1 | from asap import rcParams, print_log, selector
|
---|
2 | from asap import asaplog
|
---|
3 | import matplotlib.axes
|
---|
4 | import re
|
---|
5 |
|
---|
6 | class asapplotter:
|
---|
7 | """
|
---|
8 | The ASAP plotter.
|
---|
9 | By default the plotter is set up to plot polarisations
|
---|
10 | 'colour stacked' and scantables across panels.
|
---|
11 | Note:
|
---|
12 | Currenly it only plots 'spectra' not Tsys or
|
---|
13 | other variables.
|
---|
14 | """
|
---|
15 | def __init__(self, visible=None):
|
---|
16 | self._visible = rcParams['plotter.gui']
|
---|
17 | if visible is not None:
|
---|
18 | self._visible = visible
|
---|
19 | self._plotter = self._newplotter()
|
---|
20 |
|
---|
21 | self._panelling = None
|
---|
22 | self._stacking = None
|
---|
23 | self.set_panelling()
|
---|
24 | self.set_stacking()
|
---|
25 | self._rows = None
|
---|
26 | self._cols = None
|
---|
27 | self._autoplot = False
|
---|
28 | self._minmaxx = None
|
---|
29 | self._minmaxy = None
|
---|
30 | self._datamask = None
|
---|
31 | self._data = None
|
---|
32 | self._lmap = None
|
---|
33 | self._title = None
|
---|
34 | self._ordinate = None
|
---|
35 | self._abcissa = None
|
---|
36 | self._abcunit = None
|
---|
37 | self._usermask = []
|
---|
38 | self._maskselection = None
|
---|
39 | self._selection = selector()
|
---|
40 | self._hist = rcParams['plotter.histogram']
|
---|
41 |
|
---|
42 | def _translate(self, instr):
|
---|
43 | keys = "s b i p t".split()
|
---|
44 | if isinstance(instr, str):
|
---|
45 | for key in keys:
|
---|
46 | if instr.lower().startswith(key):
|
---|
47 | return key
|
---|
48 | return None
|
---|
49 |
|
---|
50 | def _newplotter(self):
|
---|
51 | if self._visible:
|
---|
52 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
53 | else:
|
---|
54 | from asap.asaplot import asaplot
|
---|
55 | return asaplot()
|
---|
56 |
|
---|
57 |
|
---|
58 | def plot(self, scan=None):
|
---|
59 | """
|
---|
60 | Plot a scantable.
|
---|
61 | Parameters:
|
---|
62 | scan: a scantable
|
---|
63 | Note:
|
---|
64 | If a scantable was specified in a previous call
|
---|
65 | to plot, no argument has to be given to 'replot'
|
---|
66 | NO checking is done that the abcissas of the scantable
|
---|
67 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
68 | """
|
---|
69 | if self._plotter.is_dead:
|
---|
70 | self._plotter = self._newplotter()
|
---|
71 | self._plotter.hold()
|
---|
72 | self._plotter.clear()
|
---|
73 | if not self._data and not scan:
|
---|
74 | msg = "Input is not a scantable"
|
---|
75 | if rcParams['verbose']:
|
---|
76 | #print msg
|
---|
77 | asaplog.push( msg )
|
---|
78 | print_log( 'ERROR' )
|
---|
79 | return
|
---|
80 | raise TypeError(msg)
|
---|
81 | if scan: self.set_data(scan,refresh=False)
|
---|
82 | self._plot(self._data)
|
---|
83 | if self._minmaxy is not None:
|
---|
84 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
85 | self._plotter.release()
|
---|
86 | self._plotter.tidy()
|
---|
87 | self._plotter.show(hardrefresh=False)
|
---|
88 | print_log()
|
---|
89 | return
|
---|
90 |
|
---|
91 |
|
---|
92 | # forwards to matplotlib axes
|
---|
93 | def text(self, *args, **kwargs):
|
---|
94 | self._axes_callback("text", *args, **kwargs)
|
---|
95 | text.__doc__ = matplotlib.axes.Axes.text.__doc__
|
---|
96 | def arrow(self, *args, **kwargs):
|
---|
97 | self._axes_callback("arrow", *args, **kwargs)
|
---|
98 | arrow.__doc__ = matplotlib.axes.Axes.arrow.__doc__
|
---|
99 | def axvline(self, *args, **kwargs):
|
---|
100 | self._axes_callback("axvline", *args, **kwargs)
|
---|
101 | axvline.__doc__ = matplotlib.axes.Axes.axvline.__doc__
|
---|
102 | def axhline(self, *args, **kwargs):
|
---|
103 | self._axes_callback("axhline", *args, **kwargs)
|
---|
104 | axhline.__doc__ = matplotlib.axes.Axes.axhline.__doc__
|
---|
105 | def axvspan(self, *args, **kwargs):
|
---|
106 | self._axes_callback("axvspan", *args, **kwargs)
|
---|
107 | # hack to preventy mpl from redrawing the patch
|
---|
108 | # it seem to convert the patch into lines on every draw.
|
---|
109 | # This doesn't happen in a test script???
|
---|
110 | del self._plotter.axes.patches[-1]
|
---|
111 | axvspan.__doc__ = matplotlib.axes.Axes.axvspan.__doc__
|
---|
112 |
|
---|
113 | def axhspan(self, *args, **kwargs):
|
---|
114 | self._axes_callback("axhspan", *args, **kwargs)
|
---|
115 | # hack to preventy mpl from redrawing the patch
|
---|
116 | # it seem to convert the patch into lines on every draw.
|
---|
117 | # This doesn't happen in a test script???
|
---|
118 | del self._plotter.axes.patches[-1]
|
---|
119 | axhspan.__doc__ = matplotlib.axes.Axes.axhspan.__doc__
|
---|
120 |
|
---|
121 | def _axes_callback(self, axesfunc, *args, **kwargs):
|
---|
122 | panel = 0
|
---|
123 | if kwargs.has_key("panel"):
|
---|
124 | panel = kwargs.pop("panel")
|
---|
125 | coords = None
|
---|
126 | if kwargs.has_key("coords"):
|
---|
127 | coords = kwargs.pop("coords")
|
---|
128 | if coords.lower() == 'world':
|
---|
129 | kwargs["transform"] = self._plotter.axes.transData
|
---|
130 | elif coords.lower() == 'relative':
|
---|
131 | kwargs["transform"] = self._plotter.axes.transAxes
|
---|
132 | self._plotter.subplot(panel)
|
---|
133 | self._plotter.axes.set_autoscale_on(False)
|
---|
134 | getattr(self._plotter.axes, axesfunc)(*args, **kwargs)
|
---|
135 | self._plotter.show(False)
|
---|
136 | self._plotter.axes.set_autoscale_on(True)
|
---|
137 | # end matplotlib.axes fowarding functions
|
---|
138 |
|
---|
139 | def set_data(self, scan, refresh=True):
|
---|
140 | """
|
---|
141 | Set a scantable to plot.
|
---|
142 | Parameters:
|
---|
143 | scan: a scantable
|
---|
144 | refresh: True (default) or False. If True, the plot is
|
---|
145 | replotted based on the new parameter setting(s).
|
---|
146 | Otherwise,the parameter(s) are set without replotting.
|
---|
147 | Note:
|
---|
148 | The user specified masks and data selections will be reset
|
---|
149 | if a new scantable is set. This method should be called before
|
---|
150 | setting data selections (set_selection) and/or masks (set_mask).
|
---|
151 | """
|
---|
152 | from asap import scantable
|
---|
153 | if isinstance(scan, scantable):
|
---|
154 | if self._data is not None:
|
---|
155 | if scan != self._data:
|
---|
156 | self._data = scan
|
---|
157 | # reset
|
---|
158 | self._reset()
|
---|
159 | msg = "A new scantable is set to the plotter. The masks and data selections are reset."
|
---|
160 | asaplog.push( msg )
|
---|
161 | print_log( 'INFO' )
|
---|
162 | else:
|
---|
163 | self._data = scan
|
---|
164 | self._reset()
|
---|
165 | else:
|
---|
166 | msg = "Input is not a scantable"
|
---|
167 | if rcParams['verbose']:
|
---|
168 | #print msg
|
---|
169 | asaplog.push( msg )
|
---|
170 | print_log( 'ERROR' )
|
---|
171 | return
|
---|
172 | raise TypeError(msg)
|
---|
173 |
|
---|
174 | # ranges become invalid when unit changes
|
---|
175 | if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
176 | self._minmaxx = None
|
---|
177 | self._minmaxy = None
|
---|
178 | self._abcunit = self._data.get_unit()
|
---|
179 | self._datamask = None
|
---|
180 | if refresh: self.plot()
|
---|
181 |
|
---|
182 |
|
---|
183 | def set_mode(self, stacking=None, panelling=None, refresh=True):
|
---|
184 | """
|
---|
185 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
186 | Parameters:
|
---|
187 | stacking: tell the plotter which variable to plot
|
---|
188 | as line colour overlays (default 'pol')
|
---|
189 | panelling: tell the plotter which variable to plot
|
---|
190 | across multiple panels (default 'scan'
|
---|
191 | refresh: True (default) or False. If True, the plot is
|
---|
192 | replotted based on the new parameter setting(s).
|
---|
193 | Otherwise,the parameter(s) are set without replotting.
|
---|
194 | Note:
|
---|
195 | Valid modes are:
|
---|
196 | 'beam' 'Beam' 'b': Beams
|
---|
197 | 'if' 'IF' 'i': IFs
|
---|
198 | 'pol' 'Pol' 'p': Polarisations
|
---|
199 | 'scan' 'Scan' 's': Scans
|
---|
200 | 'time' 'Time' 't': Times
|
---|
201 | """
|
---|
202 | msg = "Invalid mode"
|
---|
203 | if not self.set_panelling(panelling) or \
|
---|
204 | not self.set_stacking(stacking):
|
---|
205 | if rcParams['verbose']:
|
---|
206 | #print msg
|
---|
207 | asaplog.push( msg )
|
---|
208 | print_log( 'ERROR' )
|
---|
209 | return
|
---|
210 | else:
|
---|
211 | raise TypeError(msg)
|
---|
212 | if refresh and self._data: self.plot(self._data)
|
---|
213 | return
|
---|
214 |
|
---|
215 | def set_panelling(self, what=None):
|
---|
216 | mode = what
|
---|
217 | if mode is None:
|
---|
218 | mode = rcParams['plotter.panelling']
|
---|
219 | md = self._translate(mode)
|
---|
220 | if md:
|
---|
221 | self._panelling = md
|
---|
222 | self._title = None
|
---|
223 | return True
|
---|
224 | return False
|
---|
225 |
|
---|
226 | def set_layout(self,rows=None,cols=None,refresh=True):
|
---|
227 | """
|
---|
228 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
229 | are visible.
|
---|
230 | Parameters:
|
---|
231 | rows: The number of rows of plots
|
---|
232 | cols: The number of columns of plots
|
---|
233 | refresh: True (default) or False. If True, the plot is
|
---|
234 | replotted based on the new parameter setting(s).
|
---|
235 | Otherwise,the parameter(s) are set without replotting.
|
---|
236 | Note:
|
---|
237 | If no argument is given, the potter reverts to its auto-plot
|
---|
238 | behaviour.
|
---|
239 | """
|
---|
240 | self._rows = rows
|
---|
241 | self._cols = cols
|
---|
242 | if refresh and self._data: self.plot(self._data)
|
---|
243 | return
|
---|
244 |
|
---|
245 | def set_stacking(self, what=None):
|
---|
246 | mode = what
|
---|
247 | if mode is None:
|
---|
248 | mode = rcParams['plotter.stacking']
|
---|
249 | md = self._translate(mode)
|
---|
250 | if md:
|
---|
251 | self._stacking = md
|
---|
252 | self._lmap = None
|
---|
253 | return True
|
---|
254 | return False
|
---|
255 |
|
---|
256 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None,refresh=True):
|
---|
257 | """
|
---|
258 | Set the range of interest on the abcissa of the plot
|
---|
259 | Parameters:
|
---|
260 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
---|
261 | refresh: True (default) or False. If True, the plot is
|
---|
262 | replotted based on the new parameter setting(s).
|
---|
263 | Otherwise,the parameter(s) are set without replotting.
|
---|
264 | Note:
|
---|
265 | These become non-sensical when the unit changes.
|
---|
266 | use plotter.set_range() without parameters to reset
|
---|
267 |
|
---|
268 | """
|
---|
269 | if xstart is None and xend is None:
|
---|
270 | self._minmaxx = None
|
---|
271 | else:
|
---|
272 | self._minmaxx = [xstart,xend]
|
---|
273 | if ystart is None and yend is None:
|
---|
274 | self._minmaxy = None
|
---|
275 | else:
|
---|
276 | self._minmaxy = [ystart,yend]
|
---|
277 | if refresh and self._data: self.plot(self._data)
|
---|
278 | return
|
---|
279 |
|
---|
280 | def set_legend(self, mp=None, fontsize = None, mode = 0, refresh=True):
|
---|
281 | """
|
---|
282 | Specify a mapping for the legend instead of using the default
|
---|
283 | indices:
|
---|
284 | Parameters:
|
---|
285 | mp: a list of 'strings'. This should have the same length
|
---|
286 | as the number of elements on the legend and then maps
|
---|
287 | to the indeces in order. It is possible to uses latex
|
---|
288 | math expression. These have to be enclosed in r'',
|
---|
289 | e.g. r'$x^{2}$'
|
---|
290 | fontsize: The font size of the label (default None)
|
---|
291 | mode: where to display the legend
|
---|
292 | Any other value for loc else disables the legend:
|
---|
293 | 0: auto
|
---|
294 | 1: upper right
|
---|
295 | 2: upper left
|
---|
296 | 3: lower left
|
---|
297 | 4: lower right
|
---|
298 | 5: right
|
---|
299 | 6: center left
|
---|
300 | 7: center right
|
---|
301 | 8: lower center
|
---|
302 | 9: upper center
|
---|
303 | 10: center
|
---|
304 | refresh: True (default) or False. If True, the plot is
|
---|
305 | replotted based on the new parameter setting(s).
|
---|
306 | Otherwise,the parameter(s) are set without replotting.
|
---|
307 |
|
---|
308 | Example:
|
---|
309 | If the data has two IFs/rest frequencies with index 0 and 1
|
---|
310 | for CO and SiO:
|
---|
311 | plotter.set_stacking('i')
|
---|
312 | plotter.set_legend(['CO','SiO'])
|
---|
313 | plotter.plot()
|
---|
314 | plotter.set_legend([r'$^{12}CO$', r'SiO'])
|
---|
315 | """
|
---|
316 | self._lmap = mp
|
---|
317 | self._plotter.legend(mode)
|
---|
318 | if isinstance(fontsize, int):
|
---|
319 | from matplotlib import rc as rcp
|
---|
320 | rcp('legend', fontsize=fontsize)
|
---|
321 | if refresh and self._data: self.plot(self._data)
|
---|
322 | return
|
---|
323 |
|
---|
324 | def set_title(self, title=None, fontsize=None, refresh=True):
|
---|
325 | """
|
---|
326 | Set the title of the plot. If multiple panels are plotted,
|
---|
327 | multiple titles have to be specified.
|
---|
328 | Parameters:
|
---|
329 | refresh: True (default) or False. If True, the plot is
|
---|
330 | replotted based on the new parameter setting(s).
|
---|
331 | Otherwise,the parameter(s) are set without replotting.
|
---|
332 | Example:
|
---|
333 | # two panels are visible on the plotter
|
---|
334 | plotter.set_title(["First Panel","Second Panel"])
|
---|
335 | """
|
---|
336 | self._title = title
|
---|
337 | if isinstance(fontsize, int):
|
---|
338 | from matplotlib import rc as rcp
|
---|
339 | rcp('axes', titlesize=fontsize)
|
---|
340 | if refresh and self._data: self.plot(self._data)
|
---|
341 | return
|
---|
342 |
|
---|
343 | def set_ordinate(self, ordinate=None, fontsize=None, refresh=True):
|
---|
344 | """
|
---|
345 | Set the y-axis label of the plot. If multiple panels are plotted,
|
---|
346 | multiple labels have to be specified.
|
---|
347 | Parameters:
|
---|
348 | ordinate: a list of ordinate labels. None (default) let
|
---|
349 | data determine the labels
|
---|
350 | refresh: True (default) or False. If True, the plot is
|
---|
351 | replotted based on the new parameter setting(s).
|
---|
352 | Otherwise,the parameter(s) are set without replotting.
|
---|
353 | Example:
|
---|
354 | # two panels are visible on the plotter
|
---|
355 | plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
|
---|
356 | """
|
---|
357 | self._ordinate = ordinate
|
---|
358 | if isinstance(fontsize, int):
|
---|
359 | from matplotlib import rc as rcp
|
---|
360 | rcp('axes', labelsize=fontsize)
|
---|
361 | rcp('ytick', labelsize=fontsize)
|
---|
362 | if refresh and self._data: self.plot(self._data)
|
---|
363 | return
|
---|
364 |
|
---|
365 | def set_abcissa(self, abcissa=None, fontsize=None, refresh=True):
|
---|
366 | """
|
---|
367 | Set the x-axis label of the plot. If multiple panels are plotted,
|
---|
368 | multiple labels have to be specified.
|
---|
369 | Parameters:
|
---|
370 | abcissa: a list of abcissa labels. None (default) let
|
---|
371 | data determine the labels
|
---|
372 | refresh: True (default) or False. If True, the plot is
|
---|
373 | replotted based on the new parameter setting(s).
|
---|
374 | Otherwise,the parameter(s) are set without replotting.
|
---|
375 | Example:
|
---|
376 | # two panels are visible on the plotter
|
---|
377 | plotter.set_ordinate(["First X-Axis","Second X-Axis"])
|
---|
378 | """
|
---|
379 | self._abcissa = abcissa
|
---|
380 | if isinstance(fontsize, int):
|
---|
381 | from matplotlib import rc as rcp
|
---|
382 | rcp('axes', labelsize=fontsize)
|
---|
383 | rcp('xtick', labelsize=fontsize)
|
---|
384 | if refresh and self._data: self.plot(self._data)
|
---|
385 | return
|
---|
386 |
|
---|
387 | def set_colors(self, colmap, refresh=True):
|
---|
388 | """
|
---|
389 | Set the colours to be used. The plotter will cycle through
|
---|
390 | these colours when lines are overlaid (stacking mode).
|
---|
391 | Parameters:
|
---|
392 | colmap: a list of colour names
|
---|
393 | refresh: True (default) or False. If True, the plot is
|
---|
394 | replotted based on the new parameter setting(s).
|
---|
395 | Otherwise,the parameter(s) are set without replotting.
|
---|
396 | Example:
|
---|
397 | plotter.set_colors("red green blue")
|
---|
398 | # If for example four lines are overlaid e.g I Q U V
|
---|
399 | # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
|
---|
400 | # and 'V' will be 'red' again.
|
---|
401 | """
|
---|
402 | if isinstance(colmap,str):
|
---|
403 | colmap = colmap.split()
|
---|
404 | self._plotter.palette(0, colormap=colmap)
|
---|
405 | if refresh and self._data: self.plot(self._data)
|
---|
406 |
|
---|
407 | # alias for english speakers
|
---|
408 | set_colours = set_colors
|
---|
409 |
|
---|
410 | def set_histogram(self, hist=True, linewidth=None, refresh=True):
|
---|
411 | """
|
---|
412 | Enable/Disable histogram-like plotting.
|
---|
413 | Parameters:
|
---|
414 | hist: True (default) or False. The fisrt default
|
---|
415 | is taken from the .asaprc setting
|
---|
416 | plotter.histogram
|
---|
417 | refresh: True (default) or False. If True, the plot is
|
---|
418 | replotted based on the new parameter setting(s).
|
---|
419 | Otherwise,the parameter(s) are set without replotting.
|
---|
420 | """
|
---|
421 | self._hist = hist
|
---|
422 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
423 | from matplotlib import rc as rcp
|
---|
424 | rcp('lines', linewidth=linewidth)
|
---|
425 | if refresh and self._data: self.plot(self._data)
|
---|
426 |
|
---|
427 | def set_linestyles(self, linestyles=None, linewidth=None, refresh=True):
|
---|
428 | """
|
---|
429 | Set the linestyles to be used. The plotter will cycle through
|
---|
430 | these linestyles when lines are overlaid (stacking mode) AND
|
---|
431 | only one color has been set.
|
---|
432 | Parameters:
|
---|
433 | linestyles: a list of linestyles to use.
|
---|
434 | 'line', 'dashed', 'dotted', 'dashdot',
|
---|
435 | 'dashdotdot' and 'dashdashdot' are
|
---|
436 | possible
|
---|
437 | refresh: True (default) or False. If True, the plot is
|
---|
438 | replotted based on the new parameter setting(s).
|
---|
439 | Otherwise,the parameter(s) are set without replotting.
|
---|
440 | Example:
|
---|
441 | plotter.set_colors("black")
|
---|
442 | plotter.set_linestyles("line dashed dotted dashdot")
|
---|
443 | # If for example four lines are overlaid e.g I Q U V
|
---|
444 | # 'I' will be 'solid', 'Q' will be 'dashed',
|
---|
445 | # U will be 'dotted' and 'V' will be 'dashdot'.
|
---|
446 | """
|
---|
447 | if isinstance(linestyles,str):
|
---|
448 | linestyles = linestyles.split()
|
---|
449 | self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
|
---|
450 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
451 | from matplotlib import rc as rcp
|
---|
452 | rcp('lines', linewidth=linewidth)
|
---|
453 | if refresh and self._data: self.plot(self._data)
|
---|
454 |
|
---|
455 | def set_font(self, family=None, style=None, weight=None, size=None, refresh=True):
|
---|
456 | """
|
---|
457 | Set font properties.
|
---|
458 | Parameters:
|
---|
459 | family: one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace'
|
---|
460 | style: one of 'normal' (or 'roman'), 'italic' or 'oblique'
|
---|
461 | weight: one of 'normal or 'bold'
|
---|
462 | size: the 'general' font size, individual elements can be adjusted
|
---|
463 | seperately
|
---|
464 | refresh: True (default) or False. If True, the plot is
|
---|
465 | replotted based on the new parameter setting(s).
|
---|
466 | Otherwise,the parameter(s) are set without replotting.
|
---|
467 | """
|
---|
468 | from matplotlib import rc as rcp
|
---|
469 | if isinstance(family, str):
|
---|
470 | rcp('font', family=family)
|
---|
471 | if isinstance(style, str):
|
---|
472 | rcp('font', style=style)
|
---|
473 | if isinstance(weight, str):
|
---|
474 | rcp('font', weight=weight)
|
---|
475 | if isinstance(size, float) or isinstance(size, int):
|
---|
476 | rcp('font', size=size)
|
---|
477 | if refresh and self._data: self.plot(self._data)
|
---|
478 |
|
---|
479 | def plot_lines(self, linecat=None, doppler=0.0, deltachan=10, rotate=90.0,
|
---|
480 | location=None):
|
---|
481 | """
|
---|
482 | Plot a line catalog.
|
---|
483 | Parameters:
|
---|
484 | linecat: the linecatalog to plot
|
---|
485 | doppler: the velocity shift to apply to the frequencies
|
---|
486 | deltachan: the number of channels to include each side of the
|
---|
487 | line to determine a local maximum/minimum
|
---|
488 | rotate: the rotation (in degrees) )for the text label (default 90.0)
|
---|
489 | location: the location of the line annotation from the 'top',
|
---|
490 | 'bottom' or alternate (None - the default)
|
---|
491 | Notes:
|
---|
492 | If the spectrum is flagged no line will be drawn in that location.
|
---|
493 | """
|
---|
494 | if not self._data:
|
---|
495 | raise RuntimeError("No scantable has been plotted yet.")
|
---|
496 | from asap._asap import linecatalog
|
---|
497 | if not isinstance(linecat, linecatalog):
|
---|
498 | raise ValueError("'linecat' isn't of type linecatalog.")
|
---|
499 | if not self._data.get_unit().endswith("Hz"):
|
---|
500 | raise RuntimeError("Can only overlay linecatalogs when data is in frequency.")
|
---|
501 | from matplotlib.numerix import ma
|
---|
502 | for j in range(len(self._plotter.subplots)):
|
---|
503 | self._plotter.subplot(j)
|
---|
504 | lims = self._plotter.axes.get_xlim()
|
---|
505 | for row in range(linecat.nrow()):
|
---|
506 | # get_frequency returns MHz
|
---|
507 | base = { "GHz": 1000.0, "MHz": 1.0, "Hz": 1.0e-6 }
|
---|
508 | restf = linecat.get_frequency(row)/base[self._data.get_unit()]
|
---|
509 | c = 299792.458
|
---|
510 | freq = restf*(1.0-doppler/c)
|
---|
511 | if lims[0] < freq < lims[1]:
|
---|
512 | if location is None:
|
---|
513 | loc = 'bottom'
|
---|
514 | if row%2: loc='top'
|
---|
515 | else: loc = location
|
---|
516 | maxys = []
|
---|
517 | for line in self._plotter.axes.lines:
|
---|
518 | v = line._x
|
---|
519 | asc = v[0] < v[-1]
|
---|
520 |
|
---|
521 | idx = None
|
---|
522 | if not asc:
|
---|
523 | if v[len(v)-1] <= freq <= v[0]:
|
---|
524 | i = len(v)-1
|
---|
525 | while i>=0 and v[i] < freq:
|
---|
526 | idx = i
|
---|
527 | i-=1
|
---|
528 | else:
|
---|
529 | if v[0] <= freq <= v[len(v)-1]:
|
---|
530 | i = 0
|
---|
531 | while i<len(v) and v[i] < freq:
|
---|
532 | idx = i
|
---|
533 | i+=1
|
---|
534 | if idx is not None:
|
---|
535 | lower = idx - deltachan
|
---|
536 | upper = idx + deltachan
|
---|
537 | if lower < 0: lower = 0
|
---|
538 | if upper > len(v): upper = len(v)
|
---|
539 | s = slice(lower, upper)
|
---|
540 | y = line._y[s]
|
---|
541 | maxy = ma.maximum(y)
|
---|
542 | if isinstance( maxy, float):
|
---|
543 | maxys.append(maxy)
|
---|
544 | if len(maxys):
|
---|
545 | peak = max(maxys)
|
---|
546 | if peak > self._plotter.axes.get_ylim()[1]:
|
---|
547 | loc = 'bottom'
|
---|
548 | else:
|
---|
549 | continue
|
---|
550 | self._plotter.vline_with_label(freq, peak,
|
---|
551 | linecat.get_name(row),
|
---|
552 | location=loc, rotate=rotate)
|
---|
553 | self._plotter.show(hardrefresh=False)
|
---|
554 |
|
---|
555 |
|
---|
556 | def save(self, filename=None, orientation=None, dpi=None):
|
---|
557 | """
|
---|
558 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
---|
559 | Parameters:
|
---|
560 | filename: The name of the output file. This is optional
|
---|
561 | and autodetects the image format from the file
|
---|
562 | suffix. If non filename is specified a file
|
---|
563 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
564 | current directory.
|
---|
565 | orientation: optional parameter for postscript only (not eps).
|
---|
566 | 'landscape', 'portrait' or None (default) are valid.
|
---|
567 | If None is choosen for 'ps' output, the plot is
|
---|
568 | automatically oriented to fill the page.
|
---|
569 | dpi: The dpi of the output non-ps plot
|
---|
570 | """
|
---|
571 | self._plotter.save(filename,orientation,dpi)
|
---|
572 | return
|
---|
573 |
|
---|
574 |
|
---|
575 | def set_mask(self, mask=None, selection=None, refresh=True):
|
---|
576 | """
|
---|
577 | Set a plotting mask for a specific polarization.
|
---|
578 | This is useful for masking out "noise" Pangle outside a source.
|
---|
579 | Parameters:
|
---|
580 | mask: a mask from scantable.create_mask
|
---|
581 | selection: the spectra to apply the mask to.
|
---|
582 | refresh: True (default) or False. If True, the plot is
|
---|
583 | replotted based on the new parameter setting(s).
|
---|
584 | Otherwise,the parameter(s) are set without replotting.
|
---|
585 | Example:
|
---|
586 | select = selector()
|
---|
587 | select.setpolstrings("Pangle")
|
---|
588 | plotter.set_mask(mymask, select)
|
---|
589 | """
|
---|
590 | if not self._data:
|
---|
591 | msg = "Can only set mask after a first call to plot()"
|
---|
592 | if rcParams['verbose']:
|
---|
593 | #print msg
|
---|
594 | asaplog.push( msg )
|
---|
595 | print_log( 'ERROR' )
|
---|
596 | return
|
---|
597 | else:
|
---|
598 | raise RuntimeError(msg)
|
---|
599 | if len(mask):
|
---|
600 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
601 | self._usermask = array(mask)
|
---|
602 | else:
|
---|
603 | self._usermask = mask
|
---|
604 | if mask is None and selection is None:
|
---|
605 | self._usermask = []
|
---|
606 | self._maskselection = None
|
---|
607 | if isinstance(selection, selector):
|
---|
608 | self._maskselection = {'b': selection.get_beams(),
|
---|
609 | 's': selection.get_scans(),
|
---|
610 | 'i': selection.get_ifs(),
|
---|
611 | 'p': selection.get_pols(),
|
---|
612 | 't': [] }
|
---|
613 | else:
|
---|
614 | self._maskselection = None
|
---|
615 | if refresh: self.plot(self._data)
|
---|
616 |
|
---|
617 | def _slice_indeces(self, data):
|
---|
618 | mn = self._minmaxx[0]
|
---|
619 | mx = self._minmaxx[1]
|
---|
620 | asc = data[0] < data[-1]
|
---|
621 | start=0
|
---|
622 | end = len(data)-1
|
---|
623 | inc = 1
|
---|
624 | if not asc:
|
---|
625 | start = len(data)-1
|
---|
626 | end = 0
|
---|
627 | inc = -1
|
---|
628 | # find min index
|
---|
629 | #while start > 0 and data[start] < mn:
|
---|
630 | # start+= inc
|
---|
631 | minind=start
|
---|
632 | for ind in xrange(start,end+inc,inc):
|
---|
633 | if data[ind] > mn: break
|
---|
634 | minind=ind
|
---|
635 | # find max index
|
---|
636 | #while end > 0 and data[end] > mx:
|
---|
637 | # end-=inc
|
---|
638 | #if end > 0: end +=1
|
---|
639 | maxind=end
|
---|
640 | for ind in xrange(end,start-inc,-inc):
|
---|
641 | if data[ind] < mx: break
|
---|
642 | maxind=ind
|
---|
643 | start=minind
|
---|
644 | end=maxind
|
---|
645 | if start > end:
|
---|
646 | return end,start+1
|
---|
647 | elif start < end:
|
---|
648 | return start,end+1
|
---|
649 | else:
|
---|
650 | return start,end
|
---|
651 |
|
---|
652 | def _reset(self):
|
---|
653 | self._usermask = []
|
---|
654 | self._usermaskspectra = None
|
---|
655 | self.set_selection(None, False)
|
---|
656 |
|
---|
657 | def _plot(self, scan):
|
---|
658 | savesel = scan.get_selection()
|
---|
659 | sel = savesel + self._selection
|
---|
660 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
661 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
---|
662 | order = [d0[self._panelling],d0[self._stacking]]
|
---|
663 | sel.set_order(order)
|
---|
664 | scan.set_selection(sel)
|
---|
665 | d = {'b': scan.getbeam, 's': scan.getscan,
|
---|
666 | 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime }
|
---|
667 |
|
---|
668 | polmodes = dict(zip(self._selection.get_pols(),
|
---|
669 | self._selection.get_poltypes()))
|
---|
670 | # this returns either a tuple of numbers or a length (ncycles)
|
---|
671 | # convert this into lengths
|
---|
672 | n0,nstack0 = self._get_selected_n(scan)
|
---|
673 | if isinstance(n0, int): n = n0
|
---|
674 | else: n = len(n0)
|
---|
675 | if isinstance(nstack0, int): nstack = nstack0
|
---|
676 | else: nstack = len(nstack0)
|
---|
677 | maxpanel, maxstack = 16,8
|
---|
678 | if n > maxpanel or nstack > maxstack:
|
---|
679 | maxn = 0
|
---|
680 | if nstack > maxstack: maxn = maxstack
|
---|
681 | if n > maxpanel: maxn = maxpanel
|
---|
682 | msg ="Scan to be plotted contains more than %d selections.\n" \
|
---|
683 | "Selecting first %d selections..." % (maxn, maxn)
|
---|
684 | asaplog.push(msg)
|
---|
685 | print_log('WARN')
|
---|
686 | n = min(n,maxpanel)
|
---|
687 | nstack = min(nstack,maxstack)
|
---|
688 | if n > 1:
|
---|
689 | ganged = rcParams['plotter.ganged']
|
---|
690 | if self._panelling == 'i':
|
---|
691 | ganged = False
|
---|
692 | if self._rows and self._cols:
|
---|
693 | n = min(n,self._rows*self._cols)
|
---|
694 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
695 | nplots=n,ganged=ganged)
|
---|
696 | else:
|
---|
697 | self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged)
|
---|
698 | else:
|
---|
699 | self._plotter.set_panels()
|
---|
700 | r=0
|
---|
701 | nr = scan.nrow()
|
---|
702 | a0,b0 = -1,-1
|
---|
703 | allxlim = []
|
---|
704 | allylim = []
|
---|
705 | newpanel=True
|
---|
706 | panelcount,stackcount = 0,0
|
---|
707 | while r < nr:
|
---|
708 | a = d[self._panelling](r)
|
---|
709 | b = d[self._stacking](r)
|
---|
710 | if a > a0 and panelcount < n:
|
---|
711 | if n > 1:
|
---|
712 | self._plotter.subplot(panelcount)
|
---|
713 | self._plotter.palette(0)
|
---|
714 | #title
|
---|
715 | xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
716 | or scan._getabcissalabel()
|
---|
717 | ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
718 | or scan._get_ordinate_label()
|
---|
719 | self._plotter.set_axes('xlabel',xlab)
|
---|
720 | self._plotter.set_axes('ylabel',ylab)
|
---|
721 | lbl = self._get_label(scan, r, self._panelling, self._title)
|
---|
722 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
723 | if 0 <= panelcount < len(lbl):
|
---|
724 | lbl = lbl[panelcount]
|
---|
725 | else:
|
---|
726 | # get default label
|
---|
727 | lbl = self._get_label(scan, r, self._panelling, None)
|
---|
728 | self._plotter.set_axes('title',lbl)
|
---|
729 | newpanel = True
|
---|
730 | stackcount =0
|
---|
731 | panelcount += 1
|
---|
732 | if (b > b0 or newpanel) and stackcount < nstack:
|
---|
733 | y = []
|
---|
734 | if len(polmodes):
|
---|
735 | y = scan._getspectrum(r, polmodes[scan.getpol(r)])
|
---|
736 | else:
|
---|
737 | y = scan._getspectrum(r)
|
---|
738 | m = scan._getmask(r)
|
---|
739 | from matplotlib.numerix import logical_not, logical_and
|
---|
740 | if self._maskselection and len(self._usermask) == len(m):
|
---|
741 | if d[self._stacking](r) in self._maskselection[self._stacking]:
|
---|
742 | m = logical_and(m, self._usermask)
|
---|
743 | x = scan._getabcissa(r)
|
---|
744 | from matplotlib.numerix import ma, array
|
---|
745 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
---|
746 | if self._minmaxx is not None:
|
---|
747 | s,e = self._slice_indeces(x)
|
---|
748 | x = x[s:e]
|
---|
749 | y = y[s:e]
|
---|
750 | if len(x) > 1024 and rcParams['plotter.decimate']:
|
---|
751 | fac = len(x)/1024
|
---|
752 | x = x[::fac]
|
---|
753 | y = y[::fac]
|
---|
754 | llbl = self._get_label(scan, r, self._stacking, self._lmap)
|
---|
755 | if isinstance(llbl, list) or isinstance(llbl, tuple):
|
---|
756 | if 0 <= stackcount < len(llbl):
|
---|
757 | # use user label
|
---|
758 | llbl = llbl[stackcount]
|
---|
759 | else:
|
---|
760 | # get default label
|
---|
761 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
762 | self._plotter.set_line(label=llbl)
|
---|
763 | plotit = self._plotter.plot
|
---|
764 | if self._hist: plotit = self._plotter.hist
|
---|
765 | if len(x) > 0:
|
---|
766 | plotit(x,y)
|
---|
767 | xlim= self._minmaxx or [min(x),max(x)]
|
---|
768 | allxlim += xlim
|
---|
769 | ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)]
|
---|
770 | allylim += ylim
|
---|
771 | else:
|
---|
772 | xlim = self._minmaxx or []
|
---|
773 | allxlim += xlim
|
---|
774 | ylim= self._minmaxy or []
|
---|
775 | allylim += ylim
|
---|
776 | stackcount += 1
|
---|
777 | # last in colour stack -> autoscale x
|
---|
778 | if stackcount == nstack and len(allxlim) > 0:
|
---|
779 | allxlim.sort()
|
---|
780 | self._plotter.subplots[panelcount-1]['axes'].set_xlim([allxlim[0],allxlim[-1]])
|
---|
781 | # clear
|
---|
782 | allxlim =[]
|
---|
783 |
|
---|
784 | newpanel = False
|
---|
785 | a0=a
|
---|
786 | b0=b
|
---|
787 | # ignore following rows
|
---|
788 | if (panelcount == n) and (stackcount == nstack):
|
---|
789 | # last panel -> autoscale y if ganged
|
---|
790 | if rcParams['plotter.ganged'] and len(allylim) > 0:
|
---|
791 | allylim.sort()
|
---|
792 | self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
|
---|
793 | break
|
---|
794 | r+=1 # next row
|
---|
795 | #reset the selector to the scantable's original
|
---|
796 | scan.set_selection(savesel)
|
---|
797 |
|
---|
798 | def set_selection(self, selection=None, refresh=True):
|
---|
799 | """
|
---|
800 | Parameters:
|
---|
801 | selection: a selector object (default unset the selection)
|
---|
802 | refresh: True (default) or False. If True, the plot is
|
---|
803 | replotted based on the new parameter setting(s).
|
---|
804 | Otherwise,the parameter(s) are set without replotting.
|
---|
805 | """
|
---|
806 | self._selection = isinstance(selection,selector) and selection or selector()
|
---|
807 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
808 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
---|
809 | order = [d0[self._panelling],d0[self._stacking]]
|
---|
810 | self._selection.set_order(order)
|
---|
811 | if refresh and self._data: self.plot(self._data)
|
---|
812 |
|
---|
813 | def _get_selected_n(self, scan):
|
---|
814 | d1 = {'b': scan.getbeamnos, 's': scan.getscannos,
|
---|
815 | 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle }
|
---|
816 | d2 = { 'b': self._selection.get_beams(),
|
---|
817 | 's': self._selection.get_scans(),
|
---|
818 | 'i': self._selection.get_ifs(),
|
---|
819 | 'p': self._selection.get_pols(),
|
---|
820 | 't': self._selection.get_cycles() }
|
---|
821 | n = d2[self._panelling] or d1[self._panelling]()
|
---|
822 | nstack = d2[self._stacking] or d1[self._stacking]()
|
---|
823 | return n,nstack
|
---|
824 |
|
---|
825 | def _get_label(self, scan, row, mode, userlabel=None):
|
---|
826 | if isinstance(userlabel, list) and len(userlabel) == 0:
|
---|
827 | userlabel = " "
|
---|
828 | pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
|
---|
829 | if len(pms):
|
---|
830 | poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
|
---|
831 | else:
|
---|
832 | poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
|
---|
833 | d = {'b': "Beam "+str(scan.getbeam(row)),
|
---|
834 | 's': scan._getsourcename(row),
|
---|
835 | 'i': "IF"+str(scan.getif(row)),
|
---|
836 | 'p': poleval,
|
---|
837 | 't': str(scan.get_time(row)) }
|
---|
838 | return userlabel or d[mode]
|
---|
839 |
|
---|
840 | def plotazel(self, scan=None, outfile=None):
|
---|
841 | """
|
---|
842 | plot azimuth and elevation versus time of a scantable
|
---|
843 | """
|
---|
844 | import pylab as PL
|
---|
845 | from matplotlib.dates import DateFormatter, timezone, HourLocator, MinuteLocator, DayLocator
|
---|
846 | from matplotlib.ticker import MultipleLocator
|
---|
847 | from matplotlib.numerix import array, pi
|
---|
848 | self._data = scan
|
---|
849 | self._outfile = outfile
|
---|
850 | dates = self._data.get_time(asdatetime=True)
|
---|
851 | t = PL.date2num(dates)
|
---|
852 | tz = timezone('UTC')
|
---|
853 | PL.cla()
|
---|
854 | #PL.ioff()
|
---|
855 | PL.clf()
|
---|
856 | tdel = max(t) - min(t)
|
---|
857 | ax = PL.subplot(2,1,1)
|
---|
858 | el = array(self._data.get_elevation())*180./pi
|
---|
859 | PL.ylabel('El [deg.]')
|
---|
860 | dstr = dates[0].strftime('%Y/%m/%d')
|
---|
861 | if tdel > 1.0:
|
---|
862 | dstr2 = dates[len(dates)-1].strftime('%Y/%m/%d')
|
---|
863 | dstr = dstr + " - " + dstr2
|
---|
864 | majloc = DayLocator()
|
---|
865 | minloc = HourLocator(range(0,23,12))
|
---|
866 | timefmt = DateFormatter("%b%d")
|
---|
867 | else:
|
---|
868 | timefmt = DateFormatter('%H')
|
---|
869 | majloc = HourLocator()
|
---|
870 | minloc = MinuteLocator(20)
|
---|
871 | PL.title(dstr)
|
---|
872 |
|
---|
873 | if tdel == 0.0:
|
---|
874 | th = (t - PL.floor(t))*24.0
|
---|
875 | PL.plot(th,el,'o',markersize=2, markerfacecolor='b', markeredgecolor='b')
|
---|
876 | else:
|
---|
877 | PL.plot_date(t,el,'o', markersize=2, markerfacecolor='b', markeredgecolor='b',tz=tz)
|
---|
878 | #ax.grid(True)
|
---|
879 | ax.xaxis.set_major_formatter(timefmt)
|
---|
880 | ax.xaxis.set_major_locator(majloc)
|
---|
881 | ax.xaxis.set_minor_locator(minloc)
|
---|
882 | ax.yaxis.grid(True)
|
---|
883 | yloc = MultipleLocator(30)
|
---|
884 | ax.set_ylim(0,90)
|
---|
885 | ax.yaxis.set_major_locator(yloc)
|
---|
886 | if tdel > 1.0:
|
---|
887 | labels = ax.get_xticklabels()
|
---|
888 | # PL.setp(labels, fontsize=10, rotation=45)
|
---|
889 | PL.setp(labels, fontsize=10)
|
---|
890 |
|
---|
891 | # Az plot
|
---|
892 | az = array(self._data.get_azimuth())*180./pi
|
---|
893 | if min(az) < 0:
|
---|
894 | for irow in range(len(az)):
|
---|
895 | if az[irow] < 0: az[irow] += 360.0
|
---|
896 |
|
---|
897 | ax = PL.subplot(2,1,2)
|
---|
898 | #PL.xlabel('Time (UT [hour])')
|
---|
899 | PL.ylabel('Az [deg.]')
|
---|
900 | if tdel == 0.0:
|
---|
901 | PL.plot(th,az,'o',markersize=2, markeredgecolor='b',markerfacecolor='b')
|
---|
902 | else:
|
---|
903 | PL.plot_date(t,az,'o', markersize=2,markeredgecolor='b',markerfacecolor='b',tz=tz)
|
---|
904 | ax.xaxis.set_major_formatter(timefmt)
|
---|
905 | ax.xaxis.set_major_locator(majloc)
|
---|
906 | ax.xaxis.set_minor_locator(minloc)
|
---|
907 | #ax.grid(True)
|
---|
908 | ax.set_ylim(0,360)
|
---|
909 | ax.yaxis.grid(True)
|
---|
910 | #hfmt = DateFormatter('%H')
|
---|
911 | #hloc = HourLocator()
|
---|
912 | yloc = MultipleLocator(60)
|
---|
913 | ax.yaxis.set_major_locator(yloc)
|
---|
914 | if tdel > 1.0:
|
---|
915 | labels = ax.get_xticklabels()
|
---|
916 | PL.setp(labels, fontsize=10)
|
---|
917 | PL.xlabel('Time (UT [day])')
|
---|
918 | else:
|
---|
919 | PL.xlabel('Time (UT [hour])')
|
---|
920 |
|
---|
921 | #PL.ion()
|
---|
922 | PL.draw()
|
---|
923 | if (self._outfile is not None):
|
---|
924 | PL.savefig(self._outfile)
|
---|
925 |
|
---|
926 | def plotpointing(self, scan=None, outfile=None):
|
---|
927 | """
|
---|
928 | plot telescope pointings
|
---|
929 | """
|
---|
930 | import pylab as PL
|
---|
931 | from matplotlib.dates import DateFormatter, timezone
|
---|
932 | from matplotlib.ticker import MultipleLocator
|
---|
933 | from matplotlib.numerix import array, pi, zeros
|
---|
934 | self._data = scan
|
---|
935 | self._outfile = outfile
|
---|
936 | dir = array(self._data.get_directionval()).transpose()
|
---|
937 | ra = dir[0]*180./pi
|
---|
938 | dec = dir[1]*180./pi
|
---|
939 | PL.cla()
|
---|
940 | #PL.ioff()
|
---|
941 | PL.clf()
|
---|
942 | ax = PL.axes([0.1,0.1,0.8,0.8])
|
---|
943 | ax = PL.axes([0.1,0.1,0.8,0.8])
|
---|
944 | ax.set_aspect('equal')
|
---|
945 | PL.plot(ra,dec, 'b,')
|
---|
946 | PL.xlabel('RA [deg.]')
|
---|
947 | PL.ylabel('Declination [deg.]')
|
---|
948 | PL.title('Telescope pointings')
|
---|
949 | [xmin,xmax,ymin,ymax] = PL.axis()
|
---|
950 | PL.axis([xmax,xmin,ymin,ymax])
|
---|
951 | #PL.ion()
|
---|
952 | PL.draw()
|
---|
953 | if (self._outfile is not None):
|
---|
954 | PL.savefig(self._outfile)
|
---|
955 |
|
---|
956 | # plot total power data
|
---|
957 | # plotting in time is not yet implemented..
|
---|
958 | def plottp(self, scan=None, outfile=None):
|
---|
959 | if self._plotter.is_dead:
|
---|
960 | self._plotter = self._newplotter()
|
---|
961 | self._plotter.hold()
|
---|
962 | self._plotter.clear()
|
---|
963 | from asap import scantable
|
---|
964 | if not self._data and not scan:
|
---|
965 | msg = "Input is not a scantable"
|
---|
966 | if rcParams['verbose']:
|
---|
967 | #print msg
|
---|
968 | asaplog.push( msg )
|
---|
969 | print_log( 'ERROR' )
|
---|
970 | return
|
---|
971 | raise TypeError(msg)
|
---|
972 | if isinstance(scan, scantable):
|
---|
973 | if self._data is not None:
|
---|
974 | if scan != self._data:
|
---|
975 | self._data = scan
|
---|
976 | # reset
|
---|
977 | self._reset()
|
---|
978 | else:
|
---|
979 | self._data = scan
|
---|
980 | self._reset()
|
---|
981 | # ranges become invalid when abcissa changes?
|
---|
982 | #if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
983 | # self._minmaxx = None
|
---|
984 | # self._minmaxy = None
|
---|
985 | # self._abcunit = self._data.get_unit()
|
---|
986 | # self._datamask = None
|
---|
987 | self._plottp(self._data)
|
---|
988 | if self._minmaxy is not None:
|
---|
989 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
990 | self._plotter.release()
|
---|
991 | self._plotter.tidy()
|
---|
992 | self._plotter.show(hardrefresh=False)
|
---|
993 | print_log()
|
---|
994 | return
|
---|
995 |
|
---|
996 | def _plottp(self,scan):
|
---|
997 | """
|
---|
998 | private method for plotting total power data
|
---|
999 | """
|
---|
1000 | from matplotlib.numerix import ma, array, arange, logical_not
|
---|
1001 | r=0
|
---|
1002 | nr = scan.nrow()
|
---|
1003 | a0,b0 = -1,-1
|
---|
1004 | allxlim = []
|
---|
1005 | allylim = []
|
---|
1006 | y=[]
|
---|
1007 | self._plotter.set_panels()
|
---|
1008 | self._plotter.palette(0)
|
---|
1009 | #title
|
---|
1010 | #xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
1011 | # or scan._getabcissalabel()
|
---|
1012 | #ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
1013 | # or scan._get_ordinate_label()
|
---|
1014 | xlab = self._abcissa or 'row number' #or Time
|
---|
1015 | ylab = self._ordinate or scan._get_ordinate_label()
|
---|
1016 | self._plotter.set_axes('xlabel',xlab)
|
---|
1017 | self._plotter.set_axes('ylabel',ylab)
|
---|
1018 | lbl = self._get_label(scan, r, 's', self._title)
|
---|
1019 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
1020 | # if 0 <= panelcount < len(lbl):
|
---|
1021 | # lbl = lbl[panelcount]
|
---|
1022 | # else:
|
---|
1023 | # get default label
|
---|
1024 | lbl = self._get_label(scan, r, self._panelling, None)
|
---|
1025 | self._plotter.set_axes('title',lbl)
|
---|
1026 | y=array(scan._get_column(scan._getspectrum,-1))
|
---|
1027 | m = array(scan._get_column(scan._getmask,-1))
|
---|
1028 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
---|
1029 | x = arange(len(y))
|
---|
1030 | # try to handle spectral data somewhat...
|
---|
1031 | l,m = y.shape
|
---|
1032 | if m > 1:
|
---|
1033 | y=y.mean(axis=1)
|
---|
1034 | plotit = self._plotter.plot
|
---|
1035 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
1036 | self._plotter.set_line(label=llbl)
|
---|
1037 | if len(x) > 0:
|
---|
1038 | plotit(x,y)
|
---|
1039 |
|
---|
1040 |
|
---|
1041 | # forwards to matplotlib.Figure.text
|
---|
1042 | def figtext(self, *args, **kwargs):
|
---|
1043 | """
|
---|
1044 | Add text to figure at location x,y (relative 0-1 coords).
|
---|
1045 | This method forwards *args and **kwargs to a Matplotlib method,
|
---|
1046 | matplotlib.Figure.text.
|
---|
1047 | See the method help for detailed information.
|
---|
1048 | """
|
---|
1049 | self._plotter.text(*args, **kwargs)
|
---|
1050 | # end matplotlib.Figure.text forwarding function
|
---|
1051 |
|
---|