| 1 | from asap import rcParams, print_log, selector | 
|---|
| 2 | import matplotlib.axes | 
|---|
| 3 | import sre | 
|---|
| 4 |  | 
|---|
| 5 | class asapplotter: | 
|---|
| 6 | """ | 
|---|
| 7 | The ASAP plotter. | 
|---|
| 8 | By default the plotter is set up to plot polarisations | 
|---|
| 9 | 'colour stacked' and scantables across panels. | 
|---|
| 10 | Note: | 
|---|
| 11 | Currenly it only plots 'spectra' not Tsys or | 
|---|
| 12 | other variables. | 
|---|
| 13 | """ | 
|---|
| 14 | def __init__(self, visible=None): | 
|---|
| 15 | self._visible = rcParams['plotter.gui'] | 
|---|
| 16 | if visible is not None: | 
|---|
| 17 | self._visible = visible | 
|---|
| 18 | self._plotter = self._newplotter() | 
|---|
| 19 |  | 
|---|
| 20 | self._panelling = None | 
|---|
| 21 | self._stacking = None | 
|---|
| 22 | self.set_panelling() | 
|---|
| 23 | self.set_stacking() | 
|---|
| 24 | self._rows = None | 
|---|
| 25 | self._cols = None | 
|---|
| 26 | self._autoplot = False | 
|---|
| 27 | self._minmaxx = None | 
|---|
| 28 | self._minmaxy = None | 
|---|
| 29 | self._datamask = None | 
|---|
| 30 | self._data = None | 
|---|
| 31 | self._lmap = None | 
|---|
| 32 | self._title = None | 
|---|
| 33 | self._ordinate = None | 
|---|
| 34 | self._abcissa = None | 
|---|
| 35 | self._abcunit = None | 
|---|
| 36 | self._usermask = [] | 
|---|
| 37 | self._maskselection = None | 
|---|
| 38 | self._selection = selector() | 
|---|
| 39 | self._hist = rcParams['plotter.histogram'] | 
|---|
| 40 |  | 
|---|
| 41 | def _translate(self, instr): | 
|---|
| 42 | keys = "s b i p t".split() | 
|---|
| 43 | if isinstance(instr, str): | 
|---|
| 44 | for key in keys: | 
|---|
| 45 | if instr.lower().startswith(key): | 
|---|
| 46 | return key | 
|---|
| 47 | return None | 
|---|
| 48 |  | 
|---|
| 49 | def _newplotter(self): | 
|---|
| 50 | if self._visible: | 
|---|
| 51 | from asap.asaplotgui import asaplotgui as asaplot | 
|---|
| 52 | else: | 
|---|
| 53 | from asap.asaplot import asaplot | 
|---|
| 54 | return asaplot() | 
|---|
| 55 |  | 
|---|
| 56 |  | 
|---|
| 57 | def plot(self, scan=None): | 
|---|
| 58 | """ | 
|---|
| 59 | Plot a scantable. | 
|---|
| 60 | Parameters: | 
|---|
| 61 | scan:   a scantable | 
|---|
| 62 | Note: | 
|---|
| 63 | If a scantable was specified in a previous call | 
|---|
| 64 | to plot, no argument has to be given to 'replot' | 
|---|
| 65 | NO checking is done that the abcissas of the scantable | 
|---|
| 66 | are consistent e.g. all 'channel' or all 'velocity' etc. | 
|---|
| 67 | """ | 
|---|
| 68 | if self._plotter.is_dead: | 
|---|
| 69 | self._plotter = self._newplotter() | 
|---|
| 70 | self._plotter.hold() | 
|---|
| 71 | self._plotter.clear() | 
|---|
| 72 | from asap import scantable | 
|---|
| 73 | if not self._data and not scan: | 
|---|
| 74 | msg = "Input is not a scantable" | 
|---|
| 75 | if rcParams['verbose']: | 
|---|
| 76 | print msg | 
|---|
| 77 | return | 
|---|
| 78 | raise TypeError(msg) | 
|---|
| 79 | if isinstance(scan, scantable): | 
|---|
| 80 | if self._data is not None: | 
|---|
| 81 | if scan != self._data: | 
|---|
| 82 | self._data = scan | 
|---|
| 83 | # reset | 
|---|
| 84 | self._reset() | 
|---|
| 85 | else: | 
|---|
| 86 | self._data = scan | 
|---|
| 87 | self._reset() | 
|---|
| 88 | # ranges become invalid when unit changes | 
|---|
| 89 | if self._abcunit and self._abcunit != self._data.get_unit(): | 
|---|
| 90 | self._minmaxx = None | 
|---|
| 91 | self._minmaxy = None | 
|---|
| 92 | self._abcunit = self._data.get_unit() | 
|---|
| 93 | self._datamask = None | 
|---|
| 94 | self._plot(self._data) | 
|---|
| 95 | if self._minmaxy is not None: | 
|---|
| 96 | self._plotter.set_limits(ylim=self._minmaxy) | 
|---|
| 97 | self._plotter.release() | 
|---|
| 98 | self._plotter.tidy() | 
|---|
| 99 | self._plotter.show(hardrefresh=False) | 
|---|
| 100 | print_log() | 
|---|
| 101 | return | 
|---|
| 102 |  | 
|---|
| 103 |  | 
|---|
| 104 | # forwards to matplotlib axes | 
|---|
| 105 | def text(self, *args, **kwargs): | 
|---|
| 106 | self._axes_callback("text", *args, **kwargs) | 
|---|
| 107 | text. __doc__ = matplotlib.axes.Axes.text.__doc__ | 
|---|
| 108 | def arrow(self, *args, **kwargs): | 
|---|
| 109 | self._axes_callback("arrow", *args, **kwargs) | 
|---|
| 110 | arrow. __doc__ = matplotlib.axes.Axes.arrow.__doc__ | 
|---|
| 111 | def axvline(self, *args, **kwargs): | 
|---|
| 112 | self._axes_callback("axvline", *args, **kwargs) | 
|---|
| 113 | axvline. __doc__ = matplotlib.axes.Axes.axvline.__doc__ | 
|---|
| 114 | def axhline(self, *args, **kwargs): | 
|---|
| 115 | self._axes_callback("axhline", *args, **kwargs) | 
|---|
| 116 | axhline. __doc__ = matplotlib.axes.Axes.axhline.__doc__ | 
|---|
| 117 | def axvspan(self, *args, **kwargs): | 
|---|
| 118 | self._axes_callback("axvspan", *args, **kwargs) | 
|---|
| 119 | # hack to preventy mpl from redrawing the patch | 
|---|
| 120 | # it seem to convert the patch into lines on every draw. | 
|---|
| 121 | # This doesn't happen in a test script??? | 
|---|
| 122 | del self._plotter.axes.patches[-1] | 
|---|
| 123 | axvspan. __doc__ = matplotlib.axes.Axes.axvspan.__doc__ | 
|---|
| 124 |  | 
|---|
| 125 | def axhspan(self, *args, **kwargs): | 
|---|
| 126 | self._axes_callback("axhspan", *args, **kwargs) | 
|---|
| 127 | # hack to preventy mpl from redrawing the patch | 
|---|
| 128 | # it seem to convert the patch into lines on every draw. | 
|---|
| 129 | # This doesn't happen in a test script??? | 
|---|
| 130 | del self._plotter.axes.patches[-1] | 
|---|
| 131 | axhspan. __doc__ = matplotlib.axes.Axes.axhspan.__doc__ | 
|---|
| 132 |  | 
|---|
| 133 | def _axes_callback(self, axesfunc, *args, **kwargs): | 
|---|
| 134 | panel = 0 | 
|---|
| 135 | if kwargs.has_key("panel"): | 
|---|
| 136 | panel = kwargs.pop("panel") | 
|---|
| 137 | coords = None | 
|---|
| 138 | if kwargs.has_key("coords"): | 
|---|
| 139 | coords = kwargs.pop("coords") | 
|---|
| 140 | if coords.lower() == 'world': | 
|---|
| 141 | kwargs["transform"] = self._plotter.axes.transData | 
|---|
| 142 | elif coords.lower() == 'relative': | 
|---|
| 143 | kwargs["transform"] = self._plotter.axes.transAxes | 
|---|
| 144 | self._plotter.subplot(panel) | 
|---|
| 145 | self._plotter.axes.set_autoscale_on(False) | 
|---|
| 146 | getattr(self._plotter.axes, axesfunc)(*args, **kwargs) | 
|---|
| 147 | self._plotter.show(False) | 
|---|
| 148 | self._plotter.axes.set_autoscale_on(True) | 
|---|
| 149 | # end matplotlib.axes fowarding functions | 
|---|
| 150 |  | 
|---|
| 151 | def set_mode(self, stacking=None, panelling=None): | 
|---|
| 152 | """ | 
|---|
| 153 | Set the plots look and feel, i.e. what you want to see on the plot. | 
|---|
| 154 | Parameters: | 
|---|
| 155 | stacking:     tell the plotter which variable to plot | 
|---|
| 156 | as line colour overlays (default 'pol') | 
|---|
| 157 | panelling:    tell the plotter which variable to plot | 
|---|
| 158 | across multiple panels (default 'scan' | 
|---|
| 159 | Note: | 
|---|
| 160 | Valid modes are: | 
|---|
| 161 | 'beam' 'Beam' 'b':     Beams | 
|---|
| 162 | 'if' 'IF' 'i':         IFs | 
|---|
| 163 | 'pol' 'Pol' 'p':       Polarisations | 
|---|
| 164 | 'scan' 'Scan' 's':     Scans | 
|---|
| 165 | 'time' 'Time' 't':     Times | 
|---|
| 166 | """ | 
|---|
| 167 | msg = "Invalid mode" | 
|---|
| 168 | if not self.set_panelling(panelling) or \ | 
|---|
| 169 | not self.set_stacking(stacking): | 
|---|
| 170 | if rcParams['verbose']: | 
|---|
| 171 | print msg | 
|---|
| 172 | return | 
|---|
| 173 | else: | 
|---|
| 174 | raise TypeError(msg) | 
|---|
| 175 | if self._data: self.plot(self._data) | 
|---|
| 176 | return | 
|---|
| 177 |  | 
|---|
| 178 | def set_panelling(self, what=None): | 
|---|
| 179 | mode = what | 
|---|
| 180 | if mode is None: | 
|---|
| 181 | mode = rcParams['plotter.panelling'] | 
|---|
| 182 | md = self._translate(mode) | 
|---|
| 183 | if md: | 
|---|
| 184 | self._panelling = md | 
|---|
| 185 | self._title = None | 
|---|
| 186 | return True | 
|---|
| 187 | return False | 
|---|
| 188 |  | 
|---|
| 189 | def set_layout(self,rows=None,cols=None): | 
|---|
| 190 | """ | 
|---|
| 191 | Set the multi-panel layout, i.e. how many rows and columns plots | 
|---|
| 192 | are visible. | 
|---|
| 193 | Parameters: | 
|---|
| 194 | rows:   The number of rows of plots | 
|---|
| 195 | cols:   The number of columns of plots | 
|---|
| 196 | Note: | 
|---|
| 197 | If no argument is given, the potter reverts to its auto-plot | 
|---|
| 198 | behaviour. | 
|---|
| 199 | """ | 
|---|
| 200 | self._rows = rows | 
|---|
| 201 | self._cols = cols | 
|---|
| 202 | if self._data: self.plot(self._data) | 
|---|
| 203 | return | 
|---|
| 204 |  | 
|---|
| 205 | def set_stacking(self, what=None): | 
|---|
| 206 | mode = what | 
|---|
| 207 | if mode is None: | 
|---|
| 208 | mode = rcParams['plotter.stacking'] | 
|---|
| 209 | md = self._translate(mode) | 
|---|
| 210 | if md: | 
|---|
| 211 | self._stacking = md | 
|---|
| 212 | self._lmap = None | 
|---|
| 213 | return True | 
|---|
| 214 | return False | 
|---|
| 215 |  | 
|---|
| 216 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None): | 
|---|
| 217 | """ | 
|---|
| 218 | Set the range of interest on the abcissa of the plot | 
|---|
| 219 | Parameters: | 
|---|
| 220 | [x,y]start,[x,y]end:  The start and end points of the 'zoom' window | 
|---|
| 221 | Note: | 
|---|
| 222 | These become non-sensical when the unit changes. | 
|---|
| 223 | use plotter.set_range() without parameters to reset | 
|---|
| 224 |  | 
|---|
| 225 | """ | 
|---|
| 226 | if xstart is None and xend is None: | 
|---|
| 227 | self._minmaxx = None | 
|---|
| 228 | else: | 
|---|
| 229 | self._minmaxx = [xstart,xend] | 
|---|
| 230 | if ystart is None and yend is None: | 
|---|
| 231 | self._minmaxy = None | 
|---|
| 232 | else: | 
|---|
| 233 | self._minmaxy = [ystart,yend] | 
|---|
| 234 | if self._data: self.plot(self._data) | 
|---|
| 235 | return | 
|---|
| 236 |  | 
|---|
| 237 | def set_legend(self, mp=None, fontsize = None, mode = 0): | 
|---|
| 238 | """ | 
|---|
| 239 | Specify a mapping for the legend instead of using the default | 
|---|
| 240 | indices: | 
|---|
| 241 | Parameters: | 
|---|
| 242 | mp:        a list of 'strings'. This should have the same length | 
|---|
| 243 | as the number of elements on the legend and then maps | 
|---|
| 244 | to the indeces in order. It is possible to uses latex | 
|---|
| 245 | math expression. These have to be enclosed in r'', | 
|---|
| 246 | e.g. r'$x^{2}$' | 
|---|
| 247 | fontsize:  The font size of the label (default None) | 
|---|
| 248 | mode:      where to display the legend | 
|---|
| 249 | Any other value for loc else disables the legend: | 
|---|
| 250 | 0: auto | 
|---|
| 251 | 1: upper right | 
|---|
| 252 | 2: upper left | 
|---|
| 253 | 3: lower left | 
|---|
| 254 | 4: lower right | 
|---|
| 255 | 5: right | 
|---|
| 256 | 6: center left | 
|---|
| 257 | 7: center right | 
|---|
| 258 | 8: lower center | 
|---|
| 259 | 9: upper center | 
|---|
| 260 | 10: center | 
|---|
| 261 |  | 
|---|
| 262 | Example: | 
|---|
| 263 | If the data has two IFs/rest frequencies with index 0 and 1 | 
|---|
| 264 | for CO and SiO: | 
|---|
| 265 | plotter.set_stacking('i') | 
|---|
| 266 | plotter.set_legend(['CO','SiO']) | 
|---|
| 267 | plotter.plot() | 
|---|
| 268 | plotter.set_legend([r'$^{12}CO$', r'SiO']) | 
|---|
| 269 | """ | 
|---|
| 270 | self._lmap = mp | 
|---|
| 271 | self._plotter.legend(mode) | 
|---|
| 272 | if isinstance(fontsize, int): | 
|---|
| 273 | from matplotlib import rc as rcp | 
|---|
| 274 | rcp('legend', fontsize=fontsize) | 
|---|
| 275 | if self._data: | 
|---|
| 276 | self.plot(self._data) | 
|---|
| 277 | return | 
|---|
| 278 |  | 
|---|
| 279 | def set_title(self, title=None, fontsize=None): | 
|---|
| 280 | """ | 
|---|
| 281 | Set the title of the plot. If multiple panels are plotted, | 
|---|
| 282 | multiple titles have to be specified. | 
|---|
| 283 | Example: | 
|---|
| 284 | # two panels are visible on the plotter | 
|---|
| 285 | plotter.set_title(["First Panel","Second Panel"]) | 
|---|
| 286 | """ | 
|---|
| 287 | self._title = title | 
|---|
| 288 | if isinstance(fontsize, int): | 
|---|
| 289 | from matplotlib import rc as rcp | 
|---|
| 290 | rcp('axes', titlesize=fontsize) | 
|---|
| 291 | if self._data: self.plot(self._data) | 
|---|
| 292 | return | 
|---|
| 293 |  | 
|---|
| 294 | def set_ordinate(self, ordinate=None, fontsize=None): | 
|---|
| 295 | """ | 
|---|
| 296 | Set the y-axis label of the plot. If multiple panels are plotted, | 
|---|
| 297 | multiple labels have to be specified. | 
|---|
| 298 | Parameters: | 
|---|
| 299 | ordinate:    a list of ordinate labels. None (default) let | 
|---|
| 300 | data determine the labels | 
|---|
| 301 | Example: | 
|---|
| 302 | # two panels are visible on the plotter | 
|---|
| 303 | plotter.set_ordinate(["First Y-Axis","Second Y-Axis"]) | 
|---|
| 304 | """ | 
|---|
| 305 | self._ordinate = ordinate | 
|---|
| 306 | if isinstance(fontsize, int): | 
|---|
| 307 | from matplotlib import rc as rcp | 
|---|
| 308 | rcp('axes', labelsize=fontsize) | 
|---|
| 309 | rcp('ytick', labelsize=fontsize) | 
|---|
| 310 | if self._data: self.plot(self._data) | 
|---|
| 311 | return | 
|---|
| 312 |  | 
|---|
| 313 | def set_abcissa(self, abcissa=None, fontsize=None): | 
|---|
| 314 | """ | 
|---|
| 315 | Set the x-axis label of the plot. If multiple panels are plotted, | 
|---|
| 316 | multiple labels have to be specified. | 
|---|
| 317 | Parameters: | 
|---|
| 318 | abcissa:     a list of abcissa labels. None (default) let | 
|---|
| 319 | data determine the labels | 
|---|
| 320 | Example: | 
|---|
| 321 | # two panels are visible on the plotter | 
|---|
| 322 | plotter.set_ordinate(["First X-Axis","Second X-Axis"]) | 
|---|
| 323 | """ | 
|---|
| 324 | self._abcissa = abcissa | 
|---|
| 325 | if isinstance(fontsize, int): | 
|---|
| 326 | from matplotlib import rc as rcp | 
|---|
| 327 | rcp('axes', labelsize=fontsize) | 
|---|
| 328 | rcp('xtick', labelsize=fontsize) | 
|---|
| 329 | if self._data: self.plot(self._data) | 
|---|
| 330 | return | 
|---|
| 331 |  | 
|---|
| 332 | def set_colors(self, colmap): | 
|---|
| 333 | """ | 
|---|
| 334 | Set the colours to be used. The plotter will cycle through | 
|---|
| 335 | these colours when lines are overlaid (stacking mode). | 
|---|
| 336 | Parameters: | 
|---|
| 337 | colmap:     a list of colour names | 
|---|
| 338 | Example: | 
|---|
| 339 | plotter.set_colors("red green blue") | 
|---|
| 340 | # If for example four lines are overlaid e.g I Q U V | 
|---|
| 341 | # 'I' will be 'red', 'Q' will be 'green', U will be 'blue' | 
|---|
| 342 | # and 'V' will be 'red' again. | 
|---|
| 343 | """ | 
|---|
| 344 | if isinstance(colmap,str): | 
|---|
| 345 | colmap = colmap.split() | 
|---|
| 346 | self._plotter.palette(0, colormap=colmap) | 
|---|
| 347 | if self._data: self.plot(self._data) | 
|---|
| 348 |  | 
|---|
| 349 | # alias for english speakers | 
|---|
| 350 | set_colours = set_colors | 
|---|
| 351 |  | 
|---|
| 352 | def set_histogram(self, hist=True, linewidth=None): | 
|---|
| 353 | """ | 
|---|
| 354 | Enable/Disable histogram-like plotting. | 
|---|
| 355 | Parameters: | 
|---|
| 356 | hist:        True (default) or False. The fisrt default | 
|---|
| 357 | is taken from the .asaprc setting | 
|---|
| 358 | plotter.histogram | 
|---|
| 359 | """ | 
|---|
| 360 | self._hist = hist | 
|---|
| 361 | if isinstance(linewidth, float) or isinstance(linewidth, int): | 
|---|
| 362 | from matplotlib import rc as rcp | 
|---|
| 363 | rcp('lines', linewidth=linewidth) | 
|---|
| 364 | if self._data: self.plot(self._data) | 
|---|
| 365 |  | 
|---|
| 366 | def set_linestyles(self, linestyles=None, linewidth=None): | 
|---|
| 367 | """ | 
|---|
| 368 | Set the linestyles to be used. The plotter will cycle through | 
|---|
| 369 | these linestyles when lines are overlaid (stacking mode) AND | 
|---|
| 370 | only one color has been set. | 
|---|
| 371 | Parameters: | 
|---|
| 372 | linestyles:     a list of linestyles to use. | 
|---|
| 373 | 'line', 'dashed', 'dotted', 'dashdot', | 
|---|
| 374 | 'dashdotdot' and 'dashdashdot' are | 
|---|
| 375 | possible | 
|---|
| 376 |  | 
|---|
| 377 | Example: | 
|---|
| 378 | plotter.set_colors("black") | 
|---|
| 379 | plotter.set_linestyles("line dashed dotted dashdot") | 
|---|
| 380 | # If for example four lines are overlaid e.g I Q U V | 
|---|
| 381 | # 'I' will be 'solid', 'Q' will be 'dashed', | 
|---|
| 382 | # U will be 'dotted' and 'V' will be 'dashdot'. | 
|---|
| 383 | """ | 
|---|
| 384 | if isinstance(linestyles,str): | 
|---|
| 385 | linestyles = linestyles.split() | 
|---|
| 386 | self._plotter.palette(color=0,linestyle=0,linestyles=linestyles) | 
|---|
| 387 | if isinstance(linewidth, float) or isinstance(linewidth, int): | 
|---|
| 388 | from matplotlib import rc as rcp | 
|---|
| 389 | rcp('lines', linewidth=linewidth) | 
|---|
| 390 | if self._data: self.plot(self._data) | 
|---|
| 391 |  | 
|---|
| 392 | def set_font(self, family=None, style=None, weight=None, size=None): | 
|---|
| 393 | """ | 
|---|
| 394 | Set font properties. | 
|---|
| 395 | Parameters: | 
|---|
| 396 | family:    one of 'sans-serif', 'serif', 'cursive', 'fantasy', 'monospace' | 
|---|
| 397 | style:     one of 'normal' (or 'roman'), 'italic'  or 'oblique' | 
|---|
| 398 | weight:    one of 'normal or 'bold' | 
|---|
| 399 | size:      the 'general' font size, individual elements can be adjusted | 
|---|
| 400 | seperately | 
|---|
| 401 | """ | 
|---|
| 402 | from matplotlib import rc as rcp | 
|---|
| 403 | if isinstance(family, str): | 
|---|
| 404 | rcp('font', family=family) | 
|---|
| 405 | if isinstance(style, str): | 
|---|
| 406 | rcp('font', style=style) | 
|---|
| 407 | if isinstance(weight, str): | 
|---|
| 408 | rcp('font', weight=weight) | 
|---|
| 409 | if isinstance(size, float) or isinstance(size, int): | 
|---|
| 410 | rcp('font', size=size) | 
|---|
| 411 | if self._data: self.plot(self._data) | 
|---|
| 412 |  | 
|---|
| 413 | def plot_lines(self, linecat=None, doppler=0.0, deltachan=10, rotate=90.0, | 
|---|
| 414 | location=None): | 
|---|
| 415 | """ | 
|---|
| 416 | Plot a line catalog. | 
|---|
| 417 | Parameters: | 
|---|
| 418 | linecat:      the linecatalog to plot | 
|---|
| 419 | doppler:      the velocity shift to apply to the frequencies | 
|---|
| 420 | deltachan:    the number of channels to include each side of the | 
|---|
| 421 | line to determine a local maximum/minimum | 
|---|
| 422 | rotate:       the rotation (in degrees) )for the text label (default 90.0) | 
|---|
| 423 | location:     the location of the line annotation from the 'top', | 
|---|
| 424 | 'bottom' or alternate (None - the default) | 
|---|
| 425 | Notes: | 
|---|
| 426 | If the spectrum is flagged no line will be drawn in that location. | 
|---|
| 427 | """ | 
|---|
| 428 | if not self._data: | 
|---|
| 429 | raise RuntimeError("No scantable has been plotted yet.") | 
|---|
| 430 | from asap._asap import linecatalog | 
|---|
| 431 | if not isinstance(linecat, linecatalog): | 
|---|
| 432 | raise ValueError("'linecat' isn't of type linecatalog.") | 
|---|
| 433 | if not self._data.get_unit().endswith("Hz"): | 
|---|
| 434 | raise RuntimeError("Can only overlay linecatalogs when data is in frequency.") | 
|---|
| 435 | from matplotlib.numerix import ma | 
|---|
| 436 | for j in range(len(self._plotter.subplots)): | 
|---|
| 437 | self._plotter.subplot(j) | 
|---|
| 438 | lims = self._plotter.axes.get_xlim() | 
|---|
| 439 | for row in range(linecat.nrow()): | 
|---|
| 440 | # get_frequency returns MHz | 
|---|
| 441 | base = { "GHz": 1000.0, "MHz": 1.0, "Hz": 1.0e-6 } | 
|---|
| 442 | restf = linecat.get_frequency(row)/base[self._data.get_unit()] | 
|---|
| 443 | c = 299792.458 | 
|---|
| 444 | freq = restf*(1.0-doppler/c) | 
|---|
| 445 | if lims[0] < freq < lims[1]: | 
|---|
| 446 | if location is None: | 
|---|
| 447 | loc = 'bottom' | 
|---|
| 448 | if row%2: loc='top' | 
|---|
| 449 | else: loc = location | 
|---|
| 450 | maxys = [] | 
|---|
| 451 | for line in self._plotter.axes.lines: | 
|---|
| 452 | v = line._x | 
|---|
| 453 | asc = v[0] < v[-1] | 
|---|
| 454 |  | 
|---|
| 455 | idx = None | 
|---|
| 456 | if not asc: | 
|---|
| 457 | if v[len(v)-1] <= freq <= v[0]: | 
|---|
| 458 | i = len(v)-1 | 
|---|
| 459 | while i>=0 and v[i] < freq: | 
|---|
| 460 | idx = i | 
|---|
| 461 | i-=1 | 
|---|
| 462 | else: | 
|---|
| 463 | if v[0] <= freq <= v[len(v)-1]: | 
|---|
| 464 | i = 0 | 
|---|
| 465 | while  i<len(v) and v[i] < freq: | 
|---|
| 466 | idx = i | 
|---|
| 467 | i+=1 | 
|---|
| 468 | if idx is not None: | 
|---|
| 469 | lower = idx - deltachan | 
|---|
| 470 | upper = idx + deltachan | 
|---|
| 471 | if lower < 0: lower = 0 | 
|---|
| 472 | if upper > len(v): upper = len(v) | 
|---|
| 473 | s = slice(lower, upper) | 
|---|
| 474 | y = line._y[s] | 
|---|
| 475 | maxy = ma.maximum(y) | 
|---|
| 476 | if isinstance( maxy, float): | 
|---|
| 477 | maxys.append(maxy) | 
|---|
| 478 | if len(maxys): | 
|---|
| 479 | peak = max(maxys) | 
|---|
| 480 | if peak > self._plotter.axes.get_ylim()[1]: | 
|---|
| 481 | loc = 'bottom' | 
|---|
| 482 | else: | 
|---|
| 483 | continue | 
|---|
| 484 | self._plotter.vline_with_label(freq, peak, | 
|---|
| 485 | linecat.get_name(row), | 
|---|
| 486 | location=loc, rotate=rotate) | 
|---|
| 487 | self._plotter.show(hardrefresh=False) | 
|---|
| 488 |  | 
|---|
| 489 |  | 
|---|
| 490 | def save(self, filename=None, orientation=None, dpi=None): | 
|---|
| 491 | """ | 
|---|
| 492 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'. | 
|---|
| 493 | Parameters: | 
|---|
| 494 | filename:    The name of the output file. This is optional | 
|---|
| 495 | and autodetects the image format from the file | 
|---|
| 496 | suffix. If non filename is specified a file | 
|---|
| 497 | called 'yyyymmdd_hhmmss.png' is created in the | 
|---|
| 498 | current directory. | 
|---|
| 499 | orientation: optional parameter for postscript only (not eps). | 
|---|
| 500 | 'landscape', 'portrait' or None (default) are valid. | 
|---|
| 501 | If None is choosen for 'ps' output, the plot is | 
|---|
| 502 | automatically oriented to fill the page. | 
|---|
| 503 | dpi:         The dpi of the output non-ps plot | 
|---|
| 504 | """ | 
|---|
| 505 | self._plotter.save(filename,orientation,dpi) | 
|---|
| 506 | return | 
|---|
| 507 |  | 
|---|
| 508 |  | 
|---|
| 509 | def set_mask(self, mask=None, selection=None): | 
|---|
| 510 | """ | 
|---|
| 511 | Set a plotting mask for a specific polarization. | 
|---|
| 512 | This is useful for masking out "noise" Pangle outside a source. | 
|---|
| 513 | Parameters: | 
|---|
| 514 | mask:           a mask from scantable.create_mask | 
|---|
| 515 | selection:      the spectra to apply the mask to. | 
|---|
| 516 | Example: | 
|---|
| 517 | select = selector() | 
|---|
| 518 | select.setpolstrings("Pangle") | 
|---|
| 519 | plotter.set_mask(mymask, select) | 
|---|
| 520 | """ | 
|---|
| 521 | if not self._data: | 
|---|
| 522 | msg = "Can only set mask after a first call to plot()" | 
|---|
| 523 | if rcParams['verbose']: | 
|---|
| 524 | print msg | 
|---|
| 525 | return | 
|---|
| 526 | else: | 
|---|
| 527 | raise RuntimeError(msg) | 
|---|
| 528 | if len(mask): | 
|---|
| 529 | if isinstance(mask, list) or isinstance(mask, tuple): | 
|---|
| 530 | self._usermask = array(mask) | 
|---|
| 531 | else: | 
|---|
| 532 | self._usermask = mask | 
|---|
| 533 | if mask is None and selection is None: | 
|---|
| 534 | self._usermask = [] | 
|---|
| 535 | self._maskselection = None | 
|---|
| 536 | if isinstance(selection, selector): | 
|---|
| 537 | self._maskselection = {'b': selection.get_beams(), | 
|---|
| 538 | 's': selection.get_scans(), | 
|---|
| 539 | 'i': selection.get_ifs(), | 
|---|
| 540 | 'p': selection.get_pols(), | 
|---|
| 541 | 't': [] } | 
|---|
| 542 | else: | 
|---|
| 543 | self._maskselection = None | 
|---|
| 544 | self.plot(self._data) | 
|---|
| 545 |  | 
|---|
| 546 | def _slice_indeces(self, data): | 
|---|
| 547 | mn = self._minmaxx[0] | 
|---|
| 548 | mx = self._minmaxx[1] | 
|---|
| 549 | asc = data[0] < data[-1] | 
|---|
| 550 | start=0 | 
|---|
| 551 | end = len(data)-1 | 
|---|
| 552 | inc = 1 | 
|---|
| 553 | if not asc: | 
|---|
| 554 | start = len(data)-1 | 
|---|
| 555 | end = 0 | 
|---|
| 556 | inc = -1 | 
|---|
| 557 | # find min index | 
|---|
| 558 | while start > 0 and data[start] < mn: | 
|---|
| 559 | start+= inc | 
|---|
| 560 | # find max index | 
|---|
| 561 | while end > 0 and data[end] > mx: | 
|---|
| 562 | end-=inc | 
|---|
| 563 | if end > 0: end +=1 | 
|---|
| 564 | if start > end: | 
|---|
| 565 | return end,start | 
|---|
| 566 | return start,end | 
|---|
| 567 |  | 
|---|
| 568 | def _reset(self): | 
|---|
| 569 | self._usermask = [] | 
|---|
| 570 | self._usermaskspectra = None | 
|---|
| 571 | self.set_selection(None, False) | 
|---|
| 572 |  | 
|---|
| 573 | def _plot(self, scan): | 
|---|
| 574 | savesel = scan.get_selection() | 
|---|
| 575 | sel = savesel +  self._selection | 
|---|
| 576 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO', | 
|---|
| 577 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' } | 
|---|
| 578 | order = [d0[self._panelling],d0[self._stacking]] | 
|---|
| 579 | sel.set_order(order) | 
|---|
| 580 | scan.set_selection(sel) | 
|---|
| 581 | d = {'b': scan.getbeam, 's': scan.getscan, | 
|---|
| 582 | 'i': scan.getif, 'p': scan.getpol, 't': scan._gettime } | 
|---|
| 583 |  | 
|---|
| 584 | polmodes = dict(zip(self._selection.get_pols(), | 
|---|
| 585 | self._selection.get_poltypes())) | 
|---|
| 586 | # this returns either a tuple of numbers or a length  (ncycles) | 
|---|
| 587 | # convert this into lengths | 
|---|
| 588 | n0,nstack0 = self._get_selected_n(scan) | 
|---|
| 589 | if isinstance(n0, int): n = n0 | 
|---|
| 590 | else: n = len(n0) | 
|---|
| 591 | if isinstance(nstack0, int): nstack = nstack0 | 
|---|
| 592 | else: nstack = len(nstack0) | 
|---|
| 593 | maxpanel, maxstack = 16,8 | 
|---|
| 594 | if n > maxpanel or nstack > maxstack: | 
|---|
| 595 | from asap import asaplog | 
|---|
| 596 | maxn = 0 | 
|---|
| 597 | if nstack > maxstack: maxn = maxstack | 
|---|
| 598 | if n > maxpanel: maxn = maxpanel | 
|---|
| 599 | msg ="Scan to be plotted contains more than %d selections.\n" \ | 
|---|
| 600 | "Selecting first %d selections..." % (maxn, maxn) | 
|---|
| 601 | asaplog.push(msg) | 
|---|
| 602 | print_log() | 
|---|
| 603 | n = min(n,maxpanel) | 
|---|
| 604 | nstack = min(nstack,maxstack) | 
|---|
| 605 | if n > 1: | 
|---|
| 606 | ganged = rcParams['plotter.ganged'] | 
|---|
| 607 | if self._rows and self._cols: | 
|---|
| 608 | n = min(n,self._rows*self._cols) | 
|---|
| 609 | self._plotter.set_panels(rows=self._rows,cols=self._cols, | 
|---|
| 610 | nplots=n,ganged=ganged) | 
|---|
| 611 | else: | 
|---|
| 612 | self._plotter.set_panels(rows=n,cols=0,nplots=n,ganged=ganged) | 
|---|
| 613 | else: | 
|---|
| 614 | self._plotter.set_panels() | 
|---|
| 615 | r=0 | 
|---|
| 616 | nr = scan.nrow() | 
|---|
| 617 | a0,b0 = -1,-1 | 
|---|
| 618 | allxlim = [] | 
|---|
| 619 | allylim = [] | 
|---|
| 620 | newpanel=True | 
|---|
| 621 | panelcount,stackcount = 0,0 | 
|---|
| 622 | while r < nr: | 
|---|
| 623 | a = d[self._panelling](r) | 
|---|
| 624 | b = d[self._stacking](r) | 
|---|
| 625 | if a > a0 and panelcount < n: | 
|---|
| 626 | if n > 1: | 
|---|
| 627 | self._plotter.subplot(panelcount) | 
|---|
| 628 | self._plotter.palette(0) | 
|---|
| 629 | #title | 
|---|
| 630 | xlab = self._abcissa and self._abcissa[panelcount] \ | 
|---|
| 631 | or scan._getabcissalabel() | 
|---|
| 632 | ylab = self._ordinate and self._ordinate[panelcount] \ | 
|---|
| 633 | or scan._get_ordinate_label() | 
|---|
| 634 | self._plotter.set_axes('xlabel',xlab) | 
|---|
| 635 | self._plotter.set_axes('ylabel',ylab) | 
|---|
| 636 | lbl = self._get_label(scan, r, self._panelling, self._title) | 
|---|
| 637 | if isinstance(lbl, list) or isinstance(lbl, tuple): | 
|---|
| 638 | if 0 <= panelcount < len(lbl): | 
|---|
| 639 | lbl = lbl[panelcount] | 
|---|
| 640 | else: | 
|---|
| 641 | # get default label | 
|---|
| 642 | lbl = self._get_label(scan, r, self._panelling, None) | 
|---|
| 643 | self._plotter.set_axes('title',lbl) | 
|---|
| 644 | newpanel = True | 
|---|
| 645 | stackcount =0 | 
|---|
| 646 | panelcount += 1 | 
|---|
| 647 | if (b > b0 or newpanel) and stackcount < nstack: | 
|---|
| 648 | y = [] | 
|---|
| 649 | if len(polmodes): | 
|---|
| 650 | y = scan._getspectrum(r, polmodes[scan.getpol(r)]) | 
|---|
| 651 | else: | 
|---|
| 652 | y = scan._getspectrum(r) | 
|---|
| 653 | m = scan._getmask(r) | 
|---|
| 654 | from matplotlib.numerix import logical_not, logical_and | 
|---|
| 655 | if self._maskselection and len(self._usermask) == len(m): | 
|---|
| 656 | if d[self._stacking](r) in self._maskselection[self._stacking]: | 
|---|
| 657 | m = logical_and(m, self._usermask) | 
|---|
| 658 | x = scan._getabcissa(r) | 
|---|
| 659 | from matplotlib.numerix import ma, array | 
|---|
| 660 | y = ma.masked_array(y,mask=logical_not(array(m,copy=False))) | 
|---|
| 661 | if self._minmaxx is not None: | 
|---|
| 662 | s,e = self._slice_indeces(x) | 
|---|
| 663 | x = x[s:e] | 
|---|
| 664 | y = y[s:e] | 
|---|
| 665 | if len(x) > 1024 and rcParams['plotter.decimate']: | 
|---|
| 666 | fac = len(x)/1024 | 
|---|
| 667 | x = x[::fac] | 
|---|
| 668 | y = y[::fac] | 
|---|
| 669 | llbl = self._get_label(scan, r, self._stacking, self._lmap) | 
|---|
| 670 | if isinstance(llbl, list) or isinstance(llbl, tuple): | 
|---|
| 671 | if 0 <= stackcount < len(llbl): | 
|---|
| 672 | # use user label | 
|---|
| 673 | llbl = llbl[stackcount] | 
|---|
| 674 | else: | 
|---|
| 675 | # get default label | 
|---|
| 676 | llbl = self._get_label(scan, r, self._stacking, None) | 
|---|
| 677 | self._plotter.set_line(label=llbl) | 
|---|
| 678 | plotit = self._plotter.plot | 
|---|
| 679 | if self._hist: plotit = self._plotter.hist | 
|---|
| 680 | if len(x) > 0: | 
|---|
| 681 | plotit(x,y) | 
|---|
| 682 | xlim= self._minmaxx or [min(x),max(x)] | 
|---|
| 683 | allxlim += xlim | 
|---|
| 684 | ylim= self._minmaxy or [ma.minimum(y),ma.maximum(y)] | 
|---|
| 685 | allylim += ylim | 
|---|
| 686 | stackcount += 1 | 
|---|
| 687 | # last in colour stack -> autoscale x | 
|---|
| 688 | if stackcount == nstack: | 
|---|
| 689 | allxlim.sort() | 
|---|
| 690 | self._plotter.axes.set_xlim([allxlim[0],allxlim[-1]]) | 
|---|
| 691 | # clear | 
|---|
| 692 | allxlim =[] | 
|---|
| 693 |  | 
|---|
| 694 | newpanel = False | 
|---|
| 695 | a0=a | 
|---|
| 696 | b0=b | 
|---|
| 697 | # ignore following rows | 
|---|
| 698 | if (panelcount == n) and (stackcount == nstack): | 
|---|
| 699 | # last panel -> autoscale y if ganged | 
|---|
| 700 | if rcParams['plotter.ganged']: | 
|---|
| 701 | allylim.sort() | 
|---|
| 702 | self._plotter.set_limits(ylim=[allylim[0],allylim[-1]]) | 
|---|
| 703 | break | 
|---|
| 704 | r+=1 # next row | 
|---|
| 705 | #reset the selector to the scantable's original | 
|---|
| 706 | scan.set_selection(savesel) | 
|---|
| 707 |  | 
|---|
| 708 | def set_selection(self, selection=None, refresh=True): | 
|---|
| 709 | self._selection = isinstance(selection,selector) and selection or selector() | 
|---|
| 710 | d0 = {'s': 'SCANNO', 'b': 'BEAMNO', 'i':'IFNO', | 
|---|
| 711 | 'p': 'POLNO', 'c': 'CYCLENO', 't' : 'TIME' } | 
|---|
| 712 | order = [d0[self._panelling],d0[self._stacking]] | 
|---|
| 713 | self._selection.set_order(order) | 
|---|
| 714 | if self._data and refresh: self.plot(self._data) | 
|---|
| 715 |  | 
|---|
| 716 | def _get_selected_n(self, scan): | 
|---|
| 717 | d1 = {'b': scan.getbeamnos, 's': scan.getscannos, | 
|---|
| 718 | 'i': scan.getifnos, 'p': scan.getpolnos, 't': scan.ncycle } | 
|---|
| 719 | d2 = { 'b': self._selection.get_beams(), | 
|---|
| 720 | 's': self._selection.get_scans(), | 
|---|
| 721 | 'i': self._selection.get_ifs(), | 
|---|
| 722 | 'p': self._selection.get_pols(), | 
|---|
| 723 | 't': self._selection.get_cycles() } | 
|---|
| 724 | n =  d2[self._panelling] or d1[self._panelling]() | 
|---|
| 725 | nstack = d2[self._stacking] or d1[self._stacking]() | 
|---|
| 726 | return n,nstack | 
|---|
| 727 |  | 
|---|
| 728 | def _get_label(self, scan, row, mode, userlabel=None): | 
|---|
| 729 | if isinstance(userlabel, list) and len(userlabel) == 0: | 
|---|
| 730 | userlabel = " " | 
|---|
| 731 | pms = dict(zip(self._selection.get_pols(),self._selection.get_poltypes())) | 
|---|
| 732 | if len(pms): | 
|---|
| 733 | poleval = scan._getpollabel(scan.getpol(row),pms[scan.getpol(row)]) | 
|---|
| 734 | else: | 
|---|
| 735 | poleval = scan._getpollabel(scan.getpol(row),scan.poltype()) | 
|---|
| 736 | d = {'b': "Beam "+str(scan.getbeam(row)), | 
|---|
| 737 | 's': scan._getsourcename(row), | 
|---|
| 738 | 'i': "IF"+str(scan.getif(row)), | 
|---|
| 739 | 'p': poleval, | 
|---|
| 740 | 't': str(scan.get_time(row)) } | 
|---|
| 741 | return userlabel or d[mode] | 
|---|
| 742 |  | 
|---|