[113] | 1 | import _asap
|
---|
[259] | 2 | from asap import rcParams
|
---|
[723] | 3 | from asap import print_log
|
---|
[1295] | 4 | from asap import _n_bools
|
---|
[1603] | 5 | from asap import mask_and
|
---|
[113] | 6 |
|
---|
| 7 | class fitter:
|
---|
| 8 | """
|
---|
| 9 | The fitting class for ASAP.
|
---|
| 10 | """
|
---|
[723] | 11 |
|
---|
[113] | 12 | def __init__(self):
|
---|
| 13 | """
|
---|
| 14 | Create a fitter object. No state is set.
|
---|
| 15 | """
|
---|
| 16 | self.fitter = _asap.fitter()
|
---|
| 17 | self.x = None
|
---|
| 18 | self.y = None
|
---|
| 19 | self.mask = None
|
---|
| 20 | self.fitfunc = None
|
---|
[515] | 21 | self.fitfuncs = None
|
---|
[113] | 22 | self.fitted = False
|
---|
| 23 | self.data = None
|
---|
[515] | 24 | self.components = 0
|
---|
| 25 | self._fittedrow = 0
|
---|
[113] | 26 | self._p = None
|
---|
[515] | 27 | self._selection = None
|
---|
[1389] | 28 | self.uselinear = False
|
---|
[113] | 29 |
|
---|
| 30 | def set_data(self, xdat, ydat, mask=None):
|
---|
| 31 | """
|
---|
[158] | 32 | Set the absissa and ordinate for the fit. Also set the mask
|
---|
[113] | 33 | indicationg valid points.
|
---|
| 34 | This can be used for data vectors retrieved from a scantable.
|
---|
| 35 | For scantable fitting use 'fitter.set_scan(scan, mask)'.
|
---|
| 36 | Parameters:
|
---|
[158] | 37 | xdat: the abcissa values
|
---|
[113] | 38 | ydat: the ordinate values
|
---|
| 39 | mask: an optional mask
|
---|
[723] | 40 |
|
---|
[113] | 41 | """
|
---|
| 42 | self.fitted = False
|
---|
| 43 | self.x = xdat
|
---|
| 44 | self.y = ydat
|
---|
| 45 | if mask == None:
|
---|
[1295] | 46 | self.mask = _n_bools(len(xdat), True)
|
---|
[113] | 47 | else:
|
---|
| 48 | self.mask = mask
|
---|
| 49 | return
|
---|
| 50 |
|
---|
| 51 | def set_scan(self, thescan=None, mask=None):
|
---|
| 52 | """
|
---|
| 53 | Set the 'data' (a scantable) of the fitter.
|
---|
| 54 | Parameters:
|
---|
| 55 | thescan: a scantable
|
---|
[1603] | 56 | mask: a msk retrieved from the scantable
|
---|
[113] | 57 | """
|
---|
| 58 | if not thescan:
|
---|
[723] | 59 | msg = "Please give a correct scan"
|
---|
| 60 | if rcParams['verbose']:
|
---|
| 61 | print msg
|
---|
| 62 | return
|
---|
| 63 | else:
|
---|
| 64 | raise TypeError(msg)
|
---|
[113] | 65 | self.fitted = False
|
---|
| 66 | self.data = thescan
|
---|
[1075] | 67 | self.mask = None
|
---|
[113] | 68 | if mask is None:
|
---|
[1295] | 69 | self.mask = _n_bools(self.data.nchan(), True)
|
---|
[113] | 70 | else:
|
---|
| 71 | self.mask = mask
|
---|
| 72 | return
|
---|
| 73 |
|
---|
| 74 | def set_function(self, **kwargs):
|
---|
| 75 | """
|
---|
| 76 | Set the function to be fit.
|
---|
| 77 | Parameters:
|
---|
[1389] | 78 | poly: use a polynomial of the order given with nonlinear least squares fit
|
---|
| 79 | lpoly: use polynomial of the order given with linear least squares fit
|
---|
[113] | 80 | gauss: fit the number of gaussian specified
|
---|
| 81 | Example:
|
---|
| 82 | fitter.set_function(gauss=2) # will fit two gaussians
|
---|
[1389] | 83 | fitter.set_function(poly=3) # will fit a 3rd order polynomial via nonlinear method
|
---|
| 84 | fitter.set_function(lpoly=3) # will fit a 3rd order polynomial via linear method
|
---|
[113] | 85 | """
|
---|
[723] | 86 | #default poly order 0
|
---|
[515] | 87 | n=0
|
---|
[113] | 88 | if kwargs.has_key('poly'):
|
---|
| 89 | self.fitfunc = 'poly'
|
---|
| 90 | n = kwargs.get('poly')
|
---|
[515] | 91 | self.components = [n]
|
---|
[1389] | 92 | self.uselinear = False
|
---|
| 93 | elif kwargs.has_key('lpoly'):
|
---|
| 94 | self.fitfunc = 'poly'
|
---|
| 95 | n = kwargs.get('lpoly')
|
---|
| 96 | self.components = [n]
|
---|
| 97 | self.uselinear = True
|
---|
[113] | 98 | elif kwargs.has_key('gauss'):
|
---|
| 99 | n = kwargs.get('gauss')
|
---|
| 100 | self.fitfunc = 'gauss'
|
---|
[515] | 101 | self.fitfuncs = [ 'gauss' for i in range(n) ]
|
---|
| 102 | self.components = [ 3 for i in range(n) ]
|
---|
[1389] | 103 | self.uselinear = False
|
---|
[515] | 104 | else:
|
---|
[723] | 105 | msg = "Invalid function type."
|
---|
| 106 | if rcParams['verbose']:
|
---|
| 107 | print msg
|
---|
| 108 | return
|
---|
| 109 | else:
|
---|
| 110 | raise TypeError(msg)
|
---|
| 111 |
|
---|
[113] | 112 | self.fitter.setexpression(self.fitfunc,n)
|
---|
[1232] | 113 | self.fitted = False
|
---|
[113] | 114 | return
|
---|
[723] | 115 |
|
---|
[1075] | 116 | def fit(self, row=0, estimate=False):
|
---|
[113] | 117 | """
|
---|
| 118 | Execute the actual fitting process. All the state has to be set.
|
---|
| 119 | Parameters:
|
---|
[1075] | 120 | row: specify the row in the scantable
|
---|
| 121 | estimate: auto-compute an initial parameter set (default False)
|
---|
| 122 | This can be used to compute estimates even if fit was
|
---|
| 123 | called before.
|
---|
[113] | 124 | Example:
|
---|
[515] | 125 | s = scantable('myscan.asap')
|
---|
| 126 | s.set_cursor(thepol=1) # select second pol
|
---|
[113] | 127 | f = fitter()
|
---|
| 128 | f.set_scan(s)
|
---|
| 129 | f.set_function(poly=0)
|
---|
[723] | 130 | f.fit(row=0) # fit first row
|
---|
[113] | 131 | """
|
---|
| 132 | if ((self.x is None or self.y is None) and self.data is None) \
|
---|
| 133 | or self.fitfunc is None:
|
---|
[723] | 134 | msg = "Fitter not yet initialised. Please set data & fit function"
|
---|
| 135 | if rcParams['verbose']:
|
---|
| 136 | print msg
|
---|
| 137 | return
|
---|
| 138 | else:
|
---|
| 139 | raise RuntimeError(msg)
|
---|
| 140 |
|
---|
[113] | 141 | else:
|
---|
| 142 | if self.data is not None:
|
---|
[515] | 143 | self.x = self.data._getabcissa(row)
|
---|
| 144 | self.y = self.data._getspectrum(row)
|
---|
[1603] | 145 | self.mask = mask_and(self.mask, self.data._getmask(row))
|
---|
[723] | 146 | from asap import asaplog
|
---|
| 147 | asaplog.push("Fitting:")
|
---|
[943] | 148 | i = row
|
---|
[1603] | 149 | out = "Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (self.data.getscan(i),
|
---|
| 150 | self.data.getbeam(i),
|
---|
| 151 | self.data.getif(i),
|
---|
| 152 | self.data.getpol(i),
|
---|
| 153 | self.data.getcycle(i))
|
---|
[1075] | 154 | asaplog.push(out,False)
|
---|
[515] | 155 | self.fitter.setdata(self.x, self.y, self.mask)
|
---|
[113] | 156 | if self.fitfunc == 'gauss':
|
---|
| 157 | ps = self.fitter.getparameters()
|
---|
[1075] | 158 | if len(ps) == 0 or estimate:
|
---|
[113] | 159 | self.fitter.estimate()
|
---|
[626] | 160 | try:
|
---|
[1232] | 161 | fxdpar = list(self.fitter.getfixedparameters())
|
---|
| 162 | if len(fxdpar) and fxdpar.count(0) == 0:
|
---|
| 163 | raise RuntimeError,"No point fitting, if all parameters are fixed."
|
---|
[1389] | 164 | if self.uselinear:
|
---|
| 165 | converged = self.fitter.lfit()
|
---|
| 166 | else:
|
---|
| 167 | converged = self.fitter.fit()
|
---|
[1075] | 168 | if not converged:
|
---|
| 169 | raise RuntimeError,"Fit didn't converge."
|
---|
[626] | 170 | except RuntimeError, msg:
|
---|
[723] | 171 | if rcParams['verbose']:
|
---|
| 172 | print msg
|
---|
| 173 | else:
|
---|
| 174 | raise
|
---|
[515] | 175 | self._fittedrow = row
|
---|
[113] | 176 | self.fitted = True
|
---|
[723] | 177 | print_log()
|
---|
[113] | 178 | return
|
---|
| 179 |
|
---|
[1232] | 180 | def store_fit(self, filename=None):
|
---|
[526] | 181 | """
|
---|
[1232] | 182 | Save the fit parameters.
|
---|
| 183 | Parameters:
|
---|
| 184 | filename: if specified save as an ASCII file, if None (default)
|
---|
| 185 | store it in the scnatable
|
---|
[526] | 186 | """
|
---|
[515] | 187 | if self.fitted and self.data is not None:
|
---|
| 188 | pars = list(self.fitter.getparameters())
|
---|
| 189 | fixed = list(self.fitter.getfixedparameters())
|
---|
[975] | 190 | from asap.asapfit import asapfit
|
---|
| 191 | fit = asapfit()
|
---|
| 192 | fit.setparameters(pars)
|
---|
| 193 | fit.setfixedparameters(fixed)
|
---|
| 194 | fit.setfunctions(self.fitfuncs)
|
---|
| 195 | fit.setcomponents(self.components)
|
---|
| 196 | fit.setframeinfo(self.data._getcoordinfo())
|
---|
[1232] | 197 | if filename is not None:
|
---|
| 198 | import os
|
---|
| 199 | filename = os.path.expandvars(os.path.expanduser(filename))
|
---|
| 200 | if os.path.exists(filename):
|
---|
| 201 | raise IOError("File '%s' exists." % filename)
|
---|
| 202 | fit.save(filename)
|
---|
| 203 | else:
|
---|
| 204 | self.data._addfit(fit,self._fittedrow)
|
---|
[515] | 205 |
|
---|
[1017] | 206 | #def set_parameters(self, params, fixed=None, component=None):
|
---|
| 207 | def set_parameters(self,*args,**kwargs):
|
---|
[526] | 208 | """
|
---|
| 209 | Set the parameters to be fitted.
|
---|
| 210 | Parameters:
|
---|
| 211 | params: a vector of parameters
|
---|
| 212 | fixed: a vector of which parameters are to be held fixed
|
---|
| 213 | (default is none)
|
---|
| 214 | component: in case of multiple gaussians, the index of the
|
---|
| 215 | component
|
---|
[1017] | 216 | """
|
---|
| 217 | component = None
|
---|
| 218 | fixed = None
|
---|
| 219 | params = None
|
---|
[1031] | 220 |
|
---|
[1017] | 221 | if len(args) and isinstance(args[0],dict):
|
---|
| 222 | kwargs = args[0]
|
---|
| 223 | if kwargs.has_key("fixed"): fixed = kwargs["fixed"]
|
---|
| 224 | if kwargs.has_key("params"): params = kwargs["params"]
|
---|
| 225 | if len(args) == 2 and isinstance(args[1], int):
|
---|
| 226 | component = args[1]
|
---|
[515] | 227 | if self.fitfunc is None:
|
---|
[723] | 228 | msg = "Please specify a fitting function first."
|
---|
| 229 | if rcParams['verbose']:
|
---|
| 230 | print msg
|
---|
| 231 | return
|
---|
| 232 | else:
|
---|
| 233 | raise RuntimeError(msg)
|
---|
[515] | 234 | if self.fitfunc == "gauss" and component is not None:
|
---|
[1017] | 235 | if not self.fitted and sum(self.fitter.getparameters()) == 0:
|
---|
[1295] | 236 | pars = _n_bools(len(self.components)*3, False)
|
---|
| 237 | fxd = _n_bools(len(pars), False)
|
---|
[515] | 238 | else:
|
---|
[723] | 239 | pars = list(self.fitter.getparameters())
|
---|
[515] | 240 | fxd = list(self.fitter.getfixedparameters())
|
---|
| 241 | i = 3*component
|
---|
| 242 | pars[i:i+3] = params
|
---|
| 243 | fxd[i:i+3] = fixed
|
---|
| 244 | params = pars
|
---|
[723] | 245 | fixed = fxd
|
---|
[113] | 246 | self.fitter.setparameters(params)
|
---|
| 247 | if fixed is not None:
|
---|
| 248 | self.fitter.setfixedparameters(fixed)
|
---|
[723] | 249 | print_log()
|
---|
[113] | 250 | return
|
---|
[515] | 251 |
|
---|
[1217] | 252 | def set_gauss_parameters(self, peak, centre, fwhm,
|
---|
[1603] | 253 | peakfixed=0, centrefixed=0,
|
---|
[1217] | 254 | fwhmfixed=0,
|
---|
[515] | 255 | component=0):
|
---|
[113] | 256 | """
|
---|
[515] | 257 | Set the Parameters of a 'Gaussian' component, set with set_function.
|
---|
| 258 | Parameters:
|
---|
[1232] | 259 | peak, centre, fwhm: The gaussian parameters
|
---|
[515] | 260 | peakfixed,
|
---|
[1603] | 261 | centrefixed,
|
---|
[1217] | 262 | fwhmfixed: Optional parameters to indicate if
|
---|
[515] | 263 | the paramters should be held fixed during
|
---|
| 264 | the fitting process. The default is to keep
|
---|
| 265 | all parameters flexible.
|
---|
[526] | 266 | component: The number of the component (Default is the
|
---|
| 267 | component 0)
|
---|
[515] | 268 | """
|
---|
| 269 | if self.fitfunc != "gauss":
|
---|
[723] | 270 | msg = "Function only operates on Gaussian components."
|
---|
| 271 | if rcParams['verbose']:
|
---|
| 272 | print msg
|
---|
| 273 | return
|
---|
| 274 | else:
|
---|
| 275 | raise ValueError(msg)
|
---|
[515] | 276 | if 0 <= component < len(self.components):
|
---|
[1217] | 277 | d = {'params':[peak, centre, fwhm],
|
---|
[1603] | 278 | 'fixed':[peakfixed, centrefixed, fwhmfixed]}
|
---|
[1017] | 279 | self.set_parameters(d, component)
|
---|
[515] | 280 | else:
|
---|
[723] | 281 | msg = "Please select a valid component."
|
---|
| 282 | if rcParams['verbose']:
|
---|
| 283 | print msg
|
---|
| 284 | return
|
---|
| 285 | else:
|
---|
| 286 | raise ValueError(msg)
|
---|
| 287 |
|
---|
[975] | 288 | def get_area(self, component=None):
|
---|
| 289 | """
|
---|
| 290 | Return the area under the fitted gaussian component.
|
---|
| 291 | Parameters:
|
---|
| 292 | component: the gaussian component selection,
|
---|
| 293 | default (None) is the sum of all components
|
---|
| 294 | Note:
|
---|
| 295 | This will only work for gaussian fits.
|
---|
| 296 | """
|
---|
| 297 | if not self.fitted: return
|
---|
| 298 | if self.fitfunc == "gauss":
|
---|
| 299 | pars = list(self.fitter.getparameters())
|
---|
| 300 | from math import log,pi,sqrt
|
---|
| 301 | fac = sqrt(pi/log(16.0))
|
---|
| 302 | areas = []
|
---|
| 303 | for i in range(len(self.components)):
|
---|
| 304 | j = i*3
|
---|
| 305 | cpars = pars[j:j+3]
|
---|
| 306 | areas.append(fac * cpars[0] * cpars[2])
|
---|
| 307 | else:
|
---|
| 308 | return None
|
---|
| 309 | if component is not None:
|
---|
| 310 | return areas[component]
|
---|
| 311 | else:
|
---|
| 312 | return sum(areas)
|
---|
| 313 |
|
---|
[1075] | 314 | def get_errors(self, component=None):
|
---|
[515] | 315 | """
|
---|
[1075] | 316 | Return the errors in the parameters.
|
---|
| 317 | Parameters:
|
---|
| 318 | component: get the errors for the specified component
|
---|
| 319 | only, default is all components
|
---|
| 320 | """
|
---|
| 321 | if not self.fitted:
|
---|
| 322 | msg = "Not yet fitted."
|
---|
| 323 | if rcParams['verbose']:
|
---|
| 324 | print msg
|
---|
| 325 | return
|
---|
| 326 | else:
|
---|
| 327 | raise RuntimeError(msg)
|
---|
| 328 | errs = list(self.fitter.geterrors())
|
---|
| 329 | cerrs = errs
|
---|
| 330 | if component is not None:
|
---|
| 331 | if self.fitfunc == "gauss":
|
---|
| 332 | i = 3*component
|
---|
| 333 | if i < len(errs):
|
---|
| 334 | cerrs = errs[i:i+3]
|
---|
| 335 | return cerrs
|
---|
| 336 |
|
---|
| 337 | def get_parameters(self, component=None, errors=False):
|
---|
| 338 | """
|
---|
[113] | 339 | Return the fit paramters.
|
---|
[526] | 340 | Parameters:
|
---|
| 341 | component: get the parameters for the specified component
|
---|
| 342 | only, default is all components
|
---|
[113] | 343 | """
|
---|
| 344 | if not self.fitted:
|
---|
[723] | 345 | msg = "Not yet fitted."
|
---|
| 346 | if rcParams['verbose']:
|
---|
| 347 | print msg
|
---|
| 348 | return
|
---|
| 349 | else:
|
---|
| 350 | raise RuntimeError(msg)
|
---|
[113] | 351 | pars = list(self.fitter.getparameters())
|
---|
| 352 | fixed = list(self.fitter.getfixedparameters())
|
---|
[1075] | 353 | errs = list(self.fitter.geterrors())
|
---|
[1039] | 354 | area = []
|
---|
[723] | 355 | if component is not None:
|
---|
[515] | 356 | if self.fitfunc == "gauss":
|
---|
| 357 | i = 3*component
|
---|
| 358 | cpars = pars[i:i+3]
|
---|
| 359 | cfixed = fixed[i:i+3]
|
---|
[1075] | 360 | cerrs = errs[i:i+3]
|
---|
[1039] | 361 | a = self.get_area(component)
|
---|
| 362 | area = [a for i in range(3)]
|
---|
[515] | 363 | else:
|
---|
| 364 | cpars = pars
|
---|
[723] | 365 | cfixed = fixed
|
---|
[1075] | 366 | cerrs = errs
|
---|
[515] | 367 | else:
|
---|
| 368 | cpars = pars
|
---|
| 369 | cfixed = fixed
|
---|
[1075] | 370 | cerrs = errs
|
---|
[1039] | 371 | if self.fitfunc == "gauss":
|
---|
| 372 | for c in range(len(self.components)):
|
---|
| 373 | a = self.get_area(c)
|
---|
| 374 | area += [a for i in range(3)]
|
---|
[1088] | 375 | fpars = self._format_pars(cpars, cfixed, errors and cerrs, area)
|
---|
[723] | 376 | if rcParams['verbose']:
|
---|
[515] | 377 | print fpars
|
---|
[1075] | 378 | return {'params':cpars, 'fixed':cfixed, 'formatted': fpars,
|
---|
| 379 | 'errors':cerrs}
|
---|
[723] | 380 |
|
---|
[1075] | 381 | def _format_pars(self, pars, fixed, errors, area):
|
---|
[113] | 382 | out = ''
|
---|
| 383 | if self.fitfunc == 'poly':
|
---|
| 384 | c = 0
|
---|
[515] | 385 | for i in range(len(pars)):
|
---|
| 386 | fix = ""
|
---|
[1232] | 387 | if len(fixed) and fixed[i]: fix = "(fixed)"
|
---|
[1088] | 388 | if errors :
|
---|
| 389 | out += ' p%d%s= %3.6f (%1.6f),' % (c,fix,pars[i], errors[i])
|
---|
| 390 | else:
|
---|
| 391 | out += ' p%d%s= %3.6f,' % (c,fix,pars[i])
|
---|
[113] | 392 | c+=1
|
---|
[515] | 393 | out = out[:-1] # remove trailing ','
|
---|
[113] | 394 | elif self.fitfunc == 'gauss':
|
---|
| 395 | i = 0
|
---|
| 396 | c = 0
|
---|
[515] | 397 | aunit = ''
|
---|
| 398 | ounit = ''
|
---|
[113] | 399 | if self.data:
|
---|
[515] | 400 | aunit = self.data.get_unit()
|
---|
| 401 | ounit = self.data.get_fluxunit()
|
---|
[113] | 402 | while i < len(pars):
|
---|
[1039] | 403 | if len(area):
|
---|
| 404 | out += ' %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n area = %3.3f %s %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit, area[i],ounit,aunit)
|
---|
[1017] | 405 | else:
|
---|
| 406 | out += ' %2d: peak = %3.3f %s , centre = %3.3f %s, FWHM = %3.3f %s\n' % (c,pars[i],ounit,pars[i+1],aunit,pars[i+2],aunit,ounit,aunit)
|
---|
[113] | 407 | c+=1
|
---|
| 408 | i+=3
|
---|
| 409 | return out
|
---|
[723] | 410 |
|
---|
[113] | 411 | def get_estimate(self):
|
---|
| 412 | """
|
---|
[515] | 413 | Return the parameter estimates (for non-linear functions).
|
---|
[113] | 414 | """
|
---|
| 415 | pars = self.fitter.getestimate()
|
---|
[943] | 416 | fixed = self.fitter.getfixedparameters()
|
---|
[723] | 417 | if rcParams['verbose']:
|
---|
[1017] | 418 | print self._format_pars(pars,fixed,None)
|
---|
[113] | 419 | return pars
|
---|
| 420 |
|
---|
| 421 | def get_residual(self):
|
---|
| 422 | """
|
---|
| 423 | Return the residual of the fit.
|
---|
| 424 | """
|
---|
| 425 | if not self.fitted:
|
---|
[723] | 426 | msg = "Not yet fitted."
|
---|
| 427 | if rcParams['verbose']:
|
---|
| 428 | print msg
|
---|
| 429 | return
|
---|
| 430 | else:
|
---|
| 431 | raise RuntimeError(msg)
|
---|
[113] | 432 | return self.fitter.getresidual()
|
---|
| 433 |
|
---|
| 434 | def get_chi2(self):
|
---|
| 435 | """
|
---|
| 436 | Return chi^2.
|
---|
| 437 | """
|
---|
| 438 | if not self.fitted:
|
---|
[723] | 439 | msg = "Not yet fitted."
|
---|
| 440 | if rcParams['verbose']:
|
---|
| 441 | print msg
|
---|
| 442 | return
|
---|
| 443 | else:
|
---|
| 444 | raise RuntimeError(msg)
|
---|
[113] | 445 | ch2 = self.fitter.getchi2()
|
---|
[723] | 446 | if rcParams['verbose']:
|
---|
[113] | 447 | print 'Chi^2 = %3.3f' % (ch2)
|
---|
[723] | 448 | return ch2
|
---|
[113] | 449 |
|
---|
| 450 | def get_fit(self):
|
---|
| 451 | """
|
---|
| 452 | Return the fitted ordinate values.
|
---|
| 453 | """
|
---|
| 454 | if not self.fitted:
|
---|
[723] | 455 | msg = "Not yet fitted."
|
---|
| 456 | if rcParams['verbose']:
|
---|
| 457 | print msg
|
---|
| 458 | return
|
---|
| 459 | else:
|
---|
| 460 | raise RuntimeError(msg)
|
---|
[113] | 461 | return self.fitter.getfit()
|
---|
| 462 |
|
---|
| 463 | def commit(self):
|
---|
| 464 | """
|
---|
[526] | 465 | Return a new scan where the fits have been commited (subtracted)
|
---|
[113] | 466 | """
|
---|
| 467 | if not self.fitted:
|
---|
[723] | 468 | msg = "Not yet fitted."
|
---|
| 469 | if rcParams['verbose']:
|
---|
| 470 | print msg
|
---|
| 471 | return
|
---|
| 472 | else:
|
---|
| 473 | raise RuntimeError(msg)
|
---|
[975] | 474 | from asap import scantable
|
---|
| 475 | if not isinstance(self.data, scantable):
|
---|
[723] | 476 | msg = "Not a scantable"
|
---|
| 477 | if rcParams['verbose']:
|
---|
| 478 | print msg
|
---|
| 479 | return
|
---|
| 480 | else:
|
---|
| 481 | raise TypeError(msg)
|
---|
[113] | 482 | scan = self.data.copy()
|
---|
[259] | 483 | scan._setspectrum(self.fitter.getresidual())
|
---|
[723] | 484 | print_log()
|
---|
[1092] | 485 | return scan
|
---|
[113] | 486 |
|
---|
[723] | 487 | def plot(self, residual=False, components=None, plotparms=False, filename=None):
|
---|
[113] | 488 | """
|
---|
| 489 | Plot the last fit.
|
---|
| 490 | Parameters:
|
---|
| 491 | residual: an optional parameter indicating if the residual
|
---|
| 492 | should be plotted (default 'False')
|
---|
[526] | 493 | components: a list of components to plot, e.g [0,1],
|
---|
| 494 | -1 plots the total fit. Default is to only
|
---|
| 495 | plot the total fit.
|
---|
| 496 | plotparms: Inidicates if the parameter values should be present
|
---|
| 497 | on the plot
|
---|
[113] | 498 | """
|
---|
| 499 | if not self.fitted:
|
---|
| 500 | return
|
---|
[723] | 501 | if not self._p or self._p.is_dead:
|
---|
| 502 | if rcParams['plotter.gui']:
|
---|
| 503 | from asap.asaplotgui import asaplotgui as asaplot
|
---|
| 504 | else:
|
---|
| 505 | from asap.asaplot import asaplot
|
---|
| 506 | self._p = asaplot()
|
---|
| 507 | self._p.hold()
|
---|
[113] | 508 | self._p.clear()
|
---|
[515] | 509 | self._p.set_panels()
|
---|
[652] | 510 | self._p.palette(0)
|
---|
[113] | 511 | tlab = 'Spectrum'
|
---|
[723] | 512 | xlab = 'Abcissa'
|
---|
[1017] | 513 | ylab = 'Ordinate'
|
---|
[1273] | 514 | from matplotlib.numerix import ma,logical_not,logical_and,array
|
---|
| 515 | m = self.mask
|
---|
[113] | 516 | if self.data:
|
---|
[515] | 517 | tlab = self.data._getsourcename(self._fittedrow)
|
---|
| 518 | xlab = self.data._getabcissalabel(self._fittedrow)
|
---|
[1273] | 519 | m = logical_and(self.mask,
|
---|
[1306] | 520 | array(self.data._getmask(self._fittedrow),
|
---|
| 521 | copy=False))
|
---|
[1389] | 522 |
|
---|
[626] | 523 | ylab = self.data._get_ordinate_label()
|
---|
[515] | 524 |
|
---|
[1075] | 525 | colours = ["#777777","#dddddd","red","orange","purple","green","magenta", "cyan"]
|
---|
[1461] | 526 | nomask=True
|
---|
| 527 | for i in range(len(m)):
|
---|
| 528 | nomask = nomask and m[i]
|
---|
| 529 | label0='Masked Region'
|
---|
| 530 | label1='Spectrum'
|
---|
| 531 | if ( nomask ):
|
---|
| 532 | label0=label1
|
---|
| 533 | else:
|
---|
| 534 | y = ma.masked_array( self.y, mask = m )
|
---|
| 535 | self._p.palette(1,colours)
|
---|
| 536 | self._p.set_line( label = label1 )
|
---|
| 537 | self._p.plot( self.x, y )
|
---|
[652] | 538 | self._p.palette(0,colours)
|
---|
[1461] | 539 | self._p.set_line(label=label0)
|
---|
[1273] | 540 | y = ma.masked_array(self.y,mask=logical_not(m))
|
---|
[1088] | 541 | self._p.plot(self.x, y)
|
---|
[113] | 542 | if residual:
|
---|
[1461] | 543 | self._p.palette(7)
|
---|
[515] | 544 | self._p.set_line(label='Residual')
|
---|
[1116] | 545 | y = ma.masked_array(self.get_residual(),
|
---|
[1273] | 546 | mask=logical_not(m))
|
---|
[1088] | 547 | self._p.plot(self.x, y)
|
---|
[652] | 548 | self._p.palette(2)
|
---|
[515] | 549 | if components is not None:
|
---|
| 550 | cs = components
|
---|
| 551 | if isinstance(components,int): cs = [components]
|
---|
[526] | 552 | if plotparms:
|
---|
[1031] | 553 | self._p.text(0.15,0.15,str(self.get_parameters()['formatted']),size=8)
|
---|
[515] | 554 | n = len(self.components)
|
---|
[652] | 555 | self._p.palette(3)
|
---|
[515] | 556 | for c in cs:
|
---|
| 557 | if 0 <= c < n:
|
---|
| 558 | lab = self.fitfuncs[c]+str(c)
|
---|
| 559 | self._p.set_line(label=lab)
|
---|
[1116] | 560 | y = ma.masked_array(self.fitter.evaluate(c),
|
---|
[1273] | 561 | mask=logical_not(m))
|
---|
[1088] | 562 |
|
---|
| 563 | self._p.plot(self.x, y)
|
---|
[515] | 564 | elif c == -1:
|
---|
[652] | 565 | self._p.palette(2)
|
---|
[515] | 566 | self._p.set_line(label="Total Fit")
|
---|
[1116] | 567 | y = ma.masked_array(self.fitter.getfit(),
|
---|
[1273] | 568 | mask=logical_not(m))
|
---|
[1088] | 569 | self._p.plot(self.x, y)
|
---|
[515] | 570 | else:
|
---|
[652] | 571 | self._p.palette(2)
|
---|
[515] | 572 | self._p.set_line(label='Fit')
|
---|
[1116] | 573 | y = ma.masked_array(self.fitter.getfit(),
|
---|
[1273] | 574 | mask=logical_not(m))
|
---|
[1088] | 575 | self._p.plot(self.x, y)
|
---|
[723] | 576 | xlim=[min(self.x),max(self.x)]
|
---|
| 577 | self._p.axes.set_xlim(xlim)
|
---|
[113] | 578 | self._p.set_axes('xlabel',xlab)
|
---|
| 579 | self._p.set_axes('ylabel',ylab)
|
---|
| 580 | self._p.set_axes('title',tlab)
|
---|
| 581 | self._p.release()
|
---|
[723] | 582 | if (not rcParams['plotter.gui']):
|
---|
| 583 | self._p.save(filename)
|
---|
| 584 | print_log()
|
---|
[113] | 585 |
|
---|
[1061] | 586 | def auto_fit(self, insitu=None, plot=False):
|
---|
[113] | 587 | """
|
---|
[515] | 588 | Return a scan where the function is applied to all rows for
|
---|
| 589 | all Beams/IFs/Pols.
|
---|
[723] | 590 |
|
---|
[113] | 591 | """
|
---|
| 592 | from asap import scantable
|
---|
[515] | 593 | if not isinstance(self.data, scantable) :
|
---|
[723] | 594 | msg = "Data is not a scantable"
|
---|
| 595 | if rcParams['verbose']:
|
---|
| 596 | print msg
|
---|
| 597 | return
|
---|
| 598 | else:
|
---|
| 599 | raise TypeError(msg)
|
---|
[259] | 600 | if insitu is None: insitu = rcParams['insitu']
|
---|
| 601 | if not insitu:
|
---|
| 602 | scan = self.data.copy()
|
---|
| 603 | else:
|
---|
| 604 | scan = self.data
|
---|
[880] | 605 | rows = xrange(scan.nrow())
|
---|
[1446] | 606 | # Save parameters of baseline fits as a class attribute.
|
---|
| 607 | # NOTICE: This does not reflect changes in scantable!
|
---|
| 608 | if len(rows) > 0: self.blpars=[]
|
---|
[723] | 609 | from asap import asaplog
|
---|
[876] | 610 | asaplog.push("Fitting:")
|
---|
| 611 | for r in rows:
|
---|
[1603] | 612 | out = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (scan.getscan(r),
|
---|
| 613 | scan.getbeam(r),
|
---|
| 614 | scan.getif(r),
|
---|
| 615 | scan.getpol(r),
|
---|
| 616 | scan.getcycle(r))
|
---|
[880] | 617 | asaplog.push(out, False)
|
---|
[876] | 618 | self.x = scan._getabcissa(r)
|
---|
| 619 | self.y = scan._getspectrum(r)
|
---|
[1603] | 620 | self.mask = mask_and(self.mask, scan._getmask(r))
|
---|
[876] | 621 | self.data = None
|
---|
| 622 | self.fit()
|
---|
[1603] | 623 | x = self.get_parameters()
|
---|
[1446] | 624 | fpar = self.get_parameters()
|
---|
[1061] | 625 | if plot:
|
---|
| 626 | self.plot(residual=True)
|
---|
| 627 | x = raw_input("Accept fit ([y]/n): ")
|
---|
| 628 | if x.upper() == 'N':
|
---|
[1446] | 629 | self.blpars.append(None)
|
---|
[1061] | 630 | continue
|
---|
[880] | 631 | scan._setspectrum(self.fitter.getresidual(), r)
|
---|
[1446] | 632 | self.blpars.append(fpar)
|
---|
[1061] | 633 | if plot:
|
---|
| 634 | self._p.unmap()
|
---|
| 635 | self._p = None
|
---|
[876] | 636 | print_log()
|
---|
| 637 | return scan
|
---|
[794] | 638 |
|
---|