source: branches/alma/src/STAtmosphere.h @ 1757

Last change on this file since 1757 was 1757, checked in by Kana Sugimoto, 14 years ago

New Development: Yes

JIRA Issue: Yes (CAS-2211)

Ready for Test: Yes

Interface Changes: Yes

What Interface Changed: ASAP 3.0.0 interface changes

Test Programs:

Put in Release Notes: Yes

Module(s): all the CASA sd tools and tasks are affected.

Description: Merged ATNF-ASAP 3.0.0 developments to CASA (alma) branch.

Note you also need to update casa/code/atnf.


File size: 10.9 KB
Line 
1//#---------------------------------------------------------------------------
2//# STAtmosphere.h: Model of atmospheric opacity
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# The code is based on the Fortran code written by Bob Sault for MIRIAD.
8//# Converted to C++ by Max Voronkov. This code uses a simple model of the
9//# atmosphere and Liebe's model (1985) of the complex refractive index of
10//# air.
11//#
12//# The model of the atmosphere is one with an exponential fall-off in
13//# the water vapour content (scale height of 1540 m) and a temperature lapse
14//# rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
15//# and hydrostatic equilibrium.
16//#
17//# This program is free software; you can redistribute it and/or modify it
18//# under the terms of the GNU General Public License as published by the Free
19//# Software Foundation; either version 2 of the License, or (at your option)
20//# any later version.
21//#
22//# This program is distributed in the hope that it will be useful, but
23//# WITHOUT ANY WARRANTY; without even the implied warranty of
24//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
25//# Public License for more details.
26//#
27//# You should have received a copy of the GNU General Public License along
28//# with this program; if not, write to the Free Software Foundation, Inc.,
29//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
30//#
31//# Correspondence concerning this software should be addressed as follows:
32//#        Internet email: Malte.Marquarding@csiro.au
33//#        Postal address: Malte Marquarding,
34//#                        Australia Telescope National Facility,
35//#                        P.O. Box 76,
36//#                        Epping, NSW, 2121,
37//#                        AUSTRALIA
38//#
39//# $Id: STAtmosphere.h 1346 2007-04-26 03:24:41Z mar637 $
40//#---------------------------------------------------------------------------
41
42#ifndef STATMOSPHERE_H
43#define STATMOSPHERE_H
44
45// std includes
46#include <vector>
47#include <complex>
48
49namespace asap {
50
51/**
52  * This class implements opacity/atmospheric brightness temperature model
53  * equivalent to the model available in MIRIAD. The actual math is a
54  * convertion of the Fortran code written by Bob Sault for MIRIAD.
55  * It implements a simple model of the atmosphere and Liebe's model (1985)
56  * of the complex refractive index of air.
57  *
58  * The model of the atmosphere is one with an exponential fall-off in
59  * the water vapour content (scale height of 1540 m) and a temperature lapse
60  * rate of 6.5 mK/m. Otherwise the atmosphere obeys the ideal gas equation
61  * and hydrostatic equilibrium.
62  *
63  * Note, the model includes atmospheric lines up to 800 GHz, but was not
64  * rigorously tested above 100 GHz and for instruments located at
65  * a significant elevation. For high-elevation sites it may be necessary to
66  * adjust scale height and lapse rate.
67  *
68  * @brief The ASAP atmosphere opacity model
69  * @author Max Voronkov
70  * @date $Date: 2010-03-17 14:55:17 +1000 (Thu, 26 Apr 2007) $
71  * @version
72  */
73class STAtmosphere {
74public:
75  /**
76   * Default Constructor (apart from optional parameters).
77   * The class set up this way will assume International Standard Atmosphere (ISA) conditions,
78   * except for humidity. The latter is assumed to be 50%, which seems more realistic for
79   * Australian telescopes than 0%.
80   * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
81   * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
82   *            this height, default is 10000m to match MIRIAD.
83   * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
84   *            default is 50 to match MIRIAD.
85   **/
86  explicit STAtmosphere(double wvScale = 1540., double maxAlt = 10000.0, size_t nLayers = 50);
87   
88  /**
89   * Constructor with explicitly given parameters of the atmosphere
90   * @param[in] temperature air temperature at the observatory (K)
91   * @param[in] pressure air pressure at the sea level if the observatory elevation
92   *            is set to non-zero value (note, by default is set to 200m) or at the
93   *            observatory ground level if the elevation is set to 0. (The value is in Pascals)
94   * @param[in] pressure air pressure at the observatory (Pascals)
95   * @param[in] humidity air humidity at the observatory (fraction)
96   * @param[in] lapseRate temperature lapse rate (K/m), default is 0.0065 K/m to match MIRIAD and ISA
97   * @param[in] wvScale water vapour scale height (m), default is 1540m to match MIRIAD's model
98   * @param[in] maxAlt maximum altitude of the model atmosphere (m), plane parallel layers are spread linearly up to
99   *            this height, default is 10000m to match MIRIAD.
100   * @param[in] nLayers number of plane parallel layers in the model (essentially for a numberical integration),
101   *            default is 50 to match MIRIAD.
102   **/
103  STAtmosphere(double temperature, double pressure, double humidity, double lapseRate = 0.0065,
104               double wvScale = 1540., double maxAlt = 10000.0, size_t nLayers = 50);
105   
106  /**
107   * Set the new weather station data, recompute the model
108   * @param[in] temperature air temperature at the observatory (K)
109   * @param[in] pressure air pressure at the sea level if the observatory elevation
110   *            is set to non-zero value (note, by default is set to 200m) or at the
111   *            observatory ground level if the elevation is set to 0. (The value is in Pascals)
112   * @param[in] humidity air humidity at the observatory (fraction)
113   **/
114  void setWeather(double temperature, double pressure, double humidity);
115
116  /**
117   * Set the elevation of the observatory (height above mean sea level)
118   *
119   * The observatory elevation affects only interpretation of the pressure supplied as part
120   * of the weather data, if this value is non-zero, the pressure (e.g. in setWeather or
121   * constructor) is that at mean sea level. If the observatory elevation is set to zero,
122   * regardless on real elevation, the pressure is that at the observatory ground level.
123   *
124   * By default, 200m is assumed.
125   * @param[in] elev elevation in metres
126   **/
127  void setObservatoryElevation(double elev);
128
129  /**
130   * Calculate zenith opacity at the given frequency. This is a simplified version
131   * of the routine implemented in MIRIAD, which calculates just zenith opacity and
132   * nothing else. Note, that if the opacity is high, 1/sin(el) law is not correct
133   * even in the plane parallel case due to refraction.
134   * @param[in] freq frequency of interest in Hz
135   * @return zenith opacity (nepers, i.e. dimensionless)
136   **/
137  double zenithOpacity(double freq) const;
138
139  /**
140   * Calculate zenith opacity for the range of frequencies. Same as zenithOpacity, but
141   * for a vector of frequencies.
142   * @param[in] freqs vector of frequencies in Hz
143   * @return vector of zenith opacities, one value per frequency (nepers, i.e. dimensionless)
144   **/
145  std::vector<double> zenithOpacities(const std::vector<double> &freqs) const;
146 
147  /**
148   * Calculate opacity at the given frequency and elevation. This is a simplified
149   * version of the routine implemented in MIRIAD, which calculates just the opacity and
150   * nothing else. In contract to zenithOpacity, this method takes into account refraction
151   * and is more accurate than if one assumes 1/sin(el) factor.
152   * @param[in] freq frequency of interest in Hz
153   * @param[in] el elevation in radians
154   * @return zenith opacity (nepers, i.e. dimensionless)
155   **/
156  double opacity(double freq, double el) const;
157
158  /**
159   * Calculate opacities for the range of frequencies at the given elevation. Same as
160   * opacity, but for a vector of frequencies.
161   * @param[in] freqs vector of frequencies in Hz
162   * @param[in] el elevation in radians
163   * @return vector of opacities, one value per frequency (nepers, i.e. dimensionless)
164   **/
165  std::vector<double> opacities(const std::vector<double> &freqs, double el) const;
166         
167protected:
168  /**
169   * Build the atmosphere model based on exponential fall-off, ideal gas and hydrostatic
170   * equilibrium. The model parameters are taken from the data members of this class.
171   **/
172  void recomputeAtmosphereModel();
173 
174  /**
175   * Obtain the number of model layers, do consistency check that everything is
176   * resized accordingly
177   * @retrun number of model layers
178   **/
179  size_t nLayers() const;
180 
181  /**
182   * Determine the saturation pressure of water vapour for the given temperature.
183   *
184   * Reference:
185   * Waters, Refraction effects in the neutral atmosphere. Methods of
186   * Experimental Physics, vol 12B, p 186-200 (1976).
187   *   
188   * @param[in] temperature temperature in K
189   * @return vapour saturation pressure (Pascals)
190   **/
191  static double wvSaturationPressure(double temperature);
192   
193  /**
194   * Compute the complex refractivity of the dry components of the atmosphere
195   * (oxygen lines) at the given frequency.
196   * @param[in] freq frequency (Hz)
197   * @param[in] temperature air temperature (K)
198   * @param[in] pDry partial pressure of dry components (Pascals)
199   * @param[in] pVapour partial pressure of water vapour (Pascals)
200   * @return complex refractivity
201   *
202   * Reference:
203   * Liebe, An updated model for millimeter wave propogation in moist air,
204   * Radio Science, 20, 1069-1089 (1985).
205   **/
206  static std::complex<double> dryRefractivity(double freq, double temperature,
207                     double pDry, double pVapour);
208 
209  /**
210   * Compute the complex refractivity of the water vapour monomers
211   * at the given frequency.
212   * @param[in] freq frequency (Hz)
213   * @param[in] temperature air temperature (K)
214   * @param[in] pDry partial pressure of dry components (Pascals)
215   * @param[in] pVapour partial pressure of water vapour (Pascals)
216   * @return complex refractivity
217   *
218   * Reference:
219   * Liebe, An updated model for millimeter wave propogation in moist air,
220   * Radio Science, 20, 1069-1089 (1985).
221   **/
222  static std::complex<double> vapourRefractivity(double freq, double temperature,
223                     double pDry, double pVapour);
224     
225private:
226 
227  // heights of all model layers
228  std::vector<double> itsHeights;
229 
230  // temperatures of all model layers
231  std::vector<double> itsTemperatures;
232 
233  // partial pressures of dry component for all model layers
234  std::vector<double> itsDryPressures;
235 
236  // partial pressure of water vapour for all model layers
237  std::vector<double> itsVapourPressures;
238 
239  /**
240   *  Atmosphere parameters
241   **/
242 
243  // ground level temperature (K)
244  double itsGndTemperature;
245 
246  // sea level pressure (Pascals)
247  double itsPressure;
248 
249  // ground level humidity (fraction)
250  double itsGndHumidity;
251 
252  // lapse rate (K/m)
253  double itsLapseRate;
254 
255  // water vapour scale height (m)
256  double itsWVScale;
257 
258  // altitude of the highest layer of the model (m)
259  double itsMaxAlt;
260 
261  // observatory elevation (m)
262  double itsObsHeight;
263};
264
265} // namespace asap
266
267#endif // #ifndef STATMOSPHERE_H
268
Note: See TracBrowser for help on using the repository browser.