel+max_box_nchan/2<edge.second && cur_channel>=start_advance)
|
---|
| 562 | advanceRunningBox(cur_channel+max_box_nchan/2); // update statistics
|
---|
[297] | 563 | }
|
---|
| 564 |
|
---|
[351] | 565 | // checking whether there are still elements
|
---|
| 566 | casa::Bool RunningBox::haveMore() const throw()
|
---|
| 567 | {
|
---|
| 568 | return cur_channel<edge.second;
|
---|
| 569 | }
|
---|
| 570 |
|
---|
| 571 | // calculate derivative statistics. This function is const, because
|
---|
| 572 | // it updates the cache only
|
---|
| 573 | void RunningBox::updateDerivativeStatistics() const throw(AipsError)
|
---|
| 574 | {
|
---|
| 575 | AlwaysAssert(box_chan_cntr, AipsError);
|
---|
[881] | 576 |
|
---|
[351] | 577 | Float mean=sumf/Float(box_chan_cntr);
|
---|
| 578 |
|
---|
| 579 | // linear LSF formulae
|
---|
| 580 | Float meanch=sumch/Float(box_chan_cntr);
|
---|
| 581 | Float meanch2=sumch2/Float(box_chan_cntr);
|
---|
| 582 | if (meanch==meanch2 || box_chan_cntr<3) {
|
---|
| 583 | // vertical line in the spectrum, can't calculate linmean and linvariance
|
---|
| 584 | linmean=0.;
|
---|
| 585 | linvariance=0.;
|
---|
| 586 | } else {
|
---|
| 587 | Float coeff=(sumfch/Float(box_chan_cntr)-meanch*mean)/
|
---|
| 588 | (meanch2-square(meanch));
|
---|
| 589 | linmean=coeff*(Float(cur_channel)-meanch)+mean;
|
---|
[1757] | 590 | linvariance=sumf2/Float(box_chan_cntr)-square(mean)-
|
---|
| 591 | square(coeff)*(meanch2-square(meanch));
|
---|
| 592 | if (linvariance<0.) {
|
---|
| 593 | // this shouldn't happen normally, but could be due to round-off error
|
---|
| 594 | linvariance = 0;
|
---|
| 595 | } else {
|
---|
| 596 | linvariance = sqrt(linvariance);
|
---|
| 597 | }
|
---|
[351] | 598 | }
|
---|
| 599 | need2recalculate=False;
|
---|
| 600 | }
|
---|
| 601 |
|
---|
| 602 |
|
---|
| 603 | //
|
---|
| 604 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 605 |
|
---|
| 606 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 607 | //
|
---|
[1757] | 608 | // LFAboveThreshold - a running mean/median algorithm for line detection
|
---|
[351] | 609 | //
|
---|
| 610 | //
|
---|
| 611 |
|
---|
| 612 |
|
---|
| 613 | // set up the detection criterion
|
---|
| 614 | LFAboveThreshold::LFAboveThreshold(std::list<pair<int,int> > &in_lines,
|
---|
| 615 | int in_min_nchan,
|
---|
[1757] | 616 | casa::Float in_threshold,
|
---|
| 617 | bool use_median,
|
---|
| 618 | int noise_sample_size) throw() :
|
---|
[351] | 619 | min_nchan(in_min_nchan), threshold(in_threshold),
|
---|
[1757] | 620 | lines(in_lines), running_box(NULL), itsUseMedian(use_median),
|
---|
| 621 | itsNoiseSampleSize(noise_sample_size) {}
|
---|
[351] | 622 |
|
---|
| 623 | LFAboveThreshold::~LFAboveThreshold() throw()
|
---|
| 624 | {
|
---|
| 625 | if (running_box!=NULL) delete running_box;
|
---|
| 626 | }
|
---|
| 627 |
|
---|
| 628 | // replace the detection criterion
|
---|
| 629 | void LFAboveThreshold::setCriterion(int in_min_nchan, casa::Float in_threshold)
|
---|
| 630 | throw()
|
---|
| 631 | {
|
---|
| 632 | min_nchan=in_min_nchan;
|
---|
| 633 | threshold=in_threshold;
|
---|
| 634 | }
|
---|
| 635 |
|
---|
[907] | 636 | // get the sign of runningBox->aboveMean(). The RunningBox pointer
|
---|
| 637 | // should be defined
|
---|
| 638 | casa::Int LFAboveThreshold::getAboveMeanSign() const throw()
|
---|
| 639 | {
|
---|
| 640 | const Float buf=running_box->aboveMean();
|
---|
| 641 | if (buf>0) return 1;
|
---|
| 642 | if (buf<0) return -1;
|
---|
| 643 | return 0;
|
---|
| 644 | }
|
---|
[351] | 645 |
|
---|
[907] | 646 |
|
---|
[297] | 647 | // process a channel: update cur_line and is_detected before and
|
---|
| 648 | // add a new line to the list, if necessary
|
---|
[351] | 649 | void LFAboveThreshold::processChannel(Bool detect,
|
---|
| 650 | const casa::Vector<casa::Bool> &mask) throw(casa::AipsError)
|
---|
[297] | 651 | {
|
---|
| 652 | try {
|
---|
[907] | 653 | if (is_detected_before) {
|
---|
| 654 | // we have to check that the current detection has the
|
---|
| 655 | // same sign of running_box->aboveMean
|
---|
| 656 | // otherwise it could be a spurious detection
|
---|
| 657 | if (last_sign && last_sign!=getAboveMeanSign())
|
---|
| 658 | detect=False;
|
---|
[1315] | 659 | }
|
---|
| 660 | if (detect) {
|
---|
| 661 | last_sign=getAboveMeanSign();
|
---|
| 662 | if (is_detected_before)
|
---|
| 663 | cur_line.second=running_box->getChannel()+1;
|
---|
| 664 | else {
|
---|
| 665 | is_detected_before=True;
|
---|
| 666 | cur_line.first=running_box->getChannel();
|
---|
| 667 | cur_line.second=running_box->getChannel()+1;
|
---|
| 668 | }
|
---|
| 669 | } else processCurLine(mask);
|
---|
[297] | 670 | }
|
---|
| 671 | catch (const AipsError &ae) {
|
---|
| 672 | throw;
|
---|
[881] | 673 | }
|
---|
[297] | 674 | catch (const exception &ex) {
|
---|
[351] | 675 | throw AipsError(String("LFAboveThreshold::processChannel - STL error: ")+ex.what());
|
---|
[297] | 676 | }
|
---|
| 677 | }
|
---|
| 678 |
|
---|
| 679 | // process the interval of channels stored in cur_line
|
---|
| 680 | // if it satisfies the criterion, add this interval as a new line
|
---|
[351] | 681 | void LFAboveThreshold::processCurLine(const casa::Vector<casa::Bool> &mask)
|
---|
[331] | 682 | throw(casa::AipsError)
|
---|
[297] | 683 | {
|
---|
| 684 | try {
|
---|
[881] | 685 | if (is_detected_before) {
|
---|
[1315] | 686 | if (cur_line.second-cur_line.first>=min_nchan) {
|
---|
[996] | 687 | // it was a detection. We need to change the list
|
---|
| 688 | Bool add_new_line=False;
|
---|
| 689 | if (lines.size()) {
|
---|
| 690 | for (int i=lines.back().second;i<cur_line.first;++i)
|
---|
| 691 | if (mask[i]) { // one valid channel in between
|
---|
| 692 | // means that we deal with a separate line
|
---|
| 693 | add_new_line=True;
|
---|
| 694 | break;
|
---|
| 695 | }
|
---|
| 696 | } else add_new_line=True;
|
---|
| 697 | if (add_new_line)
|
---|
| 698 | lines.push_back(cur_line);
|
---|
[881] | 699 | else lines.back().second=cur_line.second;
|
---|
[996] | 700 | }
|
---|
| 701 | is_detected_before=False;
|
---|
[881] | 702 | }
|
---|
[297] | 703 | }
|
---|
| 704 | catch (const AipsError &ae) {
|
---|
| 705 | throw;
|
---|
[881] | 706 | }
|
---|
[297] | 707 | catch (const exception &ex) {
|
---|
[351] | 708 | throw AipsError(String("LFAboveThreshold::processCurLine - STL error: ")+ex.what());
|
---|
[297] | 709 | }
|
---|
| 710 | }
|
---|
| 711 |
|
---|
[551] | 712 | // return the array with signs of the value-current mean
|
---|
| 713 | // An element is +1 if value>mean, -1 if less, 0 if equal.
|
---|
| 714 | // This array is updated each time the findLines method is called and
|
---|
| 715 | // is used to search the line wings
|
---|
| 716 | const casa::Vector<Int>& LFAboveThreshold::getSigns() const throw()
|
---|
| 717 | {
|
---|
| 718 | return signs;
|
---|
| 719 | }
|
---|
| 720 |
|
---|
[331] | 721 | // find spectral lines and add them into list
|
---|
[351] | 722 | void LFAboveThreshold::findLines(const casa::Vector<casa::Float> &spectrum,
|
---|
[996] | 723 | const casa::Vector<casa::Bool> &mask,
|
---|
| 724 | const std::pair<int,int> &edge,
|
---|
| 725 | int max_box_nchan)
|
---|
[331] | 726 | throw(casa::AipsError)
|
---|
| 727 | {
|
---|
| 728 | const int minboxnchan=4;
|
---|
[351] | 729 | try {
|
---|
[331] | 730 |
|
---|
[351] | 731 | if (running_box!=NULL) delete running_box;
|
---|
| 732 | running_box=new RunningBox(spectrum,mask,edge,max_box_nchan);
|
---|
[368] | 733 |
|
---|
| 734 | // determine the off-line variance first
|
---|
| 735 | // an assumption made: lines occupy a small part of the spectrum
|
---|
[881] | 736 |
|
---|
[1757] | 737 | const size_t noiseSampleSize = itsNoiseSampleSize<0 ? size_t(edge.second-edge.first) :
|
---|
| 738 | std::min(size_t(itsNoiseSampleSize), size_t(edge.second-edge.first));
|
---|
| 739 | DebugAssert(noiseSampleSize,AipsError);
|
---|
| 740 | const bool globalNoise = (size_t(edge.second - edge.first) == noiseSampleSize);
|
---|
| 741 | LFNoiseEstimator ne(noiseSampleSize);
|
---|
[881] | 742 |
|
---|
[1757] | 743 | for (;running_box->haveMore();running_box->next()) {
|
---|
| 744 | ne.add(running_box->getLinVariance());
|
---|
| 745 | if (ne.filledToCapacity()) {
|
---|
| 746 | break;
|
---|
| 747 | }
|
---|
| 748 | }
|
---|
[881] | 749 |
|
---|
[1757] | 750 | Float offline_variance = -1; // just a flag that it is unset
|
---|
| 751 |
|
---|
| 752 | if (globalNoise) {
|
---|
| 753 | offline_variance = itsUseMedian ? ne.median() : ne.meanLowest80Percent();
|
---|
| 754 | }
|
---|
[881] | 755 |
|
---|
[351] | 756 | // actual search algorithm
|
---|
| 757 | is_detected_before=False;
|
---|
[368] | 758 |
|
---|
[551] | 759 | // initiate the signs array
|
---|
| 760 | signs.resize(spectrum.nelements());
|
---|
| 761 | signs=Vector<Int>(spectrum.nelements(),0);
|
---|
| 762 |
|
---|
[369] | 763 | //ofstream os("dbg.dat");
|
---|
[368] | 764 | for (running_box->rewind();running_box->haveMore();
|
---|
| 765 | running_box->next()) {
|
---|
[351] | 766 | const int ch=running_box->getChannel();
|
---|
[1757] | 767 | if (!globalNoise) {
|
---|
| 768 | // add a next point for a local noise estimate
|
---|
| 769 | ne.add(running_box->getLinVariance());
|
---|
| 770 | }
|
---|
| 771 | if (running_box->getNumberOfBoxPoints()>=minboxnchan) {
|
---|
| 772 | if (!globalNoise) {
|
---|
| 773 | offline_variance = itsUseMedian ? ne.median() : ne.meanLowest80Percent();
|
---|
| 774 | }
|
---|
| 775 | AlwaysAssert(offline_variance>0.,AipsError);
|
---|
[996] | 776 | processChannel(mask[ch] && (fabs(running_box->aboveMean()) >=
|
---|
| 777 | threshold*offline_variance), mask);
|
---|
[1757] | 778 | } else processCurLine(mask); // just finish what was accumulated before
|
---|
[907] | 779 |
|
---|
[996] | 780 | signs[ch]=getAboveMeanSign();
|
---|
[1757] | 781 | //os<<ch<<" "<<spectrum[ch]<<" "<<fabs(running_box->aboveMean())<<" "<<
|
---|
| 782 | //threshold*offline_variance<<endl;
|
---|
[351] | 783 | }
|
---|
[352] | 784 | if (lines.size())
|
---|
| 785 | searchForWings(lines,signs,mask,edge);
|
---|
[344] | 786 | }
|
---|
[351] | 787 | catch (const AipsError &ae) {
|
---|
| 788 | throw;
|
---|
[881] | 789 | }
|
---|
[351] | 790 | catch (const exception &ex) {
|
---|
| 791 | throw AipsError(String("LFAboveThreshold::findLines - STL error: ")+ex.what());
|
---|
| 792 | }
|
---|
[331] | 793 | }
|
---|
| 794 |
|
---|
| 795 | //
|
---|
| 796 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 797 |
|
---|
[343] | 798 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 799 | //
|
---|
[352] | 800 | // LFLineListOperations::IntersectsWith - An auxiliary object function
|
---|
| 801 | // to test whether two lines have a non-void intersection
|
---|
[343] | 802 | //
|
---|
[331] | 803 |
|
---|
[343] | 804 |
|
---|
| 805 | // line1 - range of the first line: start channel and stop+1
|
---|
[352] | 806 | LFLineListOperations::IntersectsWith::IntersectsWith(const std::pair<int,int> &in_line1) :
|
---|
[343] | 807 | line1(in_line1) {}
|
---|
| 808 |
|
---|
| 809 |
|
---|
| 810 | // return true if line2 intersects with line1 with at least one
|
---|
| 811 | // common channel, and false otherwise
|
---|
| 812 | // line2 - range of the second line: start channel and stop+1
|
---|
[352] | 813 | bool LFLineListOperations::IntersectsWith::operator()(const std::pair<int,int> &line2)
|
---|
[343] | 814 | const throw()
|
---|
| 815 | {
|
---|
| 816 | if (line2.second<line1.first) return false; // line2 is at lower channels
|
---|
| 817 | if (line2.first>line1.second) return false; // line2 is at upper channels
|
---|
| 818 | return true; // line2 has an intersection or is adjacent to line1
|
---|
| 819 | }
|
---|
| 820 |
|
---|
| 821 | //
|
---|
| 822 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 823 |
|
---|
| 824 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 825 | //
|
---|
[352] | 826 | // LFLineListOperations::BuildUnion - An auxiliary object function to build a union
|
---|
[343] | 827 | // of several lines to account for a possibility of merging the nearby lines
|
---|
| 828 | //
|
---|
| 829 |
|
---|
| 830 | // set an initial line (can be a first line in the sequence)
|
---|
[352] | 831 | LFLineListOperations::BuildUnion::BuildUnion(const std::pair<int,int> &line1) :
|
---|
[343] | 832 | temp_line(line1) {}
|
---|
| 833 |
|
---|
| 834 | // update temp_line with a union of temp_line and new_line
|
---|
| 835 | // provided there is no gap between the lines
|
---|
[352] | 836 | void LFLineListOperations::BuildUnion::operator()(const std::pair<int,int> &new_line)
|
---|
[343] | 837 | throw()
|
---|
| 838 | {
|
---|
| 839 | if (new_line.first<temp_line.first) temp_line.first=new_line.first;
|
---|
| 840 | if (new_line.second>temp_line.second) temp_line.second=new_line.second;
|
---|
| 841 | }
|
---|
| 842 |
|
---|
| 843 | // return the result (temp_line)
|
---|
[352] | 844 | const std::pair<int,int>& LFLineListOperations::BuildUnion::result() const throw()
|
---|
[343] | 845 | {
|
---|
| 846 | return temp_line;
|
---|
| 847 | }
|
---|
| 848 |
|
---|
| 849 | //
|
---|
| 850 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 851 |
|
---|
| 852 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 853 | //
|
---|
[352] | 854 | // LFLineListOperations::LaterThan - An auxiliary object function to test whether a
|
---|
[343] | 855 | // specified line is at lower spectral channels (to preserve the order in
|
---|
| 856 | // the line list)
|
---|
| 857 | //
|
---|
| 858 |
|
---|
| 859 | // setup the line to compare with
|
---|
[352] | 860 | LFLineListOperations::LaterThan::LaterThan(const std::pair<int,int> &in_line1) :
|
---|
[343] | 861 | line1(in_line1) {}
|
---|
| 862 |
|
---|
| 863 | // return true if line2 should be placed later than line1
|
---|
| 864 | // in the ordered list (so, it is at greater channel numbers)
|
---|
[352] | 865 | bool LFLineListOperations::LaterThan::operator()(const std::pair<int,int> &line2)
|
---|
[343] | 866 | const throw()
|
---|
| 867 | {
|
---|
| 868 | if (line2.second<line1.first) return false; // line2 is at lower channels
|
---|
| 869 | if (line2.first>line1.second) return true; // line2 is at upper channels
|
---|
[881] | 870 |
|
---|
[343] | 871 | // line2 intersects with line1. We should have no such situation in
|
---|
| 872 | // practice
|
---|
| 873 | return line2.first>line1.first;
|
---|
| 874 | }
|
---|
| 875 |
|
---|
| 876 | //
|
---|
| 877 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 878 |
|
---|
| 879 |
|
---|
| 880 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 881 | //
|
---|
[881] | 882 | // STLineFinder - a class for automated spectral line search
|
---|
[343] | 883 | //
|
---|
| 884 | //
|
---|
[331] | 885 |
|
---|
[881] | 886 | STLineFinder::STLineFinder() throw() : edge(0,0)
|
---|
[331] | 887 | {
|
---|
[369] | 888 | setOptions();
|
---|
[331] | 889 | }
|
---|
| 890 |
|
---|
[369] | 891 | // set the parameters controlling algorithm
|
---|
| 892 | // in_threshold a single channel threshold default is sqrt(3), which
|
---|
| 893 | // means together with 3 minimum channels at least 3 sigma
|
---|
| 894 | // detection criterion
|
---|
| 895 | // For bad baseline shape, in_threshold may need to be
|
---|
| 896 | // increased
|
---|
| 897 | // in_min_nchan minimum number of channels above the threshold to report
|
---|
| 898 | // a detection, default is 3
|
---|
| 899 | // in_avg_limit perform the averaging of no more than in_avg_limit
|
---|
| 900 | // adjacent channels to search for broad lines
|
---|
[881] | 901 | // Default is 8, but for a bad baseline shape this
|
---|
[369] | 902 | // parameter should be decreased (may be even down to a
|
---|
| 903 | // minimum of 1 to disable this option) to avoid
|
---|
| 904 | // confusing of baseline undulations with a real line.
|
---|
[881] | 905 | // Setting a very large value doesn't usually provide
|
---|
| 906 | // valid detections.
|
---|
[1757] | 907 | // in_box_size the box size for running mean/median calculation. Default is
|
---|
[369] | 908 | // 1./5. of the whole spectrum size
|
---|
[1757] | 909 | // in_noise_box the box size for off-line noise estimation (if working with
|
---|
| 910 | // local noise. Negative value means use global noise estimate
|
---|
| 911 | // Default is -1 (i.e. estimate using the whole spectrum)
|
---|
| 912 | // in_median true if median statistics is used as opposed to average of
|
---|
| 913 | // the lowest 80% of deviations (default)
|
---|
[881] | 914 | void STLineFinder::setOptions(const casa::Float &in_threshold,
|
---|
[369] | 915 | const casa::Int &in_min_nchan,
|
---|
[996] | 916 | const casa::Int &in_avg_limit,
|
---|
[1757] | 917 | const casa::Float &in_box_size,
|
---|
| 918 | const casa::Float &in_noise_box,
|
---|
| 919 | const casa::Bool &in_median) throw()
|
---|
[369] | 920 | {
|
---|
| 921 | threshold=in_threshold;
|
---|
| 922 | min_nchan=in_min_nchan;
|
---|
| 923 | avg_limit=in_avg_limit;
|
---|
| 924 | box_size=in_box_size;
|
---|
[1757] | 925 | itsNoiseBox = in_noise_box;
|
---|
| 926 | itsUseMedian = in_median;
|
---|
[369] | 927 | }
|
---|
| 928 |
|
---|
[881] | 929 | STLineFinder::~STLineFinder() throw(AipsError) {}
|
---|
[331] | 930 |
|
---|
[907] | 931 | // set scan to work with (in_scan parameter)
|
---|
| 932 | void STLineFinder::setScan(const ScantableWrapper &in_scan) throw(AipsError)
|
---|
| 933 | {
|
---|
| 934 | scan=in_scan.getCP();
|
---|
| 935 | AlwaysAssert(!scan.null(),AipsError);
|
---|
[924] | 936 |
|
---|
[907] | 937 | }
|
---|
| 938 |
|
---|
| 939 | // search for spectral lines. Number of lines found is returned
|
---|
| 940 | // in_edge and in_mask control channel rejection for a given row
|
---|
[331] | 941 | // if in_edge has zero length, all channels chosen by mask will be used
|
---|
| 942 | // if in_edge has one element only, it represents the number of
|
---|
| 943 | // channels to drop from both sides of the spectrum
|
---|
| 944 | // in_edge is introduced for convinience, although all functionality
|
---|
[881] | 945 | // can be achieved using a spectrum mask only
|
---|
[907] | 946 | int STLineFinder::findLines(const std::vector<bool> &in_mask,
|
---|
[996] | 947 | const std::vector<int> &in_edge,
|
---|
| 948 | const casa::uInt &whichRow) throw(casa::AipsError)
|
---|
[331] | 949 | {
|
---|
[907] | 950 | if (scan.null())
|
---|
| 951 | throw AipsError("STLineFinder::findLines - a scan should be set first,"
|
---|
| 952 | " use set_scan");
|
---|
[924] | 953 |
|
---|
| 954 | uInt nchan = scan->nchan(scan->getIF(whichRow));
|
---|
[907] | 955 | // set up mask and edge rejection
|
---|
[924] | 956 | // no mask given...
|
---|
| 957 | if (in_mask.size() == 0) {
|
---|
| 958 | mask = Vector<Bool>(nchan,True);
|
---|
| 959 | } else {
|
---|
| 960 | // use provided mask
|
---|
| 961 | mask=Vector<Bool>(in_mask);
|
---|
| 962 | }
|
---|
| 963 | if (mask.nelements()!=nchan)
|
---|
[907] | 964 | throw AipsError("STLineFinder::findLines - in_scan and in_mask have different"
|
---|
| 965 | "number of spectral channels.");
|
---|
[1757] | 966 |
|
---|
| 967 | // taking flagged channels into account
|
---|
| 968 | vector<bool> flaggedChannels = scan->getMask(whichRow);
|
---|
| 969 | if (flaggedChannels.size()) {
|
---|
| 970 | // there is a mask set for this row
|
---|
| 971 | if (flaggedChannels.size() != mask.nelements()) {
|
---|
| 972 | throw AipsError("STLineFinder::findLines - internal inconsistency: number of mask elements do not match the number of channels");
|
---|
| 973 | }
|
---|
| 974 | for (size_t ch = 0; ch<mask.nelements(); ++ch) {
|
---|
| 975 | mask[ch] &= flaggedChannels[ch];
|
---|
| 976 | }
|
---|
| 977 | }
|
---|
| 978 |
|
---|
[907] | 979 | // number of elements in in_edge
|
---|
| 980 | if (in_edge.size()>2)
|
---|
| 981 | throw AipsError("STLineFinder::findLines - the length of the in_edge parameter"
|
---|
[996] | 982 | "should not exceed 2");
|
---|
[907] | 983 | if (!in_edge.size()) {
|
---|
[881] | 984 | // all spectra, no rejection
|
---|
[331] | 985 | edge.first=0;
|
---|
[996] | 986 | edge.second=nchan;
|
---|
[907] | 987 | } else {
|
---|
| 988 | edge.first=in_edge[0];
|
---|
[996] | 989 | if (edge.first<0)
|
---|
| 990 | throw AipsError("STLineFinder::findLines - the in_edge parameter has a negative"
|
---|
| 991 | "number of channels to drop");
|
---|
| 992 | if (edge.first>=int(nchan))
|
---|
| 993 | throw AipsError("STLineFinder::findLines - all channels are rejected by the in_edge parameter");
|
---|
[907] | 994 | if (in_edge.size()==2) {
|
---|
[996] | 995 | edge.second=in_edge[1];
|
---|
| 996 | if (edge.second<0)
|
---|
| 997 | throw AipsError("STLineFinder::findLines - the in_edge parameter has a negative"
|
---|
| 998 | "number of channels to drop");
|
---|
[924] | 999 | edge.second=nchan-edge.second;
|
---|
[996] | 1000 | } else edge.second=nchan-edge.first;
|
---|
[369] | 1001 | if (edge.second<0 || (edge.first>=edge.second))
|
---|
[996] | 1002 | throw AipsError("STLineFinder::findLines - all channels are rejected by the in_edge parameter");
|
---|
[881] | 1003 | }
|
---|
[924] | 1004 |
|
---|
[907] | 1005 | //
|
---|
[924] | 1006 | int max_box_nchan=int(nchan*box_size); // number of channels in running
|
---|
[331] | 1007 | // box
|
---|
| 1008 | if (max_box_nchan<2)
|
---|
[881] | 1009 | throw AipsError("STLineFinder::findLines - box_size is too small");
|
---|
[331] | 1010 |
|
---|
[1757] | 1011 | // number of elements in the sample for noise estimate
|
---|
| 1012 | const int noise_box = itsNoiseBox<0 ? -1 : int(nchan * itsNoiseBox);
|
---|
| 1013 |
|
---|
| 1014 | if ((noise_box!= -1) and (noise_box<2))
|
---|
| 1015 | throw AipsError("STLineFinder::findLines - noise_box is supposed to be at least 2 elements");
|
---|
| 1016 |
|
---|
[881] | 1017 | spectrum.resize();
|
---|
| 1018 | spectrum = Vector<Float>(scan->getSpectrum(whichRow));
|
---|
[331] | 1019 |
|
---|
| 1020 | lines.resize(0); // search from the scratch
|
---|
[370] | 1021 | last_row_used=whichRow;
|
---|
[331] | 1022 | Vector<Bool> temp_mask(mask);
|
---|
[351] | 1023 |
|
---|
| 1024 | Bool first_pass=True;
|
---|
[368] | 1025 | Int avg_factor=1; // this number of adjacent channels is averaged together
|
---|
| 1026 | // the total number of the channels is not altered
|
---|
[996] | 1027 | // instead, min_nchan is also scaled
|
---|
| 1028 | // it helps to search for broad lines
|
---|
[551] | 1029 | Vector<Int> signs; // a buffer for signs of the value - mean quantity
|
---|
| 1030 | // see LFAboveThreshold for details
|
---|
[996] | 1031 | // We need only signs resulted from last iteration
|
---|
| 1032 | // because all previous values may be corrupted by the
|
---|
| 1033 | // presence of spectral lines
|
---|
[344] | 1034 | while (true) {
|
---|
[351] | 1035 | // a buffer for new lines found at this iteration
|
---|
[881] | 1036 | std::list<pair<int,int> > new_lines;
|
---|
[351] | 1037 |
|
---|
| 1038 | try {
|
---|
[369] | 1039 | // line find algorithm
|
---|
[1757] | 1040 | LFAboveThreshold lfalg(new_lines,avg_factor*min_nchan, threshold, itsUseMedian,noise_box);
|
---|
[352] | 1041 | lfalg.findLines(spectrum,temp_mask,edge,max_box_nchan);
|
---|
[996] | 1042 | signs.resize(lfalg.getSigns().nelements());
|
---|
| 1043 | signs=lfalg.getSigns();
|
---|
[368] | 1044 | first_pass=False;
|
---|
| 1045 | if (!new_lines.size())
|
---|
[996] | 1046 | throw AipsError("spurious"); // nothing new - use the same
|
---|
| 1047 | // code as for a real exception
|
---|
[351] | 1048 | }
|
---|
| 1049 | catch(const AipsError &ae) {
|
---|
| 1050 | if (first_pass) throw;
|
---|
[368] | 1051 | // nothing new - proceed to the next step of averaging, if any
|
---|
[996] | 1052 | // (to search for broad lines)
|
---|
[1315] | 1053 | if (avg_factor>=avg_limit) break; // averaging up to avg_limit
|
---|
[996] | 1054 | // adjacent channels,
|
---|
| 1055 | // stop after that
|
---|
| 1056 | avg_factor*=2; // twice as more averaging
|
---|
| 1057 | subtractBaseline(temp_mask,9);
|
---|
| 1058 | averageAdjacentChannels(temp_mask,avg_factor);
|
---|
| 1059 | continue;
|
---|
[1315] | 1060 | }
|
---|
[368] | 1061 | keepStrongestOnly(temp_mask,new_lines,max_box_nchan);
|
---|
[343] | 1062 | // update the list (lines) merging intervals, if necessary
|
---|
[344] | 1063 | addNewSearchResult(new_lines,lines);
|
---|
| 1064 | // get a new mask
|
---|
[881] | 1065 | temp_mask=getMask();
|
---|
[343] | 1066 | }
|
---|
[881] | 1067 |
|
---|
[551] | 1068 | // an additional search for wings because in the presence of very strong
|
---|
| 1069 | // lines temporary mean used at each iteration will be higher than
|
---|
| 1070 | // the true mean
|
---|
[881] | 1071 |
|
---|
[551] | 1072 | if (lines.size())
|
---|
| 1073 | LFLineListOperations::searchForWings(lines,signs,mask,edge);
|
---|
[881] | 1074 |
|
---|
[331] | 1075 | return int(lines.size());
|
---|
| 1076 | }
|
---|
| 1077 |
|
---|
[369] | 1078 | // auxiliary function to fit and subtract a polynomial from the current
|
---|
[890] | 1079 | // spectrum. It uses the Fitter class. This action is required before
|
---|
[369] | 1080 | // reducing the spectral resolution if the baseline shape is bad
|
---|
[881] | 1081 | void STLineFinder::subtractBaseline(const casa::Vector<casa::Bool> &temp_mask,
|
---|
[369] | 1082 | const casa::Int &order) throw(casa::AipsError)
|
---|
| 1083 | {
|
---|
| 1084 | AlwaysAssert(spectrum.nelements(),AipsError);
|
---|
| 1085 | // use the fact that temp_mask excludes channels rejected at the edge
|
---|
[890] | 1086 | Fitter sdf;
|
---|
[369] | 1087 | std::vector<float> absc(spectrum.nelements());
|
---|
[996] | 1088 | for (unsigned int i=0;i<absc.size();++i)
|
---|
[369] | 1089 | absc[i]=float(i)/float(spectrum.nelements());
|
---|
| 1090 | std::vector<float> spec;
|
---|
| 1091 | spectrum.tovector(spec);
|
---|
| 1092 | std::vector<bool> std_mask;
|
---|
| 1093 | temp_mask.tovector(std_mask);
|
---|
| 1094 | sdf.setData(absc,spec,std_mask);
|
---|
| 1095 | sdf.setExpression("poly",order);
|
---|
| 1096 | if (!sdf.fit()) return; // fit failed, use old spectrum
|
---|
[881] | 1097 | spectrum=casa::Vector<casa::Float>(sdf.getResidual());
|
---|
[369] | 1098 | }
|
---|
| 1099 |
|
---|
[368] | 1100 | // auxiliary function to average adjacent channels and update the mask
|
---|
| 1101 | // if at least one channel involved in summation is masked, all
|
---|
| 1102 | // output channels will be masked. This function works with the
|
---|
| 1103 | // spectrum and edge fields of this class, but updates the mask
|
---|
| 1104 | // array specified, rather than the field of this class
|
---|
| 1105 | // boxsize - a number of adjacent channels to average
|
---|
[881] | 1106 | void STLineFinder::averageAdjacentChannels(casa::Vector<casa::Bool> &mask2update,
|
---|
[368] | 1107 | const casa::Int &boxsize)
|
---|
| 1108 | throw(casa::AipsError)
|
---|
| 1109 | {
|
---|
| 1110 | DebugAssert(mask2update.nelements()==spectrum.nelements(), AipsError);
|
---|
| 1111 | DebugAssert(boxsize!=0,AipsError);
|
---|
[881] | 1112 |
|
---|
[368] | 1113 | for (int n=edge.first;n<edge.second;n+=boxsize) {
|
---|
| 1114 | DebugAssert(n<spectrum.nelements(),AipsError);
|
---|
| 1115 | int nboxch=0; // number of channels currently in the box
|
---|
| 1116 | Float mean=0; // buffer for mean calculations
|
---|
| 1117 | for (int k=n;k<n+boxsize && k<edge.second;++k)
|
---|
| 1118 | if (mask2update[k]) { // k is a valid channel
|
---|
[996] | 1119 | mean+=spectrum[k];
|
---|
| 1120 | ++nboxch;
|
---|
[881] | 1121 | }
|
---|
[368] | 1122 | if (nboxch<boxsize) // mask these channels
|
---|
| 1123 | for (int k=n;k<n+boxsize && k<edge.second;++k)
|
---|
[996] | 1124 | mask2update[k]=False;
|
---|
[368] | 1125 | else {
|
---|
| 1126 | mean/=Float(boxsize);
|
---|
[996] | 1127 | for (int k=n;k<n+boxsize && k<edge.second;++k)
|
---|
| 1128 | spectrum[k]=mean;
|
---|
[368] | 1129 | }
|
---|
| 1130 | }
|
---|
| 1131 | }
|
---|
[331] | 1132 |
|
---|
[368] | 1133 |
|
---|
[297] | 1134 | // get the mask to mask out all lines that have been found (default)
|
---|
| 1135 | // if invert=true, only channels belong to lines will be unmasked
|
---|
| 1136 | // Note: all channels originally masked by the input mask (in_mask
|
---|
| 1137 | // in setScan) or dropped out by the edge parameter (in_edge
|
---|
| 1138 | // in setScan) are still excluded regardless on the invert option
|
---|
[881] | 1139 | std::vector<bool> STLineFinder::getMask(bool invert)
|
---|
[297] | 1140 | const throw(casa::AipsError)
|
---|
| 1141 | {
|
---|
| 1142 | try {
|
---|
| 1143 | if (scan.null())
|
---|
[881] | 1144 | throw AipsError("STLineFinder::getMask - a scan should be set first,"
|
---|
[297] | 1145 | " use set_scan followed by find_lines");
|
---|
[924] | 1146 | DebugAssert(mask.nelements()==scan->getChannels(last_row_used), AipsError);
|
---|
[297] | 1147 | /*
|
---|
| 1148 | if (!lines.size())
|
---|
[881] | 1149 | throw AipsError("STLineFinder::getMask - one have to search for "
|
---|
[996] | 1150 | "lines first, use find_lines");
|
---|
[881] | 1151 | */
|
---|
[297] | 1152 | std::vector<bool> res_mask(mask.nelements());
|
---|
| 1153 | // iterator through lines
|
---|
| 1154 | std::list<std::pair<int,int> >::const_iterator cli=lines.begin();
|
---|
[1603] | 1155 | for (int ch=0;ch<int(res_mask.size());++ch) {
|
---|
[297] | 1156 | if (ch<edge.first || ch>=edge.second) res_mask[ch]=false;
|
---|
[996] | 1157 | else if (!mask[ch]) res_mask[ch]=false;
|
---|
| 1158 | else {
|
---|
| 1159 | res_mask[ch]=!invert; // no line by default
|
---|
[1603] | 1160 | if (cli!=lines.end())
|
---|
| 1161 | if (ch>=cli->first && ch<cli->second)
|
---|
| 1162 | res_mask[ch]=invert; // this is a line
|
---|
| 1163 | }
|
---|
| 1164 | if (cli!=lines.end())
|
---|
| 1165 | if (ch>=cli->second) {
|
---|
| 1166 | ++cli; // next line in the list
|
---|
| 1167 | }
|
---|
| 1168 | }
|
---|
[297] | 1169 | return res_mask;
|
---|
| 1170 | }
|
---|
| 1171 | catch (const AipsError &ae) {
|
---|
| 1172 | throw;
|
---|
[881] | 1173 | }
|
---|
[297] | 1174 | catch (const exception &ex) {
|
---|
[881] | 1175 | throw AipsError(String("STLineFinder::getMask - STL error: ")+ex.what());
|
---|
[297] | 1176 | }
|
---|
| 1177 | }
|
---|
| 1178 |
|
---|
[370] | 1179 | // get range for all lines found. The same units as used in the scan
|
---|
| 1180 | // will be returned (e.g. velocity instead of channels).
|
---|
[881] | 1181 | std::vector<double> STLineFinder::getLineRanges()
|
---|
[297] | 1182 | const throw(casa::AipsError)
|
---|
| 1183 | {
|
---|
[370] | 1184 | // convert to required abscissa units
|
---|
| 1185 | std::vector<double> vel=scan->getAbcissa(last_row_used);
|
---|
| 1186 | std::vector<int> ranges=getLineRangesInChannels();
|
---|
| 1187 | std::vector<double> res(ranges.size());
|
---|
| 1188 |
|
---|
| 1189 | std::vector<int>::const_iterator cri=ranges.begin();
|
---|
| 1190 | std::vector<double>::iterator outi=res.begin();
|
---|
| 1191 | for (;cri!=ranges.end() && outi!=res.end();++cri,++outi)
|
---|
| 1192 | if (uInt(*cri)>=vel.size())
|
---|
[881] | 1193 | throw AipsError("STLineFinder::getLineRanges - getAbcissa provided less channels than reqired");
|
---|
[370] | 1194 | else *outi=vel[*cri];
|
---|
| 1195 | return res;
|
---|
| 1196 | }
|
---|
| 1197 |
|
---|
| 1198 | // The same as getLineRanges, but channels are always used to specify
|
---|
| 1199 | // the range
|
---|
[881] | 1200 | std::vector<int> STLineFinder::getLineRangesInChannels()
|
---|
[370] | 1201 | const throw(casa::AipsError)
|
---|
| 1202 | {
|
---|
[297] | 1203 | try {
|
---|
| 1204 | if (scan.null())
|
---|
[881] | 1205 | throw AipsError("STLineFinder::getLineRangesInChannels - a scan should be set first,"
|
---|
[297] | 1206 | " use set_scan followed by find_lines");
|
---|
[924] | 1207 | DebugAssert(mask.nelements()==scan->getChannels(last_row_used), AipsError);
|
---|
[881] | 1208 |
|
---|
[297] | 1209 | if (!lines.size())
|
---|
[881] | 1210 | throw AipsError("STLineFinder::getLineRangesInChannels - one have to search for "
|
---|
[996] | 1211 | "lines first, use find_lines");
|
---|
[881] | 1212 |
|
---|
[297] | 1213 | std::vector<int> res(2*lines.size());
|
---|
| 1214 | // iterator through lines & result
|
---|
| 1215 | std::list<std::pair<int,int> >::const_iterator cli=lines.begin();
|
---|
| 1216 | std::vector<int>::iterator ri=res.begin();
|
---|
[881] | 1217 | for (;cli!=lines.end() && ri!=res.end();++cli,++ri) {
|
---|
[996] | 1218 | *ri=cli->first;
|
---|
| 1219 | if (++ri!=res.end())
|
---|
| 1220 | *ri=cli->second-1;
|
---|
[881] | 1221 | }
|
---|
[297] | 1222 | return res;
|
---|
| 1223 | }
|
---|
| 1224 | catch (const AipsError &ae) {
|
---|
| 1225 | throw;
|
---|
[881] | 1226 | }
|
---|
[297] | 1227 | catch (const exception &ex) {
|
---|
[881] | 1228 | throw AipsError(String("STLineFinder::getLineRanges - STL error: ")+ex.what());
|
---|
[297] | 1229 | }
|
---|
| 1230 | }
|
---|
[331] | 1231 |
|
---|
[370] | 1232 |
|
---|
| 1233 |
|
---|
[368] | 1234 | // an auxiliary function to remove all lines from the list, except the
|
---|
| 1235 | // strongest one (by absolute value). If the lines removed are real,
|
---|
[881] | 1236 | // they will be find again at the next iteration. This approach
|
---|
| 1237 | // increases the number of iterations required, but is able to remove
|
---|
[1315] | 1238 | // spurious detections likely to occur near strong lines.
|
---|
[368] | 1239 | // Later a better criterion may be implemented, e.g.
|
---|
| 1240 | // taking into consideration the brightness of different lines. Now
|
---|
[881] | 1241 | // use the simplest solution
|
---|
[368] | 1242 | // temp_mask - mask to work with (may be different from original mask as
|
---|
| 1243 | // the lines previously found may be masked)
|
---|
| 1244 | // lines2update - a list of lines to work with
|
---|
| 1245 | // nothing will be done if it is empty
|
---|
| 1246 | // max_box_nchan - channels in the running box for baseline filtering
|
---|
[881] | 1247 | void STLineFinder::keepStrongestOnly(const casa::Vector<casa::Bool> &temp_mask,
|
---|
[996] | 1248 | std::list<std::pair<int, int> > &lines2update,
|
---|
| 1249 | int max_box_nchan)
|
---|
[368] | 1250 | throw (casa::AipsError)
|
---|
| 1251 | {
|
---|
| 1252 | try {
|
---|
| 1253 | if (!lines2update.size()) return; // ignore an empty list
|
---|
| 1254 |
|
---|
| 1255 | // current line
|
---|
| 1256 | std::list<std::pair<int,int> >::iterator li=lines2update.begin();
|
---|
| 1257 | // strongest line
|
---|
| 1258 | std::list<std::pair<int,int> >::iterator strongli=lines2update.begin();
|
---|
| 1259 | // the flux (absolute value) of the strongest line
|
---|
| 1260 | Float peak_flux=-1; // negative value - a flag showing uninitialized
|
---|
| 1261 | // value
|
---|
| 1262 | // the algorithm below relies on the list being ordered
|
---|
| 1263 | Float tmp_flux=-1; // a temporary peak
|
---|
| 1264 | for (RunningBox running_box(spectrum,temp_mask,edge,max_box_nchan);
|
---|
| 1265 | running_box.haveMore(); running_box.next()) {
|
---|
| 1266 |
|
---|
| 1267 | if (li==lines2update.end()) break; // no more lines
|
---|
[996] | 1268 | const int ch=running_box.getChannel();
|
---|
| 1269 | if (ch>=li->first && ch<li->second)
|
---|
| 1270 | if (temp_mask[ch] && tmp_flux<fabs(running_box.aboveMean()))
|
---|
| 1271 | tmp_flux=fabs(running_box.aboveMean());
|
---|
| 1272 | if (ch==li->second-1) {
|
---|
| 1273 | if (peak_flux<tmp_flux) { // if peak_flux=-1, this condition
|
---|
| 1274 | peak_flux=tmp_flux; // will be satisfied
|
---|
| 1275 | strongli=li;
|
---|
| 1276 | }
|
---|
| 1277 | ++li;
|
---|
| 1278 | tmp_flux=-1;
|
---|
| 1279 | }
|
---|
[881] | 1280 | }
|
---|
[368] | 1281 | std::list<std::pair<int,int> > res;
|
---|
| 1282 | res.splice(res.end(),lines2update,strongli);
|
---|
| 1283 | lines2update.clear();
|
---|
| 1284 | lines2update.splice(lines2update.end(),res);
|
---|
| 1285 | }
|
---|
| 1286 | catch (const AipsError &ae) {
|
---|
| 1287 | throw;
|
---|
[881] | 1288 | }
|
---|
[368] | 1289 | catch (const exception &ex) {
|
---|
[881] | 1290 | throw AipsError(String("STLineFinder::keepStrongestOnly - STL error: ")+ex.what());
|
---|
[368] | 1291 | }
|
---|
| 1292 |
|
---|
| 1293 | }
|
---|
| 1294 |
|
---|
[352] | 1295 | //
|
---|
| 1296 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 1297 |
|
---|
| 1298 |
|
---|
| 1299 | ///////////////////////////////////////////////////////////////////////////////
|
---|
| 1300 | //
|
---|
| 1301 | // LFLineListOperations - a class incapsulating operations with line lists
|
---|
| 1302 | // The LF prefix stands for Line Finder
|
---|
| 1303 | //
|
---|
| 1304 |
|
---|
[331] | 1305 | // concatenate two lists preserving the order. If two lines appear to
|
---|
| 1306 | // be adjacent, they are joined into the new one
|
---|
[352] | 1307 | void LFLineListOperations::addNewSearchResult(const std::list<pair<int, int> > &newlines,
|
---|
[881] | 1308 | std::list<std::pair<int, int> > &lines_list)
|
---|
[331] | 1309 | throw(AipsError)
|
---|
| 1310 | {
|
---|
| 1311 | try {
|
---|
| 1312 | for (std::list<pair<int,int> >::const_iterator cli=newlines.begin();
|
---|
| 1313 | cli!=newlines.end();++cli) {
|
---|
[881] | 1314 |
|
---|
[996] | 1315 | // the first item, which has a non-void intersection or touches
|
---|
| 1316 | // the new line
|
---|
| 1317 | std::list<pair<int,int> >::iterator pos_beg=find_if(lines_list.begin(),
|
---|
| 1318 | lines_list.end(), IntersectsWith(*cli));
|
---|
| 1319 | // the last such item
|
---|
| 1320 | std::list<pair<int,int> >::iterator pos_end=find_if(pos_beg,
|
---|
| 1321 | lines_list.end(), not1(IntersectsWith(*cli)));
|
---|
[343] | 1322 |
|
---|
| 1323 | // extract all lines which intersect or touch a new one into
|
---|
[996] | 1324 | // a temporary buffer. This may invalidate the iterators
|
---|
| 1325 | // line_buffer may be empty, if no lines intersects with a new
|
---|
| 1326 | // one.
|
---|
| 1327 | std::list<pair<int,int> > lines_buffer;
|
---|
| 1328 | lines_buffer.splice(lines_buffer.end(),lines_list, pos_beg, pos_end);
|
---|
[343] | 1329 |
|
---|
[996] | 1330 | // build a union of all intersecting lines
|
---|
| 1331 | pair<int,int> union_line=for_each(lines_buffer.begin(),
|
---|
| 1332 | lines_buffer.end(),BuildUnion(*cli)).result();
|
---|
[881] | 1333 |
|
---|
[996] | 1334 | // search for a right place for the new line (union_line) and add
|
---|
| 1335 | std::list<pair<int,int> >::iterator pos2insert=find_if(lines_list.begin(),
|
---|
| 1336 | lines_list.end(), LaterThan(union_line));
|
---|
| 1337 | lines_list.insert(pos2insert,union_line);
|
---|
[331] | 1338 | }
|
---|
| 1339 | }
|
---|
| 1340 | catch (const AipsError &ae) {
|
---|
| 1341 | throw;
|
---|
[881] | 1342 | }
|
---|
[331] | 1343 | catch (const exception &ex) {
|
---|
[352] | 1344 | throw AipsError(String("LFLineListOperations::addNewSearchResult - STL error: ")+ex.what());
|
---|
[331] | 1345 | }
|
---|
| 1346 | }
|
---|
[344] | 1347 |
|
---|
| 1348 | // extend all line ranges to the point where a value stored in the
|
---|
| 1349 | // specified vector changes (e.g. value-mean change its sign)
|
---|
| 1350 | // This operation is necessary to include line wings, which are below
|
---|
| 1351 | // the detection threshold. If lines becomes adjacent, they are
|
---|
| 1352 | // merged together. Any masked channel stops the extension
|
---|
[352] | 1353 | void LFLineListOperations::searchForWings(std::list<std::pair<int, int> > &newlines,
|
---|
| 1354 | const casa::Vector<casa::Int> &signs,
|
---|
[996] | 1355 | const casa::Vector<casa::Bool> &mask,
|
---|
| 1356 | const std::pair<int,int> &edge) throw(casa::AipsError)
|
---|
[344] | 1357 | {
|
---|
| 1358 | try {
|
---|
| 1359 | for (std::list<pair<int,int> >::iterator li=newlines.begin();
|
---|
| 1360 | li!=newlines.end();++li) {
|
---|
[996] | 1361 | // update the left hand side
|
---|
| 1362 | for (int n=li->first-1;n>=edge.first;--n) {
|
---|
| 1363 | if (!mask[n]) break;
|
---|
| 1364 | if (signs[n]==signs[li->first] && signs[li->first])
|
---|
| 1365 | li->first=n;
|
---|
| 1366 | else break;
|
---|
| 1367 | }
|
---|
| 1368 | // update the right hand side
|
---|
| 1369 | for (int n=li->second;n<edge.second;++n) {
|
---|
| 1370 | if (!mask[n]) break;
|
---|
| 1371 | if (signs[n]==signs[li->second-1] && signs[li->second-1])
|
---|
| 1372 | li->second=n;
|
---|
| 1373 | else break;
|
---|
| 1374 | }
|
---|
[344] | 1375 | }
|
---|
| 1376 | // need to search for possible mergers.
|
---|
| 1377 | std::list<std::pair<int, int> > result_buffer;
|
---|
| 1378 | addNewSearchResult(newlines,result_buffer);
|
---|
| 1379 | newlines.clear();
|
---|
| 1380 | newlines.splice(newlines.end(),result_buffer);
|
---|
| 1381 | }
|
---|
| 1382 | catch (const AipsError &ae) {
|
---|
| 1383 | throw;
|
---|
[881] | 1384 | }
|
---|
[344] | 1385 | catch (const exception &ex) {
|
---|
[352] | 1386 | throw AipsError(String("LFLineListOperations::extendLines - STL error: ")+ex.what());
|
---|
[344] | 1387 | }
|
---|
| 1388 | }
|
---|
[352] | 1389 |
|
---|
| 1390 | //
|
---|
| 1391 | ///////////////////////////////////////////////////////////////////////////////
|
---|