[947] | 1 | from asap import rcParams, print_log, selector
|
---|
[1614] | 2 | from asap import asaplog
|
---|
[1153] | 3 | import matplotlib.axes
|
---|
[1317] | 4 | import re
|
---|
[203] | 5 |
|
---|
| 6 | class asapplotter:
|
---|
[226] | 7 | """
|
---|
| 8 | The ASAP plotter.
|
---|
| 9 | By default the plotter is set up to plot polarisations
|
---|
| 10 | 'colour stacked' and scantables across panels.
|
---|
| 11 | Note:
|
---|
| 12 | Currenly it only plots 'spectra' not Tsys or
|
---|
| 13 | other variables.
|
---|
| 14 | """
|
---|
[734] | 15 | def __init__(self, visible=None):
|
---|
| 16 | self._visible = rcParams['plotter.gui']
|
---|
| 17 | if visible is not None:
|
---|
| 18 | self._visible = visible
|
---|
[710] | 19 | self._plotter = self._newplotter()
|
---|
| 20 |
|
---|
[554] | 21 | self._panelling = None
|
---|
| 22 | self._stacking = None
|
---|
| 23 | self.set_panelling()
|
---|
| 24 | self.set_stacking()
|
---|
[377] | 25 | self._rows = None
|
---|
| 26 | self._cols = None
|
---|
[203] | 27 | self._autoplot = False
|
---|
[525] | 28 | self._minmaxx = None
|
---|
| 29 | self._minmaxy = None
|
---|
[710] | 30 | self._datamask = None
|
---|
[203] | 31 | self._data = None
|
---|
[607] | 32 | self._lmap = None
|
---|
[226] | 33 | self._title = None
|
---|
[257] | 34 | self._ordinate = None
|
---|
| 35 | self._abcissa = None
|
---|
[709] | 36 | self._abcunit = None
|
---|
[920] | 37 | self._usermask = []
|
---|
| 38 | self._maskselection = None
|
---|
| 39 | self._selection = selector()
|
---|
[1023] | 40 | self._hist = rcParams['plotter.histogram']
|
---|
| 41 |
|
---|
[920] | 42 | def _translate(self, instr):
|
---|
| 43 | keys = "s b i p t".split()
|
---|
| 44 | if isinstance(instr, str):
|
---|
| 45 | for key in keys:
|
---|
| 46 | if instr.lower().startswith(key):
|
---|
| 47 | return key
|
---|
| 48 | return None
|
---|
| 49 |
|
---|
[710] | 50 | def _newplotter(self):
|
---|
| 51 | if self._visible:
|
---|
| 52 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
| 53 | else:
|
---|
| 54 | from asap.asaplot import asaplot
|
---|
| 55 | return asaplot()
|
---|
| 56 |
|
---|
| 57 |
|
---|
[935] | 58 | def plot(self, scan=None):
|
---|
[203] | 59 | """
|
---|
[920] | 60 | Plot a scantable.
|
---|
[203] | 61 | Parameters:
|
---|
[920] | 62 | scan: a scantable
|
---|
[203] | 63 | Note:
|
---|
[920] | 64 | If a scantable was specified in a previous call
|
---|
[203] | 65 | to plot, no argument has to be given to 'replot'
|
---|
[920] | 66 | NO checking is done that the abcissas of the scantable
|
---|
[203] | 67 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
---|
| 68 | """
|
---|
[710] | 69 | if self._plotter.is_dead:
|
---|
| 70 | self._plotter = self._newplotter()
|
---|
[600] | 71 | self._plotter.hold()
|
---|
[203] | 72 | self._plotter.clear()
|
---|
[935] | 73 | if not self._data and not scan:
|
---|
[1101] | 74 | msg = "Input is not a scantable"
|
---|
| 75 | if rcParams['verbose']:
|
---|
[1612] | 76 | #print msg
|
---|
[1614] | 77 | asaplog.push( msg )
|
---|
| 78 | print_log( 'ERROR' )
|
---|
[1101] | 79 | return
|
---|
| 80 | raise TypeError(msg)
|
---|
[1698] | 81 | if scan: self.set_data(scan,refresh=False)
|
---|
[920] | 82 | self._plot(self._data)
|
---|
[709] | 83 | if self._minmaxy is not None:
|
---|
| 84 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
[203] | 85 | self._plotter.release()
|
---|
[1153] | 86 | self._plotter.tidy()
|
---|
| 87 | self._plotter.show(hardrefresh=False)
|
---|
[753] | 88 | print_log()
|
---|
[203] | 89 | return
|
---|
| 90 |
|
---|
[1153] | 91 |
|
---|
| 92 | # forwards to matplotlib axes
|
---|
| 93 | def text(self, *args, **kwargs):
|
---|
| 94 | self._axes_callback("text", *args, **kwargs)
|
---|
[1358] | 95 | text.__doc__ = matplotlib.axes.Axes.text.__doc__
|
---|
[1153] | 96 | def arrow(self, *args, **kwargs):
|
---|
| 97 | self._axes_callback("arrow", *args, **kwargs)
|
---|
[1358] | 98 | arrow.__doc__ = matplotlib.axes.Axes.arrow.__doc__
|
---|
[1153] | 99 | def axvline(self, *args, **kwargs):
|
---|
| 100 | self._axes_callback("axvline", *args, **kwargs)
|
---|
[1358] | 101 | axvline.__doc__ = matplotlib.axes.Axes.axvline.__doc__
|
---|
[1153] | 102 | def axhline(self, *args, **kwargs):
|
---|
| 103 | self._axes_callback("axhline", *args, **kwargs)
|
---|
[1358] | 104 | axhline.__doc__ = matplotlib.axes.Axes.axhline.__doc__
|
---|
[1153] | 105 | def axvspan(self, *args, **kwargs):
|
---|
| 106 | self._axes_callback("axvspan", *args, **kwargs)
|
---|
| 107 | # hack to preventy mpl from redrawing the patch
|
---|
| 108 | # it seem to convert the patch into lines on every draw.
|
---|
| 109 | # This doesn't happen in a test script???
|
---|
| 110 | del self._plotter.axes.patches[-1]
|
---|
[1358] | 111 | axvspan.__doc__ = matplotlib.axes.Axes.axvspan.__doc__
|
---|
[1232] | 112 |
|
---|
[1153] | 113 | def axhspan(self, *args, **kwargs):
|
---|
[1232] | 114 | self._axes_callback("axhspan", *args, **kwargs)
|
---|
[1153] | 115 | # hack to preventy mpl from redrawing the patch
|
---|
| 116 | # it seem to convert the patch into lines on every draw.
|
---|
| 117 | # This doesn't happen in a test script???
|
---|
| 118 | del self._plotter.axes.patches[-1]
|
---|
[1358] | 119 | axhspan.__doc__ = matplotlib.axes.Axes.axhspan.__doc__
|
---|
[1153] | 120 |
|
---|
| 121 | def _axes_callback(self, axesfunc, *args, **kwargs):
|
---|
| 122 | panel = 0
|
---|
| 123 | if kwargs.has_key("panel"):
|
---|
| 124 | panel = kwargs.pop("panel")
|
---|
| 125 | coords = None
|
---|
| 126 | if kwargs.has_key("coords"):
|
---|
| 127 | coords = kwargs.pop("coords")
|
---|
| 128 | if coords.lower() == 'world':
|
---|
| 129 | kwargs["transform"] = self._plotter.axes.transData
|
---|
| 130 | elif coords.lower() == 'relative':
|
---|
| 131 | kwargs["transform"] = self._plotter.axes.transAxes
|
---|
| 132 | self._plotter.subplot(panel)
|
---|
| 133 | self._plotter.axes.set_autoscale_on(False)
|
---|
| 134 | getattr(self._plotter.axes, axesfunc)(*args, **kwargs)
|
---|
| 135 | self._plotter.show(False)
|
---|
| 136 | self._plotter.axes.set_autoscale_on(True)
|
---|
| 137 | # end matplotlib.axes fowarding functions
|
---|
| 138 |
|
---|
[1698] | 139 | def set_data(self, scan, refresh=True):
|
---|
[203] | 140 | """
|
---|
[1698] | 141 | Set a scantable to plot.
|
---|
| 142 | Parameters:
|
---|
| 143 | scan: a scantable
|
---|
| 144 | refresh: True (default) or False. If True, the plot is
|
---|
| 145 | replotted based on the new parameter setting(s).
|
---|
| 146 | Otherwise,the parameter(s) are set without replotting.
|
---|
[1702] | 147 | Note:
|
---|
| 148 | The user specified masks and data selections will be reset
|
---|
| 149 | if a new scantable is set. This method should be called before
|
---|
| 150 | setting data selections (set_selection) and/or masks (set_mask).
|
---|
[1698] | 151 | """
|
---|
| 152 | from asap import scantable
|
---|
| 153 | if isinstance(scan, scantable):
|
---|
| 154 | if self._data is not None:
|
---|
| 155 | if scan != self._data:
|
---|
| 156 | self._data = scan
|
---|
| 157 | # reset
|
---|
| 158 | self._reset()
|
---|
[1702] | 159 | msg = "A new scantable is set to the plotter. The masks and data selections are reset."
|
---|
| 160 | asaplog.push( msg )
|
---|
| 161 | print_log( 'INFO' )
|
---|
[1698] | 162 | else:
|
---|
| 163 | self._data = scan
|
---|
| 164 | self._reset()
|
---|
| 165 | else:
|
---|
| 166 | msg = "Input is not a scantable"
|
---|
| 167 | if rcParams['verbose']:
|
---|
| 168 | #print msg
|
---|
| 169 | asaplog.push( msg )
|
---|
| 170 | print_log( 'ERROR' )
|
---|
| 171 | return
|
---|
| 172 | raise TypeError(msg)
|
---|
| 173 |
|
---|
| 174 | # ranges become invalid when unit changes
|
---|
| 175 | if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
| 176 | self._minmaxx = None
|
---|
| 177 | self._minmaxy = None
|
---|
| 178 | self._abcunit = self._data.get_unit()
|
---|
| 179 | self._datamask = None
|
---|
| 180 | if refresh: self.plot()
|
---|
| 181 |
|
---|
| 182 |
|
---|
| 183 | def set_mode(self, stacking=None, panelling=None, refresh=True):
|
---|
| 184 | """
|
---|
[377] | 185 | Set the plots look and feel, i.e. what you want to see on the plot.
|
---|
[203] | 186 | Parameters:
|
---|
| 187 | stacking: tell the plotter which variable to plot
|
---|
[1217] | 188 | as line colour overlays (default 'pol')
|
---|
[203] | 189 | panelling: tell the plotter which variable to plot
|
---|
| 190 | across multiple panels (default 'scan'
|
---|
[1698] | 191 | refresh: True (default) or False. If True, the plot is
|
---|
| 192 | replotted based on the new parameter setting(s).
|
---|
| 193 | Otherwise,the parameter(s) are set without replotting.
|
---|
[203] | 194 | Note:
|
---|
| 195 | Valid modes are:
|
---|
| 196 | 'beam' 'Beam' 'b': Beams
|
---|
| 197 | 'if' 'IF' 'i': IFs
|
---|
| 198 | 'pol' 'Pol' 'p': Polarisations
|
---|
| 199 | 'scan' 'Scan' 's': Scans
|
---|
| 200 | 'time' 'Time' 't': Times
|
---|
| 201 | """
|
---|
[753] | 202 | msg = "Invalid mode"
|
---|
| 203 | if not self.set_panelling(panelling) or \
|
---|
| 204 | not self.set_stacking(stacking):
|
---|
| 205 | if rcParams['verbose']:
|
---|
[1612] | 206 | #print msg
|
---|
[1614] | 207 | asaplog.push( msg )
|
---|
| 208 | print_log( 'ERROR' )
|
---|
[753] | 209 | return
|
---|
| 210 | else:
|
---|
| 211 | raise TypeError(msg)
|
---|
[1698] | 212 | if refresh and self._data: self.plot(self._data)
|
---|
[203] | 213 | return
|
---|
| 214 |
|
---|
[554] | 215 | def set_panelling(self, what=None):
|
---|
| 216 | mode = what
|
---|
| 217 | if mode is None:
|
---|
| 218 | mode = rcParams['plotter.panelling']
|
---|
| 219 | md = self._translate(mode)
|
---|
[203] | 220 | if md:
|
---|
[554] | 221 | self._panelling = md
|
---|
[226] | 222 | self._title = None
|
---|
[203] | 223 | return True
|
---|
| 224 | return False
|
---|
| 225 |
|
---|
[1698] | 226 | def set_layout(self,rows=None,cols=None,refresh=True):
|
---|
[377] | 227 | """
|
---|
| 228 | Set the multi-panel layout, i.e. how many rows and columns plots
|
---|
| 229 | are visible.
|
---|
| 230 | Parameters:
|
---|
| 231 | rows: The number of rows of plots
|
---|
| 232 | cols: The number of columns of plots
|
---|
[1698] | 233 | refresh: True (default) or False. If True, the plot is
|
---|
| 234 | replotted based on the new parameter setting(s).
|
---|
| 235 | Otherwise,the parameter(s) are set without replotting.
|
---|
[377] | 236 | Note:
|
---|
| 237 | If no argument is given, the potter reverts to its auto-plot
|
---|
| 238 | behaviour.
|
---|
| 239 | """
|
---|
| 240 | self._rows = rows
|
---|
| 241 | self._cols = cols
|
---|
[1698] | 242 | if refresh and self._data: self.plot(self._data)
|
---|
[377] | 243 | return
|
---|
| 244 |
|
---|
[709] | 245 | def set_stacking(self, what=None):
|
---|
[554] | 246 | mode = what
|
---|
[709] | 247 | if mode is None:
|
---|
| 248 | mode = rcParams['plotter.stacking']
|
---|
[554] | 249 | md = self._translate(mode)
|
---|
[203] | 250 | if md:
|
---|
| 251 | self._stacking = md
|
---|
[226] | 252 | self._lmap = None
|
---|
[203] | 253 | return True
|
---|
| 254 | return False
|
---|
| 255 |
|
---|
[1698] | 256 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None,refresh=True):
|
---|
[203] | 257 | """
|
---|
| 258 | Set the range of interest on the abcissa of the plot
|
---|
| 259 | Parameters:
|
---|
[525] | 260 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
---|
[1698] | 261 | refresh: True (default) or False. If True, the plot is
|
---|
| 262 | replotted based on the new parameter setting(s).
|
---|
| 263 | Otherwise,the parameter(s) are set without replotting.
|
---|
[203] | 264 | Note:
|
---|
| 265 | These become non-sensical when the unit changes.
|
---|
| 266 | use plotter.set_range() without parameters to reset
|
---|
| 267 |
|
---|
| 268 | """
|
---|
[525] | 269 | if xstart is None and xend is None:
|
---|
| 270 | self._minmaxx = None
|
---|
[600] | 271 | else:
|
---|
| 272 | self._minmaxx = [xstart,xend]
|
---|
[525] | 273 | if ystart is None and yend is None:
|
---|
| 274 | self._minmaxy = None
|
---|
[600] | 275 | else:
|
---|
[709] | 276 | self._minmaxy = [ystart,yend]
|
---|
[1698] | 277 | if refresh and self._data: self.plot(self._data)
|
---|
[203] | 278 | return
|
---|
[709] | 279 |
|
---|
[1698] | 280 | def set_legend(self, mp=None, fontsize = None, mode = 0, refresh=True):
|
---|
[203] | 281 | """
|
---|
| 282 | Specify a mapping for the legend instead of using the default
|
---|
| 283 | indices:
|
---|
| 284 | Parameters:
|
---|
[1101] | 285 | mp: a list of 'strings'. This should have the same length
|
---|
| 286 | as the number of elements on the legend and then maps
|
---|
| 287 | to the indeces in order. It is possible to uses latex
|
---|
| 288 | math expression. These have to be enclosed in r'',
|
---|
| 289 | e.g. r'$x^{2}$'
|
---|
| 290 | fontsize: The font size of the label (default None)
|
---|
| 291 | mode: where to display the legend
|
---|
| 292 | Any other value for loc else disables the legend:
|
---|
[1096] | 293 | 0: auto
|
---|
| 294 | 1: upper right
|
---|
| 295 | 2: upper left
|
---|
| 296 | 3: lower left
|
---|
| 297 | 4: lower right
|
---|
| 298 | 5: right
|
---|
| 299 | 6: center left
|
---|
| 300 | 7: center right
|
---|
| 301 | 8: lower center
|
---|
| 302 | 9: upper center
|
---|
| 303 | 10: center
|
---|
[1698] | 304 | refresh: True (default) or False. If True, the plot is
|
---|
| 305 | replotted based on the new parameter setting(s).
|
---|
| 306 | Otherwise,the parameter(s) are set without replotting.
|
---|
[203] | 307 |
|
---|
| 308 | Example:
|
---|
[485] | 309 | If the data has two IFs/rest frequencies with index 0 and 1
|
---|
[203] | 310 | for CO and SiO:
|
---|
| 311 | plotter.set_stacking('i')
|
---|
[710] | 312 | plotter.set_legend(['CO','SiO'])
|
---|
[203] | 313 | plotter.plot()
|
---|
[710] | 314 | plotter.set_legend([r'$^{12}CO$', r'SiO'])
|
---|
[203] | 315 | """
|
---|
| 316 | self._lmap = mp
|
---|
[1096] | 317 | self._plotter.legend(mode)
|
---|
[1101] | 318 | if isinstance(fontsize, int):
|
---|
| 319 | from matplotlib import rc as rcp
|
---|
| 320 | rcp('legend', fontsize=fontsize)
|
---|
[1698] | 321 | if refresh and self._data: self.plot(self._data)
|
---|
[226] | 322 | return
|
---|
| 323 |
|
---|
[1698] | 324 | def set_title(self, title=None, fontsize=None, refresh=True):
|
---|
[710] | 325 | """
|
---|
| 326 | Set the title of the plot. If multiple panels are plotted,
|
---|
| 327 | multiple titles have to be specified.
|
---|
[1698] | 328 | Parameters:
|
---|
| 329 | refresh: True (default) or False. If True, the plot is
|
---|
| 330 | replotted based on the new parameter setting(s).
|
---|
| 331 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 332 | Example:
|
---|
| 333 | # two panels are visible on the plotter
|
---|
| 334 | plotter.set_title(["First Panel","Second Panel"])
|
---|
| 335 | """
|
---|
[226] | 336 | self._title = title
|
---|
[1101] | 337 | if isinstance(fontsize, int):
|
---|
| 338 | from matplotlib import rc as rcp
|
---|
| 339 | rcp('axes', titlesize=fontsize)
|
---|
[1698] | 340 | if refresh and self._data: self.plot(self._data)
|
---|
[226] | 341 | return
|
---|
| 342 |
|
---|
[1698] | 343 | def set_ordinate(self, ordinate=None, fontsize=None, refresh=True):
|
---|
[710] | 344 | """
|
---|
| 345 | Set the y-axis label of the plot. If multiple panels are plotted,
|
---|
| 346 | multiple labels have to be specified.
|
---|
[1021] | 347 | Parameters:
|
---|
| 348 | ordinate: a list of ordinate labels. None (default) let
|
---|
| 349 | data determine the labels
|
---|
[1698] | 350 | refresh: True (default) or False. If True, the plot is
|
---|
| 351 | replotted based on the new parameter setting(s).
|
---|
| 352 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 353 | Example:
|
---|
| 354 | # two panels are visible on the plotter
|
---|
| 355 | plotter.set_ordinate(["First Y-Axis","Second Y-Axis"])
|
---|
| 356 | """
|
---|
[257] | 357 | self._ordinate = ordinate
|
---|
[1101] | 358 | if isinstance(fontsize, int):
|
---|
| 359 | from matplotlib import rc as rcp
|
---|
| 360 | rcp('axes', labelsize=fontsize)
|
---|
| 361 | rcp('ytick', labelsize=fontsize)
|
---|
[1698] | 362 | if refresh and self._data: self.plot(self._data)
|
---|
[257] | 363 | return
|
---|
| 364 |
|
---|
[1698] | 365 | def set_abcissa(self, abcissa=None, fontsize=None, refresh=True):
|
---|
[710] | 366 | """
|
---|
| 367 | Set the x-axis label of the plot. If multiple panels are plotted,
|
---|
| 368 | multiple labels have to be specified.
|
---|
[1021] | 369 | Parameters:
|
---|
| 370 | abcissa: a list of abcissa labels. None (default) let
|
---|
| 371 | data determine the labels
|
---|
[1698] | 372 | refresh: True (default) or False. If True, the plot is
|
---|
| 373 | replotted based on the new parameter setting(s).
|
---|
| 374 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 375 | Example:
|
---|
| 376 | # two panels are visible on the plotter
|
---|
| 377 | plotter.set_ordinate(["First X-Axis","Second X-Axis"])
|
---|
| 378 | """
|
---|
[257] | 379 | self._abcissa = abcissa
|
---|
[1101] | 380 | if isinstance(fontsize, int):
|
---|
| 381 | from matplotlib import rc as rcp
|
---|
| 382 | rcp('axes', labelsize=fontsize)
|
---|
| 383 | rcp('xtick', labelsize=fontsize)
|
---|
[1698] | 384 | if refresh and self._data: self.plot(self._data)
|
---|
[257] | 385 | return
|
---|
| 386 |
|
---|
[1698] | 387 | def set_colors(self, colmap, refresh=True):
|
---|
[377] | 388 | """
|
---|
[1217] | 389 | Set the colours to be used. The plotter will cycle through
|
---|
| 390 | these colours when lines are overlaid (stacking mode).
|
---|
[1021] | 391 | Parameters:
|
---|
[1217] | 392 | colmap: a list of colour names
|
---|
[1698] | 393 | refresh: True (default) or False. If True, the plot is
|
---|
| 394 | replotted based on the new parameter setting(s).
|
---|
| 395 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 396 | Example:
|
---|
| 397 | plotter.set_colors("red green blue")
|
---|
| 398 | # If for example four lines are overlaid e.g I Q U V
|
---|
| 399 | # 'I' will be 'red', 'Q' will be 'green', U will be 'blue'
|
---|
| 400 | # and 'V' will be 'red' again.
|
---|
| 401 | """
|
---|
[1217] | 402 | if isinstance(colmap,str):
|
---|
| 403 | colmap = colmap.split()
|
---|
| 404 | self._plotter.palette(0, colormap=colmap)
|
---|
[1698] | 405 | if refresh and self._data: self.plot(self._data)
|
---|
[710] | 406 |
|
---|
[1217] | 407 | # alias for english speakers
|
---|
| 408 | set_colours = set_colors
|
---|
| 409 |
|
---|
[1698] | 410 | def set_histogram(self, hist=True, linewidth=None, refresh=True):
|
---|
[1021] | 411 | """
|
---|
| 412 | Enable/Disable histogram-like plotting.
|
---|
| 413 | Parameters:
|
---|
| 414 | hist: True (default) or False. The fisrt default
|
---|
| 415 | is taken from the .asaprc setting
|
---|
| 416 | plotter.histogram
|
---|
[1698] | 417 | refresh: True (default) or False. If True, the plot is
|
---|
| 418 | replotted based on the new parameter setting(s).
|
---|
| 419 | Otherwise,the parameter(s) are set without replotting.
|
---|
[1021] | 420 | """
|
---|
[1023] | 421 | self._hist = hist
|
---|
[1101] | 422 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
| 423 | from matplotlib import rc as rcp
|
---|
| 424 | rcp('lines', linewidth=linewidth)
|
---|
[1698] | 425 | if refresh and self._data: self.plot(self._data)
|
---|
[1023] | 426 |
|
---|
[1698] | 427 | def set_linestyles(self, linestyles=None, linewidth=None, refresh=True):
|
---|
[710] | 428 | """
|
---|
[734] | 429 | Set the linestyles to be used. The plotter will cycle through
|
---|
| 430 | these linestyles when lines are overlaid (stacking mode) AND
|
---|
| 431 | only one color has been set.
|
---|
[710] | 432 | Parameters:
|
---|
| 433 | linestyles: a list of linestyles to use.
|
---|
| 434 | 'line', 'dashed', 'dotted', 'dashdot',
|
---|
| 435 | 'dashdotdot' and 'dashdashdot' are
|
---|
| 436 | possible
|
---|
[1698] | 437 | refresh: True (default) or False. If True, the plot is
|
---|
| 438 | replotted based on the new parameter setting(s).
|
---|
| 439 | Otherwise,the parameter(s) are set without replotting.
|
---|
[710] | 440 | Example:
|
---|
| 441 | plotter.set_colors("black")
|
---|
| 442 | plotter.set_linestyles("line dashed dotted dashdot")
|
---|
| 443 | # If for example four lines are overlaid e.g I Q U V
|
---|
| 444 | # 'I' will be 'solid', 'Q' will be 'dashed',
|
---|
| 445 | # U will be 'dotted' and 'V' will be 'dashdot'.
|
---|
| 446 | """
|
---|
| 447 | if isinstance(linestyles,str):
|
---|
| 448 | linestyles = linestyles.split()
|
---|
| 449 | self._plotter.palette(color=0,linestyle=0,linestyles=linestyles)
|
---|
[1101] | 450 | if isinstance(linewidth, float) or isinstance(linewidth, int):
|
---|
| 451 | from matplotlib import rc as rcp
|
---|
| 452 | rcp('lines', linewidth=linewidth)
|
---|
[1698] | 453 | if refresh and self._data: self.plot(self._data)
|
---|
[710] | 454 |
|
---|
[1698] | 455 | def set_font(self, family=None, style=None, weight=None, size=None, refresh=True):
|
---|
[1101] | 456 | """
|
---|
| 457 | Set font properties.
|
---|
| 458 | Parameters:
|
---|
| 459 | family: one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace'
|
---|
| 460 | style: one of 'normal' (or 'roman'), 'italic' or 'oblique'
|
---|
| 461 | weight: one of 'normal or 'bold'
|
---|
| 462 | size: the 'general' font size, individual elements can be adjusted
|
---|
| 463 | seperately
|
---|
[1698] | 464 | refresh: True (default) or False. If True, the plot is
|
---|
| 465 | replotted based on the new parameter setting(s).
|
---|
| 466 | Otherwise,the parameter(s) are set without replotting.
|
---|
[1101] | 467 | """
|
---|
| 468 | from matplotlib import rc as rcp
|
---|
| 469 | if isinstance(family, str):
|
---|
| 470 | rcp('font', family=family)
|
---|
| 471 | if isinstance(style, str):
|
---|
| 472 | rcp('font', style=style)
|
---|
| 473 | if isinstance(weight, str):
|
---|
| 474 | rcp('font', weight=weight)
|
---|
| 475 | if isinstance(size, float) or isinstance(size, int):
|
---|
| 476 | rcp('font', size=size)
|
---|
[1698] | 477 | if refresh and self._data: self.plot(self._data)
|
---|
[1101] | 478 |
|
---|
[1259] | 479 | def plot_lines(self, linecat=None, doppler=0.0, deltachan=10, rotate=90.0,
|
---|
[1146] | 480 | location=None):
|
---|
| 481 | """
|
---|
[1158] | 482 | Plot a line catalog.
|
---|
| 483 | Parameters:
|
---|
| 484 | linecat: the linecatalog to plot
|
---|
[1168] | 485 | doppler: the velocity shift to apply to the frequencies
|
---|
[1158] | 486 | deltachan: the number of channels to include each side of the
|
---|
| 487 | line to determine a local maximum/minimum
|
---|
[1259] | 488 | rotate: the rotation (in degrees) )for the text label (default 90.0)
|
---|
[1158] | 489 | location: the location of the line annotation from the 'top',
|
---|
| 490 | 'bottom' or alternate (None - the default)
|
---|
[1165] | 491 | Notes:
|
---|
| 492 | If the spectrum is flagged no line will be drawn in that location.
|
---|
[1146] | 493 | """
|
---|
[1259] | 494 | if not self._data:
|
---|
| 495 | raise RuntimeError("No scantable has been plotted yet.")
|
---|
[1146] | 496 | from asap._asap import linecatalog
|
---|
[1259] | 497 | if not isinstance(linecat, linecatalog):
|
---|
| 498 | raise ValueError("'linecat' isn't of type linecatalog.")
|
---|
| 499 | if not self._data.get_unit().endswith("Hz"):
|
---|
| 500 | raise RuntimeError("Can only overlay linecatalogs when data is in frequency.")
|
---|
[1153] | 501 | from matplotlib.numerix import ma
|
---|
[1146] | 502 | for j in range(len(self._plotter.subplots)):
|
---|
| 503 | self._plotter.subplot(j)
|
---|
| 504 | lims = self._plotter.axes.get_xlim()
|
---|
[1153] | 505 | for row in range(linecat.nrow()):
|
---|
[1259] | 506 | # get_frequency returns MHz
|
---|
| 507 | base = { "GHz": 1000.0, "MHz": 1.0, "Hz": 1.0e-6 }
|
---|
| 508 | restf = linecat.get_frequency(row)/base[self._data.get_unit()]
|
---|
[1165] | 509 | c = 299792.458
|
---|
[1174] | 510 | freq = restf*(1.0-doppler/c)
|
---|
[1146] | 511 | if lims[0] < freq < lims[1]:
|
---|
| 512 | if location is None:
|
---|
| 513 | loc = 'bottom'
|
---|
[1153] | 514 | if row%2: loc='top'
|
---|
[1146] | 515 | else: loc = location
|
---|
[1153] | 516 | maxys = []
|
---|
| 517 | for line in self._plotter.axes.lines:
|
---|
| 518 | v = line._x
|
---|
| 519 | asc = v[0] < v[-1]
|
---|
| 520 |
|
---|
| 521 | idx = None
|
---|
| 522 | if not asc:
|
---|
| 523 | if v[len(v)-1] <= freq <= v[0]:
|
---|
| 524 | i = len(v)-1
|
---|
| 525 | while i>=0 and v[i] < freq:
|
---|
| 526 | idx = i
|
---|
| 527 | i-=1
|
---|
| 528 | else:
|
---|
| 529 | if v[0] <= freq <= v[len(v)-1]:
|
---|
| 530 | i = 0
|
---|
| 531 | while i<len(v) and v[i] < freq:
|
---|
| 532 | idx = i
|
---|
| 533 | i+=1
|
---|
| 534 | if idx is not None:
|
---|
| 535 | lower = idx - deltachan
|
---|
| 536 | upper = idx + deltachan
|
---|
| 537 | if lower < 0: lower = 0
|
---|
| 538 | if upper > len(v): upper = len(v)
|
---|
| 539 | s = slice(lower, upper)
|
---|
[1167] | 540 | y = line._y[s]
|
---|
[1165] | 541 | maxy = ma.maximum(y)
|
---|
| 542 | if isinstance( maxy, float):
|
---|
| 543 | maxys.append(maxy)
|
---|
[1164] | 544 | if len(maxys):
|
---|
| 545 | peak = max(maxys)
|
---|
[1165] | 546 | if peak > self._plotter.axes.get_ylim()[1]:
|
---|
| 547 | loc = 'bottom'
|
---|
[1164] | 548 | else:
|
---|
| 549 | continue
|
---|
[1157] | 550 | self._plotter.vline_with_label(freq, peak,
|
---|
| 551 | linecat.get_name(row),
|
---|
| 552 | location=loc, rotate=rotate)
|
---|
[1153] | 553 | self._plotter.show(hardrefresh=False)
|
---|
[1146] | 554 |
|
---|
[1153] | 555 |
|
---|
[710] | 556 | def save(self, filename=None, orientation=None, dpi=None):
|
---|
| 557 | """
|
---|
[377] | 558 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
---|
| 559 | Parameters:
|
---|
| 560 | filename: The name of the output file. This is optional
|
---|
| 561 | and autodetects the image format from the file
|
---|
| 562 | suffix. If non filename is specified a file
|
---|
| 563 | called 'yyyymmdd_hhmmss.png' is created in the
|
---|
| 564 | current directory.
|
---|
[709] | 565 | orientation: optional parameter for postscript only (not eps).
|
---|
| 566 | 'landscape', 'portrait' or None (default) are valid.
|
---|
| 567 | If None is choosen for 'ps' output, the plot is
|
---|
| 568 | automatically oriented to fill the page.
|
---|
[710] | 569 | dpi: The dpi of the output non-ps plot
|
---|
[377] | 570 | """
|
---|
[709] | 571 | self._plotter.save(filename,orientation,dpi)
|
---|
[377] | 572 | return
|
---|
[709] | 573 |
|
---|
[257] | 574 |
|
---|
[1698] | 575 | def set_mask(self, mask=None, selection=None, refresh=True):
|
---|
[525] | 576 | """
|
---|
[734] | 577 | Set a plotting mask for a specific polarization.
|
---|
| 578 | This is useful for masking out "noise" Pangle outside a source.
|
---|
| 579 | Parameters:
|
---|
[920] | 580 | mask: a mask from scantable.create_mask
|
---|
| 581 | selection: the spectra to apply the mask to.
|
---|
[1698] | 582 | refresh: True (default) or False. If True, the plot is
|
---|
| 583 | replotted based on the new parameter setting(s).
|
---|
| 584 | Otherwise,the parameter(s) are set without replotting.
|
---|
[734] | 585 | Example:
|
---|
[920] | 586 | select = selector()
|
---|
| 587 | select.setpolstrings("Pangle")
|
---|
| 588 | plotter.set_mask(mymask, select)
|
---|
[734] | 589 | """
|
---|
[710] | 590 | if not self._data:
|
---|
[920] | 591 | msg = "Can only set mask after a first call to plot()"
|
---|
[753] | 592 | if rcParams['verbose']:
|
---|
[1612] | 593 | #print msg
|
---|
[1614] | 594 | asaplog.push( msg )
|
---|
| 595 | print_log( 'ERROR' )
|
---|
[762] | 596 | return
|
---|
[753] | 597 | else:
|
---|
[762] | 598 | raise RuntimeError(msg)
|
---|
[920] | 599 | if len(mask):
|
---|
| 600 | if isinstance(mask, list) or isinstance(mask, tuple):
|
---|
| 601 | self._usermask = array(mask)
|
---|
[710] | 602 | else:
|
---|
[920] | 603 | self._usermask = mask
|
---|
| 604 | if mask is None and selection is None:
|
---|
| 605 | self._usermask = []
|
---|
| 606 | self._maskselection = None
|
---|
| 607 | if isinstance(selection, selector):
|
---|
[947] | 608 | self._maskselection = {'b': selection.get_beams(),
|
---|
| 609 | 's': selection.get_scans(),
|
---|
| 610 | 'i': selection.get_ifs(),
|
---|
| 611 | 'p': selection.get_pols(),
|
---|
[920] | 612 | 't': [] }
|
---|
[710] | 613 | else:
|
---|
[920] | 614 | self._maskselection = None
|
---|
[1698] | 615 | if refresh: self.plot(self._data)
|
---|
[710] | 616 |
|
---|
[709] | 617 | def _slice_indeces(self, data):
|
---|
| 618 | mn = self._minmaxx[0]
|
---|
| 619 | mx = self._minmaxx[1]
|
---|
| 620 | asc = data[0] < data[-1]
|
---|
| 621 | start=0
|
---|
| 622 | end = len(data)-1
|
---|
| 623 | inc = 1
|
---|
| 624 | if not asc:
|
---|
| 625 | start = len(data)-1
|
---|
| 626 | end = 0
|
---|
| 627 | inc = -1
|
---|
| 628 | # find min index
|
---|
[1562] | 629 | #while start > 0 and data[start] < mn:
|
---|
| 630 | # start+= inc
|
---|
| 631 | minind=start
|
---|
| 632 | for ind in xrange(start,end+inc,inc):
|
---|
| 633 | if data[ind] > mn: break
|
---|
| 634 | minind=ind
|
---|
[709] | 635 | # find max index
|
---|
[1562] | 636 | #while end > 0 and data[end] > mx:
|
---|
| 637 | # end-=inc
|
---|
| 638 | #if end > 0: end +=1
|
---|
| 639 | maxind=end
|
---|
| 640 | for ind in xrange(end,start-inc,-inc):
|
---|
| 641 | if data[ind] < mx: break
|
---|
| 642 | maxind=ind
|
---|
| 643 | start=minind
|
---|
| 644 | end=maxind
|
---|
[709] | 645 | if start > end:
|
---|
[1562] | 646 | return end,start+1
|
---|
| 647 | elif start < end:
|
---|
| 648 | return start,end+1
|
---|
| 649 | else:
|
---|
| 650 | return start,end
|
---|
[709] | 651 |
|
---|
[710] | 652 | def _reset(self):
|
---|
[920] | 653 | self._usermask = []
|
---|
[710] | 654 | self._usermaskspectra = None
|
---|
[920] | 655 | self.set_selection(None, False)
|
---|
| 656 |
|
---|
| 657 | def _plot(self, scan):
|
---|
[947] | 658 | savesel = scan.get_selection()
|
---|
| 659 | sel = savesel + self._selection
|
---|
| 660 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
| 661 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
---|
| 662 | order = [d0[self._panelling],d0[self._stacking]]
|
---|
| 663 | sel.set_order(order)
|
---|
| 664 | scan.set_selection(sel)
|
---|
[920] | 665 | d = {'b': scan.getbeam, 's': scan.getscan,
|
---|
| 666 | 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime }
|
---|
| 667 |
|
---|
[1148] | 668 | polmodes = dict(zip(self._selection.get_pols(),
|
---|
| 669 | self._selection.get_poltypes()))
|
---|
| 670 | # this returns either a tuple of numbers or a length (ncycles)
|
---|
| 671 | # convert this into lengths
|
---|
| 672 | n0,nstack0 = self._get_selected_n(scan)
|
---|
| 673 | if isinstance(n0, int): n = n0
|
---|
[1175] | 674 | else: n = len(n0)
|
---|
[1148] | 675 | if isinstance(nstack0, int): nstack = nstack0
|
---|
[1175] | 676 | else: nstack = len(nstack0)
|
---|
[998] | 677 | maxpanel, maxstack = 16,8
|
---|
[920] | 678 | if n > maxpanel or nstack > maxstack:
|
---|
[1148] | 679 | maxn = 0
|
---|
| 680 | if nstack > maxstack: maxn = maxstack
|
---|
| 681 | if n > maxpanel: maxn = maxpanel
|
---|
[920] | 682 | msg ="Scan to be plotted contains more than %d selections.\n" \
|
---|
[1148] | 683 | "Selecting first %d selections..." % (maxn, maxn)
|
---|
[920] | 684 | asaplog.push(msg)
|
---|
[1614] | 685 | print_log('WARN')
|
---|
[920] | 686 | n = min(n,maxpanel)
|
---|
[998] | 687 | nstack = min(nstack,maxstack)
|
---|
[920] | 688 | if n > 1:
|
---|
| 689 | ganged = rcParams['plotter.ganged']
|
---|
[1446] | 690 | if self._panelling == 'i':
|
---|
| 691 | ganged = False
|
---|
[920] | 692 | if self._rows and self._cols:
|
---|
| 693 | n = min(n,self._rows*self._cols)
|
---|
| 694 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
---|
| 695 | nplots=n,ganged=ganged)
|
---|
| 696 | else:
|
---|
| 697 | self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged)
|
---|
| 698 | else:
|
---|
| 699 | self._plotter.set_panels()
|
---|
| 700 | r=0
|
---|
| 701 | nr = scan.nrow()
|
---|
| 702 | a0,b0 = -1,-1
|
---|
| 703 | allxlim = []
|
---|
[1018] | 704 | allylim = []
|
---|
[920] | 705 | newpanel=True
|
---|
| 706 | panelcount,stackcount = 0,0
|
---|
[1002] | 707 | while r < nr:
|
---|
[920] | 708 | a = d[self._panelling](r)
|
---|
| 709 | b = d[self._stacking](r)
|
---|
| 710 | if a > a0 and panelcount < n:
|
---|
| 711 | if n > 1:
|
---|
| 712 | self._plotter.subplot(panelcount)
|
---|
| 713 | self._plotter.palette(0)
|
---|
| 714 | #title
|
---|
| 715 | xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
| 716 | or scan._getabcissalabel()
|
---|
| 717 | ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
| 718 | or scan._get_ordinate_label()
|
---|
| 719 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 720 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 721 | lbl = self._get_label(scan, r, self._panelling, self._title)
|
---|
| 722 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
| 723 | if 0 <= panelcount < len(lbl):
|
---|
| 724 | lbl = lbl[panelcount]
|
---|
| 725 | else:
|
---|
| 726 | # get default label
|
---|
| 727 | lbl = self._get_label(scan, r, self._panelling, None)
|
---|
| 728 | self._plotter.set_axes('title',lbl)
|
---|
| 729 | newpanel = True
|
---|
| 730 | stackcount =0
|
---|
| 731 | panelcount += 1
|
---|
| 732 | if (b > b0 or newpanel) and stackcount < nstack:
|
---|
| 733 | y = []
|
---|
| 734 | if len(polmodes):
|
---|
| 735 | y = scan._getspectrum(r, polmodes[scan.getpol(r)])
|
---|
| 736 | else:
|
---|
| 737 | y = scan._getspectrum(r)
|
---|
| 738 | m = scan._getmask(r)
|
---|
[1146] | 739 | from matplotlib.numerix import logical_not, logical_and
|
---|
[920] | 740 | if self._maskselection and len(self._usermask) == len(m):
|
---|
| 741 | if d[self._stacking](r) in self._maskselection[self._stacking]:
|
---|
| 742 | m = logical_and(m, self._usermask)
|
---|
| 743 | x = scan._getabcissa(r)
|
---|
[1146] | 744 | from matplotlib.numerix import ma, array
|
---|
[1116] | 745 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
---|
[920] | 746 | if self._minmaxx is not None:
|
---|
| 747 | s,e = self._slice_indeces(x)
|
---|
| 748 | x = x[s:e]
|
---|
| 749 | y = y[s:e]
|
---|
[1096] | 750 | if len(x) > 1024 and rcParams['plotter.decimate']:
|
---|
| 751 | fac = len(x)/1024
|
---|
[920] | 752 | x = x[::fac]
|
---|
| 753 | y = y[::fac]
|
---|
| 754 | llbl = self._get_label(scan, r, self._stacking, self._lmap)
|
---|
| 755 | if isinstance(llbl, list) or isinstance(llbl, tuple):
|
---|
| 756 | if 0 <= stackcount < len(llbl):
|
---|
| 757 | # use user label
|
---|
| 758 | llbl = llbl[stackcount]
|
---|
| 759 | else:
|
---|
| 760 | # get default label
|
---|
| 761 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
| 762 | self._plotter.set_line(label=llbl)
|
---|
[1023] | 763 | plotit = self._plotter.plot
|
---|
| 764 | if self._hist: plotit = self._plotter.hist
|
---|
[1146] | 765 | if len(x) > 0:
|
---|
| 766 | plotit(x,y)
|
---|
| 767 | xlim= self._minmaxx or [min(x),max(x)]
|
---|
| 768 | allxlim += xlim
|
---|
| 769 | ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)]
|
---|
| 770 | allylim += ylim
|
---|
[1562] | 771 | else:
|
---|
| 772 | xlim = self._minmaxx or []
|
---|
| 773 | allxlim += xlim
|
---|
| 774 | ylim= self._minmaxy or []
|
---|
| 775 | allylim += ylim
|
---|
[920] | 776 | stackcount += 1
|
---|
| 777 | # last in colour stack -> autoscale x
|
---|
[1562] | 778 | if stackcount == nstack and len(allxlim) > 0:
|
---|
[920] | 779 | allxlim.sort()
|
---|
[1446] | 780 | self._plotter.subplots[panelcount-1]['axes'].set_xlim([allxlim[0],allxlim[-1]])
|
---|
[920] | 781 | # clear
|
---|
| 782 | allxlim =[]
|
---|
| 783 |
|
---|
| 784 | newpanel = False
|
---|
| 785 | a0=a
|
---|
| 786 | b0=b
|
---|
| 787 | # ignore following rows
|
---|
| 788 | if (panelcount == n) and (stackcount == nstack):
|
---|
[1018] | 789 | # last panel -> autoscale y if ganged
|
---|
[1562] | 790 | if rcParams['plotter.ganged'] and len(allylim) > 0:
|
---|
[1018] | 791 | allylim.sort()
|
---|
| 792 | self._plotter.set_limits(ylim=[allylim[0],allylim[-1]])
|
---|
[998] | 793 | break
|
---|
[920] | 794 | r+=1 # next row
|
---|
[947] | 795 | #reset the selector to the scantable's original
|
---|
| 796 | scan.set_selection(savesel)
|
---|
[920] | 797 |
|
---|
| 798 | def set_selection(self, selection=None, refresh=True):
|
---|
[1698] | 799 | """
|
---|
| 800 | Parameters:
|
---|
| 801 | selection: a selector object (default unset the selection)
|
---|
| 802 | refresh: True (default) or False. If True, the plot is
|
---|
| 803 | replotted based on the new parameter setting(s).
|
---|
| 804 | Otherwise,the parameter(s) are set without replotting.
|
---|
| 805 | """
|
---|
[947] | 806 | self._selection = isinstance(selection,selector) and selection or selector()
|
---|
[920] | 807 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO',
|
---|
| 808 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' }
|
---|
| 809 | order = [d0[self._panelling],d0[self._stacking]]
|
---|
[947] | 810 | self._selection.set_order(order)
|
---|
[1698] | 811 | if refresh and self._data: self.plot(self._data)
|
---|
[920] | 812 |
|
---|
| 813 | def _get_selected_n(self, scan):
|
---|
[1148] | 814 | d1 = {'b': scan.getbeamnos, 's': scan.getscannos,
|
---|
| 815 | 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle }
|
---|
| 816 | d2 = { 'b': self._selection.get_beams(),
|
---|
| 817 | 's': self._selection.get_scans(),
|
---|
| 818 | 'i': self._selection.get_ifs(),
|
---|
| 819 | 'p': self._selection.get_pols(),
|
---|
| 820 | 't': self._selection.get_cycles() }
|
---|
[920] | 821 | n = d2[self._panelling] or d1[self._panelling]()
|
---|
| 822 | nstack = d2[self._stacking] or d1[self._stacking]()
|
---|
| 823 | return n,nstack
|
---|
| 824 |
|
---|
| 825 | def _get_label(self, scan, row, mode, userlabel=None):
|
---|
[1153] | 826 | if isinstance(userlabel, list) and len(userlabel) == 0:
|
---|
| 827 | userlabel = " "
|
---|
[947] | 828 | pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes()))
|
---|
[920] | 829 | if len(pms):
|
---|
| 830 | poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)])
|
---|
| 831 | else:
|
---|
| 832 | poleval = scan._getpollabel(scan.getpol(row),scan.poltype())
|
---|
| 833 | d = {'b': "Beam "+str(scan.getbeam(row)),
|
---|
[1714] | 834 | #'s': scan._getsourcename(row),
|
---|
| 835 | 's': "Scan "+str(scan.getscan(row))+\
|
---|
| 836 | " ("+str(scan._getsourcename(row))+")",
|
---|
[920] | 837 | 'i': "IF"+str(scan.getif(row)),
|
---|
[964] | 838 | 'p': poleval,
|
---|
[1175] | 839 | 't': str(scan.get_time(row)) }
|
---|
[920] | 840 | return userlabel or d[mode]
|
---|
[1153] | 841 |
|
---|
[1446] | 842 | def plotazel(self, scan=None, outfile=None):
|
---|
[1389] | 843 | """
|
---|
| 844 | plot azimuth and elevation versus time of a scantable
|
---|
| 845 | """
|
---|
| 846 | import pylab as PL
|
---|
| 847 | from matplotlib.dates import DateFormatter, timezone, HourLocator, MinuteLocator, DayLocator
|
---|
| 848 | from matplotlib.ticker import MultipleLocator
|
---|
| 849 | from matplotlib.numerix import array, pi
|
---|
| 850 | self._data = scan
|
---|
[1446] | 851 | self._outfile = outfile
|
---|
[1457] | 852 | dates = self._data.get_time(asdatetime=True)
|
---|
[1389] | 853 | t = PL.date2num(dates)
|
---|
| 854 | tz = timezone('UTC')
|
---|
| 855 | PL.cla()
|
---|
[1446] | 856 | #PL.ioff()
|
---|
[1389] | 857 | PL.clf()
|
---|
| 858 | tdel = max(t) - min(t)
|
---|
| 859 | ax = PL.subplot(2,1,1)
|
---|
| 860 | el = array(self._data.get_elevation())*180./pi
|
---|
| 861 | PL.ylabel('El [deg.]')
|
---|
| 862 | dstr = dates[0].strftime('%Y/%m/%d')
|
---|
| 863 | if tdel > 1.0:
|
---|
| 864 | dstr2 = dates[len(dates)-1].strftime('%Y/%m/%d')
|
---|
| 865 | dstr = dstr + " - " + dstr2
|
---|
| 866 | majloc = DayLocator()
|
---|
| 867 | minloc = HourLocator(range(0,23,12))
|
---|
| 868 | timefmt = DateFormatter("%b%d")
|
---|
| 869 | else:
|
---|
| 870 | timefmt = DateFormatter('%H')
|
---|
| 871 | majloc = HourLocator()
|
---|
| 872 | minloc = MinuteLocator(20)
|
---|
| 873 | PL.title(dstr)
|
---|
[1446] | 874 |
|
---|
| 875 | if tdel == 0.0:
|
---|
| 876 | th = (t - PL.floor(t))*24.0
|
---|
| 877 | PL.plot(th,el,'o',markersize=2, markerfacecolor='b', markeredgecolor='b')
|
---|
| 878 | else:
|
---|
| 879 | PL.plot_date(t,el,'o', markersize=2, markerfacecolor='b', markeredgecolor='b',tz=tz)
|
---|
| 880 | #ax.grid(True)
|
---|
| 881 | ax.xaxis.set_major_formatter(timefmt)
|
---|
| 882 | ax.xaxis.set_major_locator(majloc)
|
---|
| 883 | ax.xaxis.set_minor_locator(minloc)
|
---|
[1389] | 884 | ax.yaxis.grid(True)
|
---|
| 885 | yloc = MultipleLocator(30)
|
---|
| 886 | ax.set_ylim(0,90)
|
---|
| 887 | ax.yaxis.set_major_locator(yloc)
|
---|
| 888 | if tdel > 1.0:
|
---|
| 889 | labels = ax.get_xticklabels()
|
---|
| 890 | # PL.setp(labels, fontsize=10, rotation=45)
|
---|
| 891 | PL.setp(labels, fontsize=10)
|
---|
[1446] | 892 |
|
---|
[1389] | 893 | # Az plot
|
---|
| 894 | az = array(self._data.get_azimuth())*180./pi
|
---|
| 895 | if min(az) < 0:
|
---|
| 896 | for irow in range(len(az)):
|
---|
| 897 | if az[irow] < 0: az[irow] += 360.0
|
---|
| 898 |
|
---|
| 899 | ax = PL.subplot(2,1,2)
|
---|
[1446] | 900 | #PL.xlabel('Time (UT [hour])')
|
---|
[1389] | 901 | PL.ylabel('Az [deg.]')
|
---|
[1446] | 902 | if tdel == 0.0:
|
---|
| 903 | PL.plot(th,az,'o',markersize=2, markeredgecolor='b',markerfacecolor='b')
|
---|
| 904 | else:
|
---|
| 905 | PL.plot_date(t,az,'o', markersize=2,markeredgecolor='b',markerfacecolor='b',tz=tz)
|
---|
| 906 | ax.xaxis.set_major_formatter(timefmt)
|
---|
| 907 | ax.xaxis.set_major_locator(majloc)
|
---|
| 908 | ax.xaxis.set_minor_locator(minloc)
|
---|
| 909 | #ax.grid(True)
|
---|
[1389] | 910 | ax.set_ylim(0,360)
|
---|
| 911 | ax.yaxis.grid(True)
|
---|
| 912 | #hfmt = DateFormatter('%H')
|
---|
| 913 | #hloc = HourLocator()
|
---|
| 914 | yloc = MultipleLocator(60)
|
---|
| 915 | ax.yaxis.set_major_locator(yloc)
|
---|
| 916 | if tdel > 1.0:
|
---|
| 917 | labels = ax.get_xticklabels()
|
---|
| 918 | PL.setp(labels, fontsize=10)
|
---|
[1446] | 919 | PL.xlabel('Time (UT [day])')
|
---|
| 920 | else:
|
---|
| 921 | PL.xlabel('Time (UT [hour])')
|
---|
| 922 |
|
---|
| 923 | #PL.ion()
|
---|
[1389] | 924 | PL.draw()
|
---|
[1446] | 925 | if (self._outfile is not None):
|
---|
| 926 | PL.savefig(self._outfile)
|
---|
[1389] | 927 |
|
---|
[1446] | 928 | def plotpointing(self, scan=None, outfile=None):
|
---|
[1389] | 929 | """
|
---|
| 930 | plot telescope pointings
|
---|
| 931 | """
|
---|
| 932 | import pylab as PL
|
---|
| 933 | from matplotlib.dates import DateFormatter, timezone
|
---|
| 934 | from matplotlib.ticker import MultipleLocator
|
---|
| 935 | from matplotlib.numerix import array, pi, zeros
|
---|
| 936 | self._data = scan
|
---|
[1446] | 937 | self._outfile = outfile
|
---|
[1389] | 938 | dir = array(self._data.get_directionval()).transpose()
|
---|
| 939 | ra = dir[0]*180./pi
|
---|
| 940 | dec = dir[1]*180./pi
|
---|
| 941 | PL.cla()
|
---|
[1446] | 942 | #PL.ioff()
|
---|
[1389] | 943 | PL.clf()
|
---|
| 944 | ax = PL.axes([0.1,0.1,0.8,0.8])
|
---|
| 945 | ax = PL.axes([0.1,0.1,0.8,0.8])
|
---|
| 946 | ax.set_aspect('equal')
|
---|
| 947 | PL.plot(ra,dec, 'b,')
|
---|
| 948 | PL.xlabel('RA [deg.]')
|
---|
| 949 | PL.ylabel('Declination [deg.]')
|
---|
| 950 | PL.title('Telescope pointings')
|
---|
| 951 | [xmin,xmax,ymin,ymax] = PL.axis()
|
---|
| 952 | PL.axis([xmax,xmin,ymin,ymax])
|
---|
[1446] | 953 | #PL.ion()
|
---|
[1389] | 954 | PL.draw()
|
---|
[1446] | 955 | if (self._outfile is not None):
|
---|
| 956 | PL.savefig(self._outfile)
|
---|
[1389] | 957 |
|
---|
[1446] | 958 | # plot total power data
|
---|
| 959 | # plotting in time is not yet implemented..
|
---|
| 960 | def plottp(self, scan=None, outfile=None):
|
---|
| 961 | if self._plotter.is_dead:
|
---|
| 962 | self._plotter = self._newplotter()
|
---|
| 963 | self._plotter.hold()
|
---|
| 964 | self._plotter.clear()
|
---|
| 965 | from asap import scantable
|
---|
| 966 | if not self._data and not scan:
|
---|
| 967 | msg = "Input is not a scantable"
|
---|
| 968 | if rcParams['verbose']:
|
---|
[1612] | 969 | #print msg
|
---|
[1614] | 970 | asaplog.push( msg )
|
---|
| 971 | print_log( 'ERROR' )
|
---|
[1446] | 972 | return
|
---|
| 973 | raise TypeError(msg)
|
---|
| 974 | if isinstance(scan, scantable):
|
---|
| 975 | if self._data is not None:
|
---|
| 976 | if scan != self._data:
|
---|
| 977 | self._data = scan
|
---|
| 978 | # reset
|
---|
| 979 | self._reset()
|
---|
| 980 | else:
|
---|
| 981 | self._data = scan
|
---|
| 982 | self._reset()
|
---|
| 983 | # ranges become invalid when abcissa changes?
|
---|
| 984 | #if self._abcunit and self._abcunit != self._data.get_unit():
|
---|
| 985 | # self._minmaxx = None
|
---|
| 986 | # self._minmaxy = None
|
---|
| 987 | # self._abcunit = self._data.get_unit()
|
---|
| 988 | # self._datamask = None
|
---|
| 989 | self._plottp(self._data)
|
---|
| 990 | if self._minmaxy is not None:
|
---|
| 991 | self._plotter.set_limits(ylim=self._minmaxy)
|
---|
| 992 | self._plotter.release()
|
---|
| 993 | self._plotter.tidy()
|
---|
| 994 | self._plotter.show(hardrefresh=False)
|
---|
| 995 | print_log()
|
---|
| 996 | return
|
---|
| 997 |
|
---|
| 998 | def _plottp(self,scan):
|
---|
| 999 | """
|
---|
| 1000 | private method for plotting total power data
|
---|
| 1001 | """
|
---|
| 1002 | from matplotlib.numerix import ma, array, arange, logical_not
|
---|
| 1003 | r=0
|
---|
| 1004 | nr = scan.nrow()
|
---|
| 1005 | a0,b0 = -1,-1
|
---|
| 1006 | allxlim = []
|
---|
| 1007 | allylim = []
|
---|
| 1008 | y=[]
|
---|
| 1009 | self._plotter.set_panels()
|
---|
| 1010 | self._plotter.palette(0)
|
---|
| 1011 | #title
|
---|
| 1012 | #xlab = self._abcissa and self._abcissa[panelcount] \
|
---|
| 1013 | # or scan._getabcissalabel()
|
---|
| 1014 | #ylab = self._ordinate and self._ordinate[panelcount] \
|
---|
| 1015 | # or scan._get_ordinate_label()
|
---|
| 1016 | xlab = self._abcissa or 'row number' #or Time
|
---|
| 1017 | ylab = self._ordinate or scan._get_ordinate_label()
|
---|
| 1018 | self._plotter.set_axes('xlabel',xlab)
|
---|
| 1019 | self._plotter.set_axes('ylabel',ylab)
|
---|
| 1020 | lbl = self._get_label(scan, r, 's', self._title)
|
---|
| 1021 | if isinstance(lbl, list) or isinstance(lbl, tuple):
|
---|
| 1022 | # if 0 <= panelcount < len(lbl):
|
---|
| 1023 | # lbl = lbl[panelcount]
|
---|
| 1024 | # else:
|
---|
| 1025 | # get default label
|
---|
| 1026 | lbl = self._get_label(scan, r, self._panelling, None)
|
---|
| 1027 | self._plotter.set_axes('title',lbl)
|
---|
| 1028 | y=array(scan._get_column(scan._getspectrum,-1))
|
---|
| 1029 | m = array(scan._get_column(scan._getmask,-1))
|
---|
| 1030 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False)))
|
---|
| 1031 | x = arange(len(y))
|
---|
| 1032 | # try to handle spectral data somewhat...
|
---|
| 1033 | l,m = y.shape
|
---|
| 1034 | if m > 1:
|
---|
| 1035 | y=y.mean(axis=1)
|
---|
| 1036 | plotit = self._plotter.plot
|
---|
| 1037 | llbl = self._get_label(scan, r, self._stacking, None)
|
---|
| 1038 | self._plotter.set_line(label=llbl)
|
---|
| 1039 | if len(x) > 0:
|
---|
| 1040 | plotit(x,y)
|
---|
| 1041 |
|
---|
| 1042 |
|
---|
| 1043 | # forwards to matplotlib.Figure.text
|
---|
| 1044 | def figtext(self, *args, **kwargs):
|
---|
| 1045 | """
|
---|
| 1046 | Add text to figure at location x,y (relative 0-1 coords).
|
---|
| 1047 | This method forwards *args and **kwargs to a Matplotlib method,
|
---|
| 1048 | matplotlib.Figure.text.
|
---|
| 1049 | See the method help for detailed information.
|
---|
| 1050 | """
|
---|
| 1051 | self._plotter.text(*args, **kwargs)
|
---|
| 1052 | # end matplotlib.Figure.text forwarding function
|
---|
| 1053 |
|
---|