[113] | 1 | import _asap
|
---|
[259] | 2 | from asap import rcParams
|
---|
[723] | 3 | from asap import print_log
|
---|
[1295] | 4 | from asap import _n_bools
|
---|
[1603] | 5 | from asap import mask_and
|
---|
[1614] | 6 | from asap import asaplog
|
---|
[113] | 7 |
|
---|
| 8 | class fitter:
|
---|
| 9 | """
|
---|
| 10 | The fitting class for ASAP.
|
---|
| 11 | """
|
---|
[723] | 12 |
|
---|
[113] | 13 | def __init__(self):
|
---|
| 14 | """
|
---|
| 15 | Create a fitter object. No state is set.
|
---|
| 16 | """
|
---|
| 17 | self.fitter = _asap.fitter()
|
---|
| 18 | self.x = None
|
---|
| 19 | self.y = None
|
---|
| 20 | self.mask = None
|
---|
| 21 | self.fitfunc = None
|
---|
[515] | 22 | self.fitfuncs = None
|
---|
[113] | 23 | self.fitted = False
|
---|
| 24 | self.data = None
|
---|
[515] | 25 | self.components = 0
|
---|
| 26 | self._fittedrow = 0
|
---|
[113] | 27 | self._p = None
|
---|
[515] | 28 | self._selection = None
|
---|
[1389] | 29 | self.uselinear = False
|
---|
[113] | 30 |
|
---|
| 31 | def set_data(self, xdat, ydat, mask=None):
|
---|
| 32 | """
|
---|
[158] | 33 | Set the absissa and ordinate for the fit. Also set the mask
|
---|
[113] | 34 | indicationg valid points.
|
---|
| 35 | This can be used for data vectors retrieved from a scantable.
|
---|
| 36 | For scantable fitting use 'fitter.set_scan(scan, mask)'.
|
---|
| 37 | Parameters:
|
---|
[158] | 38 | xdat: the abcissa values
|
---|
[113] | 39 | ydat: the ordinate values
|
---|
| 40 | mask: an optional mask
|
---|
[723] | 41 |
|
---|
[113] | 42 | """
|
---|
| 43 | self.fitted = False
|
---|
| 44 | self.x = xdat
|
---|
| 45 | self.y = ydat
|
---|
| 46 | if mask == None:
|
---|
[1295] | 47 | self.mask = _n_bools(len(xdat), True)
|
---|
[113] | 48 | else:
|
---|
| 49 | self.mask = mask
|
---|
| 50 | return
|
---|
| 51 |
|
---|
| 52 | def set_scan(self, thescan=None, mask=None):
|
---|
| 53 | """
|
---|
| 54 | Set the 'data' (a scantable) of the fitter.
|
---|
| 55 | Parameters:
|
---|
| 56 | thescan: a scantable
|
---|
[1603] | 57 | mask: a msk retrieved from the scantable
|
---|
[113] | 58 | """
|
---|
| 59 | if not thescan:
|
---|
[723] | 60 | msg = "Please give a correct scan"
|
---|
| 61 | if rcParams['verbose']:
|
---|
[1612] | 62 | #print msg
|
---|
[1614] | 63 | asaplog.push(msg)
|
---|
| 64 | print_log('ERROR')
|
---|
[723] | 65 | return
|
---|
| 66 | else:
|
---|
| 67 | raise TypeError(msg)
|
---|
[113] | 68 | self.fitted = False
|
---|
| 69 | self.data = thescan
|
---|
[1075] | 70 | self.mask = None
|
---|
[113] | 71 | if mask is None:
|
---|
[1295] | 72 | self.mask = _n_bools(self.data.nchan(), True)
|
---|
[113] | 73 | else:
|
---|
| 74 | self.mask = mask
|
---|
| 75 | return
|
---|
| 76 |
|
---|
| 77 | def set_function(self, **kwargs):
|
---|
| 78 | """
|
---|
| 79 | Set the function to be fit.
|
---|
| 80 | Parameters:
|
---|
[1389] | 81 | poly: use a polynomial of the order given with nonlinear least squares fit
|
---|
| 82 | lpoly: use polynomial of the order given with linear least squares fit
|
---|
[113] | 83 | gauss: fit the number of gaussian specified
|
---|
| 84 | Example:
|
---|
| 85 | fitter.set_function(gauss=2) # will fit two gaussians
|
---|
[1389] | 86 | fitter.set_function(poly=3) # will fit a 3rd order polynomial via nonlinear method
|
---|
| 87 | fitter.set_function(lpoly=3) # will fit a 3rd order polynomial via linear method
|
---|
[113] | 88 | """
|
---|
[723] | 89 | #default poly order 0
|
---|
[515] | 90 | n=0
|
---|
[113] | 91 | if kwargs.has_key('poly'):
|
---|
| 92 | self.fitfunc = 'poly'
|
---|
| 93 | n = kwargs.get('poly')
|
---|
[515] | 94 | self.components = [n]
|
---|
[1389] | 95 | self.uselinear = False
|
---|
| 96 | elif kwargs.has_key('lpoly'):
|
---|
| 97 | self.fitfunc = 'poly'
|
---|
| 98 | n = kwargs.get('lpoly')
|
---|
| 99 | self.components = [n]
|
---|
| 100 | self.uselinear = True
|
---|
[113] | 101 | elif kwargs.has_key('gauss'):
|
---|
| 102 | n = kwargs.get('gauss')
|
---|
| 103 | self.fitfunc = 'gauss'
|
---|
[515] | 104 | self.fitfuncs = [ 'gauss' for i in range(n) ]
|
---|
| 105 | self.components = [ 3 for i in range(n) ]
|
---|
[1389] | 106 | self.uselinear = False
|
---|
[515] | 107 | else:
|
---|
[723] | 108 | msg = "Invalid function type."
|
---|
| 109 | if rcParams['verbose']:
|
---|
[1612] | 110 | #print msg
|
---|
[1614] | 111 | asaplog.push(msg)
|
---|
| 112 | print_log('ERROR')
|
---|
[723] | 113 | return
|
---|
| 114 | else:
|
---|
| 115 | raise TypeError(msg)
|
---|
| 116 |
|
---|
[113] | 117 | self.fitter.setexpression(self.fitfunc,n)
|
---|
[1232] | 118 | self.fitted = False
|
---|
[113] | 119 | return
|
---|
[723] | 120 |
|
---|
[1075] | 121 | def fit(self, row=0, estimate=False):
|
---|
[113] | 122 | """
|
---|
| 123 | Execute the actual fitting process. All the state has to be set.
|
---|
| 124 | Parameters:
|
---|
[1075] | 125 | row: specify the row in the scantable
|
---|
| 126 | estimate: auto-compute an initial parameter set (default False)
|
---|
| 127 | This can be used to compute estimates even if fit was
|
---|
| 128 | called before.
|
---|
[113] | 129 | Example:
|
---|
[515] | 130 | s = scantable('myscan.asap')
|
---|
| 131 | s.set_cursor(thepol=1) # select second pol
|
---|
[113] | 132 | f = fitter()
|
---|
| 133 | f.set_scan(s)
|
---|
| 134 | f.set_function(poly=0)
|
---|
[723] | 135 | f.fit(row=0) # fit first row
|
---|
[113] | 136 | """
|
---|
| 137 | if ((self.x is None or self.y is None) and self.data is None) \
|
---|
| 138 | or self.fitfunc is None:
|
---|
[723] | 139 | msg = "Fitter not yet initialised. Please set data & fit function"
|
---|
| 140 | if rcParams['verbose']:
|
---|
[1612] | 141 | #print msg
|
---|
[1614] | 142 | asaplog.push(msg)
|
---|
| 143 | print_log('ERROR')
|
---|
[723] | 144 | return
|
---|
| 145 | else:
|
---|
| 146 | raise RuntimeError(msg)
|
---|
| 147 |
|
---|
[113] | 148 | else:
|
---|
| 149 | if self.data is not None:
|
---|
[515] | 150 | self.x = self.data._getabcissa(row)
|
---|
| 151 | self.y = self.data._getspectrum(row)
|
---|
[1603] | 152 | self.mask = mask_and(self.mask, self.data._getmask(row))
|
---|
[723] | 153 | asaplog.push("Fitting:")
|
---|
[943] | 154 | i = row
|
---|
[1603] | 155 | out = "Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (self.data.getscan(i),
|
---|
| 156 | self.data.getbeam(i),
|
---|
| 157 | self.data.getif(i),
|
---|
| 158 | self.data.getpol(i),
|
---|
| 159 | self.data.getcycle(i))
|
---|
[1075] | 160 | asaplog.push(out,False)
|
---|
[515] | 161 | self.fitter.setdata(self.x, self.y, self.mask)
|
---|
[113] | 162 | if self.fitfunc == 'gauss':
|
---|
| 163 | ps = self.fitter.getparameters()
|
---|
[1075] | 164 | if len(ps) == 0 or estimate:
|
---|
[113] | 165 | self.fitter.estimate()
|
---|
[1628] | 166 | try:
|
---|
| 167 | fxdpar = list(self.fitter.getfixedparameters())
|
---|
[1232] | 168 | if len(fxdpar) and fxdpar.count(0) == 0:
|
---|
| 169 | raise RuntimeError,"No point fitting, if all parameters are fixed."
|
---|
[1389] | 170 | if self.uselinear:
|
---|
| 171 | converged = self.fitter.lfit()
|
---|
| 172 | else:
|
---|
| 173 | converged = self.fitter.fit()
|
---|
[1075] | 174 | if not converged:
|
---|
| 175 | raise RuntimeError,"Fit didn't converge."
|
---|
[626] | 176 | except RuntimeError, msg:
|
---|
[723] | 177 | if rcParams['verbose']:
|
---|
[1612] | 178 | #print msg
|
---|
[1614] | 179 | print_log()
|
---|
[1627] | 180 | asaplog.push(msg.message)
|
---|
[1614] | 181 | print_log('ERROR')
|
---|
[723] | 182 | else:
|
---|
| 183 | raise
|
---|
[515] | 184 | self._fittedrow = row
|
---|
[113] | 185 | self.fitted = True
|
---|
[723] | 186 | print_log()
|
---|
[113] | 187 | return
|
---|
| 188 |
|
---|
[1232] | 189 | def store_fit(self, filename=None):
|
---|
[526] | 190 | """
|
---|
[1232] | 191 | Save the fit parameters.
|
---|
| 192 | Parameters:
|
---|
| 193 | filename: if specified save as an ASCII file, if None (default)
|
---|
| 194 | store it in the scnatable
|
---|
[526] | 195 | """
|
---|
[515] | 196 | if self.fitted and self.data is not None:
|
---|
| 197 | pars = list(self.fitter.getparameters())
|
---|
| 198 | fixed = list(self.fitter.getfixedparameters())
|
---|
[975] | 199 | from asap.asapfit import asapfit
|
---|
| 200 | fit = asapfit()
|
---|
| 201 | fit.setparameters(pars)
|
---|
| 202 | fit.setfixedparameters(fixed)
|
---|
| 203 | fit.setfunctions(self.fitfuncs)
|
---|
| 204 | fit.setcomponents(self.components)
|
---|
| 205 | fit.setframeinfo(self.data._getcoordinfo())
|
---|
[1232] | 206 | if filename is not None:
|
---|
| 207 | import os
|
---|
| 208 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 209 | if os.path.exists(filename):
|
---|
| 210 | raise IOError("File '%s' exists." % filename)
|
---|
| 211 | fit.save(filename)
|
---|
| 212 | else:
|
---|
| 213 | self.data._addfit(fit,self._fittedrow)
|
---|
[515] | 214 |
|
---|
[1017] | 215 | #def set_parameters(self, params, fixed=None, component=None):
|
---|
| 216 | def set_parameters(self,*args,**kwargs):
|
---|
[526] | 217 | """
|
---|
| 218 | Set the parameters to be fitted.
|
---|
| 219 | Parameters:
|
---|
| 220 | params: a vector of parameters
|
---|
| 221 | fixed: a vector of which parameters are to be held fixed
|
---|
| 222 | (default is none)
|
---|
| 223 | component: in case of multiple gaussians, the index of the
|
---|
| 224 | component
|
---|
[1017] | 225 | """
|
---|
| 226 | component = None
|
---|
| 227 | fixed = None
|
---|
| 228 | params = None
|
---|
[1031] | 229 |
|
---|
[1017] | 230 | if len(args) and isinstance(args[0],dict):
|
---|
| 231 | kwargs = args[0]
|
---|
| 232 | if kwargs.has_key("fixed"): fixed = kwargs["fixed"]
|
---|
| 233 | if kwargs.has_key("params"): params = kwargs["params"]
|
---|
| 234 | if len(args) == 2 and isinstance(args[1], int):
|
---|
| 235 | component = args[1]
|
---|
[515] | 236 | if self.fitfunc is None:
|
---|
[723] | 237 | msg = "Please specify a fitting function first."
|
---|
| 238 | if rcParams['verbose']:
|
---|
[1612] | 239 | #print msg
|
---|
[1614] | 240 | asaplog.push(msg)
|
---|
| 241 | print_log('ERROR')
|
---|
[723] | 242 | return
|
---|
| 243 | else:
|
---|
| 244 | raise RuntimeError(msg)
|
---|
[515] | 245 | if self.fitfunc == "gauss" and component is not None:
|
---|
[1017] | 246 | if not self.fitted and sum(self.fitter.getparameters()) == 0:
|
---|
[1295] | 247 | pars = _n_bools(len(self.components)*3, False)
|
---|
| 248 | fxd = _n_bools(len(pars), False)
|
---|
[515] | 249 | else:
|
---|
[723] | 250 | pars = list(self.fitter.getparameters())
|
---|
[515] | 251 | fxd = list(self.fitter.getfixedparameters())
|
---|
| 252 | i = 3*component
|
---|
| 253 | pars[i:i+3] = params
|
---|
| 254 | fxd[i:i+3] = fixed
|
---|
| 255 | params = pars
|
---|
[723] | 256 | fixed = fxd
|
---|
[113] | 257 | self.fitter.setparameters(params)
|
---|
| 258 | if fixed is not None:
|
---|
| 259 | self.fitter.setfixedparameters(fixed)
|
---|
[723] | 260 | print_log()
|
---|
[113] | 261 | return
|
---|
[515] | 262 |
|
---|
[1217] | 263 | def set_gauss_parameters(self, peak, centre, fwhm,
|
---|
[1603] | 264 | peakfixed=0, centrefixed=0,
|
---|
[1217] | 265 | fwhmfixed=0,
|
---|
[515] | 266 | component=0):
|
---|
[113] | 267 | """
|
---|
[515] | 268 | Set the Parameters of a 'Gaussian' component, set with set_function.
|
---|
| 269 | Parameters:
|
---|
[1232] | 270 | peak, centre, fwhm: The gaussian parameters
|
---|
[515] | 271 | peakfixed,
|
---|
[1603] | 272 | centrefixed,
|
---|
[1217] | 273 | fwhmfixed: Optional parameters to indicate if
|
---|
[515] | 274 | the paramters should be held fixed during
|
---|
| 275 | the fitting process. The default is to keep
|
---|
| 276 | all parameters flexible.
|
---|
[526] | 277 | component: The number of the component (Default is the
|
---|
| 278 | component 0)
|
---|
[515] | 279 | """
|
---|
| 280 | if self.fitfunc != "gauss":
|
---|
[723] | 281 | msg = "Function only operates on Gaussian components."
|
---|
| 282 | if rcParams['verbose']:
|
---|
[1612] | 283 | #print msg
|
---|
[1614] | 284 | asaplog.push(msg)
|
---|
| 285 | print_log('ERROR')
|
---|
[723] | 286 | return
|
---|
| 287 | else:
|
---|
| 288 | raise ValueError(msg)
|
---|
[515] | 289 | if 0 <= component < len(self.components):
|
---|
[1217] | 290 | d = {'params':[peak, centre, fwhm],
|
---|
[1603] | 291 | 'fixed':[peakfixed, centrefixed, fwhmfixed]}
|
---|
[1017] | 292 | self.set_parameters(d, component)
|
---|
[515] | 293 | else:
|
---|
[723] | 294 | msg = "Please select a valid component."
|
---|
| 295 | if rcParams['verbose']:
|
---|
[1612] | 296 | #print msg
|
---|
[1614] | 297 | asaplog.push(msg)
|
---|
| 298 | print_log('ERROR')
|
---|
[723] | 299 | return
|
---|
| 300 | else:
|
---|
| 301 | raise ValueError(msg)
|
---|
| 302 |
|
---|
[975] | 303 | def get_area(self, component=None):
|
---|
| 304 | """
|
---|
| 305 | Return the area under the fitted gaussian component.
|
---|
| 306 | Parameters:
|
---|
| 307 | component: the gaussian component selection,
|
---|
| 308 | default (None) is the sum of all components
|
---|
| 309 | Note:
|
---|
| 310 | This will only work for gaussian fits.
|
---|
| 311 | """
|
---|
| 312 | if not self.fitted: return
|
---|
| 313 | if self.fitfunc == "gauss":
|
---|
| 314 | pars = list(self.fitter.getparameters())
|
---|
| 315 | from math import log,pi,sqrt
|
---|
| 316 | fac = sqrt(pi/log(16.0))
|
---|
| 317 | areas = []
|
---|
| 318 | for i in range(len(self.components)):
|
---|
| 319 | j = i*3
|
---|
| 320 | cpars = pars[j:j+3]
|
---|
| 321 | areas.append(fac * cpars[0] * cpars[2])
|
---|
| 322 | else:
|
---|
| 323 | return None
|
---|
| 324 | if component is not None:
|
---|
| 325 | return areas[component]
|
---|
| 326 | else:
|
---|
| 327 | return sum(areas)
|
---|
| 328 |
|
---|
[1075] | 329 | def get_errors(self, component=None):
|
---|
[515] | 330 | """
|
---|
[1075] | 331 | Return the errors in the parameters.
|
---|
| 332 | Parameters:
|
---|
| 333 | component: get the errors for the specified component
|
---|
| 334 | only, default is all components
|
---|
| 335 | """
|
---|
| 336 | if not self.fitted:
|
---|
| 337 | msg = "Not yet fitted."
|
---|
| 338 | if rcParams['verbose']:
|
---|
[1612] | 339 | #print msg
|
---|
[1614] | 340 | asaplog.push(msg)
|
---|
| 341 | print_log('ERROR')
|
---|
[1075] | 342 | return
|
---|
| 343 | else:
|
---|
| 344 | raise RuntimeError(msg)
|
---|
| 345 | errs = list(self.fitter.geterrors())
|
---|
| 346 | cerrs = errs
|
---|
| 347 | if component is not None:
|
---|
| 348 | if self.fitfunc == "gauss":
|
---|
| 349 | i = 3*component
|
---|
| 350 | if i < len(errs):
|
---|
| 351 | cerrs = errs[i:i+3]
|
---|
| 352 | return cerrs
|
---|
| 353 |
|
---|
| 354 | def get_parameters(self, component=None, errors=False):
|
---|
| 355 | """
|
---|
[113] | 356 | Return the fit paramters.
|
---|
[526] | 357 | Parameters:
|
---|
| 358 | component: get the parameters for the specified component
|
---|
| 359 | only, default is all components
|
---|
[113] | 360 | """
|
---|
| 361 | if not self.fitted:
|
---|
[723] | 362 | msg = "Not yet fitted."
|
---|
| 363 | if rcParams['verbose']:
|
---|
[1612] | 364 | #print msg
|
---|
[1614] | 365 | asaplog.push(msg)
|
---|
| 366 | print_log('ERROR')
|
---|
[723] | 367 | return
|
---|
| 368 | else:
|
---|
| 369 | raise RuntimeError(msg)
|
---|
[113] | 370 | pars = list(self.fitter.getparameters())
|
---|
| 371 | fixed = list(self.fitter.getfixedparameters())
|
---|
[1075] | 372 | errs = list(self.fitter.geterrors())
|
---|
[1039] | 373 | area = []
|
---|
[723] | 374 | if component is not None:
|
---|
[515] | 375 | if self.fitfunc == "gauss":
|
---|
| 376 | i = 3*component
|
---|
| 377 | cpars = pars[i:i+3]
|
---|
| 378 | cfixed = fixed[i:i+3]
|
---|
[1075] | 379 | cerrs = errs[i:i+3]
|
---|
[1039] | 380 | a = self.get_area(component)
|
---|
| 381 | area = [a for i in range(3)]
|
---|
[515] | 382 | else:
|
---|
| 383 | cpars = pars
|
---|
[723] | 384 | cfixed = fixed
|
---|
[1075] | 385 | cerrs = errs
|
---|
[515] | 386 | else:
|
---|
| 387 | cpars = pars
|
---|
| 388 | cfixed = fixed
|
---|
[1075] | 389 | cerrs = errs
|
---|
[1039] | 390 | if self.fitfunc == "gauss":
|
---|
| 391 | for c in range(len(self.components)):
|
---|
| 392 | a = self.get_area(c)
|
---|
| 393 | area += [a for i in range(3)]
|
---|
[1088] | 394 | fpars = self._format_pars(cpars, cfixed, errors and cerrs, area)
|
---|
[723] | 395 | if rcParams['verbose']:
|
---|
[1612] | 396 | #print fpars
|
---|
[1614] | 397 | asaplog.push(fpars)
|
---|
| 398 | print_log()
|
---|
[1075] | 399 | return {'params':cpars, 'fixed':cfixed, 'formatted': fpars,
|
---|
| 400 | 'errors':cerrs}
|
---|
[723] | 401 |
|
---|
[1075] | 402 | def _format_pars(self, pars, fixed, errors, area):
|
---|
[113] | 403 | out = ''
|
---|
| 404 | if self.fitfunc == 'poly':
|
---|
| 405 | c = 0
|
---|
[515] | 406 | for i in range(len(pars)):
|
---|
| 407 | fix = ""
|
---|
[1232] | 408 | if len(fixed) and fixed[i]: fix = "(fixed)"
|
---|
[1088] | 409 | if errors :
|
---|
| 410 | out += ' p%d%s= %3.6f (%1.6f),' % (c,fix,pars[i], errors[i])
|
---|
| 411 | else:
|
---|
| 412 | out += ' p%d%s= %3.6f,' % (c,fix,pars[i])
|
---|
[113] | 413 | c+=1
|
---|
[515] | 414 | out = out[:-1] # remove trailing ','
|
---|
[113] | 415 | elif self.fitfunc == 'gauss':
|
---|
| 416 | i = 0
|
---|
| 417 | c = 0
|
---|
[515] | 418 | aunit = ''
|
---|
| 419 | ounit = ''
|
---|
[113] | 420 | if self.data:
|
---|
[515] | 421 | aunit = self.data.get_unit()
|
---|
| 422 | ounit = self.data.get_fluxunit()
|
---|
[113] | 423 | while i < len(pars):
|
---|
[1039] | 424 | if len(area):
|
---|
| 425 | out += ' %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n area = %3.3f %s %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit, area[i],ounit,aunit)
|
---|
[1017] | 426 | else:
|
---|
| 427 | out += ' %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit,ounit,aunit)
|
---|
[113] | 428 | c+=1
|
---|
| 429 | i+=3
|
---|
| 430 | return out
|
---|
[723] | 431 |
|
---|
[113] | 432 | def get_estimate(self):
|
---|
| 433 | """
|
---|
[515] | 434 | Return the parameter estimates (for non-linear functions).
|
---|
[113] | 435 | """
|
---|
| 436 | pars = self.fitter.getestimate()
|
---|
[943] | 437 | fixed = self.fitter.getfixedparameters()
|
---|
[723] | 438 | if rcParams['verbose']:
|
---|
[1612] | 439 | #print self._format_pars(pars,fixed,None)
|
---|
[1614] | 440 | asaplog.push(self._format_pars(pars,fixed,None))
|
---|
| 441 | print_log()
|
---|
[113] | 442 | return pars
|
---|
| 443 |
|
---|
| 444 | def get_residual(self):
|
---|
| 445 | """
|
---|
| 446 | Return the residual of the fit.
|
---|
| 447 | """
|
---|
| 448 | if not self.fitted:
|
---|
[723] | 449 | msg = "Not yet fitted."
|
---|
| 450 | if rcParams['verbose']:
|
---|
[1612] | 451 | #print msg
|
---|
[1614] | 452 | asaplog.push(msg)
|
---|
| 453 | print_log('ERROR')
|
---|
[723] | 454 | return
|
---|
| 455 | else:
|
---|
| 456 | raise RuntimeError(msg)
|
---|
[113] | 457 | return self.fitter.getresidual()
|
---|
| 458 |
|
---|
| 459 | def get_chi2(self):
|
---|
| 460 | """
|
---|
| 461 | Return chi^2.
|
---|
| 462 | """
|
---|
| 463 | if not self.fitted:
|
---|
[723] | 464 | msg = "Not yet fitted."
|
---|
| 465 | if rcParams['verbose']:
|
---|
[1612] | 466 | #print msg
|
---|
[1614] | 467 | asaplog.push(msg)
|
---|
| 468 | print_log('ERROR')
|
---|
[723] | 469 | return
|
---|
| 470 | else:
|
---|
| 471 | raise RuntimeError(msg)
|
---|
[113] | 472 | ch2 = self.fitter.getchi2()
|
---|
[723] | 473 | if rcParams['verbose']:
|
---|
[1612] | 474 | #print 'Chi^2 = %3.3f' % (ch2)
|
---|
[1614] | 475 | asaplog.push( 'Chi^2 = %3.3f' % (ch2) )
|
---|
| 476 | print_log()
|
---|
[723] | 477 | return ch2
|
---|
[113] | 478 |
|
---|
| 479 | def get_fit(self):
|
---|
| 480 | """
|
---|
| 481 | Return the fitted ordinate values.
|
---|
| 482 | """
|
---|
| 483 | if not self.fitted:
|
---|
[723] | 484 | msg = "Not yet fitted."
|
---|
| 485 | if rcParams['verbose']:
|
---|
[1612] | 486 | #print msg
|
---|
[1614] | 487 | asaplog.push(msg)
|
---|
| 488 | print_log('ERROR')
|
---|
[723] | 489 | return
|
---|
| 490 | else:
|
---|
| 491 | raise RuntimeError(msg)
|
---|
[113] | 492 | return self.fitter.getfit()
|
---|
| 493 |
|
---|
| 494 | def commit(self):
|
---|
| 495 | """
|
---|
[526] | 496 | Return a new scan where the fits have been commited (subtracted)
|
---|
[113] | 497 | """
|
---|
| 498 | if not self.fitted:
|
---|
[723] | 499 | msg = "Not yet fitted."
|
---|
| 500 | if rcParams['verbose']:
|
---|
[1612] | 501 | #print msg
|
---|
[1614] | 502 | asaplog.push(msg)
|
---|
| 503 | print_log('ERROR')
|
---|
[723] | 504 | return
|
---|
| 505 | else:
|
---|
| 506 | raise RuntimeError(msg)
|
---|
[975] | 507 | from asap import scantable
|
---|
| 508 | if not isinstance(self.data, scantable):
|
---|
[723] | 509 | msg = "Not a scantable"
|
---|
| 510 | if rcParams['verbose']:
|
---|
[1612] | 511 | #print msg
|
---|
[1614] | 512 | asaplog.push(msg)
|
---|
| 513 | print_log('ERROR')
|
---|
[723] | 514 | return
|
---|
| 515 | else:
|
---|
| 516 | raise TypeError(msg)
|
---|
[113] | 517 | scan = self.data.copy()
|
---|
[259] | 518 | scan._setspectrum(self.fitter.getresidual())
|
---|
[723] | 519 | print_log()
|
---|
[1092] | 520 | return scan
|
---|
[113] | 521 |
|
---|
[723] | 522 | def plot(self, residual=False, components=None, plotparms=False, filename=None):
|
---|
[113] | 523 | """
|
---|
| 524 | Plot the last fit.
|
---|
| 525 | Parameters:
|
---|
| 526 | residual: an optional parameter indicating if the residual
|
---|
| 527 | should be plotted (default 'False')
|
---|
[526] | 528 | components: a list of components to plot, e.g [0,1],
|
---|
| 529 | -1 plots the total fit. Default is to only
|
---|
| 530 | plot the total fit.
|
---|
| 531 | plotparms: Inidicates if the parameter values should be present
|
---|
| 532 | on the plot
|
---|
[113] | 533 | """
|
---|
| 534 | if not self.fitted:
|
---|
| 535 | return
|
---|
[723] | 536 | if not self._p or self._p.is_dead:
|
---|
| 537 | if rcParams['plotter.gui']:
|
---|
| 538 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
| 539 | else:
|
---|
| 540 | from asap.asaplot import asaplot
|
---|
| 541 | self._p = asaplot()
|
---|
| 542 | self._p.hold()
|
---|
[113] | 543 | self._p.clear()
|
---|
[515] | 544 | self._p.set_panels()
|
---|
[652] | 545 | self._p.palette(0)
|
---|
[113] | 546 | tlab = 'Spectrum'
|
---|
[723] | 547 | xlab = 'Abcissa'
|
---|
[1017] | 548 | ylab = 'Ordinate'
|
---|
[1273] | 549 | from matplotlib.numerix import ma,logical_not,logical_and,array
|
---|
| 550 | m = self.mask
|
---|
[113] | 551 | if self.data:
|
---|
[515] | 552 | tlab = self.data._getsourcename(self._fittedrow)
|
---|
| 553 | xlab = self.data._getabcissalabel(self._fittedrow)
|
---|
[1273] | 554 | m = logical_and(self.mask,
|
---|
[1306] | 555 | array(self.data._getmask(self._fittedrow),
|
---|
| 556 | copy=False))
|
---|
[1389] | 557 |
|
---|
[626] | 558 | ylab = self.data._get_ordinate_label()
|
---|
[515] | 559 |
|
---|
[1075] | 560 | colours = ["#777777","#dddddd","red","orange","purple","green","magenta", "cyan"]
|
---|
[1461] | 561 | nomask=True
|
---|
| 562 | for i in range(len(m)):
|
---|
| 563 | nomask = nomask and m[i]
|
---|
| 564 | label0='Masked Region'
|
---|
| 565 | label1='Spectrum'
|
---|
| 566 | if ( nomask ):
|
---|
| 567 | label0=label1
|
---|
| 568 | else:
|
---|
| 569 | y = ma.masked_array( self.y, mask = m )
|
---|
| 570 | self._p.palette(1,colours)
|
---|
| 571 | self._p.set_line( label = label1 )
|
---|
| 572 | self._p.plot( self.x, y )
|
---|
[652] | 573 | self._p.palette(0,colours)
|
---|
[1461] | 574 | self._p.set_line(label=label0)
|
---|
[1273] | 575 | y = ma.masked_array(self.y,mask=logical_not(m))
|
---|
[1088] | 576 | self._p.plot(self.x, y)
|
---|
[113] | 577 | if residual:
|
---|
[1461] | 578 | self._p.palette(7)
|
---|
[515] | 579 | self._p.set_line(label='Residual')
|
---|
[1116] | 580 | y = ma.masked_array(self.get_residual(),
|
---|
[1273] | 581 | mask=logical_not(m))
|
---|
[1088] | 582 | self._p.plot(self.x, y)
|
---|
[652] | 583 | self._p.palette(2)
|
---|
[515] | 584 | if components is not None:
|
---|
| 585 | cs = components
|
---|
| 586 | if isinstance(components,int): cs = [components]
|
---|
[526] | 587 | if plotparms:
|
---|
[1031] | 588 | self._p.text(0.15,0.15,str(self.get_parameters()['formatted']),size=8)
|
---|
[515] | 589 | n = len(self.components)
|
---|
[652] | 590 | self._p.palette(3)
|
---|
[515] | 591 | for c in cs:
|
---|
| 592 | if 0 <= c < n:
|
---|
| 593 | lab = self.fitfuncs[c]+str(c)
|
---|
| 594 | self._p.set_line(label=lab)
|
---|
[1116] | 595 | y = ma.masked_array(self.fitter.evaluate(c),
|
---|
[1273] | 596 | mask=logical_not(m))
|
---|
[1088] | 597 |
|
---|
| 598 | self._p.plot(self.x, y)
|
---|
[515] | 599 | elif c == -1:
|
---|
[652] | 600 | self._p.palette(2)
|
---|
[515] | 601 | self._p.set_line(label="Total Fit")
|
---|
[1116] | 602 | y = ma.masked_array(self.fitter.getfit(),
|
---|
[1273] | 603 | mask=logical_not(m))
|
---|
[1088] | 604 | self._p.plot(self.x, y)
|
---|
[515] | 605 | else:
|
---|
[652] | 606 | self._p.palette(2)
|
---|
[515] | 607 | self._p.set_line(label='Fit')
|
---|
[1116] | 608 | y = ma.masked_array(self.fitter.getfit(),
|
---|
[1273] | 609 | mask=logical_not(m))
|
---|
[1088] | 610 | self._p.plot(self.x, y)
|
---|
[723] | 611 | xlim=[min(self.x),max(self.x)]
|
---|
| 612 | self._p.axes.set_xlim(xlim)
|
---|
[113] | 613 | self._p.set_axes('xlabel',xlab)
|
---|
| 614 | self._p.set_axes('ylabel',ylab)
|
---|
| 615 | self._p.set_axes('title',tlab)
|
---|
| 616 | self._p.release()
|
---|
[723] | 617 | if (not rcParams['plotter.gui']):
|
---|
| 618 | self._p.save(filename)
|
---|
| 619 | print_log()
|
---|
[113] | 620 |
|
---|
[1061] | 621 | def auto_fit(self, insitu=None, plot=False):
|
---|
[113] | 622 | """
|
---|
[515] | 623 | Return a scan where the function is applied to all rows for
|
---|
| 624 | all Beams/IFs/Pols.
|
---|
[723] | 625 |
|
---|
[113] | 626 | """
|
---|
| 627 | from asap import scantable
|
---|
[515] | 628 | if not isinstance(self.data, scantable) :
|
---|
[723] | 629 | msg = "Data is not a scantable"
|
---|
| 630 | if rcParams['verbose']:
|
---|
[1612] | 631 | #print msg
|
---|
[1614] | 632 | asaplog.push(msg)
|
---|
| 633 | print_log('ERROR')
|
---|
[723] | 634 | return
|
---|
| 635 | else:
|
---|
| 636 | raise TypeError(msg)
|
---|
[259] | 637 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 638 | if not insitu:
|
---|
| 639 | scan = self.data.copy()
|
---|
| 640 | else:
|
---|
| 641 | scan = self.data
|
---|
[880] | 642 | rows = xrange(scan.nrow())
|
---|
[1446] | 643 | # Save parameters of baseline fits as a class attribute.
|
---|
| 644 | # NOTICE: This does not reflect changes in scantable!
|
---|
| 645 | if len(rows) > 0: self.blpars=[]
|
---|
[876] | 646 | asaplog.push("Fitting:")
|
---|
| 647 | for r in rows:
|
---|
[1603] | 648 | out = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (scan.getscan(r),
|
---|
| 649 | scan.getbeam(r),
|
---|
| 650 | scan.getif(r),
|
---|
| 651 | scan.getpol(r),
|
---|
| 652 | scan.getcycle(r))
|
---|
[880] | 653 | asaplog.push(out, False)
|
---|
[876] | 654 | self.x = scan._getabcissa(r)
|
---|
| 655 | self.y = scan._getspectrum(r)
|
---|
[1603] | 656 | self.mask = mask_and(self.mask, scan._getmask(r))
|
---|
[876] | 657 | self.data = None
|
---|
| 658 | self.fit()
|
---|
[1603] | 659 | x = self.get_parameters()
|
---|
[1446] | 660 | fpar = self.get_parameters()
|
---|
[1061] | 661 | if plot:
|
---|
| 662 | self.plot(residual=True)
|
---|
| 663 | x = raw_input("Accept fit ([y]/n): ")
|
---|
| 664 | if x.upper() == 'N':
|
---|
[1446] | 665 | self.blpars.append(None)
|
---|
[1061] | 666 | continue
|
---|
[880] | 667 | scan._setspectrum(self.fitter.getresidual(), r)
|
---|
[1446] | 668 | self.blpars.append(fpar)
|
---|
[1061] | 669 | if plot:
|
---|
| 670 | self._p.unmap()
|
---|
| 671 | self._p = None
|
---|
[876] | 672 | print_log()
|
---|
| 673 | return scan
|
---|
[794] | 674 |
|
---|