[113] | 1 | import _asap
|
---|
[259] | 2 | from asap import rcParams
|
---|
[723] | 3 | from asap import print_log
|
---|
[1295] | 4 | from asap import _n_bools
|
---|
[1603] | 5 | from asap import mask_and
|
---|
[1614] | 6 | from asap import asaplog
|
---|
[113] | 7 |
|
---|
| 8 | class fitter:
|
---|
| 9 | """
|
---|
| 10 | The fitting class for ASAP.
|
---|
| 11 | """
|
---|
[723] | 12 |
|
---|
[113] | 13 | def __init__(self):
|
---|
| 14 | """
|
---|
| 15 | Create a fitter object. No state is set.
|
---|
| 16 | """
|
---|
| 17 | self.fitter = _asap.fitter()
|
---|
| 18 | self.x = None
|
---|
| 19 | self.y = None
|
---|
| 20 | self.mask = None
|
---|
| 21 | self.fitfunc = None
|
---|
[515] | 22 | self.fitfuncs = None
|
---|
[113] | 23 | self.fitted = False
|
---|
| 24 | self.data = None
|
---|
[515] | 25 | self.components = 0
|
---|
| 26 | self._fittedrow = 0
|
---|
[113] | 27 | self._p = None
|
---|
[515] | 28 | self._selection = None
|
---|
[1389] | 29 | self.uselinear = False
|
---|
[113] | 30 |
|
---|
| 31 | def set_data(self, xdat, ydat, mask=None):
|
---|
| 32 | """
|
---|
[158] | 33 | Set the absissa and ordinate for the fit. Also set the mask
|
---|
[113] | 34 | indicationg valid points.
|
---|
| 35 | This can be used for data vectors retrieved from a scantable.
|
---|
| 36 | For scantable fitting use 'fitter.set_scan(scan, mask)'.
|
---|
| 37 | Parameters:
|
---|
[158] | 38 | xdat: the abcissa values
|
---|
[113] | 39 | ydat: the ordinate values
|
---|
| 40 | mask: an optional mask
|
---|
[723] | 41 |
|
---|
[113] | 42 | """
|
---|
| 43 | self.fitted = False
|
---|
| 44 | self.x = xdat
|
---|
| 45 | self.y = ydat
|
---|
| 46 | if mask == None:
|
---|
[1295] | 47 | self.mask = _n_bools(len(xdat), True)
|
---|
[113] | 48 | else:
|
---|
| 49 | self.mask = mask
|
---|
| 50 | return
|
---|
| 51 |
|
---|
| 52 | def set_scan(self, thescan=None, mask=None):
|
---|
| 53 | """
|
---|
| 54 | Set the 'data' (a scantable) of the fitter.
|
---|
| 55 | Parameters:
|
---|
| 56 | thescan: a scantable
|
---|
[1603] | 57 | mask: a msk retrieved from the scantable
|
---|
[113] | 58 | """
|
---|
| 59 | if not thescan:
|
---|
[723] | 60 | msg = "Please give a correct scan"
|
---|
| 61 | if rcParams['verbose']:
|
---|
[1612] | 62 | #print msg
|
---|
[1614] | 63 | asaplog.push(msg)
|
---|
| 64 | print_log('ERROR')
|
---|
[723] | 65 | return
|
---|
| 66 | else:
|
---|
| 67 | raise TypeError(msg)
|
---|
[113] | 68 | self.fitted = False
|
---|
| 69 | self.data = thescan
|
---|
[1075] | 70 | self.mask = None
|
---|
[113] | 71 | if mask is None:
|
---|
[1295] | 72 | self.mask = _n_bools(self.data.nchan(), True)
|
---|
[113] | 73 | else:
|
---|
| 74 | self.mask = mask
|
---|
| 75 | return
|
---|
| 76 |
|
---|
| 77 | def set_function(self, **kwargs):
|
---|
| 78 | """
|
---|
| 79 | Set the function to be fit.
|
---|
| 80 | Parameters:
|
---|
[1389] | 81 | poly: use a polynomial of the order given with nonlinear least squares fit
|
---|
| 82 | lpoly: use polynomial of the order given with linear least squares fit
|
---|
[113] | 83 | gauss: fit the number of gaussian specified
|
---|
| 84 | Example:
|
---|
| 85 | fitter.set_function(gauss=2) # will fit two gaussians
|
---|
[1389] | 86 | fitter.set_function(poly=3) # will fit a 3rd order polynomial via nonlinear method
|
---|
| 87 | fitter.set_function(lpoly=3) # will fit a 3rd order polynomial via linear method
|
---|
[113] | 88 | """
|
---|
[723] | 89 | #default poly order 0
|
---|
[515] | 90 | n=0
|
---|
[113] | 91 | if kwargs.has_key('poly'):
|
---|
| 92 | self.fitfunc = 'poly'
|
---|
| 93 | n = kwargs.get('poly')
|
---|
[515] | 94 | self.components = [n]
|
---|
[1389] | 95 | self.uselinear = False
|
---|
| 96 | elif kwargs.has_key('lpoly'):
|
---|
| 97 | self.fitfunc = 'poly'
|
---|
| 98 | n = kwargs.get('lpoly')
|
---|
| 99 | self.components = [n]
|
---|
| 100 | self.uselinear = True
|
---|
[113] | 101 | elif kwargs.has_key('gauss'):
|
---|
| 102 | n = kwargs.get('gauss')
|
---|
| 103 | self.fitfunc = 'gauss'
|
---|
[515] | 104 | self.fitfuncs = [ 'gauss' for i in range(n) ]
|
---|
| 105 | self.components = [ 3 for i in range(n) ]
|
---|
[1389] | 106 | self.uselinear = False
|
---|
[515] | 107 | else:
|
---|
[723] | 108 | msg = "Invalid function type."
|
---|
| 109 | if rcParams['verbose']:
|
---|
[1612] | 110 | #print msg
|
---|
[1614] | 111 | asaplog.push(msg)
|
---|
| 112 | print_log('ERROR')
|
---|
[723] | 113 | return
|
---|
| 114 | else:
|
---|
| 115 | raise TypeError(msg)
|
---|
| 116 |
|
---|
[113] | 117 | self.fitter.setexpression(self.fitfunc,n)
|
---|
[1232] | 118 | self.fitted = False
|
---|
[113] | 119 | return
|
---|
[723] | 120 |
|
---|
[1075] | 121 | def fit(self, row=0, estimate=False):
|
---|
[113] | 122 | """
|
---|
| 123 | Execute the actual fitting process. All the state has to be set.
|
---|
| 124 | Parameters:
|
---|
[1075] | 125 | row: specify the row in the scantable
|
---|
| 126 | estimate: auto-compute an initial parameter set (default False)
|
---|
| 127 | This can be used to compute estimates even if fit was
|
---|
| 128 | called before.
|
---|
[113] | 129 | Example:
|
---|
[515] | 130 | s = scantable('myscan.asap')
|
---|
| 131 | s.set_cursor(thepol=1) # select second pol
|
---|
[113] | 132 | f = fitter()
|
---|
| 133 | f.set_scan(s)
|
---|
| 134 | f.set_function(poly=0)
|
---|
[723] | 135 | f.fit(row=0) # fit first row
|
---|
[113] | 136 | """
|
---|
| 137 | if ((self.x is None or self.y is None) and self.data is None) \
|
---|
| 138 | or self.fitfunc is None:
|
---|
[723] | 139 | msg = "Fitter not yet initialised. Please set data & fit function"
|
---|
| 140 | if rcParams['verbose']:
|
---|
[1612] | 141 | #print msg
|
---|
[1614] | 142 | asaplog.push(msg)
|
---|
| 143 | print_log('ERROR')
|
---|
[723] | 144 | return
|
---|
| 145 | else:
|
---|
| 146 | raise RuntimeError(msg)
|
---|
| 147 |
|
---|
[113] | 148 | else:
|
---|
| 149 | if self.data is not None:
|
---|
[515] | 150 | self.x = self.data._getabcissa(row)
|
---|
| 151 | self.y = self.data._getspectrum(row)
|
---|
[1603] | 152 | self.mask = mask_and(self.mask, self.data._getmask(row))
|
---|
[723] | 153 | from asap import asaplog
|
---|
| 154 | asaplog.push("Fitting:")
|
---|
[943] | 155 | i = row
|
---|
[1603] | 156 | out = "Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (self.data.getscan(i),
|
---|
| 157 | self.data.getbeam(i),
|
---|
| 158 | self.data.getif(i),
|
---|
| 159 | self.data.getpol(i),
|
---|
| 160 | self.data.getcycle(i))
|
---|
[1075] | 161 | asaplog.push(out,False)
|
---|
[515] | 162 | self.fitter.setdata(self.x, self.y, self.mask)
|
---|
[113] | 163 | if self.fitfunc == 'gauss':
|
---|
| 164 | ps = self.fitter.getparameters()
|
---|
[1075] | 165 | if len(ps) == 0 or estimate:
|
---|
[113] | 166 | self.fitter.estimate()
|
---|
[1628] | 167 | try:
|
---|
| 168 | fxdpar = list(self.fitter.getfixedparameters())
|
---|
[1232] | 169 | if len(fxdpar) and fxdpar.count(0) == 0:
|
---|
| 170 | raise RuntimeError,"No point fitting, if all parameters are fixed."
|
---|
[1389] | 171 | if self.uselinear:
|
---|
| 172 | converged = self.fitter.lfit()
|
---|
| 173 | else:
|
---|
| 174 | converged = self.fitter.fit()
|
---|
[1075] | 175 | if not converged:
|
---|
| 176 | raise RuntimeError,"Fit didn't converge."
|
---|
[626] | 177 | except RuntimeError, msg:
|
---|
[723] | 178 | if rcParams['verbose']:
|
---|
[1612] | 179 | #print msg
|
---|
[1614] | 180 | print_log()
|
---|
[1627] | 181 | asaplog.push(msg.message)
|
---|
[1614] | 182 | print_log('ERROR')
|
---|
[723] | 183 | else:
|
---|
| 184 | raise
|
---|
[515] | 185 | self._fittedrow = row
|
---|
[113] | 186 | self.fitted = True
|
---|
[723] | 187 | print_log()
|
---|
[113] | 188 | return
|
---|
| 189 |
|
---|
[1232] | 190 | def store_fit(self, filename=None):
|
---|
[526] | 191 | """
|
---|
[1232] | 192 | Save the fit parameters.
|
---|
| 193 | Parameters:
|
---|
| 194 | filename: if specified save as an ASCII file, if None (default)
|
---|
| 195 | store it in the scnatable
|
---|
[526] | 196 | """
|
---|
[515] | 197 | if self.fitted and self.data is not None:
|
---|
| 198 | pars = list(self.fitter.getparameters())
|
---|
| 199 | fixed = list(self.fitter.getfixedparameters())
|
---|
[975] | 200 | from asap.asapfit import asapfit
|
---|
| 201 | fit = asapfit()
|
---|
| 202 | fit.setparameters(pars)
|
---|
| 203 | fit.setfixedparameters(fixed)
|
---|
| 204 | fit.setfunctions(self.fitfuncs)
|
---|
| 205 | fit.setcomponents(self.components)
|
---|
| 206 | fit.setframeinfo(self.data._getcoordinfo())
|
---|
[1232] | 207 | if filename is not None:
|
---|
| 208 | import os
|
---|
| 209 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 210 | if os.path.exists(filename):
|
---|
| 211 | raise IOError("File '%s' exists." % filename)
|
---|
| 212 | fit.save(filename)
|
---|
| 213 | else:
|
---|
| 214 | self.data._addfit(fit,self._fittedrow)
|
---|
[515] | 215 |
|
---|
[1017] | 216 | #def set_parameters(self, params, fixed=None, component=None):
|
---|
| 217 | def set_parameters(self,*args,**kwargs):
|
---|
[526] | 218 | """
|
---|
| 219 | Set the parameters to be fitted.
|
---|
| 220 | Parameters:
|
---|
| 221 | params: a vector of parameters
|
---|
| 222 | fixed: a vector of which parameters are to be held fixed
|
---|
| 223 | (default is none)
|
---|
| 224 | component: in case of multiple gaussians, the index of the
|
---|
| 225 | component
|
---|
[1017] | 226 | """
|
---|
| 227 | component = None
|
---|
| 228 | fixed = None
|
---|
| 229 | params = None
|
---|
[1031] | 230 |
|
---|
[1017] | 231 | if len(args) and isinstance(args[0],dict):
|
---|
| 232 | kwargs = args[0]
|
---|
| 233 | if kwargs.has_key("fixed"): fixed = kwargs["fixed"]
|
---|
| 234 | if kwargs.has_key("params"): params = kwargs["params"]
|
---|
| 235 | if len(args) == 2 and isinstance(args[1], int):
|
---|
| 236 | component = args[1]
|
---|
[515] | 237 | if self.fitfunc is None:
|
---|
[723] | 238 | msg = "Please specify a fitting function first."
|
---|
| 239 | if rcParams['verbose']:
|
---|
[1612] | 240 | #print msg
|
---|
[1614] | 241 | asaplog.push(msg)
|
---|
| 242 | print_log('ERROR')
|
---|
[723] | 243 | return
|
---|
| 244 | else:
|
---|
| 245 | raise RuntimeError(msg)
|
---|
[515] | 246 | if self.fitfunc == "gauss" and component is not None:
|
---|
[1017] | 247 | if not self.fitted and sum(self.fitter.getparameters()) == 0:
|
---|
[1295] | 248 | pars = _n_bools(len(self.components)*3, False)
|
---|
| 249 | fxd = _n_bools(len(pars), False)
|
---|
[515] | 250 | else:
|
---|
[723] | 251 | pars = list(self.fitter.getparameters())
|
---|
[515] | 252 | fxd = list(self.fitter.getfixedparameters())
|
---|
| 253 | i = 3*component
|
---|
| 254 | pars[i:i+3] = params
|
---|
| 255 | fxd[i:i+3] = fixed
|
---|
| 256 | params = pars
|
---|
[723] | 257 | fixed = fxd
|
---|
[113] | 258 | self.fitter.setparameters(params)
|
---|
| 259 | if fixed is not None:
|
---|
| 260 | self.fitter.setfixedparameters(fixed)
|
---|
[723] | 261 | print_log()
|
---|
[113] | 262 | return
|
---|
[515] | 263 |
|
---|
[1217] | 264 | def set_gauss_parameters(self, peak, centre, fwhm,
|
---|
[1603] | 265 | peakfixed=0, centrefixed=0,
|
---|
[1217] | 266 | fwhmfixed=0,
|
---|
[515] | 267 | component=0):
|
---|
[113] | 268 | """
|
---|
[515] | 269 | Set the Parameters of a 'Gaussian' component, set with set_function.
|
---|
| 270 | Parameters:
|
---|
[1232] | 271 | peak, centre, fwhm: The gaussian parameters
|
---|
[515] | 272 | peakfixed,
|
---|
[1603] | 273 | centrefixed,
|
---|
[1217] | 274 | fwhmfixed: Optional parameters to indicate if
|
---|
[515] | 275 | the paramters should be held fixed during
|
---|
| 276 | the fitting process. The default is to keep
|
---|
| 277 | all parameters flexible.
|
---|
[526] | 278 | component: The number of the component (Default is the
|
---|
| 279 | component 0)
|
---|
[515] | 280 | """
|
---|
| 281 | if self.fitfunc != "gauss":
|
---|
[723] | 282 | msg = "Function only operates on Gaussian components."
|
---|
| 283 | if rcParams['verbose']:
|
---|
[1612] | 284 | #print msg
|
---|
[1614] | 285 | asaplog.push(msg)
|
---|
| 286 | print_log('ERROR')
|
---|
[723] | 287 | return
|
---|
| 288 | else:
|
---|
| 289 | raise ValueError(msg)
|
---|
[515] | 290 | if 0 <= component < len(self.components):
|
---|
[1217] | 291 | d = {'params':[peak, centre, fwhm],
|
---|
[1603] | 292 | 'fixed':[peakfixed, centrefixed, fwhmfixed]}
|
---|
[1017] | 293 | self.set_parameters(d, component)
|
---|
[515] | 294 | else:
|
---|
[723] | 295 | msg = "Please select a valid component."
|
---|
| 296 | if rcParams['verbose']:
|
---|
[1612] | 297 | #print msg
|
---|
[1614] | 298 | asaplog.push(msg)
|
---|
| 299 | print_log('ERROR')
|
---|
[723] | 300 | return
|
---|
| 301 | else:
|
---|
| 302 | raise ValueError(msg)
|
---|
| 303 |
|
---|
[975] | 304 | def get_area(self, component=None):
|
---|
| 305 | """
|
---|
| 306 | Return the area under the fitted gaussian component.
|
---|
| 307 | Parameters:
|
---|
| 308 | component: the gaussian component selection,
|
---|
| 309 | default (None) is the sum of all components
|
---|
| 310 | Note:
|
---|
| 311 | This will only work for gaussian fits.
|
---|
| 312 | """
|
---|
| 313 | if not self.fitted: return
|
---|
| 314 | if self.fitfunc == "gauss":
|
---|
| 315 | pars = list(self.fitter.getparameters())
|
---|
| 316 | from math import log,pi,sqrt
|
---|
| 317 | fac = sqrt(pi/log(16.0))
|
---|
| 318 | areas = []
|
---|
| 319 | for i in range(len(self.components)):
|
---|
| 320 | j = i*3
|
---|
| 321 | cpars = pars[j:j+3]
|
---|
| 322 | areas.append(fac * cpars[0] * cpars[2])
|
---|
| 323 | else:
|
---|
| 324 | return None
|
---|
| 325 | if component is not None:
|
---|
| 326 | return areas[component]
|
---|
| 327 | else:
|
---|
| 328 | return sum(areas)
|
---|
| 329 |
|
---|
[1075] | 330 | def get_errors(self, component=None):
|
---|
[515] | 331 | """
|
---|
[1075] | 332 | Return the errors in the parameters.
|
---|
| 333 | Parameters:
|
---|
| 334 | component: get the errors for the specified component
|
---|
| 335 | only, default is all components
|
---|
| 336 | """
|
---|
| 337 | if not self.fitted:
|
---|
| 338 | msg = "Not yet fitted."
|
---|
| 339 | if rcParams['verbose']:
|
---|
[1612] | 340 | #print msg
|
---|
[1614] | 341 | asaplog.push(msg)
|
---|
| 342 | print_log('ERROR')
|
---|
[1075] | 343 | return
|
---|
| 344 | else:
|
---|
| 345 | raise RuntimeError(msg)
|
---|
| 346 | errs = list(self.fitter.geterrors())
|
---|
| 347 | cerrs = errs
|
---|
| 348 | if component is not None:
|
---|
| 349 | if self.fitfunc == "gauss":
|
---|
| 350 | i = 3*component
|
---|
| 351 | if i < len(errs):
|
---|
| 352 | cerrs = errs[i:i+3]
|
---|
| 353 | return cerrs
|
---|
| 354 |
|
---|
| 355 | def get_parameters(self, component=None, errors=False):
|
---|
| 356 | """
|
---|
[113] | 357 | Return the fit paramters.
|
---|
[526] | 358 | Parameters:
|
---|
| 359 | component: get the parameters for the specified component
|
---|
| 360 | only, default is all components
|
---|
[113] | 361 | """
|
---|
| 362 | if not self.fitted:
|
---|
[723] | 363 | msg = "Not yet fitted."
|
---|
| 364 | if rcParams['verbose']:
|
---|
[1612] | 365 | #print msg
|
---|
[1614] | 366 | asaplog.push(msg)
|
---|
| 367 | print_log('ERROR')
|
---|
[723] | 368 | return
|
---|
| 369 | else:
|
---|
| 370 | raise RuntimeError(msg)
|
---|
[113] | 371 | pars = list(self.fitter.getparameters())
|
---|
| 372 | fixed = list(self.fitter.getfixedparameters())
|
---|
[1075] | 373 | errs = list(self.fitter.geterrors())
|
---|
[1039] | 374 | area = []
|
---|
[723] | 375 | if component is not None:
|
---|
[515] | 376 | if self.fitfunc == "gauss":
|
---|
| 377 | i = 3*component
|
---|
| 378 | cpars = pars[i:i+3]
|
---|
| 379 | cfixed = fixed[i:i+3]
|
---|
[1075] | 380 | cerrs = errs[i:i+3]
|
---|
[1039] | 381 | a = self.get_area(component)
|
---|
| 382 | area = [a for i in range(3)]
|
---|
[515] | 383 | else:
|
---|
| 384 | cpars = pars
|
---|
[723] | 385 | cfixed = fixed
|
---|
[1075] | 386 | cerrs = errs
|
---|
[515] | 387 | else:
|
---|
| 388 | cpars = pars
|
---|
| 389 | cfixed = fixed
|
---|
[1075] | 390 | cerrs = errs
|
---|
[1039] | 391 | if self.fitfunc == "gauss":
|
---|
| 392 | for c in range(len(self.components)):
|
---|
| 393 | a = self.get_area(c)
|
---|
| 394 | area += [a for i in range(3)]
|
---|
[1088] | 395 | fpars = self._format_pars(cpars, cfixed, errors and cerrs, area)
|
---|
[723] | 396 | if rcParams['verbose']:
|
---|
[1612] | 397 | #print fpars
|
---|
[1614] | 398 | asaplog.push(fpars)
|
---|
| 399 | print_log()
|
---|
[1075] | 400 | return {'params':cpars, 'fixed':cfixed, 'formatted': fpars,
|
---|
| 401 | 'errors':cerrs}
|
---|
[723] | 402 |
|
---|
[1075] | 403 | def _format_pars(self, pars, fixed, errors, area):
|
---|
[113] | 404 | out = ''
|
---|
| 405 | if self.fitfunc == 'poly':
|
---|
| 406 | c = 0
|
---|
[515] | 407 | for i in range(len(pars)):
|
---|
| 408 | fix = ""
|
---|
[1232] | 409 | if len(fixed) and fixed[i]: fix = "(fixed)"
|
---|
[1088] | 410 | if errors :
|
---|
| 411 | out += ' p%d%s= %3.6f (%1.6f),' % (c,fix,pars[i], errors[i])
|
---|
| 412 | else:
|
---|
| 413 | out += ' p%d%s= %3.6f,' % (c,fix,pars[i])
|
---|
[113] | 414 | c+=1
|
---|
[515] | 415 | out = out[:-1] # remove trailing ','
|
---|
[113] | 416 | elif self.fitfunc == 'gauss':
|
---|
| 417 | i = 0
|
---|
| 418 | c = 0
|
---|
[515] | 419 | aunit = ''
|
---|
| 420 | ounit = ''
|
---|
[113] | 421 | if self.data:
|
---|
[515] | 422 | aunit = self.data.get_unit()
|
---|
| 423 | ounit = self.data.get_fluxunit()
|
---|
[113] | 424 | while i < len(pars):
|
---|
[1039] | 425 | if len(area):
|
---|
| 426 | out += ' %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n area = %3.3f %s %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit, area[i],ounit,aunit)
|
---|
[1017] | 427 | else:
|
---|
| 428 | out += ' %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit,ounit,aunit)
|
---|
[113] | 429 | c+=1
|
---|
| 430 | i+=3
|
---|
| 431 | return out
|
---|
[723] | 432 |
|
---|
[113] | 433 | def get_estimate(self):
|
---|
| 434 | """
|
---|
[515] | 435 | Return the parameter estimates (for non-linear functions).
|
---|
[113] | 436 | """
|
---|
| 437 | pars = self.fitter.getestimate()
|
---|
[943] | 438 | fixed = self.fitter.getfixedparameters()
|
---|
[723] | 439 | if rcParams['verbose']:
|
---|
[1612] | 440 | #print self._format_pars(pars,fixed,None)
|
---|
[1614] | 441 | asaplog.push(self._format_pars(pars,fixed,None))
|
---|
| 442 | print_log()
|
---|
[113] | 443 | return pars
|
---|
| 444 |
|
---|
| 445 | def get_residual(self):
|
---|
| 446 | """
|
---|
| 447 | Return the residual of the fit.
|
---|
| 448 | """
|
---|
| 449 | if not self.fitted:
|
---|
[723] | 450 | msg = "Not yet fitted."
|
---|
| 451 | if rcParams['verbose']:
|
---|
[1612] | 452 | #print msg
|
---|
[1614] | 453 | asaplog.push(msg)
|
---|
| 454 | print_log('ERROR')
|
---|
[723] | 455 | return
|
---|
| 456 | else:
|
---|
| 457 | raise RuntimeError(msg)
|
---|
[113] | 458 | return self.fitter.getresidual()
|
---|
| 459 |
|
---|
| 460 | def get_chi2(self):
|
---|
| 461 | """
|
---|
| 462 | Return chi^2.
|
---|
| 463 | """
|
---|
| 464 | if not self.fitted:
|
---|
[723] | 465 | msg = "Not yet fitted."
|
---|
| 466 | if rcParams['verbose']:
|
---|
[1612] | 467 | #print msg
|
---|
[1614] | 468 | asaplog.push(msg)
|
---|
| 469 | print_log('ERROR')
|
---|
[723] | 470 | return
|
---|
| 471 | else:
|
---|
| 472 | raise RuntimeError(msg)
|
---|
[113] | 473 | ch2 = self.fitter.getchi2()
|
---|
[723] | 474 | if rcParams['verbose']:
|
---|
[1612] | 475 | #print 'Chi^2 = %3.3f' % (ch2)
|
---|
[1614] | 476 | asaplog.push( 'Chi^2 = %3.3f' % (ch2) )
|
---|
| 477 | print_log()
|
---|
[723] | 478 | return ch2
|
---|
[113] | 479 |
|
---|
| 480 | def get_fit(self):
|
---|
| 481 | """
|
---|
| 482 | Return the fitted ordinate values.
|
---|
| 483 | """
|
---|
| 484 | if not self.fitted:
|
---|
[723] | 485 | msg = "Not yet fitted."
|
---|
| 486 | if rcParams['verbose']:
|
---|
[1612] | 487 | #print msg
|
---|
[1614] | 488 | asaplog.push(msg)
|
---|
| 489 | print_log('ERROR')
|
---|
[723] | 490 | return
|
---|
| 491 | else:
|
---|
| 492 | raise RuntimeError(msg)
|
---|
[113] | 493 | return self.fitter.getfit()
|
---|
| 494 |
|
---|
| 495 | def commit(self):
|
---|
| 496 | """
|
---|
[526] | 497 | Return a new scan where the fits have been commited (subtracted)
|
---|
[113] | 498 | """
|
---|
| 499 | if not self.fitted:
|
---|
[723] | 500 | msg = "Not yet fitted."
|
---|
| 501 | if rcParams['verbose']:
|
---|
[1612] | 502 | #print msg
|
---|
[1614] | 503 | asaplog.push(msg)
|
---|
| 504 | print_log('ERROR')
|
---|
[723] | 505 | return
|
---|
| 506 | else:
|
---|
| 507 | raise RuntimeError(msg)
|
---|
[975] | 508 | from asap import scantable
|
---|
| 509 | if not isinstance(self.data, scantable):
|
---|
[723] | 510 | msg = "Not a scantable"
|
---|
| 511 | if rcParams['verbose']:
|
---|
[1612] | 512 | #print msg
|
---|
[1614] | 513 | asaplog.push(msg)
|
---|
| 514 | print_log('ERROR')
|
---|
[723] | 515 | return
|
---|
| 516 | else:
|
---|
| 517 | raise TypeError(msg)
|
---|
[113] | 518 | scan = self.data.copy()
|
---|
[259] | 519 | scan._setspectrum(self.fitter.getresidual())
|
---|
[723] | 520 | print_log()
|
---|
[1092] | 521 | return scan
|
---|
[113] | 522 |
|
---|
[723] | 523 | def plot(self, residual=False, components=None, plotparms=False, filename=None):
|
---|
[113] | 524 | """
|
---|
| 525 | Plot the last fit.
|
---|
| 526 | Parameters:
|
---|
| 527 | residual: an optional parameter indicating if the residual
|
---|
| 528 | should be plotted (default 'False')
|
---|
[526] | 529 | components: a list of components to plot, e.g [0,1],
|
---|
| 530 | -1 plots the total fit. Default is to only
|
---|
| 531 | plot the total fit.
|
---|
| 532 | plotparms: Inidicates if the parameter values should be present
|
---|
| 533 | on the plot
|
---|
[113] | 534 | """
|
---|
| 535 | if not self.fitted:
|
---|
| 536 | return
|
---|
[723] | 537 | if not self._p or self._p.is_dead:
|
---|
| 538 | if rcParams['plotter.gui']:
|
---|
| 539 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
| 540 | else:
|
---|
| 541 | from asap.asaplot import asaplot
|
---|
| 542 | self._p = asaplot()
|
---|
| 543 | self._p.hold()
|
---|
[113] | 544 | self._p.clear()
|
---|
[515] | 545 | self._p.set_panels()
|
---|
[652] | 546 | self._p.palette(0)
|
---|
[113] | 547 | tlab = 'Spectrum'
|
---|
[723] | 548 | xlab = 'Abcissa'
|
---|
[1017] | 549 | ylab = 'Ordinate'
|
---|
[1273] | 550 | from matplotlib.numerix import ma,logical_not,logical_and,array
|
---|
| 551 | m = self.mask
|
---|
[113] | 552 | if self.data:
|
---|
[515] | 553 | tlab = self.data._getsourcename(self._fittedrow)
|
---|
| 554 | xlab = self.data._getabcissalabel(self._fittedrow)
|
---|
[1273] | 555 | m = logical_and(self.mask,
|
---|
[1306] | 556 | array(self.data._getmask(self._fittedrow),
|
---|
| 557 | copy=False))
|
---|
[1389] | 558 |
|
---|
[626] | 559 | ylab = self.data._get_ordinate_label()
|
---|
[515] | 560 |
|
---|
[1075] | 561 | colours = ["#777777","#dddddd","red","orange","purple","green","magenta", "cyan"]
|
---|
[1461] | 562 | nomask=True
|
---|
| 563 | for i in range(len(m)):
|
---|
| 564 | nomask = nomask and m[i]
|
---|
| 565 | label0='Masked Region'
|
---|
| 566 | label1='Spectrum'
|
---|
| 567 | if ( nomask ):
|
---|
| 568 | label0=label1
|
---|
| 569 | else:
|
---|
| 570 | y = ma.masked_array( self.y, mask = m )
|
---|
| 571 | self._p.palette(1,colours)
|
---|
| 572 | self._p.set_line( label = label1 )
|
---|
| 573 | self._p.plot( self.x, y )
|
---|
[652] | 574 | self._p.palette(0,colours)
|
---|
[1461] | 575 | self._p.set_line(label=label0)
|
---|
[1273] | 576 | y = ma.masked_array(self.y,mask=logical_not(m))
|
---|
[1088] | 577 | self._p.plot(self.x, y)
|
---|
[113] | 578 | if residual:
|
---|
[1461] | 579 | self._p.palette(7)
|
---|
[515] | 580 | self._p.set_line(label='Residual')
|
---|
[1116] | 581 | y = ma.masked_array(self.get_residual(),
|
---|
[1273] | 582 | mask=logical_not(m))
|
---|
[1088] | 583 | self._p.plot(self.x, y)
|
---|
[652] | 584 | self._p.palette(2)
|
---|
[515] | 585 | if components is not None:
|
---|
| 586 | cs = components
|
---|
| 587 | if isinstance(components,int): cs = [components]
|
---|
[526] | 588 | if plotparms:
|
---|
[1031] | 589 | self._p.text(0.15,0.15,str(self.get_parameters()['formatted']),size=8)
|
---|
[515] | 590 | n = len(self.components)
|
---|
[652] | 591 | self._p.palette(3)
|
---|
[515] | 592 | for c in cs:
|
---|
| 593 | if 0 <= c < n:
|
---|
| 594 | lab = self.fitfuncs[c]+str(c)
|
---|
| 595 | self._p.set_line(label=lab)
|
---|
[1116] | 596 | y = ma.masked_array(self.fitter.evaluate(c),
|
---|
[1273] | 597 | mask=logical_not(m))
|
---|
[1088] | 598 |
|
---|
| 599 | self._p.plot(self.x, y)
|
---|
[515] | 600 | elif c == -1:
|
---|
[652] | 601 | self._p.palette(2)
|
---|
[515] | 602 | self._p.set_line(label="Total Fit")
|
---|
[1116] | 603 | y = ma.masked_array(self.fitter.getfit(),
|
---|
[1273] | 604 | mask=logical_not(m))
|
---|
[1088] | 605 | self._p.plot(self.x, y)
|
---|
[515] | 606 | else:
|
---|
[652] | 607 | self._p.palette(2)
|
---|
[515] | 608 | self._p.set_line(label='Fit')
|
---|
[1116] | 609 | y = ma.masked_array(self.fitter.getfit(),
|
---|
[1273] | 610 | mask=logical_not(m))
|
---|
[1088] | 611 | self._p.plot(self.x, y)
|
---|
[723] | 612 | xlim=[min(self.x),max(self.x)]
|
---|
| 613 | self._p.axes.set_xlim(xlim)
|
---|
[113] | 614 | self._p.set_axes('xlabel',xlab)
|
---|
| 615 | self._p.set_axes('ylabel',ylab)
|
---|
| 616 | self._p.set_axes('title',tlab)
|
---|
| 617 | self._p.release()
|
---|
[723] | 618 | if (not rcParams['plotter.gui']):
|
---|
| 619 | self._p.save(filename)
|
---|
| 620 | print_log()
|
---|
[113] | 621 |
|
---|
[1061] | 622 | def auto_fit(self, insitu=None, plot=False):
|
---|
[113] | 623 | """
|
---|
[515] | 624 | Return a scan where the function is applied to all rows for
|
---|
| 625 | all Beams/IFs/Pols.
|
---|
[723] | 626 |
|
---|
[113] | 627 | """
|
---|
| 628 | from asap import scantable
|
---|
[515] | 629 | if not isinstance(self.data, scantable) :
|
---|
[723] | 630 | msg = "Data is not a scantable"
|
---|
| 631 | if rcParams['verbose']:
|
---|
[1612] | 632 | #print msg
|
---|
[1614] | 633 | asaplog.push(msg)
|
---|
| 634 | print_log('ERROR')
|
---|
[723] | 635 | return
|
---|
| 636 | else:
|
---|
| 637 | raise TypeError(msg)
|
---|
[259] | 638 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 639 | if not insitu:
|
---|
| 640 | scan = self.data.copy()
|
---|
| 641 | else:
|
---|
| 642 | scan = self.data
|
---|
[880] | 643 | rows = xrange(scan.nrow())
|
---|
[1446] | 644 | # Save parameters of baseline fits as a class attribute.
|
---|
| 645 | # NOTICE: This does not reflect changes in scantable!
|
---|
| 646 | if len(rows) > 0: self.blpars=[]
|
---|
[723] | 647 | from asap import asaplog
|
---|
[876] | 648 | asaplog.push("Fitting:")
|
---|
| 649 | for r in rows:
|
---|
[1603] | 650 | out = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (scan.getscan(r),
|
---|
| 651 | scan.getbeam(r),
|
---|
| 652 | scan.getif(r),
|
---|
| 653 | scan.getpol(r),
|
---|
| 654 | scan.getcycle(r))
|
---|
[880] | 655 | asaplog.push(out, False)
|
---|
[876] | 656 | self.x = scan._getabcissa(r)
|
---|
| 657 | self.y = scan._getspectrum(r)
|
---|
[1603] | 658 | self.mask = mask_and(self.mask, scan._getmask(r))
|
---|
[876] | 659 | self.data = None
|
---|
| 660 | self.fit()
|
---|
[1603] | 661 | x = self.get_parameters()
|
---|
[1446] | 662 | fpar = self.get_parameters()
|
---|
[1061] | 663 | if plot:
|
---|
| 664 | self.plot(residual=True)
|
---|
| 665 | x = raw_input("Accept fit ([y]/n): ")
|
---|
| 666 | if x.upper() == 'N':
|
---|
[1446] | 667 | self.blpars.append(None)
|
---|
[1061] | 668 | continue
|
---|
[880] | 669 | scan._setspectrum(self.fitter.getresidual(), r)
|
---|
[1446] | 670 | self.blpars.append(fpar)
|
---|
[1061] | 671 | if plot:
|
---|
| 672 | self._p.unmap()
|
---|
| 673 | self._p = None
|
---|
[876] | 674 | print_log()
|
---|
| 675 | return scan
|
---|
[794] | 676 |
|
---|