[1085] | 1 | from asap.scantable import scantable
|
---|
[258] | 2 | from asap import rcParams
|
---|
[720] | 3 | from asap import print_log
|
---|
[1389] | 4 | from asap import selector
|
---|
[101] | 5 |
|
---|
[143] | 6 | def average_time(*args, **kwargs):
|
---|
[101] | 7 | """
|
---|
[113] | 8 | Return the (time) average of a scan or list of scans. [in channels only]
|
---|
[305] | 9 | The cursor of the output scan is set to 0
|
---|
[113] | 10 | Parameters:
|
---|
[1361] | 11 | one scan or comma separated scans or a list of scans
|
---|
[143] | 12 | mask: an optional mask (only used for 'var' and 'tsys' weighting)
|
---|
[558] | 13 | scanav: True averages each scan separately.
|
---|
| 14 | False (default) averages all scans together,
|
---|
[1232] | 15 | weight: Weighting scheme.
|
---|
| 16 | 'none' (mean no weight)
|
---|
| 17 | 'var' (1/var(spec) weighted)
|
---|
| 18 | 'tsys' (1/Tsys**2 weighted)
|
---|
| 19 | 'tint' (integration time weighted)
|
---|
| 20 | 'tintsys' (Tint/Tsys**2)
|
---|
| 21 | 'median' ( median averaging)
|
---|
[930] | 22 | align: align the spectra in velocity before averaging. It takes
|
---|
| 23 | the time of the first spectrum in the first scantable
|
---|
| 24 | as reference time.
|
---|
[113] | 25 | Example:
|
---|
| 26 | # return a time averaged scan from scana and scanb
|
---|
| 27 | # without using a mask
|
---|
[129] | 28 | scanav = average_time(scana,scanb)
|
---|
[1361] | 29 | # or equivalent
|
---|
| 30 | # scanav = average_time([scana, scanb])
|
---|
[113] | 31 | # return the (time) averaged scan, i.e. the average of
|
---|
| 32 | # all correlator cycles
|
---|
[558] | 33 | scanav = average_time(scan, scanav=True)
|
---|
[101] | 34 | """
|
---|
[930] | 35 | scanav = False
|
---|
[143] | 36 | if kwargs.has_key('scanav'):
|
---|
[930] | 37 | scanav = kwargs.get('scanav')
|
---|
[524] | 38 | weight = 'tint'
|
---|
[143] | 39 | if kwargs.has_key('weight'):
|
---|
| 40 | weight = kwargs.get('weight')
|
---|
| 41 | mask = ()
|
---|
| 42 | if kwargs.has_key('mask'):
|
---|
| 43 | mask = kwargs.get('mask')
|
---|
[930] | 44 | align = False
|
---|
| 45 | if kwargs.has_key('align'):
|
---|
| 46 | align = kwargs.get('align')
|
---|
[1446] | 47 | compel = False
|
---|
| 48 | if kwargs.has_key('compel'):
|
---|
| 49 | compel = kwargs.get('compel')
|
---|
[489] | 50 | varlist = vars()
|
---|
[665] | 51 | if isinstance(args[0],list):
|
---|
[981] | 52 | lst = args[0]
|
---|
[665] | 53 | elif isinstance(args[0],tuple):
|
---|
[981] | 54 | lst = list(args[0])
|
---|
[665] | 55 | else:
|
---|
[981] | 56 | lst = list(args)
|
---|
[720] | 57 |
|
---|
[489] | 58 | del varlist["kwargs"]
|
---|
| 59 | varlist["args"] = "%d scantables" % len(lst)
|
---|
[981] | 60 | # need special formatting here for history...
|
---|
[720] | 61 |
|
---|
[876] | 62 | from asap._asap import stmath
|
---|
| 63 | stm = stmath()
|
---|
[113] | 64 | for s in lst:
|
---|
[101] | 65 | if not isinstance(s,scantable):
|
---|
[720] | 66 | msg = "Please give a list of scantables"
|
---|
| 67 | if rcParams['verbose']:
|
---|
| 68 | print msg
|
---|
| 69 | return
|
---|
| 70 | else:
|
---|
| 71 | raise TypeError(msg)
|
---|
[945] | 72 | if scanav: scanav = "SCAN"
|
---|
| 73 | else: scanav = "NONE"
|
---|
[981] | 74 | alignedlst = []
|
---|
| 75 | if align:
|
---|
| 76 | refepoch = lst[0].get_time(0)
|
---|
| 77 | for scan in lst:
|
---|
| 78 | alignedlst.append(scan.freq_align(refepoch,insitu=False))
|
---|
| 79 | else:
|
---|
[1059] | 80 | alignedlst = lst
|
---|
[1232] | 81 | if weight.upper() == 'MEDIAN':
|
---|
| 82 | # median doesn't support list of scantables - merge first
|
---|
| 83 | merged = None
|
---|
| 84 | if len(alignedlst) > 1:
|
---|
| 85 | merged = merge(alignedlst)
|
---|
| 86 | else:
|
---|
| 87 | merged = alignedlst[0]
|
---|
| 88 | s = scantable(stm._averagechannel(merged, 'MEDIAN', scanav))
|
---|
| 89 | del merged
|
---|
| 90 | else:
|
---|
[1446] | 91 | #s = scantable(stm._average(alignedlst, mask, weight.upper(), scanav))
|
---|
| 92 | s = scantable(stm._new_average(alignedlst, compel, mask, weight.upper(), scanav))
|
---|
[489] | 93 | s._add_history("average_time",varlist)
|
---|
[720] | 94 | print_log()
|
---|
[489] | 95 | return s
|
---|
[101] | 96 |
|
---|
[1074] | 97 | def quotient(source, reference, preserve=True):
|
---|
| 98 | """
|
---|
| 99 | Return the quotient of a 'source' (signal) scan and a 'reference' scan.
|
---|
| 100 | The reference can have just one scan, even if the signal has many. Otherwise
|
---|
| 101 | they must have the same number of scans.
|
---|
| 102 | The cursor of the output scan is set to 0
|
---|
| 103 | Parameters:
|
---|
| 104 | source: the 'on' scan
|
---|
| 105 | reference: the 'off' scan
|
---|
| 106 | preserve: you can preserve (default) the continuum or
|
---|
| 107 | remove it. The equations used are
|
---|
| 108 | preserve: Output = Toff * (on/off) - Toff
|
---|
| 109 | remove: Output = Toff * (on/off) - Ton
|
---|
| 110 | """
|
---|
| 111 | varlist = vars()
|
---|
| 112 | from asap._asap import stmath
|
---|
| 113 | stm = stmath()
|
---|
| 114 | stm._setinsitu(False)
|
---|
| 115 | s = scantable(stm._quotient(source, reference, preserve))
|
---|
| 116 | s._add_history("quotient",varlist)
|
---|
| 117 | print_log()
|
---|
| 118 | return s
|
---|
[101] | 119 |
|
---|
[1389] | 120 | def dototalpower(calon, caloff, tcalval=0.0):
|
---|
| 121 | """
|
---|
| 122 | Do calibration for CAL on,off signals.
|
---|
| 123 | Adopted from GBTIDL dototalpower
|
---|
| 124 | Parameters:
|
---|
| 125 | calon: the 'cal on' subintegration
|
---|
| 126 | caloff: the 'cal off' subintegration
|
---|
| 127 | tcalval: user supplied Tcal value
|
---|
| 128 | """
|
---|
| 129 | varlist = vars()
|
---|
| 130 | from asap._asap import stmath
|
---|
| 131 | stm = stmath()
|
---|
| 132 | stm._setinsitu(False)
|
---|
| 133 | s = scantable(stm._dototalpower(calon, caloff, tcalval))
|
---|
| 134 | s._add_history("dototalpower",varlist)
|
---|
| 135 | print_log()
|
---|
| 136 | return s
|
---|
| 137 |
|
---|
| 138 | def dosigref(sig, ref, smooth, tsysval=0.0, tauval=0.0):
|
---|
| 139 | """
|
---|
| 140 | Calculate a quotient (sig-ref/ref * Tsys)
|
---|
| 141 | Adopted from GBTIDL dosigref
|
---|
| 142 | Parameters:
|
---|
| 143 | sig: on source data
|
---|
| 144 | ref: reference data
|
---|
| 145 | smooth: width of box car smoothing for reference
|
---|
| 146 | tsysval: user specified Tsys (scalar only)
|
---|
| 147 | tauval: user specified Tau (required if tsysval is set)
|
---|
| 148 | """
|
---|
| 149 | varlist = vars()
|
---|
| 150 | from asap._asap import stmath
|
---|
| 151 | stm = stmath()
|
---|
| 152 | stm._setinsitu(False)
|
---|
| 153 | s = scantable(stm._dosigref(sig, ref, smooth, tsysval, tauval))
|
---|
| 154 | s._add_history("dosigref",varlist)
|
---|
| 155 | print_log()
|
---|
| 156 | return s
|
---|
| 157 |
|
---|
| 158 | def calps(scantab, scannos, smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0):
|
---|
| 159 | """
|
---|
| 160 | Calibrate GBT position switched data
|
---|
| 161 | Adopted from GBTIDL getps
|
---|
| 162 | Currently calps identify the scans as position switched data if they
|
---|
| 163 | contain '_ps' in the source name. The data must contains 'CAL' signal
|
---|
| 164 | on/off in each integration. To identify 'CAL' on state, the word, 'calon'
|
---|
| 165 | need to be present in the source name field.
|
---|
| 166 | (GBT MS data reading process to scantable automatically append these
|
---|
| 167 | id names to the source names)
|
---|
| 168 |
|
---|
| 169 | Parameters:
|
---|
| 170 | scantab: scantable
|
---|
| 171 | scannos: list of scan numbers
|
---|
| 172 | smooth: optional box smoothing order for the reference
|
---|
| 173 | (default is 1 = no smoothing)
|
---|
| 174 | tsysval: optional user specified Tsys (default is 0.0,
|
---|
| 175 | use Tsys in the data)
|
---|
| 176 | tauval: optional user specified Tau
|
---|
| 177 | tcalval: optional user specified Tcal (default is 0.0,
|
---|
| 178 | use Tcal value in the data)
|
---|
| 179 | """
|
---|
| 180 | varlist = vars()
|
---|
| 181 | # check for the appropriate data
|
---|
| 182 | s = scantab.get_scan('*_ps*')
|
---|
| 183 | if s is None:
|
---|
| 184 | msg = "The input data appear to contain no position-switch mode data."
|
---|
| 185 | if rcParams['verbose']:
|
---|
| 186 | print msg
|
---|
| 187 | return
|
---|
| 188 | else:
|
---|
| 189 | raise TypeError(msg)
|
---|
| 190 | ssub = s.get_scan(scannos)
|
---|
| 191 | if ssub is None:
|
---|
| 192 | msg = "No data was found with given scan numbers!"
|
---|
| 193 | if rcParams['verbose']:
|
---|
| 194 | print msg
|
---|
| 195 | return
|
---|
| 196 | else:
|
---|
| 197 | raise TypeError(msg)
|
---|
| 198 | ssubon = ssub.get_scan('*calon')
|
---|
| 199 | ssuboff = ssub.get_scan('*[^calon]')
|
---|
| 200 | if ssubon.nrow() != ssuboff.nrow():
|
---|
| 201 | msg = "mismatch in numbers of CAL on/off scans. Cannot calibrate. Check the scan numbers."
|
---|
| 202 | if rcParams['verbose']:
|
---|
| 203 | print msg
|
---|
| 204 | return
|
---|
| 205 | else:
|
---|
| 206 | raise TypeError(msg)
|
---|
| 207 | cals = dototalpower(ssubon, ssuboff, tcalval)
|
---|
| 208 | sig = cals.get_scan('*ps')
|
---|
| 209 | ref = cals.get_scan('*psr')
|
---|
| 210 | if sig.nscan() != ref.nscan():
|
---|
| 211 | msg = "mismatch in numbers of on/off scans. Cannot calibrate. Check the scan numbers."
|
---|
| 212 | if rcParams['verbose']:
|
---|
| 213 | print msg
|
---|
| 214 | return
|
---|
| 215 | else:
|
---|
| 216 | raise TypeError(msg)
|
---|
| 217 |
|
---|
| 218 | #for user supplied Tsys
|
---|
| 219 | if tsysval>0.0:
|
---|
| 220 | if tauval<=0.0:
|
---|
| 221 | msg = "Need to supply a valid tau to use the supplied Tsys"
|
---|
| 222 | if rcParams['verbose']:
|
---|
| 223 | print msg
|
---|
| 224 | return
|
---|
| 225 | else:
|
---|
| 226 | raise TypeError(msg)
|
---|
| 227 | else:
|
---|
| 228 | sig.recalc_azel()
|
---|
| 229 | ref.recalc_azel()
|
---|
| 230 | #msg = "Use of user specified Tsys is not fully implemented yet."
|
---|
| 231 | #if rcParams['verbose']:
|
---|
| 232 | # print msg
|
---|
| 233 | # return
|
---|
| 234 | #else:
|
---|
| 235 | # raise TypeError(msg)
|
---|
| 236 | # use get_elevation to get elevation and
|
---|
| 237 | # calculate a scaling factor using the formula
|
---|
| 238 | # -> tsys use to dosigref
|
---|
| 239 |
|
---|
| 240 | #ress = dosigref(sig, ref, smooth, tsysval)
|
---|
| 241 | ress = dosigref(sig, ref, smooth, tsysval, tauval)
|
---|
| 242 | ress._add_history("calps", varlist)
|
---|
| 243 | print_log()
|
---|
| 244 | return ress
|
---|
| 245 |
|
---|
| 246 | def calnod(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0):
|
---|
| 247 | """
|
---|
| 248 | Do full (but a pair of scans at time) processing of GBT Nod data
|
---|
| 249 | calibration.
|
---|
| 250 | Adopted from GBTIDL's getnod
|
---|
| 251 | Parameters:
|
---|
| 252 | scantab: scantable
|
---|
| 253 | scannos: a pair of scan numbers, or the first scan number of the pair
|
---|
| 254 | smooth: box car smoothing order
|
---|
| 255 | tsysval: optional user specified Tsys value
|
---|
| 256 | tauval: optional user specified tau value (not implemented yet)
|
---|
| 257 | tcalval: optional user specified Tcal value
|
---|
| 258 | """
|
---|
| 259 | varlist = vars()
|
---|
| 260 | from asap._asap import stmath
|
---|
| 261 | stm = stmath()
|
---|
| 262 | stm._setinsitu(False)
|
---|
| 263 |
|
---|
| 264 | # check for the appropriate data
|
---|
| 265 | s = scantab.get_scan('*_nod*')
|
---|
| 266 | if s is None:
|
---|
| 267 | msg = "The input data appear to contain no Nod observing mode data."
|
---|
| 268 | if rcParams['verbose']:
|
---|
| 269 | print msg
|
---|
| 270 | return
|
---|
| 271 | else:
|
---|
| 272 | raise TypeError(msg)
|
---|
| 273 |
|
---|
| 274 | # need check correspondance of each beam with sig-ref ...
|
---|
| 275 | # check for timestamps, scan numbers, subscan id (not available in
|
---|
| 276 | # ASAP data format...). Assume 1st scan of the pair (beam 0 - sig
|
---|
| 277 | # and beam 1 - ref...)
|
---|
| 278 | # First scan number of paired scans or list of pairs of
|
---|
| 279 | # scan numbers (has to have even number of pairs.)
|
---|
| 280 |
|
---|
| 281 | #data splitting
|
---|
| 282 | scan1no = scan2no = 0
|
---|
| 283 |
|
---|
| 284 | if len(scannos)==1:
|
---|
| 285 | scan1no = scannos[0]
|
---|
| 286 | scan2no = scannos[0]+1
|
---|
| 287 | pairScans = [scan1no, scan2no]
|
---|
| 288 | else:
|
---|
| 289 | #if len(scannos)>2:
|
---|
| 290 | # msg = "calnod can only process a pair of nod scans at time."
|
---|
| 291 | # if rcParams['verbose']:
|
---|
| 292 | # print msg
|
---|
| 293 | # return
|
---|
| 294 | # else:
|
---|
| 295 | # raise TypeError(msg)
|
---|
| 296 | #
|
---|
| 297 | #if len(scannos)==2:
|
---|
| 298 | # scan1no = scannos[0]
|
---|
| 299 | # scan2no = scannos[1]
|
---|
| 300 | pairScans = list(scannos)
|
---|
| 301 |
|
---|
| 302 | if tsysval>0.0:
|
---|
| 303 | if tauval<=0.0:
|
---|
| 304 | msg = "Need to supply a valid tau to use the supplied Tsys"
|
---|
| 305 | if rcParams['verbose']:
|
---|
| 306 | print msg
|
---|
| 307 | return
|
---|
| 308 | else:
|
---|
| 309 | raise TypeError(msg)
|
---|
| 310 | else:
|
---|
| 311 | scantab.recalc_azel()
|
---|
| 312 | resspec = scantable(stm._donod(scantab, pairScans, smooth, tsysval,tauval,tcalval))
|
---|
| 313 | resspec._add_history("calnod",varlist)
|
---|
| 314 | print_log()
|
---|
| 315 | return resspec
|
---|
| 316 |
|
---|
| 317 | def calfs(scantab, scannos=[], smooth=1, tsysval=0.0, tauval=0.0, tcalval=0.0):
|
---|
| 318 | """
|
---|
| 319 | Calibrate GBT frequency switched data.
|
---|
| 320 | Adopted from GBTIDL getfs.
|
---|
| 321 | Currently calfs identify the scans as frequency switched data if they
|
---|
| 322 | contain '_fs' in the source name. The data must contains 'CAL' signal
|
---|
| 323 | on/off in each integration. To identify 'CAL' on state, the word, 'calon'
|
---|
| 324 | need to be present in the source name field.
|
---|
| 325 | (GBT MS data reading via scantable automatically append these
|
---|
| 326 | id names to the source names)
|
---|
| 327 |
|
---|
| 328 | Parameters:
|
---|
| 329 | scantab: scantable
|
---|
| 330 | scannos: list of scan numbers
|
---|
| 331 | smooth: optional box smoothing order for the reference
|
---|
| 332 | (default is 1 = no smoothing)
|
---|
| 333 | tsysval: optional user specified Tsys (default is 0.0,
|
---|
| 334 | use Tsys in the data)
|
---|
| 335 | tauval: optional user specified Tau
|
---|
| 336 | """
|
---|
| 337 | varlist = vars()
|
---|
| 338 | from asap._asap import stmath
|
---|
| 339 | stm = stmath()
|
---|
| 340 | stm._setinsitu(False)
|
---|
| 341 |
|
---|
| 342 | # check = scantab.get_scan('*_fs*')
|
---|
| 343 | # if check is None:
|
---|
| 344 | # msg = "The input data appear to contain no Nod observing mode data."
|
---|
| 345 | # if rcParams['verbose']:
|
---|
| 346 | # print msg
|
---|
| 347 | # return
|
---|
| 348 | # else:
|
---|
| 349 | # raise TypeError(msg)
|
---|
| 350 | s = scantab.get_scan(scannos)
|
---|
| 351 | del scantab
|
---|
| 352 |
|
---|
| 353 | resspec = scantable(stm._dofs(s, scannos, smooth, tsysval,tauval,tcalval))
|
---|
| 354 | resspec._add_history("calfs",varlist)
|
---|
| 355 | print_log()
|
---|
| 356 | return resspec
|
---|
| 357 |
|
---|
[296] | 358 | def simple_math(left, right, op='add', tsys=True):
|
---|
[242] | 359 | """
|
---|
[720] | 360 | Apply simple mathematical binary operations to two
|
---|
[242] | 361 | scan tables, returning the result in a new scan table.
|
---|
| 362 | The operation is applied to both the correlations and the TSys data
|
---|
[305] | 363 | The cursor of the output scan is set to 0
|
---|
[242] | 364 | Parameters:
|
---|
| 365 | left: the 'left' scan
|
---|
| 366 | right: the 'right' scan
|
---|
| 367 | op: the operation: 'add' (default), 'sub', 'mul', 'div'
|
---|
[296] | 368 | tsys: if True (default) then apply the operation to Tsys
|
---|
| 369 | as well as the data
|
---|
[242] | 370 | """
|
---|
[1357] | 371 | print "simple_math is deprecated use +=/* instead."
|
---|
[918] | 372 |
|
---|
| 373 | def merge(*args):
|
---|
[945] | 374 | """
|
---|
[1362] | 375 | Merge a list of scanatables, or comma-sperated scantables into one
|
---|
| 376 | scnatble.
|
---|
| 377 | Parameters:
|
---|
| 378 | A list [scan1, scan2] or scan1, scan2.
|
---|
| 379 | Example:
|
---|
| 380 | myscans = [scan1, scan2]
|
---|
| 381 | allscans = merge(myscans)
|
---|
| 382 | # or equivalent
|
---|
| 383 | sameallscans = merge(scan1, scan2)
|
---|
[945] | 384 | """
|
---|
[918] | 385 | varlist = vars()
|
---|
| 386 | if isinstance(args[0],list):
|
---|
| 387 | lst = tuple(args[0])
|
---|
| 388 | elif isinstance(args[0],tuple):
|
---|
| 389 | lst = args[0]
|
---|
| 390 | else:
|
---|
| 391 | lst = tuple(args)
|
---|
| 392 | varlist["args"] = "%d scantables" % len(lst)
|
---|
| 393 | # need special formatting her for history...
|
---|
| 394 | from asap._asap import stmath
|
---|
| 395 | stm = stmath()
|
---|
| 396 | for s in lst:
|
---|
| 397 | if not isinstance(s,scantable):
|
---|
| 398 | msg = "Please give a list of scantables"
|
---|
| 399 | if rcParams['verbose']:
|
---|
| 400 | print msg
|
---|
| 401 | return
|
---|
| 402 | else:
|
---|
| 403 | raise TypeError(msg)
|
---|
| 404 | s = scantable(stm._merge(lst))
|
---|
| 405 | s._add_history("merge", varlist)
|
---|
| 406 | print_log()
|
---|
| 407 | return s
|
---|
[1074] | 408 |
|
---|