1 | from asap.scantable import scantable
|
---|
2 | from asap import rcParams
|
---|
3 | from asap import print_log
|
---|
4 | from asap import selector
|
---|
5 | from asap import asaplog
|
---|
6 | from asap import asaplotgui
|
---|
7 |
|
---|
8 | def average_time(*args, **kwargs):
|
---|
9 | """
|
---|
10 | Return the (time) average of a scan or list of scans. [in channels only]
|
---|
11 | The cursor of the output scan is set to 0
|
---|
12 | Parameters:
|
---|
13 | one scan or comma separated scans or a list of scans
|
---|
14 | mask: an optional mask (only used for 'var' and 'tsys' weighting)
|
---|
15 | scanav: True averages each scan separately.
|
---|
16 | False (default) averages all scans together,
|
---|
17 | weight: Weighting scheme.
|
---|
18 | 'none' (mean no weight)
|
---|
19 | 'var' (1/var(spec) weighted)
|
---|
20 | 'tsys' (1/Tsys**2 weighted)
|
---|
21 | 'tint' (integration time weighted)
|
---|
22 | 'tintsys' (Tint/Tsys**2)
|
---|
23 | 'median' ( median averaging)
|
---|
24 | align: align the spectra in velocity before averaging. It takes
|
---|
25 | the time of the first spectrum in the first scantable
|
---|
26 | as reference time.
|
---|
27 | Example:
|
---|
28 | # return a time averaged scan from scana and scanb
|
---|
29 | # without using a mask
|
---|
30 | scanav = average_time(scana,scanb)
|
---|
31 | # or equivalent
|
---|
32 | # scanav = average_time([scana, scanb])
|
---|
33 | # return the (time) averaged scan, i.e. the average of
|
---|
34 | # all correlator cycles
|
---|
35 | scanav = average_time(scan, scanav=True)
|
---|
36 | """
|
---|
37 | scanav = False
|
---|
38 | if kwargs.has_key('scanav'):
|
---|
39 | scanav = kwargs.get('scanav')
|
---|
40 | weight = 'tint'
|
---|
41 | if kwargs.has_key('weight'):
|
---|
42 | weight = kwargs.get('weight')
|
---|
43 | mask = ()
|
---|
44 | if kwargs.has_key('mask'):
|
---|
45 | mask = kwargs.get('mask')
|
---|
46 | align = False
|
---|
47 | if kwargs.has_key('align'):
|
---|
48 | align = kwargs.get('align')
|
---|
49 | compel = False
|
---|
50 | if kwargs.has_key('compel'):
|
---|
51 | compel = kwargs.get('compel')
|
---|
52 | varlist = vars()
|
---|
53 | if isinstance(args[0],list):
|
---|
54 | lst = args[0]
|
---|
55 | elif isinstance(args[0],tuple):
|
---|
56 | lst = list(args[0])
|
---|
57 | else:
|
---|
58 | lst = list(args)
|
---|
59 |
|
---|
60 | del varlist["kwargs"]
|
---|
61 | varlist["args"] = "%d scantables" % len(lst)
|
---|
62 | # need special formatting here for history...
|
---|
63 |
|
---|
64 | from asap._asap import stmath
|
---|
65 | stm = stmath()
|
---|
66 | for s in lst:
|
---|
67 | if not isinstance(s,scantable):
|
---|
68 | msg = "Please give a list of scantables"
|
---|
69 | if rcParams['verbose']:
|
---|
70 | #print msg
|
---|
71 | asaplog.push(msg)
|
---|
72 | print_log('ERROR')
|
---|
73 | return
|
---|
74 | else:
|
---|
75 | raise TypeError(msg)
|
---|
76 | if scanav: scanav = "SCAN"
|
---|
77 | else: scanav = "NONE"
|
---|
78 | alignedlst = []
|
---|
79 | if align:
|
---|
80 | refepoch = lst[0].get_time(0)
|
---|
81 | for scan in lst:
|
---|
82 | alignedlst.append(scan.freq_align(refepoch,insitu=False))
|
---|
83 | else:
|
---|
84 | alignedlst = lst
|
---|
85 | if weight.upper() == 'MEDIAN':
|
---|
86 | # median doesn't support list of scantables - merge first
|
---|
87 | merged = None
|
---|
88 | if len(alignedlst) > 1:
|
---|
89 | merged = merge(alignedlst)
|
---|
90 | else:
|
---|
91 | merged = alignedlst[0]
|
---|
92 | s = scantable(stm._averagechannel(merged, 'MEDIAN', scanav))
|
---|
93 | del merged
|
---|
94 | else:
|
---|
95 | #s = scantable(stm._average(alignedlst, mask, weight.upper(), scanav))
|
---|
96 | s = scantable(stm._new_average(alignedlst, compel, mask, weight.upper(), scanav))
|
---|
97 | s._add_history("average_time",varlist)
|
---|
98 | print_log()
|
---|
99 | return s
|
---|
100 |
|
---|
101 | def quotient(source, reference, preserve=True):
|
---|
102 | """
|
---|
103 | Return the quotient of a 'source' (signal) scan and a 'reference' scan.
|
---|
104 | The reference can have just one scan, even if the signal has many. Otherwise
|
---|
105 | they must have the same number of scans.
|
---|
106 | The cursor of the output scan is set to 0
|
---|
107 | Parameters:
|
---|
108 | source: the 'on' scan
|
---|
109 | reference: the 'off' scan
|
---|
110 | preserve: you can preserve (default) the continuum or
|
---|
111 | remove it. The equations used are
|
---|
112 | preserve: Output = Toff * (on/off) - Toff
|
---|
113 | remove: Output = Toff * (on/off) - Ton
|
---|
114 | """
|
---|
115 | varlist = vars()
|
---|
116 | from asap._asap import stmath
|
---|
117 | stm = stmath()
|
---|
118 | stm._setinsitu(False)
|
---|
119 | s = scantable(stm._quotient(source, reference, preserve))
|
---|
120 | s._add_history("quotient",varlist)
|
---|
121 | print_log()
|
---|
122 | return s
|
---|
123 |
|
---|
124 | def dototalpower(calon, caloff, tcalval=0.0):
|
---|
125 | """
|
---|
126 | Do calibration for CAL on,off signals.
|
---|
127 | Adopted from GBTIDL dototalpower
|
---|
128 | Parameters:
|
---|
129 | calon: the 'cal on' subintegration
|
---|
130 | caloff: the 'cal off' subintegration
|
---|
131 | tcalval: user supplied Tcal value
|
---|
132 | """
|
---|
133 | varlist = vars()
|
---|
134 | from asap._asap import stmath
|
---|
135 | stm = stmath()
|
---|
136 | stm._setinsitu(False)
|
---|
137 | s = scantable(stm._dototalpower(calon, caloff, tcalval))
|
---|
138 | s._add_history("dototalpower",varlist)
|
---|
139 | print_log()
|
---|
140 | return s
|
---|
141 |
|
---|
142 | def dosigref(sig, ref, smooth, tsysval=0.0, tauval=0.0):
|
---|
143 | """
|
---|
144 | Calculate a quotient (sig-ref/ref * Tsys)
|
---|
145 | Adopted from GBTIDL dosigref
|
---|
146 | Parameters:
|
---|
147 | sig: on source data
|
---|
148 | ref: reference data
|
---|
149 | smooth: width of box car smoothing for reference
|
---|
150 | tsysval: user specified Tsys (scalar only)
|
---|
151 | tauval: user specified Tau (required if tsysval is set)
|
---|
152 | """
|
---|
153 | varlist = vars()
|
---|
154 | from asap._asap import stmath
|
---|
155 | stm = stmath()
|
---|
156 | stm._setinsitu(False)
|
---|
157 | s = scantable(stm._dosigref(sig, ref, smooth, tsysval, tauval))
|
---|
158 | s._add_history("dosigref",varlist)
|
---|
159 | print_log()
|
---|
160 | return s
|
---|
161 |
|
---|
162 | def calps(scantab, scannos, smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
163 | """
|
---|
164 | Calibrate GBT position switched data
|
---|
165 | Adopted from GBTIDL getps
|
---|
166 | Currently calps identify the scans as position switched data if they
|
---|
167 | contain '_ps' in the source name. The data must contains 'CAL' signal
|
---|
168 | on/off in each integration. To identify 'CAL' on state, the word, 'calon'
|
---|
169 | need to be present in the source name field.
|
---|
170 | (GBT MS data reading process to scantable automatically append these
|
---|
171 | id names to the source names)
|
---|
172 |
|
---|
173 | Parameters:
|
---|
174 | scantab: scantable
|
---|
175 | scannos: list of scan numbers
|
---|
176 | smooth: optional box smoothing order for the reference
|
---|
177 | (default is 1 = no smoothing)
|
---|
178 | tsysval: optional user specified Tsys (default is 0.0,
|
---|
179 | use Tsys in the data)
|
---|
180 | tauval: optional user specified Tau
|
---|
181 | tcalval: optional user specified Tcal (default is 0.0,
|
---|
182 | use Tcal value in the data)
|
---|
183 | """
|
---|
184 | varlist = vars()
|
---|
185 | # check for the appropriate data
|
---|
186 | s = scantab.get_scan('*_ps*')
|
---|
187 | if s is None:
|
---|
188 | msg = "The input data appear to contain no position-switch mode data."
|
---|
189 | if rcParams['verbose']:
|
---|
190 | #print msg
|
---|
191 | asaplog.push(msg)
|
---|
192 | print_log('ERROR')
|
---|
193 | return
|
---|
194 | else:
|
---|
195 | raise TypeError(msg)
|
---|
196 | ssub = s.get_scan(scannos)
|
---|
197 | if ssub is None:
|
---|
198 | msg = "No data was found with given scan numbers!"
|
---|
199 | if rcParams['verbose']:
|
---|
200 | #print msg
|
---|
201 | asaplog.push(msg)
|
---|
202 | print_log('ERROR')
|
---|
203 | return
|
---|
204 | else:
|
---|
205 | raise TypeError(msg)
|
---|
206 | ssubon = ssub.get_scan('*calon')
|
---|
207 | ssuboff = ssub.get_scan('*[^calon]')
|
---|
208 | if ssubon.nrow() != ssuboff.nrow():
|
---|
209 | msg = "mismatch in numbers of CAL on/off scans. Cannot calibrate. Check the scan numbers."
|
---|
210 | if rcParams['verbose']:
|
---|
211 | #print msg
|
---|
212 | asaplog.push(msg)
|
---|
213 | print_log('ERROR')
|
---|
214 | return
|
---|
215 | else:
|
---|
216 | raise TypeError(msg)
|
---|
217 | cals = dototalpower(ssubon, ssuboff, tcalval)
|
---|
218 | sig = cals.get_scan('*ps')
|
---|
219 | ref = cals.get_scan('*psr')
|
---|
220 | if sig.nscan() != ref.nscan():
|
---|
221 | msg = "mismatch in numbers of on/off scans. Cannot calibrate. Check the scan numbers."
|
---|
222 | if rcParams['verbose']:
|
---|
223 | #print msg
|
---|
224 | asaplog.push(msg)
|
---|
225 | print_log('ERROR')
|
---|
226 | return
|
---|
227 | else:
|
---|
228 | raise TypeError(msg)
|
---|
229 |
|
---|
230 | #for user supplied Tsys
|
---|
231 | if tsysval>0.0:
|
---|
232 | if tauval<=0.0:
|
---|
233 | msg = "Need to supply a valid tau to use the supplied Tsys"
|
---|
234 | if rcParams['verbose']:
|
---|
235 | #print msg
|
---|
236 | asaplog.push(msg)
|
---|
237 | print_log('ERROR')
|
---|
238 | return
|
---|
239 | else:
|
---|
240 | raise TypeError(msg)
|
---|
241 | else:
|
---|
242 | sig.recalc_azel()
|
---|
243 | ref.recalc_azel()
|
---|
244 | #msg = "Use of user specified Tsys is not fully implemented yet."
|
---|
245 | #if rcParams['verbose']:
|
---|
246 | # print msg
|
---|
247 | # return
|
---|
248 | #else:
|
---|
249 | # raise TypeError(msg)
|
---|
250 | # use get_elevation to get elevation and
|
---|
251 | # calculate a scaling factor using the formula
|
---|
252 | # -> tsys use to dosigref
|
---|
253 |
|
---|
254 | #ress = dosigref(sig, ref, smooth, tsysval)
|
---|
255 | ress = dosigref(sig, ref, smooth, tsysval, tauval)
|
---|
256 | ###
|
---|
257 | if verify:
|
---|
258 | # get data
|
---|
259 | import numpy
|
---|
260 | precal={}
|
---|
261 | postcal=[]
|
---|
262 | keys=['ps','ps_calon','psr','psr_calon']
|
---|
263 | ifnos=list(ssub.getifnos())
|
---|
264 | polnos=list(ssub.getpolnos())
|
---|
265 | sel=selector()
|
---|
266 | for i in range(2):
|
---|
267 | ss=ssuboff.get_scan('*'+keys[2*i])
|
---|
268 | ll=[]
|
---|
269 | for j in range(len(ifnos)):
|
---|
270 | for k in range(len(polnos)):
|
---|
271 | sel.set_ifs(ifnos[j])
|
---|
272 | sel.set_polarizations(polnos[k])
|
---|
273 | try:
|
---|
274 | ss.set_selection(sel)
|
---|
275 | except:
|
---|
276 | continue
|
---|
277 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
278 | sel.reset()
|
---|
279 | ss.set_selection()
|
---|
280 | precal[keys[2*i]]=ll
|
---|
281 | del ss
|
---|
282 | ss=ssubon.get_scan('*'+keys[2*i+1])
|
---|
283 | ll=[]
|
---|
284 | for j in range(len(ifnos)):
|
---|
285 | for k in range(len(polnos)):
|
---|
286 | sel.set_ifs(ifnos[j])
|
---|
287 | sel.set_polarizations(polnos[k])
|
---|
288 | try:
|
---|
289 | ss.set_selection(sel)
|
---|
290 | except:
|
---|
291 | continue
|
---|
292 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
293 | sel.reset()
|
---|
294 | ss.set_selection()
|
---|
295 | precal[keys[2*i+1]]=ll
|
---|
296 | del ss
|
---|
297 | for j in range(len(ifnos)):
|
---|
298 | for k in range(len(polnos)):
|
---|
299 | sel.set_ifs(ifnos[j])
|
---|
300 | sel.set_polarizations(polnos[k])
|
---|
301 | try:
|
---|
302 | ress.set_selection(sel)
|
---|
303 | except:
|
---|
304 | continue
|
---|
305 | postcal.append(numpy.array(ress._getspectrum(0)))
|
---|
306 | sel.reset()
|
---|
307 | ress.set_selection()
|
---|
308 | del sel
|
---|
309 | # plot
|
---|
310 | print_log()
|
---|
311 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
312 | print_log('WARN')
|
---|
313 | p=asaplotgui.asaplotgui()
|
---|
314 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
315 | nr=len(ifnos)*len(polnos)
|
---|
316 | titles=[]
|
---|
317 | btics=[]
|
---|
318 | if nr<4:
|
---|
319 | p.set_panels(rows=nr,cols=2,nplots=2*nr,ganged=False)
|
---|
320 | for i in range(2*nr):
|
---|
321 | b=False
|
---|
322 | if i >= 2*nr-2:
|
---|
323 | b=True
|
---|
324 | btics.append(b)
|
---|
325 | elif nr==4:
|
---|
326 | p.set_panels(rows=2,cols=4,nplots=8,ganged=False)
|
---|
327 | for i in range(2*nr):
|
---|
328 | b=False
|
---|
329 | if i >= 2*nr-4:
|
---|
330 | b=True
|
---|
331 | btics.append(b)
|
---|
332 | elif nr<7:
|
---|
333 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
334 | for i in range(2*nr):
|
---|
335 | if i >= 2*nr-4:
|
---|
336 | b=True
|
---|
337 | btics.append(b)
|
---|
338 | else:
|
---|
339 | print_log()
|
---|
340 | asaplog.push('Only first 6 [if,pol] pairs are plotted.')
|
---|
341 | print_log('WARN')
|
---|
342 | nr=6
|
---|
343 | for i in range(2*nr):
|
---|
344 | b=False
|
---|
345 | if i >= 2*nr-4:
|
---|
346 | b=True
|
---|
347 | btics.append(b)
|
---|
348 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
349 | for i in range(nr):
|
---|
350 | p.subplot(2*i)
|
---|
351 | p.color=0
|
---|
352 | title='raw data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
353 | titles.append(title)
|
---|
354 | #p.set_axes('title',title,fontsize=40)
|
---|
355 | ymin=1.0e100
|
---|
356 | ymax=-1.0e100
|
---|
357 | nchan=s.nchan()
|
---|
358 | edge=int(nchan*0.01)
|
---|
359 | for j in range(4):
|
---|
360 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
361 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
362 | ymin=min(ymin,spmin)
|
---|
363 | ymax=max(ymax,spmax)
|
---|
364 | for j in range(4):
|
---|
365 | if i==0:
|
---|
366 | p.set_line(label=keys[j])
|
---|
367 | else:
|
---|
368 | p.legend()
|
---|
369 | p.plot(precal[keys[j]][i])
|
---|
370 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
371 | if not btics[2*i]:
|
---|
372 | p.axes.set_xticks([])
|
---|
373 | p.subplot(2*i+1)
|
---|
374 | p.color=0
|
---|
375 | title='cal data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
376 | titles.append(title)
|
---|
377 | #p.set_axes('title',title)
|
---|
378 | p.legend()
|
---|
379 | ymin=postcal[i][edge:nchan-edge].min()
|
---|
380 | ymax=postcal[i][edge:nchan-edge].max()
|
---|
381 | p.plot(postcal[i])
|
---|
382 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
383 | if not btics[2*i+1]:
|
---|
384 | p.axes.set_xticks([])
|
---|
385 | for i in range(2*nr):
|
---|
386 | p.subplot(i)
|
---|
387 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
388 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
389 | if x.upper() == 'N':
|
---|
390 | p.unmap()
|
---|
391 | del p
|
---|
392 | return scabtab
|
---|
393 | p.unmap()
|
---|
394 | del p
|
---|
395 | ###
|
---|
396 | ress._add_history("calps", varlist)
|
---|
397 | print_log()
|
---|
398 | return ress
|
---|
399 |
|
---|
400 | def calnod(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
401 | """
|
---|
402 | Do full (but a pair of scans at time) processing of GBT Nod data
|
---|
403 | calibration.
|
---|
404 | Adopted from GBTIDL's getnod
|
---|
405 | Parameters:
|
---|
406 | scantab: scantable
|
---|
407 | scannos: a pair of scan numbers, or the first scan number of the pair
|
---|
408 | smooth: box car smoothing order
|
---|
409 | tsysval: optional user specified Tsys value
|
---|
410 | tauval: optional user specified tau value (not implemented yet)
|
---|
411 | tcalval: optional user specified Tcal value
|
---|
412 | """
|
---|
413 | varlist = vars()
|
---|
414 | from asap._asap import stmath
|
---|
415 | stm = stmath()
|
---|
416 | stm._setinsitu(False)
|
---|
417 |
|
---|
418 | # check for the appropriate data
|
---|
419 | s = scantab.get_scan('*_nod*')
|
---|
420 | if s is None:
|
---|
421 | msg = "The input data appear to contain no Nod observing mode data."
|
---|
422 | if rcParams['verbose']:
|
---|
423 | #print msg
|
---|
424 | asaplog.push(msg)
|
---|
425 | print_log('ERROR')
|
---|
426 | return
|
---|
427 | else:
|
---|
428 | raise TypeError(msg)
|
---|
429 |
|
---|
430 | # need check correspondance of each beam with sig-ref ...
|
---|
431 | # check for timestamps, scan numbers, subscan id (not available in
|
---|
432 | # ASAP data format...). Assume 1st scan of the pair (beam 0 - sig
|
---|
433 | # and beam 1 - ref...)
|
---|
434 | # First scan number of paired scans or list of pairs of
|
---|
435 | # scan numbers (has to have even number of pairs.)
|
---|
436 |
|
---|
437 | #data splitting
|
---|
438 | scan1no = scan2no = 0
|
---|
439 |
|
---|
440 | if len(scannos)==1:
|
---|
441 | scan1no = scannos[0]
|
---|
442 | scan2no = scannos[0]+1
|
---|
443 | pairScans = [scan1no, scan2no]
|
---|
444 | else:
|
---|
445 | #if len(scannos)>2:
|
---|
446 | # msg = "calnod can only process a pair of nod scans at time."
|
---|
447 | # if rcParams['verbose']:
|
---|
448 | # print msg
|
---|
449 | # return
|
---|
450 | # else:
|
---|
451 | # raise TypeError(msg)
|
---|
452 | #
|
---|
453 | #if len(scannos)==2:
|
---|
454 | # scan1no = scannos[0]
|
---|
455 | # scan2no = scannos[1]
|
---|
456 | pairScans = list(scannos)
|
---|
457 |
|
---|
458 | if tsysval>0.0:
|
---|
459 | if tauval<=0.0:
|
---|
460 | msg = "Need to supply a valid tau to use the supplied Tsys"
|
---|
461 | if rcParams['verbose']:
|
---|
462 | #print msg
|
---|
463 | asaplog.push(msg)
|
---|
464 | print_log('ERROR')
|
---|
465 | return
|
---|
466 | else:
|
---|
467 | raise TypeError(msg)
|
---|
468 | else:
|
---|
469 | scantab.recalc_azel()
|
---|
470 | resspec = scantable(stm._donod(scantab, pairScans, smooth, tsysval,tauval,tcalval))
|
---|
471 | ###
|
---|
472 | if verify:
|
---|
473 | # get data
|
---|
474 | import numpy
|
---|
475 | precal={}
|
---|
476 | postcal=[]
|
---|
477 | keys=['nod','nod_calon']
|
---|
478 | ifnos=list(scantab.getifnos())
|
---|
479 | polnos=list(scantab.getpolnos())
|
---|
480 | sel=selector()
|
---|
481 | for i in range(2):
|
---|
482 | ss=scantab.get_scan('*'+keys[i])
|
---|
483 | ll=[]
|
---|
484 | ll2=[]
|
---|
485 | for j in range(len(ifnos)):
|
---|
486 | for k in range(len(polnos)):
|
---|
487 | sel.set_ifs(ifnos[j])
|
---|
488 | sel.set_polarizations(polnos[k])
|
---|
489 | sel.set_scans(pairScans[0])
|
---|
490 | try:
|
---|
491 | ss.set_selection(sel)
|
---|
492 | except:
|
---|
493 | continue
|
---|
494 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
495 | sel.reset()
|
---|
496 | ss.set_selection()
|
---|
497 | sel.set_ifs(ifnos[j])
|
---|
498 | sel.set_polarizations(polnos[k])
|
---|
499 | sel.set_scans(pairScans[1])
|
---|
500 | try:
|
---|
501 | ss.set_selection(sel)
|
---|
502 | except:
|
---|
503 | ll.pop()
|
---|
504 | continue
|
---|
505 | ll2.append(numpy.array(ss._getspectrum(0)))
|
---|
506 | sel.reset()
|
---|
507 | ss.set_selection()
|
---|
508 | key='%s%s' %(pairScans[0],keys[i].lstrip('nod'))
|
---|
509 | precal[key]=ll
|
---|
510 | key='%s%s' %(pairScans[1],keys[i].lstrip('nod'))
|
---|
511 | precal[key]=ll2
|
---|
512 | del ss
|
---|
513 | keys=precal.keys()
|
---|
514 | for j in range(len(ifnos)):
|
---|
515 | for k in range(len(polnos)):
|
---|
516 | sel.set_ifs(ifnos[j])
|
---|
517 | sel.set_polarizations(polnos[k])
|
---|
518 | sel.set_scans(pairScans[0])
|
---|
519 | try:
|
---|
520 | resspec.set_selection(sel)
|
---|
521 | except:
|
---|
522 | continue
|
---|
523 | postcal.append(numpy.array(resspec._getspectrum(0)))
|
---|
524 | sel.reset()
|
---|
525 | resspec.set_selection()
|
---|
526 | del sel
|
---|
527 | # plot
|
---|
528 | print_log()
|
---|
529 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
530 | print_log('WARN')
|
---|
531 | p=asaplotgui.asaplotgui()
|
---|
532 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
533 | nr=len(ifnos)*len(polnos)
|
---|
534 | titles=[]
|
---|
535 | btics=[]
|
---|
536 | if nr<4:
|
---|
537 | p.set_panels(rows=nr,cols=2,nplots=2*nr,ganged=False)
|
---|
538 | for i in range(2*nr):
|
---|
539 | b=False
|
---|
540 | if i >= 2*nr-2:
|
---|
541 | b=True
|
---|
542 | btics.append(b)
|
---|
543 | elif nr==4:
|
---|
544 | p.set_panels(rows=2,cols=4,nplots=8,ganged=False)
|
---|
545 | for i in range(2*nr):
|
---|
546 | b=False
|
---|
547 | if i >= 2*nr-4:
|
---|
548 | b=True
|
---|
549 | btics.append(b)
|
---|
550 | elif nr<7:
|
---|
551 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
552 | for i in range(2*nr):
|
---|
553 | if i >= 2*nr-4:
|
---|
554 | b=True
|
---|
555 | btics.append(b)
|
---|
556 | else:
|
---|
557 | print_log()
|
---|
558 | asaplog.push('Only first 6 [if,pol] pairs are plotted.')
|
---|
559 | print_log('WARN')
|
---|
560 | nr=6
|
---|
561 | for i in range(2*nr):
|
---|
562 | b=False
|
---|
563 | if i >= 2*nr-4:
|
---|
564 | b=True
|
---|
565 | btics.append(b)
|
---|
566 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
567 | for i in range(nr):
|
---|
568 | p.subplot(2*i)
|
---|
569 | p.color=0
|
---|
570 | title='raw data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
571 | titles.append(title)
|
---|
572 | #p.set_axes('title',title,fontsize=40)
|
---|
573 | ymin=1.0e100
|
---|
574 | ymax=-1.0e100
|
---|
575 | nchan=scantab.nchan()
|
---|
576 | edge=int(nchan*0.01)
|
---|
577 | for j in range(4):
|
---|
578 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
579 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
580 | ymin=min(ymin,spmin)
|
---|
581 | ymax=max(ymax,spmax)
|
---|
582 | for j in range(4):
|
---|
583 | if i==0:
|
---|
584 | p.set_line(label=keys[j])
|
---|
585 | else:
|
---|
586 | p.legend()
|
---|
587 | p.plot(precal[keys[j]][i])
|
---|
588 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
589 | if not btics[2*i]:
|
---|
590 | p.axes.set_xticks([])
|
---|
591 | p.subplot(2*i+1)
|
---|
592 | p.color=0
|
---|
593 | title='cal data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
594 | titles.append(title)
|
---|
595 | #p.set_axes('title',title)
|
---|
596 | p.legend()
|
---|
597 | ymin=postcal[i][edge:nchan-edge].min()
|
---|
598 | ymax=postcal[i][edge:nchan-edge].max()
|
---|
599 | p.plot(postcal[i])
|
---|
600 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
601 | if not btics[2*i+1]:
|
---|
602 | p.axes.set_xticks([])
|
---|
603 | for i in range(2*nr):
|
---|
604 | p.subplot(i)
|
---|
605 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
606 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
607 | if x.upper() == 'N':
|
---|
608 | p.unmap()
|
---|
609 | del p
|
---|
610 | return scabtab
|
---|
611 | p.unmap()
|
---|
612 | del p
|
---|
613 | ###
|
---|
614 | resspec._add_history("calnod",varlist)
|
---|
615 | print_log()
|
---|
616 | return resspec
|
---|
617 |
|
---|
618 | def calfs(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
619 | """
|
---|
620 | Calibrate GBT frequency switched data.
|
---|
621 | Adopted from GBTIDL getfs.
|
---|
622 | Currently calfs identify the scans as frequency switched data if they
|
---|
623 | contain '_fs' in the source name. The data must contains 'CAL' signal
|
---|
624 | on/off in each integration. To identify 'CAL' on state, the word, 'calon'
|
---|
625 | need to be present in the source name field.
|
---|
626 | (GBT MS data reading via scantable automatically append these
|
---|
627 | id names to the source names)
|
---|
628 |
|
---|
629 | Parameters:
|
---|
630 | scantab: scantable
|
---|
631 | scannos: list of scan numbers
|
---|
632 | smooth: optional box smoothing order for the reference
|
---|
633 | (default is 1 = no smoothing)
|
---|
634 | tsysval: optional user specified Tsys (default is 0.0,
|
---|
635 | use Tsys in the data)
|
---|
636 | tauval: optional user specified Tau
|
---|
637 | """
|
---|
638 | varlist = vars()
|
---|
639 | from asap._asap import stmath
|
---|
640 | stm = stmath()
|
---|
641 | stm._setinsitu(False)
|
---|
642 |
|
---|
643 | # check = scantab.get_scan('*_fs*')
|
---|
644 | # if check is None:
|
---|
645 | # msg = "The input data appear to contain no Nod observing mode data."
|
---|
646 | # if rcParams['verbose']:
|
---|
647 | # print msg
|
---|
648 | # return
|
---|
649 | # else:
|
---|
650 | # raise TypeError(msg)
|
---|
651 | s = scantab.get_scan(scannos)
|
---|
652 | del scantab
|
---|
653 |
|
---|
654 | resspec = scantable(stm._dofs(s, scannos, smooth, tsysval,tauval,tcalval))
|
---|
655 | ###
|
---|
656 | if verify:
|
---|
657 | # get data
|
---|
658 | ssub = s.get_scan(scannos)
|
---|
659 | ssubon = ssub.get_scan('*calon')
|
---|
660 | ssuboff = ssub.get_scan('*[^calon]')
|
---|
661 | import numpy
|
---|
662 | precal={}
|
---|
663 | postcal=[]
|
---|
664 | keys=['fs','fs_calon','fsr','fsr_calon']
|
---|
665 | ifnos=list(ssub.getifnos())
|
---|
666 | polnos=list(ssub.getpolnos())
|
---|
667 | sel=selector()
|
---|
668 | for i in range(2):
|
---|
669 | ss=ssuboff.get_scan('*'+keys[2*i])
|
---|
670 | ll=[]
|
---|
671 | for j in range(len(ifnos)):
|
---|
672 | for k in range(len(polnos)):
|
---|
673 | sel.set_ifs(ifnos[j])
|
---|
674 | sel.set_polarizations(polnos[k])
|
---|
675 | try:
|
---|
676 | ss.set_selection(sel)
|
---|
677 | except:
|
---|
678 | continue
|
---|
679 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
680 | sel.reset()
|
---|
681 | ss.set_selection()
|
---|
682 | precal[keys[2*i]]=ll
|
---|
683 | del ss
|
---|
684 | ss=ssubon.get_scan('*'+keys[2*i+1])
|
---|
685 | ll=[]
|
---|
686 | for j in range(len(ifnos)):
|
---|
687 | for k in range(len(polnos)):
|
---|
688 | sel.set_ifs(ifnos[j])
|
---|
689 | sel.set_polarizations(polnos[k])
|
---|
690 | try:
|
---|
691 | ss.set_selection(sel)
|
---|
692 | except:
|
---|
693 | continue
|
---|
694 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
695 | sel.reset()
|
---|
696 | ss.set_selection()
|
---|
697 | precal[keys[2*i+1]]=ll
|
---|
698 | del ss
|
---|
699 | sig=resspec.get_scan('*_fs')
|
---|
700 | ref=resspec.get_scan('*_fsr')
|
---|
701 | for k in range(len(polnos)):
|
---|
702 | for j in range(len(ifnos)):
|
---|
703 | sel.set_ifs(ifnos[j])
|
---|
704 | sel.set_polarizations(polnos[k])
|
---|
705 | try:
|
---|
706 | sig.set_selection(sel)
|
---|
707 | postcal.append(numpy.array(sig._getspectrum(0)))
|
---|
708 | except:
|
---|
709 | ref.set_selection(sel)
|
---|
710 | postcal.append(numpy.array(ref._getspectrum(0)))
|
---|
711 | sel.reset()
|
---|
712 | resspec.set_selection()
|
---|
713 | del sel
|
---|
714 | # plot
|
---|
715 | print_log()
|
---|
716 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
717 | print_log('WARN')
|
---|
718 | p=asaplotgui.asaplotgui()
|
---|
719 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
720 | nr=len(ifnos)/2*len(polnos)
|
---|
721 | titles=[]
|
---|
722 | btics=[]
|
---|
723 | if nr>3:
|
---|
724 | print_log()
|
---|
725 | asaplog.push('Only first 3 [if,pol] pairs are plotted.')
|
---|
726 | print_log('WARN')
|
---|
727 | nr=3
|
---|
728 | p.set_panels(rows=nr,cols=3,nplots=3*nr,ganged=False)
|
---|
729 | for i in range(3*nr):
|
---|
730 | b=False
|
---|
731 | if i >= 3*nr-3:
|
---|
732 | b=True
|
---|
733 | btics.append(b)
|
---|
734 | for i in range(nr):
|
---|
735 | p.subplot(3*i)
|
---|
736 | p.color=0
|
---|
737 | title='raw data IF%s,%s POL%s' % (ifnos[2*int(i/len(polnos))],ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
|
---|
738 | titles.append(title)
|
---|
739 | #p.set_axes('title',title,fontsize=40)
|
---|
740 | ymin=1.0e100
|
---|
741 | ymax=-1.0e100
|
---|
742 | nchan=s.nchan()
|
---|
743 | edge=int(nchan*0.01)
|
---|
744 | for j in range(4):
|
---|
745 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
746 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
747 | ymin=min(ymin,spmin)
|
---|
748 | ymax=max(ymax,spmax)
|
---|
749 | for j in range(4):
|
---|
750 | if i==0:
|
---|
751 | p.set_line(label=keys[j])
|
---|
752 | else:
|
---|
753 | p.legend()
|
---|
754 | p.plot(precal[keys[j]][i])
|
---|
755 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
756 | if not btics[3*i]:
|
---|
757 | p.axes.set_xticks([])
|
---|
758 | p.subplot(3*i+1)
|
---|
759 | p.color=0
|
---|
760 | title='sig data IF%s POL%s' % (ifnos[2*int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
761 | titles.append(title)
|
---|
762 | #p.set_axes('title',title)
|
---|
763 | p.legend()
|
---|
764 | ymin=postcal[2*i][edge:nchan-edge].min()
|
---|
765 | ymax=postcal[2*i][edge:nchan-edge].max()
|
---|
766 | p.plot(postcal[2*i])
|
---|
767 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
768 | if not btics[3*i+1]:
|
---|
769 | p.axes.set_xticks([])
|
---|
770 | p.subplot(3*i+2)
|
---|
771 | p.color=0
|
---|
772 | title='ref data IF%s POL%s' % (ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
|
---|
773 | titles.append(title)
|
---|
774 | #p.set_axes('title',title)
|
---|
775 | p.legend()
|
---|
776 | ymin=postcal[2*i+1][edge:nchan-edge].min()
|
---|
777 | ymax=postcal[2*i+1][edge:nchan-edge].max()
|
---|
778 | p.plot(postcal[2*i+1])
|
---|
779 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
780 | if not btics[3*i+2]:
|
---|
781 | p.axes.set_xticks([])
|
---|
782 | for i in range(3*nr):
|
---|
783 | p.subplot(i)
|
---|
784 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
785 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
786 | if x.upper() == 'N':
|
---|
787 | p.unmap()
|
---|
788 | del p
|
---|
789 | return scabtab
|
---|
790 | p.unmap()
|
---|
791 | del p
|
---|
792 | ###
|
---|
793 | resspec._add_history("calfs",varlist)
|
---|
794 | print_log()
|
---|
795 | return resspec
|
---|
796 |
|
---|
797 | def simple_math(left, right, op='add', tsys=True):
|
---|
798 | """
|
---|
799 | Apply simple mathematical binary operations to two
|
---|
800 | scan tables, returning the result in a new scan table.
|
---|
801 | The operation is applied to both the correlations and the TSys data
|
---|
802 | The cursor of the output scan is set to 0
|
---|
803 | Parameters:
|
---|
804 | left: the 'left' scan
|
---|
805 | right: the 'right' scan
|
---|
806 | op: the operation: 'add' (default), 'sub', 'mul', 'div'
|
---|
807 | tsys: if True (default) then apply the operation to Tsys
|
---|
808 | as well as the data
|
---|
809 | """
|
---|
810 | #print "simple_math is deprecated use +=/* instead."
|
---|
811 | asaplog.push( "simple_math is deprecated use +=/* instead." )
|
---|
812 | print_log('WARN')
|
---|
813 |
|
---|
814 | def merge(*args):
|
---|
815 | """
|
---|
816 | Merge a list of scanatables, or comma-sperated scantables into one
|
---|
817 | scnatble.
|
---|
818 | Parameters:
|
---|
819 | A list [scan1, scan2] or scan1, scan2.
|
---|
820 | Example:
|
---|
821 | myscans = [scan1, scan2]
|
---|
822 | allscans = merge(myscans)
|
---|
823 | # or equivalent
|
---|
824 | sameallscans = merge(scan1, scan2)
|
---|
825 | """
|
---|
826 | varlist = vars()
|
---|
827 | if isinstance(args[0],list):
|
---|
828 | lst = tuple(args[0])
|
---|
829 | elif isinstance(args[0],tuple):
|
---|
830 | lst = args[0]
|
---|
831 | else:
|
---|
832 | lst = tuple(args)
|
---|
833 | varlist["args"] = "%d scantables" % len(lst)
|
---|
834 | # need special formatting her for history...
|
---|
835 | from asap._asap import stmath
|
---|
836 | stm = stmath()
|
---|
837 | for s in lst:
|
---|
838 | if not isinstance(s,scantable):
|
---|
839 | msg = "Please give a list of scantables"
|
---|
840 | if rcParams['verbose']:
|
---|
841 | #print msg
|
---|
842 | asaplog.push(msg)
|
---|
843 | print_log('ERROR')
|
---|
844 | return
|
---|
845 | else:
|
---|
846 | raise TypeError(msg)
|
---|
847 | s = scantable(stm._merge(lst))
|
---|
848 | s._add_history("merge", varlist)
|
---|
849 | print_log()
|
---|
850 | return s
|
---|
851 |
|
---|
852 | def calibrate( scantab, scannos=[], calmode='none', verify=None ):
|
---|
853 | """
|
---|
854 | Calibrate data.
|
---|
855 |
|
---|
856 | Parameters:
|
---|
857 | scantab: scantable
|
---|
858 | scannos: list of scan number
|
---|
859 | calmode: calibration mode
|
---|
860 | verify: verify calibration
|
---|
861 | """
|
---|
862 | antname = scantab.get_antennaname()
|
---|
863 | if ( calmode == 'nod' ):
|
---|
864 | asaplog.push( 'Calibrating nod data.' )
|
---|
865 | print_log()
|
---|
866 | scal = calnod( scantab, scannos=scannos, verify=verify )
|
---|
867 | elif ( calmode == 'quotient' ):
|
---|
868 | asaplog.push( 'Calibrating using quotient.' )
|
---|
869 | print_log()
|
---|
870 | scal = scantab.auto_quotient( verify=verify )
|
---|
871 | elif ( calmode == 'ps' ):
|
---|
872 | asaplog.push( 'Calibrating %s position-switched data.' % antname )
|
---|
873 | print_log()
|
---|
874 | if ( antname.find( 'APEX' ) != -1 ):
|
---|
875 | scal = apexcal( scantab, scannos, calmode, verify )
|
---|
876 | elif ( antname.find( 'ALMA' ) != -1 or antname.find( 'OSF' ) != -1 ):
|
---|
877 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
878 | else:
|
---|
879 | scal = calps( scantab, scannos=scannos, verify=verify )
|
---|
880 | elif ( calmode == 'fs' or calmode == 'fsotf' ):
|
---|
881 | asaplog.push( 'Calibrating %s frequency-switched data.' % antname )
|
---|
882 | print_log()
|
---|
883 | if ( antname.find( 'APEX' ) != -1 ):
|
---|
884 | scal = apexcal( scantab, scannos, calmode, verify )
|
---|
885 | elif ( antname.find( 'ALMA' ) != -1 or antname.find( 'OSF' ) != -1 ):
|
---|
886 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
887 | else:
|
---|
888 | scal = calfs( scantab, scannos=scannos, verify=verify )
|
---|
889 | elif ( calmode == 'otf' ):
|
---|
890 | asaplog.push( 'Calibrating %s On-The-Fly data.' % antname )
|
---|
891 | print_log()
|
---|
892 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
893 | else:
|
---|
894 | asaplog.push( 'No calibration.' )
|
---|
895 | scal = scantab.copy()
|
---|
896 |
|
---|
897 | return scal
|
---|
898 |
|
---|
899 | def apexcal( scantab, scannos=[], calmode='none', verify=False ):
|
---|
900 | """
|
---|
901 | Calibrate APEX data
|
---|
902 |
|
---|
903 | Parameters:
|
---|
904 | scantab: scantable
|
---|
905 | scannos: list of scan number
|
---|
906 | calmode: calibration mode
|
---|
907 |
|
---|
908 | verify: verify calibration
|
---|
909 | """
|
---|
910 | from asap._asap import stmath
|
---|
911 | stm = stmath()
|
---|
912 | antname = scantab.get_antennaname()
|
---|
913 | ssub = scantab.get_scan( scannos )
|
---|
914 | scal = scantable( stm.cwcal( ssub, calmode, antname ) )
|
---|
915 | return scal
|
---|
916 |
|
---|
917 | def almacal( scantab, scannos=[], calmode='none', verify=False ):
|
---|
918 | """
|
---|
919 | Calibrate ALMA data
|
---|
920 |
|
---|
921 | Parameters:
|
---|
922 | scantab: scantable
|
---|
923 | scannos: list of scan number
|
---|
924 | calmode: calibration mode
|
---|
925 |
|
---|
926 | verify: verify calibration
|
---|
927 | """
|
---|
928 | from asap._asap import stmath
|
---|
929 | stm = stmath()
|
---|
930 | ssub = scantab.get_scan( scannos )
|
---|
931 | scal = scantable( stm.almacal( ssub, calmode ) )
|
---|
932 | return scal
|
---|
933 |
|
---|
934 | def splitant(filename, outprefix='',overwrite=False):
|
---|
935 | """
|
---|
936 | Split Measurement set by antenna name, save data as a scantables,
|
---|
937 | and return a list of filename.
|
---|
938 | Notice this method can only be available from CASA.
|
---|
939 | Prameter
|
---|
940 | filename: the name of Measurement set to be read.
|
---|
941 | outprefix: the prefix of output scantable name.
|
---|
942 | the names of output scantable will be
|
---|
943 | outprefix.antenna1, outprefix.antenna2, ....
|
---|
944 | If not specified, outprefix = filename is assumed.
|
---|
945 | overwrite If the file should be overwritten if it exists.
|
---|
946 | The default False is to return with warning
|
---|
947 | without writing the output. USE WITH CARE.
|
---|
948 |
|
---|
949 | """
|
---|
950 | # Import the table toolkit from CASA
|
---|
951 | try:
|
---|
952 | import casac
|
---|
953 | except ImportError:
|
---|
954 | if rcParams['verbose']:
|
---|
955 | #print "failed to load casa"
|
---|
956 | print_log()
|
---|
957 | asaplog.push("failed to load casa")
|
---|
958 | print_log('ERROR')
|
---|
959 | else: raise
|
---|
960 | return False
|
---|
961 | try:
|
---|
962 | tbtool = casac.homefinder.find_home_by_name('tableHome')
|
---|
963 | tb = tbtool.create()
|
---|
964 | tb2 = tbtool.create()
|
---|
965 | except:
|
---|
966 | if rcParams['verbose']:
|
---|
967 | #print "failed to load a table tool:\n", e
|
---|
968 | print_log()
|
---|
969 | asaplog.push("failed to load table tool")
|
---|
970 | print_log('ERROR')
|
---|
971 | else: raise
|
---|
972 | return False
|
---|
973 | # Check the input filename
|
---|
974 | if isinstance(filename, str):
|
---|
975 | import os.path
|
---|
976 | filename = os.path.expandvars(filename)
|
---|
977 | filename = os.path.expanduser(filename)
|
---|
978 | if not os.path.exists(filename):
|
---|
979 | s = "File '%s' not found." % (filename)
|
---|
980 | if rcParams['verbose']:
|
---|
981 | print_log()
|
---|
982 | asaplog.push(s)
|
---|
983 | print_log('ERROR')
|
---|
984 | return
|
---|
985 | raise IOError(s)
|
---|
986 | # check if input file is MS
|
---|
987 | if not os.path.isdir(filename) \
|
---|
988 | or not os.path.exists(filename+'/ANTENNA') \
|
---|
989 | or not os.path.exists(filename+'/table.f1'):
|
---|
990 | s = "File '%s' is not a Measurement set." % (filename)
|
---|
991 | if rcParams['verbose']:
|
---|
992 | print_log()
|
---|
993 | asaplog.push(s)
|
---|
994 | print_log('ERROR')
|
---|
995 | return
|
---|
996 | raise IOError(s)
|
---|
997 | else:
|
---|
998 | s = "The filename should be string. "
|
---|
999 | if rcParams['verbose']:
|
---|
1000 | print_log()
|
---|
1001 | asaplog.push(s)
|
---|
1002 | print_log('ERROR')
|
---|
1003 | return
|
---|
1004 | raise TypeError(s)
|
---|
1005 | # Check out put file name
|
---|
1006 | outname=''
|
---|
1007 | if len(outprefix) > 0: prefix=outprefix+'.'
|
---|
1008 | else:
|
---|
1009 | prefix=filename.rstrip('/')
|
---|
1010 | # Now do the actual splitting.
|
---|
1011 | outfiles=[]
|
---|
1012 | tb.open(tablename=filename+'/ANTENNA',nomodify=True)
|
---|
1013 | nant=tb.nrows()
|
---|
1014 | antnames=tb.getcol('NAME',0,nant,1)
|
---|
1015 | antpos=tb.getcol('POSITION',0,nant,1).transpose()
|
---|
1016 | tb.close()
|
---|
1017 | tb.open(tablename=filename,nomodify=True)
|
---|
1018 | ant1=tb.getcol('ANTENNA1',0,-1,1)
|
---|
1019 | tb.close()
|
---|
1020 | for antid in set(ant1):
|
---|
1021 | scan=scantable(filename,average=False,getpt=True,antenna=int(antid))
|
---|
1022 | outname=prefix+antnames[antid]+'.asap'
|
---|
1023 | scan.save(outname,format='ASAP',overwrite=overwrite)
|
---|
1024 | del scan
|
---|
1025 | outfiles.append(outname)
|
---|
1026 | del tb, tb2
|
---|
1027 | return outfiles
|
---|
1028 |
|
---|
1029 | def _array2dOp( scan, value, mode="ADD", tsys=False ):
|
---|
1030 | """
|
---|
1031 | This function is workaround on the basic operation of scantable
|
---|
1032 | with 2 dimensional float list.
|
---|
1033 |
|
---|
1034 | scan: scantable operand
|
---|
1035 | value: float list operand
|
---|
1036 | mode: operation mode (ADD, SUB, MUL, DIV)
|
---|
1037 | tsys: if True, operate tsys as well
|
---|
1038 | """
|
---|
1039 | nrow = scan.nrow()
|
---|
1040 | s = None
|
---|
1041 | if len( value ) == 1:
|
---|
1042 | from asap._asap import stmath
|
---|
1043 | stm = stmath()
|
---|
1044 | s = scantable( stm._arrayop( scan.copy(), value[0], mode, tsys ) )
|
---|
1045 | del stm
|
---|
1046 | elif len( value ) != nrow:
|
---|
1047 | asaplog.push( 'len(value) must be 1 or conform to scan.nrow()' )
|
---|
1048 | print_log( 'ERROR' )
|
---|
1049 | else:
|
---|
1050 | from asap._asap import stmath
|
---|
1051 | stm = stmath()
|
---|
1052 | # insitu must be True
|
---|
1053 | stm._setinsitu( True )
|
---|
1054 | s = scan.copy()
|
---|
1055 | sel = selector()
|
---|
1056 | for irow in range( nrow ):
|
---|
1057 | sel.set_rows( irow )
|
---|
1058 | s.set_selection( sel )
|
---|
1059 | if len( value[irow] ) == 1:
|
---|
1060 | stm._unaryop( s, value[irow][0], mode, tsys )
|
---|
1061 | else:
|
---|
1062 | stm._arrayop( s, value[irow], mode, tsys, 'channel' )
|
---|
1063 | s.set_selection()
|
---|
1064 | sel.reset()
|
---|
1065 | del sel
|
---|
1066 | del stm
|
---|
1067 | return s
|
---|
1068 |
|
---|
1069 |
|
---|
1070 |
|
---|