[1085] | 1 | from asap.scantable import scantable
|
---|
[258] | 2 | from asap import rcParams
|
---|
[720] | 3 | from asap import print_log
|
---|
[1389] | 4 | from asap import selector
|
---|
[1614] | 5 | from asap import asaplog
|
---|
[1631] | 6 | from asap import asaplotgui
|
---|
[101] | 7 |
|
---|
[143] | 8 | def average_time(*args, **kwargs):
|
---|
[101] | 9 | """
|
---|
[113] | 10 | Return the (time) average of a scan or list of scans. [in channels only]
|
---|
[305] | 11 | The cursor of the output scan is set to 0
|
---|
[113] | 12 | Parameters:
|
---|
[1361] | 13 | one scan or comma separated scans or a list of scans
|
---|
[143] | 14 | mask: an optional mask (only used for 'var' and 'tsys' weighting)
|
---|
[558] | 15 | scanav: True averages each scan separately.
|
---|
| 16 | False (default) averages all scans together,
|
---|
[1232] | 17 | weight: Weighting scheme.
|
---|
| 18 | 'none' (mean no weight)
|
---|
| 19 | 'var' (1/var(spec) weighted)
|
---|
| 20 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 21 | 'tint' (integration time weighted)
|
---|
| 22 | 'tintsys' (Tint/Tsys**2)
|
---|
| 23 | 'median' ( median averaging)
|
---|
[930] | 24 | align: align the spectra in velocity before averaging. It takes
|
---|
| 25 | the time of the first spectrum in the first scantable
|
---|
| 26 | as reference time.
|
---|
[113] | 27 | Example:
|
---|
| 28 | # return a time averaged scan from scana and scanb
|
---|
| 29 | # without using a mask
|
---|
[129] | 30 | scanav = average_time(scana,scanb)
|
---|
[1361] | 31 | # or equivalent
|
---|
| 32 | # scanav = average_time([scana, scanb])
|
---|
[113] | 33 | # return the (time) averaged scan, i.e. the average of
|
---|
| 34 | # all correlator cycles
|
---|
[558] | 35 | scanav = average_time(scan, scanav=True)
|
---|
[101] | 36 | """
|
---|
[930] | 37 | scanav = False
|
---|
[143] | 38 | if kwargs.has_key('scanav'):
|
---|
[930] | 39 | scanav = kwargs.get('scanav')
|
---|
[524] | 40 | weight = 'tint'
|
---|
[143] | 41 | if kwargs.has_key('weight'):
|
---|
| 42 | weight = kwargs.get('weight')
|
---|
| 43 | mask = ()
|
---|
| 44 | if kwargs.has_key('mask'):
|
---|
| 45 | mask = kwargs.get('mask')
|
---|
[930] | 46 | align = False
|
---|
| 47 | if kwargs.has_key('align'):
|
---|
| 48 | align = kwargs.get('align')
|
---|
[1446] | 49 | compel = False
|
---|
| 50 | if kwargs.has_key('compel'):
|
---|
| 51 | compel = kwargs.get('compel')
|
---|
[489] | 52 | varlist = vars()
|
---|
[665] | 53 | if isinstance(args[0],list):
|
---|
[981] | 54 | lst = args[0]
|
---|
[665] | 55 | elif isinstance(args[0],tuple):
|
---|
[981] | 56 | lst = list(args[0])
|
---|
[665] | 57 | else:
|
---|
[981] | 58 | lst = list(args)
|
---|
[720] | 59 |
|
---|
[489] | 60 | del varlist["kwargs"]
|
---|
| 61 | varlist["args"] = "%d scantables" % len(lst)
|
---|
[981] | 62 | # need special formatting here for history...
|
---|
[720] | 63 |
|
---|
[876] | 64 | from asap._asap import stmath
|
---|
| 65 | stm = stmath()
|
---|
[113] | 66 | for s in lst:
|
---|
[101] | 67 | if not isinstance(s,scantable):
|
---|
[720] | 68 | msg = "Please give a list of scantables"
|
---|
| 69 | if rcParams['verbose']:
|
---|
[1612] | 70 | #print msg
|
---|
[1614] | 71 | asaplog.push(msg)
|
---|
| 72 | print_log('ERROR')
|
---|
[720] | 73 | return
|
---|
| 74 | else:
|
---|
| 75 | raise TypeError(msg)
|
---|
[945] | 76 | if scanav: scanav = "SCAN"
|
---|
| 77 | else: scanav = "NONE"
|
---|
[981] | 78 | alignedlst = []
|
---|
| 79 | if align:
|
---|
| 80 | refepoch = lst[0].get_time(0)
|
---|
| 81 | for scan in lst:
|
---|
| 82 | alignedlst.append(scan.freq_align(refepoch,insitu=False))
|
---|
| 83 | else:
|
---|
[1059] | 84 | alignedlst = lst
|
---|
[1232] | 85 | if weight.upper() == 'MEDIAN':
|
---|
| 86 | # median doesn't support list of scantables - merge first
|
---|
| 87 | merged = None
|
---|
| 88 | if len(alignedlst) > 1:
|
---|
| 89 | merged = merge(alignedlst)
|
---|
| 90 | else:
|
---|
| 91 | merged = alignedlst[0]
|
---|
| 92 | s = scantable(stm._averagechannel(merged, 'MEDIAN', scanav))
|
---|
| 93 | del merged
|
---|
| 94 | else:
|
---|
[1446] | 95 | #s = scantable(stm._average(alignedlst, mask, weight.upper(), scanav))
|
---|
| 96 | s = scantable(stm._new_average(alignedlst, compel, mask, weight.upper(), scanav))
|
---|
[489] | 97 | s._add_history("average_time",varlist)
|
---|
[720] | 98 | print_log()
|
---|
[489] | 99 | return s
|
---|
[101] | 100 |
|
---|
[1074] | 101 | def quotient(source, reference, preserve=True):
|
---|
| 102 | """
|
---|
| 103 | Return the quotient of a 'source' (signal) scan and a 'reference' scan.
|
---|
| 104 | The reference can have just one scan, even if the signal has many. Otherwise
|
---|
| 105 | they must have the same number of scans.
|
---|
| 106 | The cursor of the output scan is set to 0
|
---|
| 107 | Parameters:
|
---|
| 108 | source: the 'on' scan
|
---|
| 109 | reference: the 'off' scan
|
---|
| 110 | preserve: you can preserve (default) the continuum or
|
---|
| 111 | remove it. The equations used are
|
---|
| 112 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 113 | remove: Output = Toff * (on/off) - Ton
|
---|
| 114 | """
|
---|
| 115 | varlist = vars()
|
---|
| 116 | from asap._asap import stmath
|
---|
| 117 | stm = stmath()
|
---|
| 118 | stm._setinsitu(False)
|
---|
| 119 | s = scantable(stm._quotient(source, reference, preserve))
|
---|
| 120 | s._add_history("quotient",varlist)
|
---|
| 121 | print_log()
|
---|
| 122 | return s
|
---|
[101] | 123 |
|
---|
[1389] | 124 | def dototalpower(calon, caloff, tcalval=0.0):
|
---|
| 125 | """
|
---|
| 126 | Do calibration for CAL on,off signals.
|
---|
| 127 | Adopted from GBTIDL dototalpower
|
---|
| 128 | Parameters:
|
---|
| 129 | calon: the 'cal on' subintegration
|
---|
| 130 | caloff: the 'cal off' subintegration
|
---|
| 131 | tcalval: user supplied Tcal value
|
---|
| 132 | """
|
---|
| 133 | varlist = vars()
|
---|
| 134 | from asap._asap import stmath
|
---|
| 135 | stm = stmath()
|
---|
| 136 | stm._setinsitu(False)
|
---|
| 137 | s = scantable(stm._dototalpower(calon, caloff, tcalval))
|
---|
| 138 | s._add_history("dototalpower",varlist)
|
---|
| 139 | print_log()
|
---|
| 140 | return s
|
---|
| 141 |
|
---|
| 142 | def dosigref(sig, ref, smooth, tsysval=0.0, tauval=0.0):
|
---|
| 143 | """
|
---|
| 144 | Calculate a quotient (sig-ref/ref * Tsys)
|
---|
| 145 | Adopted from GBTIDL dosigref
|
---|
| 146 | Parameters:
|
---|
| 147 | sig: on source data
|
---|
| 148 | ref: reference data
|
---|
| 149 | smooth: width of box car smoothing for reference
|
---|
| 150 | tsysval: user specified Tsys (scalar only)
|
---|
| 151 | tauval: user specified Tau (required if tsysval is set)
|
---|
| 152 | """
|
---|
| 153 | varlist = vars()
|
---|
| 154 | from asap._asap import stmath
|
---|
| 155 | stm = stmath()
|
---|
| 156 | stm._setinsitu(False)
|
---|
| 157 | s = scantable(stm._dosigref(sig, ref, smooth, tsysval, tauval))
|
---|
| 158 | s._add_history("dosigref",varlist)
|
---|
| 159 | print_log()
|
---|
| 160 | return s
|
---|
| 161 |
|
---|
[1631] | 162 | def calps(scantab, scannos, smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
[1389] | 163 | """
|
---|
| 164 | Calibrate GBT position switched data
|
---|
| 165 | Adopted from GBTIDL getps
|
---|
| 166 | Currently calps identify the scans as position switched data if they
|
---|
| 167 | contain '_ps' in the source name. The data must contains 'CAL' signal
|
---|
| 168 | on/off in each integration. To identify 'CAL' on state, the word, 'calon'
|
---|
| 169 | need to be present in the source name field.
|
---|
| 170 | (GBT MS data reading process to scantable automatically append these
|
---|
| 171 | id names to the source names)
|
---|
| 172 |
|
---|
| 173 | Parameters:
|
---|
| 174 | scantab: scantable
|
---|
| 175 | scannos: list of scan numbers
|
---|
| 176 | smooth: optional box smoothing order for the reference
|
---|
| 177 | (default is 1 = no smoothing)
|
---|
| 178 | tsysval: optional user specified Tsys (default is 0.0,
|
---|
| 179 | use Tsys in the data)
|
---|
| 180 | tauval: optional user specified Tau
|
---|
| 181 | tcalval: optional user specified Tcal (default is 0.0,
|
---|
| 182 | use Tcal value in the data)
|
---|
| 183 | """
|
---|
| 184 | varlist = vars()
|
---|
| 185 | # check for the appropriate data
|
---|
| 186 | s = scantab.get_scan('*_ps*')
|
---|
| 187 | if s is None:
|
---|
| 188 | msg = "The input data appear to contain no position-switch mode data."
|
---|
| 189 | if rcParams['verbose']:
|
---|
[1612] | 190 | #print msg
|
---|
[1614] | 191 | asaplog.push(msg)
|
---|
| 192 | print_log('ERROR')
|
---|
[1389] | 193 | return
|
---|
| 194 | else:
|
---|
| 195 | raise TypeError(msg)
|
---|
| 196 | ssub = s.get_scan(scannos)
|
---|
| 197 | if ssub is None:
|
---|
| 198 | msg = "No data was found with given scan numbers!"
|
---|
| 199 | if rcParams['verbose']:
|
---|
[1612] | 200 | #print msg
|
---|
[1614] | 201 | asaplog.push(msg)
|
---|
| 202 | print_log('ERROR')
|
---|
[1389] | 203 | return
|
---|
| 204 | else:
|
---|
| 205 | raise TypeError(msg)
|
---|
| 206 | ssubon = ssub.get_scan('*calon')
|
---|
| 207 | ssuboff = ssub.get_scan('*[^calon]')
|
---|
| 208 | if ssubon.nrow() != ssuboff.nrow():
|
---|
| 209 | msg = "mismatch in numbers of CAL on/off scans. Cannot calibrate. Check the scan numbers."
|
---|
| 210 | if rcParams['verbose']:
|
---|
[1612] | 211 | #print msg
|
---|
[1614] | 212 | asaplog.push(msg)
|
---|
| 213 | print_log('ERROR')
|
---|
[1389] | 214 | return
|
---|
| 215 | else:
|
---|
| 216 | raise TypeError(msg)
|
---|
| 217 | cals = dototalpower(ssubon, ssuboff, tcalval)
|
---|
| 218 | sig = cals.get_scan('*ps')
|
---|
| 219 | ref = cals.get_scan('*psr')
|
---|
| 220 | if sig.nscan() != ref.nscan():
|
---|
| 221 | msg = "mismatch in numbers of on/off scans. Cannot calibrate. Check the scan numbers."
|
---|
| 222 | if rcParams['verbose']:
|
---|
[1612] | 223 | #print msg
|
---|
[1614] | 224 | asaplog.push(msg)
|
---|
| 225 | print_log('ERROR')
|
---|
[1389] | 226 | return
|
---|
| 227 | else:
|
---|
| 228 | raise TypeError(msg)
|
---|
| 229 |
|
---|
| 230 | #for user supplied Tsys
|
---|
| 231 | if tsysval>0.0:
|
---|
| 232 | if tauval<=0.0:
|
---|
| 233 | msg = "Need to supply a valid tau to use the supplied Tsys"
|
---|
| 234 | if rcParams['verbose']:
|
---|
[1612] | 235 | #print msg
|
---|
[1614] | 236 | asaplog.push(msg)
|
---|
| 237 | print_log('ERROR')
|
---|
[1389] | 238 | return
|
---|
| 239 | else:
|
---|
| 240 | raise TypeError(msg)
|
---|
| 241 | else:
|
---|
| 242 | sig.recalc_azel()
|
---|
| 243 | ref.recalc_azel()
|
---|
| 244 | #msg = "Use of user specified Tsys is not fully implemented yet."
|
---|
| 245 | #if rcParams['verbose']:
|
---|
| 246 | # print msg
|
---|
| 247 | # return
|
---|
| 248 | #else:
|
---|
| 249 | # raise TypeError(msg)
|
---|
| 250 | # use get_elevation to get elevation and
|
---|
| 251 | # calculate a scaling factor using the formula
|
---|
| 252 | # -> tsys use to dosigref
|
---|
| 253 |
|
---|
| 254 | #ress = dosigref(sig, ref, smooth, tsysval)
|
---|
| 255 | ress = dosigref(sig, ref, smooth, tsysval, tauval)
|
---|
[1631] | 256 | ###
|
---|
| 257 | if verify:
|
---|
| 258 | # get data
|
---|
| 259 | import numpy
|
---|
| 260 | precal={}
|
---|
| 261 | postcal=[]
|
---|
| 262 | keys=['ps','ps_calon','psr','psr_calon']
|
---|
| 263 | ifnos=list(ssub.getifnos())
|
---|
| 264 | polnos=list(ssub.getpolnos())
|
---|
| 265 | sel=selector()
|
---|
| 266 | for i in range(2):
|
---|
| 267 | ss=ssuboff.get_scan('*'+keys[2*i])
|
---|
| 268 | ll=[]
|
---|
| 269 | for j in range(len(ifnos)):
|
---|
| 270 | for k in range(len(polnos)):
|
---|
| 271 | sel.set_ifs(ifnos[j])
|
---|
| 272 | sel.set_polarizations(polnos[k])
|
---|
| 273 | try:
|
---|
| 274 | ss.set_selection(sel)
|
---|
| 275 | except:
|
---|
| 276 | continue
|
---|
| 277 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
| 278 | sel.reset()
|
---|
| 279 | ss.set_selection()
|
---|
| 280 | precal[keys[2*i]]=ll
|
---|
| 281 | del ss
|
---|
| 282 | ss=ssubon.get_scan('*'+keys[2*i+1])
|
---|
| 283 | ll=[]
|
---|
| 284 | for j in range(len(ifnos)):
|
---|
| 285 | for k in range(len(polnos)):
|
---|
| 286 | sel.set_ifs(ifnos[j])
|
---|
| 287 | sel.set_polarizations(polnos[k])
|
---|
| 288 | try:
|
---|
| 289 | ss.set_selection(sel)
|
---|
| 290 | except:
|
---|
| 291 | continue
|
---|
| 292 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
| 293 | sel.reset()
|
---|
| 294 | ss.set_selection()
|
---|
| 295 | precal[keys[2*i+1]]=ll
|
---|
| 296 | del ss
|
---|
| 297 | for j in range(len(ifnos)):
|
---|
| 298 | for k in range(len(polnos)):
|
---|
| 299 | sel.set_ifs(ifnos[j])
|
---|
| 300 | sel.set_polarizations(polnos[k])
|
---|
| 301 | try:
|
---|
| 302 | ress.set_selection(sel)
|
---|
| 303 | except:
|
---|
| 304 | continue
|
---|
| 305 | postcal.append(numpy.array(ress._getspectrum(0)))
|
---|
| 306 | sel.reset()
|
---|
| 307 | ress.set_selection()
|
---|
| 308 | del sel
|
---|
| 309 | # plot
|
---|
| 310 | print_log()
|
---|
| 311 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
| 312 | print_log('WARN')
|
---|
| 313 | p=asaplotgui.asaplotgui()
|
---|
| 314 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
| 315 | nr=len(ifnos)*len(polnos)
|
---|
| 316 | titles=[]
|
---|
| 317 | btics=[]
|
---|
| 318 | if nr<4:
|
---|
| 319 | p.set_panels(rows=nr,cols=2,nplots=2*nr,ganged=False)
|
---|
| 320 | for i in range(2*nr):
|
---|
| 321 | b=False
|
---|
| 322 | if i >= 2*nr-2:
|
---|
| 323 | b=True
|
---|
| 324 | btics.append(b)
|
---|
| 325 | elif nr==4:
|
---|
| 326 | p.set_panels(rows=2,cols=4,nplots=8,ganged=False)
|
---|
| 327 | for i in range(2*nr):
|
---|
| 328 | b=False
|
---|
| 329 | if i >= 2*nr-4:
|
---|
| 330 | b=True
|
---|
| 331 | btics.append(b)
|
---|
| 332 | elif nr<7:
|
---|
| 333 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
| 334 | for i in range(2*nr):
|
---|
| 335 | if i >= 2*nr-4:
|
---|
| 336 | b=True
|
---|
| 337 | btics.append(b)
|
---|
| 338 | else:
|
---|
| 339 | print_log()
|
---|
| 340 | asaplog.push('Only first 6 [if,pol] pairs are plotted.')
|
---|
| 341 | print_log('WARN')
|
---|
| 342 | nr=6
|
---|
| 343 | for i in range(2*nr):
|
---|
| 344 | b=False
|
---|
| 345 | if i >= 2*nr-4:
|
---|
| 346 | b=True
|
---|
| 347 | btics.append(b)
|
---|
| 348 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
| 349 | for i in range(nr):
|
---|
| 350 | p.subplot(2*i)
|
---|
| 351 | p.color=0
|
---|
| 352 | title='raw data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
| 353 | titles.append(title)
|
---|
| 354 | #p.set_axes('title',title,fontsize=40)
|
---|
| 355 | ymin=1.0e100
|
---|
| 356 | ymax=-1.0e100
|
---|
| 357 | nchan=s.nchan()
|
---|
| 358 | edge=int(nchan*0.01)
|
---|
| 359 | for j in range(4):
|
---|
| 360 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 361 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 362 | ymin=min(ymin,spmin)
|
---|
| 363 | ymax=max(ymax,spmax)
|
---|
| 364 | for j in range(4):
|
---|
| 365 | if i==0:
|
---|
| 366 | p.set_line(label=keys[j])
|
---|
| 367 | else:
|
---|
| 368 | p.legend()
|
---|
| 369 | p.plot(precal[keys[j]][i])
|
---|
| 370 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 371 | if not btics[2*i]:
|
---|
| 372 | p.axes.set_xticks([])
|
---|
| 373 | p.subplot(2*i+1)
|
---|
| 374 | p.color=0
|
---|
| 375 | title='cal data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
| 376 | titles.append(title)
|
---|
| 377 | #p.set_axes('title',title)
|
---|
| 378 | p.legend()
|
---|
| 379 | ymin=postcal[i][edge:nchan-edge].min()
|
---|
| 380 | ymax=postcal[i][edge:nchan-edge].max()
|
---|
| 381 | p.plot(postcal[i])
|
---|
| 382 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 383 | if not btics[2*i+1]:
|
---|
| 384 | p.axes.set_xticks([])
|
---|
| 385 | for i in range(2*nr):
|
---|
| 386 | p.subplot(i)
|
---|
| 387 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
| 388 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
| 389 | if x.upper() == 'N':
|
---|
| 390 | p.unmap()
|
---|
| 391 | del p
|
---|
| 392 | return scabtab
|
---|
| 393 | p.unmap()
|
---|
| 394 | del p
|
---|
| 395 | ###
|
---|
[1389] | 396 | ress._add_history("calps", varlist)
|
---|
| 397 | print_log()
|
---|
| 398 | return ress
|
---|
| 399 |
|
---|
[1631] | 400 | def calnod(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
[1389] | 401 | """
|
---|
| 402 | Do full (but a pair of scans at time) processing of GBT Nod data
|
---|
| 403 | calibration.
|
---|
| 404 | Adopted from GBTIDL's getnod
|
---|
| 405 | Parameters:
|
---|
| 406 | scantab: scantable
|
---|
| 407 | scannos: a pair of scan numbers, or the first scan number of the pair
|
---|
| 408 | smooth: box car smoothing order
|
---|
| 409 | tsysval: optional user specified Tsys value
|
---|
| 410 | tauval: optional user specified tau value (not implemented yet)
|
---|
| 411 | tcalval: optional user specified Tcal value
|
---|
| 412 | """
|
---|
| 413 | varlist = vars()
|
---|
| 414 | from asap._asap import stmath
|
---|
| 415 | stm = stmath()
|
---|
| 416 | stm._setinsitu(False)
|
---|
| 417 |
|
---|
| 418 | # check for the appropriate data
|
---|
| 419 | s = scantab.get_scan('*_nod*')
|
---|
| 420 | if s is None:
|
---|
| 421 | msg = "The input data appear to contain no Nod observing mode data."
|
---|
| 422 | if rcParams['verbose']:
|
---|
[1612] | 423 | #print msg
|
---|
[1614] | 424 | asaplog.push(msg)
|
---|
| 425 | print_log('ERROR')
|
---|
[1389] | 426 | return
|
---|
| 427 | else:
|
---|
| 428 | raise TypeError(msg)
|
---|
| 429 |
|
---|
| 430 | # need check correspondance of each beam with sig-ref ...
|
---|
| 431 | # check for timestamps, scan numbers, subscan id (not available in
|
---|
| 432 | # ASAP data format...). Assume 1st scan of the pair (beam 0 - sig
|
---|
| 433 | # and beam 1 - ref...)
|
---|
| 434 | # First scan number of paired scans or list of pairs of
|
---|
| 435 | # scan numbers (has to have even number of pairs.)
|
---|
| 436 |
|
---|
| 437 | #data splitting
|
---|
| 438 | scan1no = scan2no = 0
|
---|
| 439 |
|
---|
| 440 | if len(scannos)==1:
|
---|
| 441 | scan1no = scannos[0]
|
---|
| 442 | scan2no = scannos[0]+1
|
---|
| 443 | pairScans = [scan1no, scan2no]
|
---|
| 444 | else:
|
---|
| 445 | #if len(scannos)>2:
|
---|
| 446 | # msg = "calnod can only process a pair of nod scans at time."
|
---|
| 447 | # if rcParams['verbose']:
|
---|
| 448 | # print msg
|
---|
| 449 | # return
|
---|
| 450 | # else:
|
---|
| 451 | # raise TypeError(msg)
|
---|
| 452 | #
|
---|
| 453 | #if len(scannos)==2:
|
---|
| 454 | # scan1no = scannos[0]
|
---|
| 455 | # scan2no = scannos[1]
|
---|
| 456 | pairScans = list(scannos)
|
---|
| 457 |
|
---|
| 458 | if tsysval>0.0:
|
---|
| 459 | if tauval<=0.0:
|
---|
| 460 | msg = "Need to supply a valid tau to use the supplied Tsys"
|
---|
| 461 | if rcParams['verbose']:
|
---|
[1612] | 462 | #print msg
|
---|
[1614] | 463 | asaplog.push(msg)
|
---|
| 464 | print_log('ERROR')
|
---|
[1389] | 465 | return
|
---|
| 466 | else:
|
---|
| 467 | raise TypeError(msg)
|
---|
| 468 | else:
|
---|
| 469 | scantab.recalc_azel()
|
---|
| 470 | resspec = scantable(stm._donod(scantab, pairScans, smooth, tsysval,tauval,tcalval))
|
---|
[1631] | 471 | ###
|
---|
| 472 | if verify:
|
---|
| 473 | # get data
|
---|
| 474 | import numpy
|
---|
| 475 | precal={}
|
---|
| 476 | postcal=[]
|
---|
| 477 | keys=['nod','nod_calon']
|
---|
| 478 | ifnos=list(scantab.getifnos())
|
---|
| 479 | polnos=list(scantab.getpolnos())
|
---|
| 480 | sel=selector()
|
---|
| 481 | for i in range(2):
|
---|
| 482 | ss=scantab.get_scan('*'+keys[i])
|
---|
| 483 | ll=[]
|
---|
| 484 | ll2=[]
|
---|
| 485 | for j in range(len(ifnos)):
|
---|
| 486 | for k in range(len(polnos)):
|
---|
| 487 | sel.set_ifs(ifnos[j])
|
---|
| 488 | sel.set_polarizations(polnos[k])
|
---|
| 489 | sel.set_scans(pairScans[0])
|
---|
| 490 | try:
|
---|
| 491 | ss.set_selection(sel)
|
---|
| 492 | except:
|
---|
| 493 | continue
|
---|
| 494 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
| 495 | sel.reset()
|
---|
| 496 | ss.set_selection()
|
---|
| 497 | sel.set_ifs(ifnos[j])
|
---|
| 498 | sel.set_polarizations(polnos[k])
|
---|
| 499 | sel.set_scans(pairScans[1])
|
---|
| 500 | try:
|
---|
| 501 | ss.set_selection(sel)
|
---|
| 502 | except:
|
---|
| 503 | ll.pop()
|
---|
| 504 | continue
|
---|
| 505 | ll2.append(numpy.array(ss._getspectrum(0)))
|
---|
| 506 | sel.reset()
|
---|
| 507 | ss.set_selection()
|
---|
| 508 | key='%s%s' %(pairScans[0],keys[i].lstrip('nod'))
|
---|
| 509 | precal[key]=ll
|
---|
| 510 | key='%s%s' %(pairScans[1],keys[i].lstrip('nod'))
|
---|
| 511 | precal[key]=ll2
|
---|
| 512 | del ss
|
---|
| 513 | keys=precal.keys()
|
---|
| 514 | for j in range(len(ifnos)):
|
---|
| 515 | for k in range(len(polnos)):
|
---|
| 516 | sel.set_ifs(ifnos[j])
|
---|
| 517 | sel.set_polarizations(polnos[k])
|
---|
| 518 | sel.set_scans(pairScans[0])
|
---|
| 519 | try:
|
---|
| 520 | resspec.set_selection(sel)
|
---|
| 521 | except:
|
---|
| 522 | continue
|
---|
| 523 | postcal.append(numpy.array(resspec._getspectrum(0)))
|
---|
| 524 | sel.reset()
|
---|
| 525 | resspec.set_selection()
|
---|
| 526 | del sel
|
---|
| 527 | # plot
|
---|
| 528 | print_log()
|
---|
| 529 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
| 530 | print_log('WARN')
|
---|
| 531 | p=asaplotgui.asaplotgui()
|
---|
| 532 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
| 533 | nr=len(ifnos)*len(polnos)
|
---|
| 534 | titles=[]
|
---|
| 535 | btics=[]
|
---|
| 536 | if nr<4:
|
---|
| 537 | p.set_panels(rows=nr,cols=2,nplots=2*nr,ganged=False)
|
---|
| 538 | for i in range(2*nr):
|
---|
| 539 | b=False
|
---|
| 540 | if i >= 2*nr-2:
|
---|
| 541 | b=True
|
---|
| 542 | btics.append(b)
|
---|
| 543 | elif nr==4:
|
---|
| 544 | p.set_panels(rows=2,cols=4,nplots=8,ganged=False)
|
---|
| 545 | for i in range(2*nr):
|
---|
| 546 | b=False
|
---|
| 547 | if i >= 2*nr-4:
|
---|
| 548 | b=True
|
---|
| 549 | btics.append(b)
|
---|
| 550 | elif nr<7:
|
---|
| 551 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
| 552 | for i in range(2*nr):
|
---|
| 553 | if i >= 2*nr-4:
|
---|
| 554 | b=True
|
---|
| 555 | btics.append(b)
|
---|
| 556 | else:
|
---|
| 557 | print_log()
|
---|
| 558 | asaplog.push('Only first 6 [if,pol] pairs are plotted.')
|
---|
| 559 | print_log('WARN')
|
---|
| 560 | nr=6
|
---|
| 561 | for i in range(2*nr):
|
---|
| 562 | b=False
|
---|
| 563 | if i >= 2*nr-4:
|
---|
| 564 | b=True
|
---|
| 565 | btics.append(b)
|
---|
| 566 | p.set_panels(rows=3,cols=4,nplots=2*nr,ganged=False)
|
---|
| 567 | for i in range(nr):
|
---|
| 568 | p.subplot(2*i)
|
---|
| 569 | p.color=0
|
---|
| 570 | title='raw data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
| 571 | titles.append(title)
|
---|
| 572 | #p.set_axes('title',title,fontsize=40)
|
---|
| 573 | ymin=1.0e100
|
---|
| 574 | ymax=-1.0e100
|
---|
| 575 | nchan=scantab.nchan()
|
---|
| 576 | edge=int(nchan*0.01)
|
---|
| 577 | for j in range(4):
|
---|
| 578 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 579 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 580 | ymin=min(ymin,spmin)
|
---|
| 581 | ymax=max(ymax,spmax)
|
---|
| 582 | for j in range(4):
|
---|
| 583 | if i==0:
|
---|
| 584 | p.set_line(label=keys[j])
|
---|
| 585 | else:
|
---|
| 586 | p.legend()
|
---|
| 587 | p.plot(precal[keys[j]][i])
|
---|
| 588 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 589 | if not btics[2*i]:
|
---|
| 590 | p.axes.set_xticks([])
|
---|
| 591 | p.subplot(2*i+1)
|
---|
| 592 | p.color=0
|
---|
| 593 | title='cal data IF%s POL%s' % (ifnos[int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
| 594 | titles.append(title)
|
---|
| 595 | #p.set_axes('title',title)
|
---|
| 596 | p.legend()
|
---|
| 597 | ymin=postcal[i][edge:nchan-edge].min()
|
---|
| 598 | ymax=postcal[i][edge:nchan-edge].max()
|
---|
| 599 | p.plot(postcal[i])
|
---|
| 600 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 601 | if not btics[2*i+1]:
|
---|
| 602 | p.axes.set_xticks([])
|
---|
| 603 | for i in range(2*nr):
|
---|
| 604 | p.subplot(i)
|
---|
| 605 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
| 606 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
| 607 | if x.upper() == 'N':
|
---|
| 608 | p.unmap()
|
---|
| 609 | del p
|
---|
| 610 | return scabtab
|
---|
| 611 | p.unmap()
|
---|
| 612 | del p
|
---|
| 613 | ###
|
---|
[1389] | 614 | resspec._add_history("calnod",varlist)
|
---|
| 615 | print_log()
|
---|
| 616 | return resspec
|
---|
| 617 |
|
---|
[1631] | 618 | def calfs(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0, verify=False):
|
---|
[1389] | 619 | """
|
---|
| 620 | Calibrate GBT frequency switched data.
|
---|
| 621 | Adopted from GBTIDL getfs.
|
---|
| 622 | Currently calfs identify the scans as frequency switched data if they
|
---|
| 623 | contain '_fs' in the source name. The data must contains 'CAL' signal
|
---|
| 624 | on/off in each integration. To identify 'CAL' on state, the word, 'calon'
|
---|
| 625 | need to be present in the source name field.
|
---|
| 626 | (GBT MS data reading via scantable automatically append these
|
---|
| 627 | id names to the source names)
|
---|
| 628 |
|
---|
| 629 | Parameters:
|
---|
| 630 | scantab: scantable
|
---|
| 631 | scannos: list of scan numbers
|
---|
| 632 | smooth: optional box smoothing order for the reference
|
---|
| 633 | (default is 1 = no smoothing)
|
---|
| 634 | tsysval: optional user specified Tsys (default is 0.0,
|
---|
| 635 | use Tsys in the data)
|
---|
| 636 | tauval: optional user specified Tau
|
---|
| 637 | """
|
---|
| 638 | varlist = vars()
|
---|
| 639 | from asap._asap import stmath
|
---|
| 640 | stm = stmath()
|
---|
| 641 | stm._setinsitu(False)
|
---|
| 642 |
|
---|
| 643 | # check = scantab.get_scan('*_fs*')
|
---|
| 644 | # if check is None:
|
---|
| 645 | # msg = "The input data appear to contain no Nod observing mode data."
|
---|
| 646 | # if rcParams['verbose']:
|
---|
| 647 | # print msg
|
---|
| 648 | # return
|
---|
| 649 | # else:
|
---|
| 650 | # raise TypeError(msg)
|
---|
| 651 | s = scantab.get_scan(scannos)
|
---|
| 652 | del scantab
|
---|
| 653 |
|
---|
| 654 | resspec = scantable(stm._dofs(s, scannos, smooth, tsysval,tauval,tcalval))
|
---|
[1631] | 655 | ###
|
---|
| 656 | if verify:
|
---|
| 657 | # get data
|
---|
| 658 | ssub = s.get_scan(scannos)
|
---|
| 659 | ssubon = ssub.get_scan('*calon')
|
---|
| 660 | ssuboff = ssub.get_scan('*[^calon]')
|
---|
| 661 | import numpy
|
---|
| 662 | precal={}
|
---|
| 663 | postcal=[]
|
---|
| 664 | keys=['fs','fs_calon','fsr','fsr_calon']
|
---|
| 665 | ifnos=list(ssub.getifnos())
|
---|
| 666 | polnos=list(ssub.getpolnos())
|
---|
| 667 | sel=selector()
|
---|
| 668 | for i in range(2):
|
---|
| 669 | ss=ssuboff.get_scan('*'+keys[2*i])
|
---|
| 670 | ll=[]
|
---|
| 671 | for j in range(len(ifnos)):
|
---|
| 672 | for k in range(len(polnos)):
|
---|
| 673 | sel.set_ifs(ifnos[j])
|
---|
| 674 | sel.set_polarizations(polnos[k])
|
---|
| 675 | try:
|
---|
| 676 | ss.set_selection(sel)
|
---|
| 677 | except:
|
---|
| 678 | continue
|
---|
| 679 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
| 680 | sel.reset()
|
---|
| 681 | ss.set_selection()
|
---|
| 682 | precal[keys[2*i]]=ll
|
---|
| 683 | del ss
|
---|
| 684 | ss=ssubon.get_scan('*'+keys[2*i+1])
|
---|
| 685 | ll=[]
|
---|
| 686 | for j in range(len(ifnos)):
|
---|
| 687 | for k in range(len(polnos)):
|
---|
| 688 | sel.set_ifs(ifnos[j])
|
---|
| 689 | sel.set_polarizations(polnos[k])
|
---|
| 690 | try:
|
---|
| 691 | ss.set_selection(sel)
|
---|
| 692 | except:
|
---|
| 693 | continue
|
---|
| 694 | ll.append(numpy.array(ss._getspectrum(0)))
|
---|
| 695 | sel.reset()
|
---|
| 696 | ss.set_selection()
|
---|
| 697 | precal[keys[2*i+1]]=ll
|
---|
| 698 | del ss
|
---|
| 699 | sig=resspec.get_scan('*_fs')
|
---|
| 700 | ref=resspec.get_scan('*_fsr')
|
---|
| 701 | for k in range(len(polnos)):
|
---|
| 702 | for j in range(len(ifnos)):
|
---|
| 703 | sel.set_ifs(ifnos[j])
|
---|
| 704 | sel.set_polarizations(polnos[k])
|
---|
| 705 | try:
|
---|
| 706 | sig.set_selection(sel)
|
---|
| 707 | postcal.append(numpy.array(sig._getspectrum(0)))
|
---|
| 708 | except:
|
---|
| 709 | ref.set_selection(sel)
|
---|
| 710 | postcal.append(numpy.array(ref._getspectrum(0)))
|
---|
| 711 | sel.reset()
|
---|
| 712 | resspec.set_selection()
|
---|
| 713 | del sel
|
---|
| 714 | # plot
|
---|
| 715 | print_log()
|
---|
| 716 | asaplog.push('Plot only first spectrum for each [if,pol] pairs to verify calibration.')
|
---|
| 717 | print_log('WARN')
|
---|
| 718 | p=asaplotgui.asaplotgui()
|
---|
| 719 | #nr=min(6,len(ifnos)*len(polnos))
|
---|
| 720 | nr=len(ifnos)/2*len(polnos)
|
---|
| 721 | titles=[]
|
---|
| 722 | btics=[]
|
---|
| 723 | if nr>3:
|
---|
| 724 | print_log()
|
---|
| 725 | asaplog.push('Only first 3 [if,pol] pairs are plotted.')
|
---|
| 726 | print_log('WARN')
|
---|
| 727 | nr=3
|
---|
| 728 | p.set_panels(rows=nr,cols=3,nplots=3*nr,ganged=False)
|
---|
| 729 | for i in range(3*nr):
|
---|
| 730 | b=False
|
---|
| 731 | if i >= 3*nr-3:
|
---|
| 732 | b=True
|
---|
| 733 | btics.append(b)
|
---|
| 734 | for i in range(nr):
|
---|
| 735 | p.subplot(3*i)
|
---|
| 736 | p.color=0
|
---|
| 737 | title='raw data IF%s,%s POL%s' % (ifnos[2*int(i/len(polnos))],ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
|
---|
| 738 | titles.append(title)
|
---|
| 739 | #p.set_axes('title',title,fontsize=40)
|
---|
| 740 | ymin=1.0e100
|
---|
| 741 | ymax=-1.0e100
|
---|
| 742 | nchan=s.nchan()
|
---|
| 743 | edge=int(nchan*0.01)
|
---|
| 744 | for j in range(4):
|
---|
| 745 | spmin=min(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 746 | spmax=max(precal[keys[j]][i][edge:nchan-edge])
|
---|
| 747 | ymin=min(ymin,spmin)
|
---|
| 748 | ymax=max(ymax,spmax)
|
---|
| 749 | for j in range(4):
|
---|
| 750 | if i==0:
|
---|
| 751 | p.set_line(label=keys[j])
|
---|
| 752 | else:
|
---|
| 753 | p.legend()
|
---|
| 754 | p.plot(precal[keys[j]][i])
|
---|
| 755 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 756 | if not btics[3*i]:
|
---|
| 757 | p.axes.set_xticks([])
|
---|
| 758 | p.subplot(3*i+1)
|
---|
| 759 | p.color=0
|
---|
| 760 | title='sig data IF%s POL%s' % (ifnos[2*int(i/len(polnos))],polnos[i%len(polnos)])
|
---|
| 761 | titles.append(title)
|
---|
| 762 | #p.set_axes('title',title)
|
---|
| 763 | p.legend()
|
---|
| 764 | ymin=postcal[2*i][edge:nchan-edge].min()
|
---|
| 765 | ymax=postcal[2*i][edge:nchan-edge].max()
|
---|
| 766 | p.plot(postcal[2*i])
|
---|
| 767 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 768 | if not btics[3*i+1]:
|
---|
| 769 | p.axes.set_xticks([])
|
---|
| 770 | p.subplot(3*i+2)
|
---|
| 771 | p.color=0
|
---|
| 772 | title='ref data IF%s POL%s' % (ifnos[2*int(i/len(polnos))+1],polnos[i%len(polnos)])
|
---|
| 773 | titles.append(title)
|
---|
| 774 | #p.set_axes('title',title)
|
---|
| 775 | p.legend()
|
---|
| 776 | ymin=postcal[2*i+1][edge:nchan-edge].min()
|
---|
| 777 | ymax=postcal[2*i+1][edge:nchan-edge].max()
|
---|
| 778 | p.plot(postcal[2*i+1])
|
---|
| 779 | p.axes.set_ylim(ymin-0.1*abs(ymin),ymax+0.1*abs(ymax))
|
---|
| 780 | if not btics[3*i+2]:
|
---|
| 781 | p.axes.set_xticks([])
|
---|
| 782 | for i in range(3*nr):
|
---|
| 783 | p.subplot(i)
|
---|
| 784 | p.set_axes('title',titles[i],fontsize='medium')
|
---|
| 785 | x=raw_input('Accept calibration ([y]/n): ' )
|
---|
| 786 | if x.upper() == 'N':
|
---|
| 787 | p.unmap()
|
---|
| 788 | del p
|
---|
| 789 | return scabtab
|
---|
| 790 | p.unmap()
|
---|
| 791 | del p
|
---|
| 792 | ###
|
---|
[1389] | 793 | resspec._add_history("calfs",varlist)
|
---|
| 794 | print_log()
|
---|
| 795 | return resspec
|
---|
| 796 |
|
---|
[296] | 797 | def simple_math(left, right, op='add', tsys=True):
|
---|
[242] | 798 | """
|
---|
[720] | 799 | Apply simple mathematical binary operations to two
|
---|
[242] | 800 | scan tables, returning the result in a new scan table.
|
---|
| 801 | The operation is applied to both the correlations and the TSys data
|
---|
[305] | 802 | The cursor of the output scan is set to 0
|
---|
[242] | 803 | Parameters:
|
---|
| 804 | left: the 'left' scan
|
---|
| 805 | right: the 'right' scan
|
---|
| 806 | op: the operation: 'add' (default), 'sub', 'mul', 'div'
|
---|
[296] | 807 | tsys: if True (default) then apply the operation to Tsys
|
---|
| 808 | as well as the data
|
---|
[242] | 809 | """
|
---|
[1612] | 810 | #print "simple_math is deprecated use +=/* instead."
|
---|
[1614] | 811 | asaplog.push( "simple_math is deprecated use +=/* instead." )
|
---|
| 812 | print_log('WARN')
|
---|
[918] | 813 |
|
---|
| 814 | def merge(*args):
|
---|
[945] | 815 | """
|
---|
[1362] | 816 | Merge a list of scanatables, or comma-sperated scantables into one
|
---|
| 817 | scnatble.
|
---|
| 818 | Parameters:
|
---|
| 819 | A list [scan1, scan2] or scan1, scan2.
|
---|
| 820 | Example:
|
---|
| 821 | myscans = [scan1, scan2]
|
---|
| 822 | allscans = merge(myscans)
|
---|
| 823 | # or equivalent
|
---|
| 824 | sameallscans = merge(scan1, scan2)
|
---|
[945] | 825 | """
|
---|
[918] | 826 | varlist = vars()
|
---|
| 827 | if isinstance(args[0],list):
|
---|
| 828 | lst = tuple(args[0])
|
---|
| 829 | elif isinstance(args[0],tuple):
|
---|
| 830 | lst = args[0]
|
---|
| 831 | else:
|
---|
| 832 | lst = tuple(args)
|
---|
| 833 | varlist["args"] = "%d scantables" % len(lst)
|
---|
| 834 | # need special formatting her for history...
|
---|
| 835 | from asap._asap import stmath
|
---|
| 836 | stm = stmath()
|
---|
| 837 | for s in lst:
|
---|
| 838 | if not isinstance(s,scantable):
|
---|
| 839 | msg = "Please give a list of scantables"
|
---|
| 840 | if rcParams['verbose']:
|
---|
[1612] | 841 | #print msg
|
---|
[1614] | 842 | asaplog.push(msg)
|
---|
| 843 | print_log('ERROR')
|
---|
[918] | 844 | return
|
---|
| 845 | else:
|
---|
| 846 | raise TypeError(msg)
|
---|
| 847 | s = scantable(stm._merge(lst))
|
---|
| 848 | s._add_history("merge", varlist)
|
---|
| 849 | print_log()
|
---|
| 850 | return s
|
---|
[1074] | 851 |
|
---|
[1633] | 852 | def calibrate( scantab, scannos=[], calmode='none', verify=None ):
|
---|
| 853 | """
|
---|
| 854 | Calibrate data.
|
---|
[1631] | 855 |
|
---|
[1633] | 856 | Parameters:
|
---|
| 857 | scantab: scantable
|
---|
| 858 | scannos: list of scan number
|
---|
| 859 | calmode: calibration mode
|
---|
| 860 | verify: verify calibration
|
---|
| 861 | """
|
---|
| 862 | antname = scantab.get_antennaname()
|
---|
| 863 | if ( calmode == 'nod' ):
|
---|
| 864 | asaplog.push( 'Calibrating nod data.' )
|
---|
| 865 | print_log()
|
---|
| 866 | scal = calnod( scantab, scannos=scannos, verify=verify )
|
---|
| 867 | elif ( calmode == 'quotient' ):
|
---|
| 868 | asaplog.push( 'Calibrating using quotient.' )
|
---|
| 869 | print_log()
|
---|
| 870 | scal = scantab.auto_quotient( verify=verify )
|
---|
| 871 | elif ( calmode == 'ps' ):
|
---|
| 872 | asaplog.push( 'Calibrating %s position-switched data.' % antname )
|
---|
| 873 | print_log()
|
---|
| 874 | if ( antname.find( 'APEX' ) != -1 or antname.find( 'ALMA' ) != -1 ):
|
---|
| 875 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
| 876 | else:
|
---|
| 877 | scal = calps( scantab, scannos=scannos, verify=verify )
|
---|
| 878 | elif ( calmode == 'fs' or calmode == 'fsotf' ):
|
---|
| 879 | asaplog.push( 'Calibrating %s frequency-switched data.' % antname )
|
---|
| 880 | print_log()
|
---|
| 881 | if ( antname.find( 'APEX' ) != -1 or antname.find( 'ALMA' ) != -1 ):
|
---|
| 882 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
| 883 | else:
|
---|
| 884 | scal = calfs( scantab, scannos=scannos, verify=verify )
|
---|
| 885 | elif ( calmode == 'otf' ):
|
---|
| 886 | asaplog.push( 'Calibrating %s On-The-Fly data.' % antname )
|
---|
| 887 | print_log()
|
---|
| 888 | scal = almacal( scantab, scannos, calmode, verify )
|
---|
| 889 | else:
|
---|
| 890 | asaplog.push( 'No calibration.' )
|
---|
| 891 | scal = scantab.copy()
|
---|
| 892 |
|
---|
| 893 | return scal
|
---|
| 894 |
|
---|
| 895 | def almacal( scantab, scannos=[], calmode='none', verify=False ):
|
---|
| 896 | """
|
---|
| 897 | Calibrate APEX and ALMA data
|
---|
| 898 |
|
---|
| 899 | Parameters:
|
---|
| 900 | scantab: scantable
|
---|
| 901 | scannos: list of scan number
|
---|
| 902 | calmode: calibration mode
|
---|
| 903 | verify: verify calibration
|
---|
| 904 | """
|
---|
| 905 | from asap._asap import stmath
|
---|
| 906 | stm = stmath()
|
---|
| 907 | antname = scantab.get_antennaname()
|
---|
| 908 | ssub = scantab.get_scan( scannos )
|
---|
| 909 | scal = scantable( stm.cwcal( ssub, calmode, antname ) )
|
---|
| 910 | return scal
|
---|